

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

A Fault Tolerant Voting System for the Internet

Rui Filipe Lopes Joaquim
(Licenciado)

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática e de Computadores

Orientador: Doutor André Ventura da Cruz Marnôto Zúquete
Co-Orientador: Doutor Paulo Jorge Pires Ferreira

Júri

Presidente: Doutor Paulo Jorge Pires Ferreira

Vogais: Doutor André Ventura da Cruz Marnôto Zúquete

Doutor Manuel Bernardo Martins Barbosa
Doutor Fernando Henrique Corte Real Mira da Silva

Fevereiro de 2005

Tese realizada sob orientação do

Doutor André Ventura da Cruz Marnôto Zúquete

Professor Auxiliar do Departamento de Electrónica e Telecomunicações da

Universidade de Aveiro

e co-orientação do

Doutor Paulo Jorge Pires Ferreira

Professor Associado do Departamento de Engenharia Informática e de

Computadores do Instituto Superior Técnico.

i

ii

Resumo

Vários países estão a efectuar reformas nos seus processos eleitorais de forma

a substituir os velhos sistemas de voto tradicional baseados em papel. Com

a generalização do acesso à Internet, a possibilidade de votar usando um

sistema de voto pela Internet passou de um sonho a uma possibilidade. O

voto pela Internet é alvo de estudo à mais de duas décadas por vários inves-

tigadores. Vários protocolos foram propostos e alguns deles implementados.

No entanto, os vários protótipos desenvolvidos dão apenas suporte às inter-

acções básicas do protocolo e não fornecem mecanismos de suporte a falhas,

muito embora estes sejam críticos para uma utilização real do sistema.

Nesta dissertação é apresentado o sistema de voto REVS que apresenta as

características fundamentais dos sistemas de voto: democracia, privacidade,

correcção e veri�cabilidade. No entanto, o principal objectivo do REVS é

providenciar mecanismos capazes de tolerar falhas em máquinas e/ou comu-

nicações que possam levar à interrupção do protocolo de votação. Assim,

o sistema REVS foi concebido para permitir: (i) interromper e reatar o

processo de votação sem enfraquecer o protocolo de voto; (ii) suportar fal-

has nos servidores através de replicação; e (iii) impedir que um só servidor,

sozinho ou até um certo nível de conluio, consiga corromper o resultado da

eleição.

Palavras-chave: Voto pela Internet, Voto Electrónico, Tolerância a Falhas,

Escalabilidade, Facilitação

iii

iv

Abstract

Today many countries are conducting reforms in electoral system for re-

placing old paper-based voting systems by electronic voting systems. With

the explosive growth and consequent usage of the Internet the possibility

of using it for voting has became real. Researchers have been working on

electronic voting issues for more than two decades and many protocols have

been proposed. However, only a few protocols have prototypes implemented,

and usually those prototypes are focused in supporting the basic protocol in-

teractions and do not handle properly some real world issues, such as fault

tolerance.

In this thesis we start with an overview of electronic voting, highlighting

the techniques used in the various proposed protocols. We also analyze

the voting protocols and point-out the pros and cons of them. Then we

present REVS, a robust electronic voting system designed for distributed

and faulty environments, namely the Internet. REVS is an electronic voting

system that accomplishes the desired characteristics of traditional voting

systems, such as accuracy, democracy, privacy and veri�ability. But the

main goal of REVS is deal with failures in real world scenarios, such as

machine or communication failures, which can lead to protocol interruptions.

REVS robustness has consequences at three levels: (i) the voting process can

be interrupted and recovered without weakening the voting protocol; (ii) it

allows a certain degree of failures with server replication; and (iii) none of the

servers conducting the election, by its own or to a certain level of collusion,

can corrupt the election outcome.

Keywords: Internet Voting, Electronic Voting, Fail Tolerance, Scalability,

Facilitation

v

vi

À minha esposa

Rosa Henriques

Aos meus pais

Vicente Maria Joaquim

Olívia Lopes Pires

vii

viii

Agradecimentos

Ao Prof. Doutor André Zúquete pela exemplar orientação ao longo de todo

o trabalho realizado. Agradeço também pelas valiosas discussões e revisões

que contribuíram de forma decisiva para esta tese.

Ao Prof. Doutor Paulo Ferreira pela orientação, ideias, revisões e dis-

cussões ao longo de todo o trabalho realizado.

A todos os membros do grupo de Sistemas Distribuídos do INESC-ID

por todo o seu apoio.

Por �m, mas não por último, um agradecimento muito especial à minha

família e amigos que sempre me apoiaram e incentivaram.

ix

x

Contents

1 Introduction 1

2 Understanding an electronic voting system 5

2.1 Voting phases . 5

2.2 Voting properties . 6

2.3 Electronic voting deployment 8

2.3.1 Four-stage approach to implement Internet Voting . . 9

3 Electronic voting concepts and techniques 11

3.1 Public key encryption . 11

3.1.1 RSA public key cryptosystem 12

3.1.2 ElGamal public key cryptosystem 12

3.1.3 Paillier's public key cryptosystem 15

3.2 Secret sharing . 15

3.2.1 Threshold cryptosystem 16

3.3 Digital signatures . 16

3.3.1 Blind signatures . 17

3.4 Zero-knowledge proofs . 18

3.5 Bulletin Board . 18

3.6 Mix-Net . 19

xi

4 Related work 23

4.1 Voting protocols . 23

4.1.1 Simple protocol . 23

4.1.2 One/Two agency protocols 24

4.1.3 Blind signatures . 25

4.1.4 Mix-Nets . 28

4.1.5 Homomorphic . 32

4.1.6 Overall evaluation and conclusions 34

4.2 Voting systems . 36

4.2.1 Sensus . 38

4.2.2 Evox . 40

4.2.3 Evox - Managed Administrators 42

4.2.4 Vienna's e-voting system 45

4.2.5 Evaluation and conclusions 47

5 REVS 59

5.1 REVS architecture . 61

5.2 REVS protocol . 64

5.2.1 Multiple election support 68

5.2.2 To keep or not to keep voting state? 68

5.3 Implementation . 69

5.3.1 REVS modules and servers 70

5.3.2 Cryptography . 72

5.3.3 Voter's authentication 73

5.3.4 Ballots . 74

5.4 Evaluation . 75

5.4.1 Performance evaluation 80

5.5 The �rst experiment . 82

xii

5.6 Proposed improvements . 82

6 Conclusions and future work 85

A Installation and use 89

A.1 Pre-requisites . 89

A.2 Key management . 89

A.2.1 Create a key . 90

A.2.2 Sign a key . 90

A.2.3 Import the signed certi�cate 91

A.3 Installing servers . 91

A.3.1 Con�guration �le . 91

A.3.2 Setting up servers . 92

A.4 Setting up an election . 95

A.4.1 Create a ballot . 100

A.4.2 De�ning the election servers 102

A.4.3 Import voters and elections 102

A.5 Start an election . 104

A.5.1 Administrators signing keys 105

A.6 Voting process . 106

A.6.1 Start the Voter's Module 106

A.6.2 Voting steps . 107

A.7 Election tally . 113

Bibliography 117

xiii

xiv

List of Figures

3.1 Re-encryption mix-net . 20

3.2 Randomized Partial Checking 22

4.1 Simple voting protocol . 24

4.2 Two Agency Protocol . 25

4.3 Anonymous ballot choosing using a mix-net. 31

4.4 Simple blind signature voting system 37

4.5 Sensus voting system . 39

4.6 Evox voting system . 40

4.7 Evox-MA voting system . 43

4.8 Voter registration . 46

4.9 Voting phase . 46

5.1 REVS voting protocol . 65

5.2 REVS voting protocol (message details) 66

5.3 Password generation algorithm 74

5.4 XML ballot and answer . 75

A.1 Commissioner main menu . 97

A.2 Voters Administration menu 97

A.3 Password menu . 98

xv

A.4 Group Administration menu 98

A.5 Group management menu . 99

A.6 Con�guration Administration menu 99

A.7 Election Administration menu 100

A.8 XML ballot . 101

A.9 Servers Administration menu 102

A.10 Utilities menu . 103

A.11 Con�guration Selection (create databases) 104

A.12 Welcome screen . 108

A.13 Authentication screen . 109

A.14 Authentication con�rmation 109

A.15 Election selection screen . 110

A.16 Ballot display . 110

A.17 Validate con�rmation . 111

A.18 Save vote state . 111

A.19 Submit con�rmation . 112

A.20 Report screen . 112

A.21 Resume voting . 113

A.22 Results resume table . 114

A.23 Overall results . 114

A.24 Results details . 115

xvi

List of Tables

3.1 RSA algorithm . 12

3.2 ElGamal algorithm . 13

3.3 Paillier's algorithm . 15

4.1 Electronic voting protocols evaluation 34

4.2 Accuracy analysis resume . 48

4.3 Democracy analysis resume 50

4.4 Privacy analysis resume . 51

4.5 Veri�ability analysis resume 52

4.6 Robustness analysis resume 54

4.7 Overall systems analysis . 55

5.1 Overall systems analysis with REVS 79

5.2 Protocol data transfer resume 81

xvii

xviii

Chapter 1

Introduction

In the last few years several experiments have been conducted in order to

facilitate elections. The facilitations were introduced by new ways of ex-

pressing votes besides the traditional paper-based. Examples of new voting

interfaces and systems are touch screens, SMS messages from cellular phones

and distributed voting systems using the Internet [MSOA01, UKD].

Motivation

Internet voting systems are appealing for several reasons: (i) people are get-

ting more used to work with computers to do all sort of things, namely sen-

sitive operations such as shopping and home banking; (ii) they allow people

to vote far from where they usually live, thus helping to reduce abstention

rates; and (iii) they may support arbitrary voting ballots and check their

correct ful�llment during the voting process.

Problems

Internet voting systems face several problems that prevent their widespread

use today [Cal00, Cal01, Cra01, Int01, Riv01, Rub02]. The problems can be

1

broadly divided in three main classes.

The �rst class includes security and fault tolerance problems inherited

from the current Internet architecture. Vital services, such as DNS name

resolution, can be tampered in order to mislead users into spoo�ng servers

[LMMM00]. IP routing mechanisms and protocols, managed by many di�er-

ent organizations, should deal with partial communication outages; however,

communication problems may still arise.

The second class includes problems that are speci�c to voting protocols.

These problems derive from the assumptions of the protocols about the ex-

ecution environment, namely:

• Client machines used by voters must be trusted, in order to act as

trusted agents, which is hard to ensure in personal or multi-user com-

puters with general-purpose commercial operation systems.

• Servers controlling the voting process do not (i) fail, (ii) become un-

reachable or (iii) pervert the voting protocol. The protocol perversion

includes either not reacting properly to client requests or by trying to

in�uence the election by acting as a voter.

• The voting protocol is not disturbed by communication problems or

machine failures.

The third class includes problems that may be created by speci�c attacks

against a voting protocol or a running election. Such attacks may try to

get some useful outcome, by subverting the voting protocol, or simply ruin

an election using Denial of Service (DoS) attacks against the participating

machines or applications. Another kind of attack is the coercion of voters,

which can happen if they can vote anywhere without supervision of electoral

committees or other trustworthy agents.

2

Contribution

REVS is an Internet voting system that was designed to tackle some of

these problems. In particular, the REVS voting protocol, involving several

participating machines, supports some types of communication and machine

failures by keeping a distributed loosely-coupled state. Each voter keeps a

local state, in mobile non-volatile storage, allowing him to stop and resume

the voting process anytime and anywhere. Servers are replicated and only

a subset of them needs to be contacted by each voter. Each server keeps a

distinct state regarding the participation of each voter in the election, and

allows voters to get many times the same answer from each server. Each

server alone is not able to act as any voter and cannot provide false replies

to voters without being noticed. The collusion of servers in order to interfere

with the election (e.g. voting for absentees) is prevented to a certain degree

of collusion.

Technically REVS is a blind signature electronic voting system based in

Evox and Evox Managed Administrators (Evox-MA) systems. The Evox-

MA was proposed by DuRette in 1999 [DuR99], and improves the 1997

Herschberg's Evox system [Her97]. The Evox-MA improvements over Evox

were to eliminate single entities capable of corrupting the election. Both

Evox and Evox-MA systems are very sensible to failures in communication

or servers, a problem that we solved with REVS. Furthermore, the Evox-

MA system has problems concerning the authentication of voters, allowing

an easy impersonation of voters by the servers running the election. In REVS

we solved this problem redesigning the voter's authentication algorithm.

Electronic voting is a very delicate process that needs to be trusted by

the public. For allowing a public evaluation of electoral systems it is advised

to use an open-source approach, thus REVS is open-source (available at

3

www.gsd.inesc-id/~rjoaquim). With open-source software the system may

be analyzed by many people, therefore it is easier to detect any bugs and to

correct them.

Experiment

A �rst prototype of REVS was deployed at Instituto Superior Técnico to

support elections, namely pedagogic quality surveys. To this particular sce-

nario, REVS servers were deployed and managed by separate entities, namely

central computer services, several departments and student's organizations,

in order to reduce the possibility of collusion. A set of trusted machines was

made available to voters, though they could use any machine to participate

in the elections. The voters used a Voter's Module that is a signed Java

program. The Voter's Module was able to check the correct ful�llment of

ballots and to contact the correct REVS servers to submit them.

The structure of this document is the following: Chapter 2 presents the

phases and properties of electronic voting systems and also the issues related

to the deployment of them; Chapter 3 presents the main cryptographic mech-

anisms used by electronic voting protocols; Chapter 4 resumes the work that

has been done on the �eld; Chapter 5 presents REVS; Finally, in Chapter 6,

we draw some conclusions and also point out to some future work.

4

Chapter 2

Understanding an electronic

voting system

In this Chapter we will provide the essential information to understand elec-

tronic voting systems. We start by presenting the usual phases of a voting

process. Then we describe the properties required for an electronic voting

system. Finally we look at the issues concerning the deployment of such a

system.

2.1 Voting phases

The phases of an electronic voting process are similar to the phases of a

traditional paper-based voting process, which are the following:

• Registration: The registration phase consists in compiling the list of

the eligible voters and to provide them some credentials needed to

apply in future elections.

• Validation: The validation phase consists in verifying the credentials

of the voters during an election. Only registered voters with the proper

5

credentials may be authorized to vote, and only once per election.

• Collection: The collection phase consists in collecting the votes from

all the participating voters.

• Veri�cation: In this phase it is veri�ed the validity of the ballots. Only

the valid ballots are used in the tallying phase.

• Tallying: The tallying phase consists in counting votes from the valid

ballots. At the end the tally is published.

• Claiming: This is the phase in which all the claims should be made and

investigated. The claiming phase should run in parallel with all the

other phases. At the end of this phase the �nal results are published.

2.2 Voting properties

Researchers in the electronic voting �eld have already reached a consensus

pack of four core properties that an electronic voting system should have

[CC97]:

• Accuracy: (1) it is not possible for a vote to be altered, (2) it is not

possible for a validated vote to be eliminated from the �nal tally, and

(3) it is not possible for an invalid vote to be counted in the �nal tally.

• Democracy: (1) it permits only eligible voters to vote, (2) it ensures

that eligible voters vote only once, and (3) ensures the equality of

knowledge, i.e. no partial results.

• Privacy: (1) neither authorities nor anyone else can link any ballot

to the voter who cast it and (2) no voter can prove that he voted in a

particular way.

6

The second part of this property exists to assure that no one can coerce

or bribe a voter. The systems with this second part of the Privacy

property are usually called Receipt-free voting systems.

• Veri�ability: anyone can independently verify that all votes have

been counted correctly.

Accuracy, democracy and veri�ability are, in most cases of today's elec-

toral systems, assured by the presence of representatives of opposite parties.

The privacy property is currently assured by the existence of private voting

booths controlled by electoral committees, allowing voters to cast their votes

in secrecy and without coercion.

The presented four core properties are essential properties that voting

systems should have, but they do not deal with operational requirements,

which are:

• Availability: (1) the system works properly as long as the poll stands

and (2) any voter can have access to it from the beginning to the end

of the poll.

• Resume-ability: the system allows any voter who had interrupted

his voting process to resume or restart it while the poll stands.

• Collusion-resistance: the collusion-resistance measures the capacity

of the system to resist undisturbed when misbehaviour from any elec-

toral entity or group of entities occurs.

If all supervising entities conspire this property isn't achieved. So, this

characteristic should be measured in terms of the total number of en-

tities that must conspire to guarantee a successful interference in the

election.

7

We say that a system is Robust if he holds the last tree properties described.

2.3 Electronic voting deployment

There are two broad categories of Internet electronic voting systems that

must be distinguished in any discussion about Internet voting [Cal00]. The

di�erence is based on whether or not the election agency has full control over

the client-side infrastructure and software used for voting:

• Agency-controlled systems: In these systems the actual computers and

software used for voting, along with the networks to which they are im-

mediately attached, and the physical environment of voting, are under

the control of election o�cials (or their contractors, etc.) at all times.

• Vote-from-anywhere systems: These are systems intended to support

voting from essentially any computer connected to the Internet any-

where in the world, e.g. from home, workplaces, schools, hotels, cyber-

cafés, military installations, handheld appliances, etc. In this case the

computers used as voting machines, the software on them, the networks

where they are immediately attached to and the physical surroundings

are under the control of the voter or of a third party, but not under

the control of election o�cials.

This distinction is fundamental because with systems that are not agency-

controlled, the voting environment is di�cult to secure against privacy haz-

ards and security attacks that can arise from infection with malicious code or

use of remote control software. Hence, white vote-from-anywhere systems it

should be substantially more complex to achieve the same degrees of privacy

and security that are achievable with agency-controlled systems.

8

2.3.1 Four-stage approach to implement Internet Voting

We defend a incremental approach in the deployment of Internet voting

systems, such as the one presented by the California Internet Voting Task

Force [Cal00]. This task force presented a four-stage approach for introducing

secure Internet voting systems. Each stage is a technical advance on the

previous ones, but provides better service to more voters. These four stages

are:

1. Internet voting at voters' precinct polling place: Internet-connected

computers are deployed at regular precinct polling places alongside

traditional voting systems on election day. Voters identify themselves

to clerks as usually with the traditional system, and then have their

choice of voting methods.

2. Internet voting at any polling place: Systems of this type are similar

to (1), except that the voter need not show up on the election day at

his own precinct polling place, but may vote at any precinct polling

place equipped for Internet voting, or at any other polling places that

might be set up at shopping centers, schools, or other places convenient

to voters. Non-precinct polling places might be open for early voting

for days or weeks in advance of election day, possibly with extended

hours. Such sites would still be manned by agency personnel, but they

would have to have access to the entire voter roll to check registration

and prevent duplicate voting, rather than just the roll for one precinct.

This might itself be implemented with Internet access to the voter's

registration database.

3. Remote Internet voting at agency-controlled computers or kiosks: Sys-

tems of this type are similar to (2) except that the polling places should

9

not have to be manned by trained county personnel, but only be re-

sponsible lower-level clerks whose job is to safeguard the voting com-

puters from tampering, restart them when necessary, and call for help

if needed.

4. Remote Internet voting from home, o�ce, or any Internet-connected

computer: These systems permit voting from essentially any Internet-

connected PC, anywhere, including home, o�ce, school, hotel, etc.. At

voting time, the voters must �rst secure the computer against malicious

code and remote control software somehow, then connect to the proper

voting site, authenticate themselves, retrieve an image of the proper

ballot, and vote.

The �rst three of these system types are agency-controlled systems, as de-

�ned in Section 2.3. We believe that these systems can reasonably be de-

ployed, at least for trial purposes, as soon as they are built and certi�ed as

satisfying all the requirements.

The last type of system is of the category of vote-from-anywhere sys-

tems, also described in Section 2.3. The deployment of these systems is not

recommended until a satisfactory solution to the malicious code and remote

control software problems is o�ered.

10

Chapter 3

Electronic voting concepts and

techniques

In this Chapter we try to give a simple and clear idea of the basic concepts

and techniques behind the design and implementation of many electronic

voting protocols. For a wider introduction to cryptographic concepts and

mechanisms see [MOV97].

3.1 Public key encryption

In the public key encryption, also known as asymmetric encryption, there

are two keys: an encryption key Kpub (public key) and a decryption key

Kpri (private key). The encryption of a message m with Kpub results in c,

to recover m from c we use Kpri, as follows:

c = EKpub(m)

m = DKpri(c) = DKpri(EKpub(m))

11

In electronic voting a public key cryptosystem is normally used to provide

secure authentication to the voters, see Section 3.3, or to establish secure

connections between the voters and the electoral servers.

3.1.1 RSA public key cryptosystem

The most known and used algorithm for public key encryption is the RSA,

proposed by Rivest, Shamir and Adleman in 1977 [RSA77]. The security of

the RSA algorithm is based on the problems of factorization and calculation

of modular logarithm for large numbers. In electronic voting the use of

the RSA, or some derived algorithms (see Section 3.3), is common on blind

signature based voting systems (see Section 3.3.1). It is also used in the

construction some of mix-nets (see Section 3.6). The details of the algorithm

are shown in Table 3.1.

Table 3.1: RSA algorithm

3.1.2 ElGamal public key cryptosystem

The ElGamal public key cryptosystem was proposed in 1985 [ElG85] by

Taher ElGamal. The security of the algorithm is based on the problem

of the calculation of modular logarithm for large numbers. Due to some

12

Table 3.2: ElGamal algorithm

characteristics of ElGamal cryptosystem it is used in homomorphic based

voting systems (see Section 4.1.5), and in some of the mix-net based voting

systems (see Section 3.6). The details of the algorithm are shown in Table

3.2.

The ElGamal public key cryptosystem has some very useful properties for

electronic voting. A brief explanation of those properties follows [BT94,

HS00, MOV97, Mür00]:

Random re-encryptability: It's possible to re-encrypt a ciphertext y, of

the message x, producing another ciphertext y ' of the same message x with-

out knowing the x. In the case of ElGamal we can re-encrypt a cryptogram

y

y = E(x) = (gr, γrx) = (y1, y2)

by multiplying the �rst component by gr′ and the second by γr′ , where

r′ ∈ Zp−1is a newly chosen random number:

y′ = (gr′y1, γ
r′y2) = (gr+r′ , γr+r′x)

A cryptosystem with this property can be used in the construction of

mix-nets, see Section 3.6.

13

Homomorphism property: For some cryptographic systems there exist

some polynomial-time computable functions ⊗,�,⊕,	, that for any mes-

sages x1, x2 hold two properties:

1. The additive homomorphic property

E(x1)⊗ E(x2) = E(x1 ⊕ x2) (3.1)

2. The subtractive homomorphic property

E(x1)� E(x2) = E(x1 	 x2) (3.2)

In the case of ElGamal cryptosystem ⊕ and 	 are, respectively, the multipli-

cation and division in Z∗
p. The operation⊗ is component-wise multiplication

and � is component-wise division.

The most interesting property for electronic voting is the additive homo-

morphic property. Namely it allows to decipher the overall tally instead of

each individual vote in homomorphic voting systems, Section 4.1.5.

Provable decryption: Having a ciphertext c and the decrypted plain text x

= D(c), it's possible to prove that the decryption operation succeed without

revealing anything about the private key. With ElGamal it's enough to prove

that

logg γ = logy1(y2/x)

This can be accomplished with the help of zero knowledge proofs (see Section

14

Table 3.3: Paillier's algorithm

3.4). This is very important in the case of homomorphic voting systems,

because if the private key need to be made public to prove that the decryption

of the overall tally is correct it would be possible to decipher each individual,

therefore breaking the voters anonymity, see Section 4.1.5.

3.1.3 Paillier's public key cryptosystem

The Paillier cryptosystem was proposed by Pascal Paillier in 1999 [Pai99].

Its security is based on the composite residuosity class problem. This cryp-

tosystem has the additive homomorphic property (Equation 3.1), so it is

useful for homomorphic based voting systems, see Section 4.1.5. The details

of the algorithm are shown in Table 3.3.

3.2 Secret sharing

Secret sharing, as the name suggests, is called to the process of sharing a

secret S among N parties so that only t or more parties can later recreate

the secret. Each party Pi keeps his share si secret, so that just m ≥ t parties

15

can recreate the secret S. Such a scheme it's called (t, N)-threshold secret

sharing scheme. The interest of this scheme is to prevent the ability of less

than t parties to reveal the shared secret.

3.2.1 Threshold cryptosystem

In a threshold cryptosystem the secret sharing technique is used to share a

private key Kpri among N parties, in such a way that at least t parties must

cooperate to decrypt EKpub(m), where m is an arbitrary message. These

systems are called (t,N)-threshold cryptosystems. Threshold cryptosystems

usually include two algorithms:

Key generation protocol: All the N parties are involved in the generation

of the share public key Kpri. At the end each one receives its share of the

private key Kpri.

Veri�able decryption protocol: Allows t parties to cooperatively decrypt

an encrypted message EKpub(m) in a way that everyone can verify that the

decryption was performed correctly. This process should not give anyone the

ability to decrypt alone any other messages encrypted with the same public

key.

In some electronic voting protocols there is an election public key, used

to encrypt the ballots. The use of a threshold cryptosystem for the election's

private key brings obvious improvements to the system security, because

votes cannot be revealed without the cooperation of t election authorities.

3.3 Digital signatures

Digital signatures are the digital equivalent of hand-made signatures. They

are normally produced using a public key cryptosystem, or one variation of

16

it, where the private key Kpri is used to sign a message m and the public key

Kpub is used to verify the signature. The most popular digital signature al-

gorithms are the RSA and the DSA (Digital Signature Algorithm, a standard

that is a variation of the ElGamal encryption algorithm). The algorithm of

the RSA digital signatures is similar to the RSA public key encryption, but

in this case we use the private key for encryption (signing) and the public

key for decryption (signature veri�cation), as follows:

Signing: s = md mod n

Veri�cation: m = se mod n

Note that, due to performance constrains, normally the digital signature is

produced over a digest of the message, instead of the full message.

In electronic voting digital signatures are normally used to authenticate

voters, election data and voting protocol messages.

3.3.1 Blind signatures

Blind signatures are a class of digital signatures proposed in 1982 by David

Chaum [Cha82]. The goal of blind signatures is to allow an entity A to

obtain a signature of another entity B on a message m without revealing m

to B. Making a parallel with the paper-based world, getting a blind signature

is similar to setting a signature over a document bellow a sheet of carbon

inside an envelope; if someone signs the outside of the envelope, then also

signs the document inside the envelope. The signature remains attached to

the document, after being removed from the envelope. This construction

is used on the blind signature based voting systems to validate ballots (cf.

Section 4.1.3). The algorithm for creating blind signatures based on RSA

signatures is as follows:

17

Blinding: m′ = re.m mod n, where r is a random number < n (public key)

Signing: bs = m′d mod n (private key)

Unblinding: get r−1 such that r.r−1 ≡ 1(mod n) (public key) then:

s = r−1.bs ≡ r−1.(re.m)d ≡ r−1.red.md ≡ r−1.r.md ≡ md(mod n)

3.4 Zero-knowledge proofs

Sometimes we need to prove the knowledge of information without revealing

anything about it; this is called a zero-knowledge proof. Zero-knowledge

proofs were introduced in 1985 by Goldwasser, Micali, and Racko� [GMR85].

They are probabilistic proofs that demonstrate membership in the language

without conveying any additional knowledge, in such a way that a veri�er

achieves an desirable level of certain. For more detailed information see

[Gol95]. It is usual to use zero-knowledge proofs in electronic voting to

prove the correctness of mix-nets (see Section 3.6) and the correctness of the

tally decryption in homomorphic voting systems (see Section 4.1.5).

3.5 Bulletin Board

Some cryptographic protocols, to prove their correctness, need a space where

everyone can write and read but not delete information. A Bulletin Board

(BB) is the name given to some kind of repository with all the previous

mentioned properties (everyone can write/read, cannot delete).

Due to the distributed nature of Internet voting there must be taken some

measurements concerning the availability of the BB. In the case of electronic

voting all writes in the BB must be authenticated to prevent frauds. If all

18

messages are authenticated the BB are very useful for auditing proposes.

3.6 Mix-Net

The mix-net concept was introduced in 1981 by David Chaum [Cha81]. The

primary goal of a mix-net is to provide anonymity in communications; there-

fore it is a natural construction block to achieve anonymity in electronic

voting systems, normally when submitting votes.

The building part of a mix-net is the mix server. Each mix server has

the role of hiding the correspondence between its input and output. There

are two main approaches to build mix-nets: the encryption approach and

the re-encryption approach.

Encryption approach: In the encryption approach there is an asymmetric

key pair for every mix server and works as follows:

1. There are N mix servers M1, ...,MN , each one with an asymmetric key

pair (K+
i ,K−

i).

2. An entity who wants to send a message m anonymously encrypts it

successively with the public key of the mixes. A random factor ri

is added in each encryption to avoid an easy correlation between the

input and the output of each mix server

EK+
1
(EK+

2
(...EK+

N
(m, rN), r2), r1)

3. Then the entity sends the result to the �rst mix, M1, who removes

the �rst encryption with his private key K−
1 . Then, it throws away

the random factor r1, permutes the decrypted messages received and

19

sends them to the next mix server.

DK−
1

(EK+
1
(EK+

2
(...EK+

N
(m, rN), r2), r1)) = EK+

2
(...EK+

N
(m, rN), r2)

4. The last mix server removes the last layer of encryption an delivers the

message m.

By throwing away random factors after each decryption and shu�ing the

messages before forwarding them to the next mix server, the relation be-

tween the input of the �rst mix server and the output of the last one is

perfectly hidden. The main drawback of this approach is that it requires

the availability of all mixes, which is a strong assumption for faulty environ-

ments.

Re-encryption approach: A re-encryption mix-net uses the re-encryption

property of some public key cryptosystems such as ElGamal, c.f. Section

3.1.2. In this approach a mix server re-encrypts a message m and permutes

it with the other messages, then delivers the result to the next mix server,

see Figure 3.1.

Figure 3.1: Re-encryption mix-net

At the end the re-encrypted message is decrypted with a (t,N)-threshold

algorithm. This approach requires a (t,N)-threshold public key cryptosystem

20

with the re-encryption property. But it provides a simpler method to use

and also a smaller ballot length due to the constant ciphertext length. In

the encryption mix-net there is a �xed order to decrypt the message though

out all mixes, while in the re-encryption approach the mixing can be done

randomly and any t entities sharing the private key can decrypt the message

at the end.

Both approaches require a proof that each mix performed well. This is

usually achieved with zero knowledge proofs (cf. Section 3.4), but those can

be very expensive in terms of size and computation requirements.

A solution to this problem, the Randomized Partial Checking (RPC), was

presented in 2002 by Jacobsson, Juels and Rivest [JJR02] and �ts either

approach. They propose that a mix server should reveal the connection

between some random selected inputs and the corresponding outputs; if the

veri�cation between the input and output succeeds then the veri�er achieves

a level of certainly about the whole process. The mixes should be grouped

in groups of two and the selected outputs of the �rst mix shouldn't be the

selected inputs of the second mix. This hides the relation between the input

of the �rst mix and the output of the second mix, see Figure 3.2. The

probability of success of changing k messages by an adversary controlling

some minority group of mix servers is p = 1
2k , so even for a low k the

probabilities are not high. The low probability of changing a signi�cant

amount of votes without being detected and the simplicity of the RPC makes

it an interesting approach to be use in large scale elections.

21

Figure 3.2: Randomized Partial Checking

22

Chapter 4

Related work

In this Chapter we start with an analysis and evaluation of electronic voting

protocols.

Then we present another analysis and evaluation of implementations of

electronic voting systems based on blind signatures.

4.1 Voting protocols

In this Section we start by presenting some simple voting protocols [Cra96].

Then we describe more sophisticated voting protocols that make use of some

cryptographic techniques described in Chapter 2. Finally it is presented an

overall evaluation of the protocols and some conclusions.

4.1.1 Simple protocol

We could imagine a simple voting protocol with only two authorities that

seems to satisfy the required properties for voting systems. The two author-

ities are a validator and a tallier. The protocol is presented in Figure 4.1

and goes as follows: (1) a voter submits his ballot and identi�cation (ID) to

the validator ; (2) the validator checks if the voter had already voted, if not

23

it detaches the voter ID from the ballot and sends the ballot to the tallier ;

(3) �nally, after the election closing, the tallier performs the tally.

Figure 4.1: Simple voting protocol

This protocol has several major problems, namely: (1) even with the use

of some cryptography to assure that only the tallier can see the ballots,

a simple collusion between the two authorities result in a break of voters'

privacy; and (2) nothing prevents the insertion/substitution of ballots by the

validator and tallier.

4.1.2 One/Two agency protocols

To solve the above problems, in 1991, Nurmi, Salomaa and Santean proposed

the Two Agency Protocol [NSS91]. In this protocol, described in Figure 4.2,

we also have a validator and a tallier but now the voters interact with both

authorities. The protocol goes as follows: (1) the �rst step is a distribution

of ID TAGs to the voters by the validator ; (2) then the validator sends a

list of ID TAGs to the tallier without revealing the relation between the

real voters ID and the ID TAGs; (3) each voter then submits, to the tallier,

an encrypted message containing the ID TAG and the ballot; (4) �nally

the tallier publishes the list of received messages, and the voters send the

decryption keys to the tallier. At this time the tallier can perform the tally.

24

Figure 4.2: Two Agency Protocol

The main problem of this Two Agency Protocol is that the voters' privacy can

be easily compromised by the collusion of the two authorities. The authors

state that if the two agencies are going to work together, there might as well

be just one agency.

The One Agency Protocol, proposed in 1991 by Salomaa [Sal91], is iden-

tical to the Two Agency Protocol, except in the tag distribution phase. To

distribute the tags it's used the ANDOS (All-or Nothing Disclosure Of Se-

crets [BCR87]) protocol for secret selling of secrets. This solves the collusion

problem, but now we must trust in one all mighty agency. Furthermore, the

ANDOS protocol is very heavy computationally and doesn't scale well.

4.1.3 Blind signatures

The blind signature approach makes use of a simple technique that requires

a small amount of computational power. Also it is independent of the ballots

format, which is good if we want to use the voting system in non conventional

elections, such as open-answer surveys.

There are several proposed voting protocols based on the blind signa-

tures scheme [CC97, Cha88, DuR99, FOO92, Her97, HS98, Oka96, Oka97,

OMA+99]. The reference protocol in this type of voting systems, known

as the FOO protocol, was proposed in 1992 by Fujioka, Okamoto and Ohta

25

[FOO92]. We will now present the steps of the protocol involving the voters,

an Administrator and a Counter.

1. Preparation: The voter �lls in a ballot and encrypts it with a random

secret key k. Then he constructs a message by blinding the encrypted

ballot (cf. Section 3.3.1). Finally, he sends the message to the Admin-

istrator for signing.

2. Administration: The Administrator signs the message containing

the voter's hidden ballot, and returns the signature to the voter.

3. Voting: The voter removes the blindness from the signature, and

anonymously sends the ballot and the signature to the Counter. Note

that the Administrator cannot link the signatures it provided with the

signatures that the voter gets after applying the unblinding factor (cf.

Section 3.3.1).

4. Collecting: The Counter publishes a list of received encrypted bal-

lots. Since the encrypted ballots are submitted anonymously the vot-

ers could submit their vote several times (the repeated encryptions are

considered the same vote).

5. Opening: Each voter sends his decryption key k anonymously.

6. Counting: The Counter counts the votes and announces the result.

In the FOO protocol the voter cannot vote and walk away. He must wait until

the end of the election to submit his key, therefore bringing no convenience

to the voter. There have been some implementations of protocols closely

based on the FOO protocol, two of the most well-known are: the Sensus

protocol [CC97], proposed by Cranor and Cytron, and the Evox protocol

26

[Her97] proposed by Herschberg, both in 1997. In both proposals the FOO

protocol was changed to allow the voter to vote and walk away (see details

in Section 4.2).

Later, in 1999, another improvement to the FOO protocol was proposed

by Ohkubo et. al. [OMA+99]. Besides addressing the vote and walk away

problem, they also propose the use of a (t, N) - threshold cryptosystem to

prevent the leak of intermediate results. In their protocol the voter encrypts

his signed ballot and sends it anonymously to a bulletin board. Then n ≥ t

counters cooperate to produce the �nal tally. With this solution it is needed

t colluding counters to leak intermediate results.

One of the unsolved problems of the previously presented protocols is ro-

bustness. In 1999, DuRette proposed the Evox-MA [DuR99], an improve-

ment of Evox by the addition of more Administrators. The improvement

addressed the problems of collusion resistance and availability. However, the

use of a weak voter's authentication mechanism makes voter's impersonation

by the Administrators easy, therefore leading to a much less robust system

than the author claims (see details in Section 4.2.3).

None of the above referred protocols is receipt-free. This property was

addressed by Okamoto in 1996 [Oka96] and 1997 [Oka97]. The �rst proposal

had a problem that Okamoto solved in the second paper. To guarantee

the receipt-free property in his proposals, Okamoto assumes the existence of

some physical requirements, such as untappable channels1 or private voting

booths2.

The previously mentioned protocols have in common the use the blind

signature technique to sign the ballots. In 1998, Q. He and Z. Su proposed

1An untappable channel is a physical apparatus by which an entity A can send a

message to another entity B, maintaining the message perfectly secret to all other entities.
2A voting booth is a physical apparatus by which a voter V can interactively commu-

nicate with a party, maintaining the communication perfectly secret to all other parties.

27

a di�erent approach, where each voter should have a secret signed election

key [HS98]. The protocol goes as follows:

1. Registration: In this phase the voter generates an asymmetric key

pair and, using the blind signature technique, obtains a signature on

the public key.

2. Public key submission: Each voter submits anonymously his signed

public key to the Counter. The Counter veri�es the authenticity of the

key verifying the signature on it.

3. Voting and tallying: Each voter �lls a ballot, signs it with his private

key and sends it anonymously to the Counter. The Counter veri�es the

signature using the signed public key, and if all is correct he proceeds

with the tally.

This protocol su�ers from the problem of allowing the leak of intermediate

results. It has also a problem with the re-usability of the data collected

in the registration and public key submission phases. Because there is no

connection between the voters and the signed public keys in an election

e1, it's not possible to use the data collected in e1 in another election e2

having a di�erent electorate (could be just a voter less), because we cannot

eliminate the keys of speci�c voters. This last problem is a major setback

to the use of the system in large scale elections, which almost always have

a di�erent electorate. Enforcing a registration process in every election is

neither practical nor convenient for voters.

4.1.4 Mix-Nets

In 1981, David Chaum proposed the �rst election system based on mix-nets

[Cha81]. The protocol goes as follows:

28

1. Preparation: In this phase it's made a registration of the voters where

it's generated a digital pseudonym3 for each voter. In this phase are

also published the public keys of all mix servers on a BB.

2. Voting: Each voter �lls his ballot and signs it with his digital pseudonym.

Then successively encrypts the ballot with the keys of the mix servers

(cf. encryption mix-nets in Section 3.6). Finally, the voter sends his

vote to the BB.

3. Decryption: This phase works as the decryption on encryption mix-

nets, described in Section 3.6. At the end all signed ballots are pub-

lished on the BB.

4. Tallying: The signatures on the ballots are veri�ed and all valid bal-

lots counted.

To protect the voters privacy it is used digital pseudonyms, however this

approach makes impossible to reuse the pseudonyms in another election if

the electorate change, namely if any removal of voters is needed. This is the

same problem of the Q. He and Z. Su blind signature proposal, therefore

also a major setback to the use of the system in large scale elections, which

almost always have a di�erent electorate.

The Chaum's protocol has also the problem of ciphertext length expan-

sion, inherited from the used mix-net construction. In 1993, Park, Itoh

and Kurosawa [PIK93] proposed a protocol (PIK protocol) based on re-

encryption mix-nets that does not su�er from such a problem. The PIK

protocol is also a all/nothing election scheme, i.e., or every vote counts or no

vote counts. This property is achieved by dividing the ballots in two pieces.

3A digital pseudonym is a public key used to verify signatures made by the anonymous

holder of the corresponding private key.

29

In the decryption phase it is �rst decrypted one piece, selected at random,

and then decrypted the second piece of the ballots. If some disruption is

detected in some decryption step the protocol stops at once and no tally is

published.

In 1995, Sako and Killian proposed the �rst receipt free mix-net based

voting system [SK95]. In their protocol the voter, instead of �lling up his

ballot, chooses one from a list of already �lled ballots. Here are steps of the

protocol:

1. Registration: In the registration step all voters are registered with

their public keys.

2. Choosing a vote: In this step the voters interact with several au-

thorities to choose a previously �lled ballot, see Figure 4.3. The �rst

authority shows all �lled ballots to the voter using an untappable chan-

nel. Then encrypts the ballots and secretly permutes them. The proof

of correctness of all the operation in made using a commitment. The

commitment was previously established with the voter using the voter's

public key. Finally the �rst authority passes the encrypted ballots to

the next authority. The process is the same for all other authorities

until the last authority is reached. At the end of this process only

the voter knows the relation between the original ballots and the �nal

encrypted ballots.

3. Submitting the ballot: The voter submits the desired encrypted

ballot to the �rst mix of the mix-net.

4. Tallying: After the last mix reveals the permuted ballots, everyone

can compute the �nal tally.

30

Figure 4.3: Anonymous ballot choosing using a mix-net.

The previously mentioned protocols stop if only one of the mix servers

stops. In 1997, Ogata et. al. [OKST97] presented a solution that solves the

problem, tolerating less than half faulty servers. In their protocol each mix

server shares its private key with all other mix servers in a (t,N)-threshold

way, where t is half of the total number of servers. With the sharing of mix

server's private keys it is possible to recover the private key of any mix server

that had failed during the protocol, as long as t mix servers remain working

correctly. Therefore the protocol can be repeated without the participation

of the faulty mix servers.

The main problems with mix-net based voting systems are the complexity

of the correct permutation proof, and the tolerance to mix servers' faults.

There is work made in the last years concerning the e�ciency and robustness

of mix-nets [Abe98, Abe99, AH01, BG02, FS01, Jak98, Jak99, JJ01, MK00,

Nef01, JJR02]. This work could be used to improve the previously mentioned

protocols.

31

4.1.5 Homomorphic

The homomorphic based voting systems, as the name suggests, make use

of the homomorphic property of some cryptographic systems. The main

characteristic that distinguishes this type of system from the others is that

at the end individual votes are not decrypted; is the �nal result of the tally

that is decrypted. In other words, individual votes are not observable, only

the �nal tally of all votes can be computed and published.

The initial work in this �eld was done by Benaloh et al. [BF85, BY86,

Coh87]. The model assumes l voters V1, ..., Vl, a BB and n tallying authori-

ties (talliers) A1, ..., An. It's used a (t, N)-threshold cryptosystem so that the

tally could only be performed with the cooperation of t talliers. The voting

process in homomorphic election systems normally involves three phases:

1. Preparation: In this phase is made the registration of the voters. It

is usually assumed the use of a public encryption to authenticate the

voters. The talliers generate the election key pair, in a (t, N)-threshold

way, and publish the public part in the BB.

2. Voting: In the voting phase the voter �rst �lls his ballot, encrypts it

with the election key, and signs it with his private key. Then the voter

contacts the BB, authenticates himself and sends the encrypted signed

ballot. The BB publishes the encrypted signed ballot. Because the

ballots will not be decrypted individually, the voter must prove in a

zero knowledge way that what he had send to the BB is an encryption

of a valid vote. The proof is also maintained in the BB.

3. Tallying: To produce the outcome of the election at least t talliers

must work together. First, using the homomorphic properties, they

compute the encryption of the tally. Finally, without leaking anything

32

about the private key of the election, the talliers jointly decrypt the

tally and prove of the correction of it in a zero knowledge way.

Homomorphic ciphers and zero knowledge proofs are rather complex, there-

fore the work done in the past years in these kind of systems tackled mainly

the complexity of the systems [BFP+01, CFSY96, CGS97, DJ01, SK94].

Most of the voting schemes are based in a variant of the ElGamal encryption

scheme proposed by Cramer, Gennaro and Schoenmakers in [CGS97]. This

scheme is e�cient but only for �yes/no� votes. It is also restricted to small

or medium scale elections because of the computational complexity of the

homomorphic cipher. To support a multi-candidate election without using

a �yes/no� vote for each candidate, Baundron et al. in [BFP+01] employed

the Paillier cryptosystem in the construction of a practical multi-candidate

voting system.

The receipt-free property has also been a target for researchers [BT94,

HS00, LK02]. In 2000, Hirt and Sako in [HS00] proved that the scheme pro-

posed in 1994 by Benaloh and Tuistra [BT94] was not receipt-free. Hirt and

Sako's proposal complements the work of Cramer et al. [CGS97] with the

work of Sako and Killian [SK95] to construct a receipt-free voting system.

Their system uses untappable channels between the authorities and the vot-

ers. The voting protocol is similar to the one described above except in the

voting phase, where for choosing a ballot it is used a similar construction to

the one proposed by Sako and Killian, see Figure 4.3.

In 2002, Lee and Kim [LK02] proposed a receipt-free voting system that

doesn't require the use of an untappable channel. They propose to use a

tamper-resistant device, such a smart card or Java card, to play the role of

the untappable channel.

33

Table 4.1: Electronic voting protocols evaluation

4.1.6 Overall evaluation and conclusions

We have presented an overview of the electronic voting protocols and the

technologies used by them. The simple and one/two agency protocols of-

fer few guarantees on electronic voting properties. This leaves only three

promising types of electronic voting systems: the ones based on blind sig-

natures; the ones based on mix-nets; and the ones based on homomorphic

ciphers. We will now present an overall evaluation of these systems, resumed

in Table 4.1.

The systems using blind signatures have the advantages of having lower

costs (computational and network tra�c), being simpler and entirely ballot

independent. On the other hand, they require more interactions with voting

authorities (servers supporting elections) than the other systems: at least

one for each required signature and one to cast the ballot. Another problem

is the assumption of the existence of an anonymous channel for hiding the

address or any other identi�cation of voter's machines.

Proving the correctness of mix-nets is the main problem of the mix-nets

34

approach. The zero knowledge proofs are complex and have high costs, both

computationally and also in terms of space. Some work as been done to

produce more robust and e�cient mix-nets. We believe that most of this

work can be brought back to voting systems. Another problem of mix-net

based voting system is the need of a new voters' registration every time the

electorate change. The positive aspects of mix-net based voting systems are

the reduced number of interactions between the voter and the election servers

and good ballot independence.

The homomorphic based voting systems are the most complex systems

in mathematical terms, because they require homomorphic ciphers. This

also brings the disadvantage of a high computational cost. Also due to the

homomorphic cipher requirements, there are major ballot restrictions. To

keep the computational cost as low as possible, only yes/no answers are

allowed. To support 1-of-n answers it's commonly used a yes/no answer for

each possible answer. The positive aspects are the need of only one voter

interaction and the con�dentiality of individual votes.

The four core properties - accuracy, democracy, privacy and veri�ability

- with the exception of the second part of the privacy property, receipt-

freeness, are commonly reached by all proposals. The proposed schemes

that are receipt-free make use of physical devices like untappable channels,

private voting booths, smart cards, java cards or some other devices. But

if we are talking about using totally remote Internet voting systems, it is

impossible to entirely ful�ll the privacy property: it will be always possible

to a voter to prove that he voted in a particular way, e.g. the voter can vote

in the presence of others, or it can allow someone to peek on his computer

using some program like the BackOri�ce [BO2].

As shown so far in this Chapter, there is much work developed around

35

electronic voting. There are mainly three promising voting approaches to

tomorrow's voting systems, each one with its pros and cons. For REVS we

have chosen a blind signature approach because of its intrinsic advantages:

simplicity, low costs (it is computational and network e�cient) and ballot

independence.

4.2 Voting systems

Despite the fact that there are many protocols proposed for electronic voting

the implementations are few. Since we choose the blind signatures approach

for REVS, we present in this Section an evaluation of four implemented

voting systems based on blind signatures, namely Sensus, Evox, Evox-MA

and the Vienna's system.

In our analysis we will �rst present the four systems, then we will evaluate

the systems concerning the properties de�ned in Section 2.2. In particular

we will evaluate:

• The possibility of modi�cation and elimination of valid votes (Accu-

racy).

• The possibility of an invalid vote to be part of the tally (Accuracy).

• The possibility of obtaining a valid vote from anyone who is not an

eligible voter, and also the possibility of a double voting from an eligible

voter (Democracy).

• The possibility of partial disclosure of results (Democracy).

• The possibility of connection between the vote and the voter by any

authority running the election, and also by the voter (Privacy).

36

Figure 4.4: Simple blind signature voting system

• The Veri�ability of the tally.

• How the system supports the voting process in the presence of servers

failures, or servers network connection problems (Availability).

• The possibility to resume the voting protocol after unexpected failures

that prevent the voter from ending the voting process, such as: network

failures, computer crash due to hardware or software problems, etc.

(Resume-ability).

• The protection of the core properties against a collusion of any entities

running the election (Collusion Resistance).

Simple blind signature voting system

To introduce the terminology used, and also to remember how a blind

signature voting system works, we will start by explaining a simple blind

signature voting system (see Figure 4.4).

37

• First the voter �lls the ballot.

• Then the voter blinds the ballot using a blind factor and sends the

blinded ballot to the Administrator for signing (1).

• The Administrator veri�es if the Voter did not vote yet; if not signs

the blind ballot and returns it to the voter (2).

• The voter removes the blinding encryption layer from the ballot and

veri�es the signature of the Administrator. Only a valid signature can

be used to produce a valid vote.

• At last the voter anonymously submits his ballot signed by the Admin-

istrator, to the Counter (3).

• After the end of the election the Counter veri�es the signatures on the

votes, counts the valid votes and publishes the �nal tally.

Now that we established this terminology, it is time to present the systems

under analysis.

4.2.1 Sensus

Sensus was proposed by Cranor and Cytron in 1997 [CC97], and was one of

the �rsts implementations of the FOO protocol. As mentioned in Section

4.1.3, the authors of Sensus modi�ed the original voting protocol of FOO to

allow a vote and walk away process. In Sensus it was kept the authentication

method proposed in FOO, i.e. using public key authentication. The steps of

Sensus protocol are the following (see Figure 4.5):

• First the voter �lls the ballot, encrypts it using a secret key, and blinds

it.

38

Figure 4.5: Sensus voting system

• The voter then signs the blind ballot and sends it to the Administrator

(1).

• The Administrator veri�es that the signature belongs to a registered

voter who had not yet voted. If the Administrator had not signed

before for that voter it signs the blind ballot and returns it to the

voter (2).

• The voter removes the blinding encryption layer, revealing an en-

crypted ballot signed by the Administrator. The voter then sends the

signed encrypted ballot to the Counter (3).

• The Counter checks the signature on the encrypted ballot and, if valid

and if the encrypted ballot is unique (as in FOO protocol), the Counter

places it on the list of valid ballots to be published at the end of the

election. The Counter then signs the encrypted ballot and returns it

to the voter as a receipt (4).

39

Figure 4.6: Evox voting system

• Upon receiving the receipt, the voter sends to the Counter the ballot

decryption key (5). Finally, the Counter uses the key to decrypt the

ballot and adds the vote to the tally.

In Sensus the step for submitting the decryption key of the FOO protocol

was anticipated. Now the voter submits his decryption key before the end of

the election. With this modi�cation the voter is able to vote and walk away,

but now the Counter is also able to leak intermediate results as the voters

submit their decryption keys. The Counter can also can link the vote to the

machine used to submit it.

4.2.2 Evox

The Evox protocol was proposed in 1997 at MIT by Herschberg as his Master

Thesis [Her97]. The Evox system is another implementation based on the

FOO protocol. Like Sensus the voting protocol was adapted to allow the

voters to vote and walk away. The Evox voting protocol is the following (see

Figure 4.6):

• First the voter obtains the ballot from the Administrator. Then he

40

must �ll the ballot and commit to it using a random bit string.

• Then he blinds the committed ballot and sends it to the Administrator

for signing (1).

• The Administrator veri�es if had not already signed for the voter, and

if not it signs the blinded ballot, updates the voter record to an already

voted state and returns the signed blinded ballot to the voter (2).

• After receiving the signed blinded ballot the voter removes the blinding

layer and obtains a signed ballot. To complete the voting process,

the voter encrypts the ballot, the bit commitment and the signature

with the public key of the Counter ; then he anonymously sends the

encryption to the Counter through the Anonymizer (3). The voter can

submit the vote as many times as he wants.

• When the election ends the Anonymizer forwards the encrypted votes,

in a random order, to the Counter (4).

• Finally the Counter decrypts the votes, removes the repeated votes by

verifying the random commitment bit string and produces the election

tally.

Both Sensus and Evox modify the voting protocol of FOO to allow a voter

to vote and walk away. While Sensus only anticipates the decryption key

submission step of the FOO protocol, in Evox there was made a more sub-

stantial change in the voting protocol. In Evox each voter encrypts his vote

with the Counter's public key, therefore the decryption key submission step

is not necessary. Since the encryption of the ballot was also used for de-

tecting repeated ballots, there was the need to create another way to detect

41

repeated ballots. In Evox, to detect repeated votes, it is used a bit commit-

ment performed by the voter. All votes with the same bit commitment are

considered the same, therefore only one will be in the �nal tally.

Another di�erence from Sensus and FOO is the use of the username/password

authentication. Despite the weakness of the username/password authentica-

tion compared to the public key authentication, it still as a major advantage:

common knowledge, today every one uses username/password authentication

for accessing email accounts, e-banking, etc.

4.2.3 Evox - Managed Administrators

The Evox - Managed Administrators (Evox-MA) was proposed by DuRette,

in 1999, as his bachelor's thesis [DuR99]. DuRette's work tackles a common

problem in voting protocols based in blind signatures: preventing the democ-

racy corruption by the Administrator. Since an Administrator's signature is

the base requirement to make a ballot valid, nothing prevents the Adminis-

trator from creating and submitting illicit valid ballots. The Administrator

can also prevent a voter from voting, refusing to sign his ballot, or allow

several votes from the same voter, signing several times for the voter.

The idea explored by DuRette is to ensure democracy by sharing the

power of the Administrator among several servers. In DuRette proposal

there are n Administrators, and t signatures of them are required to make a

ballot valid. There was also introduced theManager server that will sign the

list of t signatures of the Administrators to allow t ≤ n/2 (see the discussion

ahead).

The protocol is similar to the one of Evox, and goes as follows (see Figure

4.7):

• First the voter �lls a ballot and commits to it using a random bit

42

Figure 4.7: Evox-MA voting system

string, as in Evox. Then he blinds the committed ballot and sends

it to t ≤ n Administrators for signing (1). In the Evox-MA case the

ballot is obtained from the Manager.

• Each Administrator veri�es independently if had not already signed

for the voter, and if not they sign the blinded ballot, update the voter

record to an already voted state and return the signed blinded ballot

to the voter (2).

• After receiving all blinded signatures the voter removes the blinding

layer and obtains a list of t signatures on the ballot. At this point the

voter blinds the list of signatures and sends it to the Manager (3).

• If the Manager had not already signed for the voter, he signs the

blinded signatures list and returns it to the voter (4).

• The voter receives the blinded signed signature list and unblinds it.

Finally, to complete the voting process the voter encrypts the ballot,

the bit commitment, the signatures and the signature on the list of

43

signatures with the public key of the Counter and he anonymously

sends the encryption to the Counter through the Anonymizer (5).

• When the election ends the Anonymizer forwards the encrypted votes

to the Counter in a random order (6).

• The Counter, after receiving the encrypted votes, decrypts them, re-

moves the repeated votes and process the election tally.

In Evox-MA the democracy property is guaranteed by the Administrators

and the Manager if they sign only once per voter. If t ≤ n/2 the voter can

get distinct lists of t signatures, therefore in this case is the Manager that

prevents a voter from obtaining more than one valid ballot. If t > n/2 the

voter can only obtain of list of t signatures, therefore the Manager is not

needed to guarantee democracy.

Apparently, in Evox-MA it is needed the collusion of t Administrators

and the Manager to introduce valid votes. However, Evox-MA does not o�er

the apparent collusion-resistance because it is used only one password per

voter for all Administrators and also for the Manager. None of these entities

knows the password in advance, because a UNIX-like validation is used, i.e.

the entity only have the digest of the password and not the real password.

However, a small set of Administrators, in collusion with the Manager, can

generate illicit valid votes using the voter's password once they get it. The

fraud may work like this: x colluded Administrators use the voter's password

to get signatures from all the Administrators not yet contacted by the voter.

Then they send to the Manager a signed vote that he could accept and send

to the Counter. With n Administrators and n/2 + ∆required signatures, x

is equal to 2∆. If, for improving performance, ∆ is a low value (1 or 2), the

possibility of attack is not negligible. If t is less than n/2, the Manager itself

44

can introduce votes without the participation of any other entity.

In Evox-MA there is some resistance to failures and collusion. The voter

must get t signatures from the Administrators and one from the Manager ;

therefore the voter can lose up to n− t signatures from the Administrators,

or tolerate the failure of them, without been prevented to vote. However if

the voter loses the Manager signature before submitting the vote, then he

will be prevented to vote because the Manager only signs once.

We can say that the robustness of Evox-MA is higher than the one of

Evox, but due to a weak authentication protocol it is not as good as it could

be.

4.2.4 Vienna's e-voting system

Ko�er, Krimmer and Prosser presented, in 2003, a protocol that is the basis

of an e-voting system developed at the Vienna University for Business Ad-

ministration and Economics (Austria) [KKP03]. Their proposal is based on

the blind signature technique and strictly separates two phases in the voting

protocol, the registration phase and the voting phase.

The registration phase in open for an arbitrary period of time before the

election day. Besides the usual voters' registration in this system each voter

will also validate two tokens (see Figure 4.8):

• First the voter generates a random token t and blinds it. Then the

voter signs the blinded token and sends it to the Registration server

(1).

• The Registration server veri�es if the signature belongs to a valid voter,

if so the Registration server signs the blinded token t and returns it to

the voter (2).

45

Figure 4.8: Voter registration

Figure 4.9: Voting phase

• A similar process is repeated with the Trust Center : the voter issues

a second token τ , blinds it and obtains the signature on it from the

Trust Center (3 e 4).

If any token is lost the voter can re-apply for another token, in this case the

servers will respond with the original signed token to avoid issuing multiple

tokens. At the end of the registration phase the voter holds two signed

authentication tokens, both needed to cast a vote on election day. Both the

Registration server as the Trust Center can be seen as two Administrators.

The voting phase is processed in the election day (see Figure 4.9):

• The voter sends the signed tokens to the Counter server to obtain his

46

ballot (1).

• The Counter checks the signatures on the tokens and if they verify

sends an empty ballot to the voter (2).

• Then the voter �lls the ballot and sends it, with the signed tokens to

the Counter (3).

• At the end of the election day the Counter publish the �lled ballot and

the corresponding signed tokens.

In the voting phase the authentication of the voters is only based on the

previously signed tokens. Therefore, the authors claim that is harder to link

the ballot to the voter by the network address of the voter's PC. But this

is only true is the voter uses di�erent hosts for the registration and for the

voting.

In this voting system there are no strong link between the ballot and the

tokens. Therefore it is possible to the Counter to change any ballot without

being detected.

As the FOO protocol, this system also requires two connections apart in

time from the voter; therefore it is not convenient for voters.

4.2.5 Evaluation and conclusions

Now that we have presented the four systems, we will proceed with the

evaluation of them.

Accuracy

In all systems the voter can detect if his vote was eliminated from the tally.

If the fraud is detected he can anonymously resent his vote to correct the

tally.

47

Table 4.2: Accuracy analysis resume

The introduction of invalid votes to the tally can be detected in all sys-

tems by verifying the signature on the ballots, or on the tokens in Vienna's

system case. Therefore, if a signature does not match a vote, it is removed

from the tally.

In Sensus, Evox and Evox-MA it is impossible to change a vote, any

change in the vote will ruin the signatures, therefore invalidating the vote.

In Vienna's system it is possible to alter a vote, because a change in the

vote (ballot) will not ruin the signatures on the tokens, therefore we would

still have a valid vote. Also this fraud cannot be corrected by the voter; he

cannot prove that the published vote is not his, because there is no connection

between the vote and the signed tokens.

The Sensus, Evox and Evox-MA systems respect all aspects of the ac-

curacy property. The Vienna's system has a drawback because it allows

changes in the vote without invalidating it.

Table 4.2 presents a resume of the accuracy analysis.

Democracy

In all systems all voters are able to vote exactly once if the Administra-

tor(s) or equivalent servers work properly. In the case of misbehaviour from

the Administrator(s) to prevent a voter from voting (e.g. signing garbage

48

instead of the voter request, or simple refusing to sign), there is a main

di�erence between the systems using public key authentication, Sensus and

Vienna's, and the ones using username/password authentication, Evox and

Evox-MA. When it is used public key authentication, the voter protest is

veri�ed checking the existence of a voter's signed request in the Administra-

tor's logs; if there is no such record it the Administrator's fraud is proved,

otherwise is the voter who is trying to mess with the system. In the case

of username/password authentication the voter protest is handled as previ-

ously, however if there is a record it is impossible, for the voter and also for

the Administrator, to prove that the record is an original voter's request. In

Evox-MA case this kind of misbehaviour is tolerated in up to n− t Admin-

istrators, because for a valid vote there are needed t signatures of di�erent

Administrators; however the problem subsists for the required signature of

the Manager.

In blind signature voting systems the Administrators are the entities with

the power of making a vote valid, therefore they can produce valid votes and

send them anonymously to the Counter. The detection of this fraud can be

made verifying if the number of votes in the tally is higher than the number

of signatures in the Administrators' lists. Despite the easy detection of this

fraud it cannot be corrected because the votes are sent anonymously. In

Sensus and Evox systems this fraud can be performed by the Administrator

alone. The Vienna's system uses two �Administrators�, the Registration and

Trust Center, therefore it would require the cooperation of these two servers

to perform the fraud. In Evox-Ma system we encounter a general approach

for any number of Administrators but, as explained in Section 4.2.3, due to

a week authentication mechanism the number of required Administrators to

perform the fraud is much less than it could be.

49

Table 4.3: Democracy analysis resume

There is also another fraud that can pass undetected, the voting for

absentee voters. This kind of fraud can only be performed if the system uses

a username/password authentication, because in this case the Administrators

can introduce a valid entry on their logs. This fraud can be performed as

follows: near the end of the election period the Administrators produce valid

votes for the absentee voters, update the signature logs, and anonymously

submit the votes to the Counter. This kind of fraud is minimized in the Evox-

MA system, because it requires t signatures, therefore it would be necessary

t colluded Administrators, plus the Manager, to perform the fraud.

The last item to analyse is the leak of partial results. In Sensus and Vi-

enna systems the Counter can leak partial results as the voters submit their

votes. In the case of Evox and Evox-MA systems, the votes are encrypted

with the Counter's public key and are kept by the Anonymizer until the end

of the election period. Therefore, the only way to leak intermediate results

is with a collusion between the Counter and the Anonymizer.

Table 4.3 presents a resume of the democracy analysis.

50

Table 4.4: Privacy analysis resume

Privacy

In blind signature voting systems the privacy of the voters relies on the

existence of an anonymous channel between the voters and the Counter, to

prevent an attack based on the network address of the voter's host. In Evox

and Evox-MA it is proposed the use of anonymizing servers as anonymous

channel providers. The Sensus authors do not provide details about any

particular anonymous channel, they only assume the existence of one. The

Vienna's system tries to protect voters' privacy using a two phase protocol,

in which the voters can use two di�erent hosts, one to register and another

to vote.

None of these systems is receipt-free, therefore the voter as a receipt at

the end that can be used to prove the voter's choice. In the case of Sensus

this receipt is the signature of the Counter on the encrypted vote; in Evox

and Evox-MA the receipt is the bit commitment, and in the Vienna's system

the receipt is the set of signed tokens. Since in Vienna's system the tokens

are not directly linked to the vote, as explained in the accuracy analysis, the

tokens can only be seen as a partial receipt, they do not prove with 100% of

certainly that a particular voter voted in a particular way.

A resume table of the privacy analysis is presented in Table 4.4.

51

Table 4.5: Veri�ability analysis resume

Veri�ability

In Sensus, Evox and Evox-MA anyone can verify the validity of the votes

just by checking the validity of the Administrators' signatures. Voters can

also detect and correct any mistakes with their votes without sacri�cing their

privacy, by resending anonymously their vote.

In the Vienna's system it is also possible to anyone the veri�cation of

the signatures on the two tokens but, as explained in the accuracy analysis,

votes can be modi�ed. Therefore, there is no e�ective mean to verify the

correctness of the system.

Table 4.5 presents a resume of the veri�ability analysis.

Robustness

• Availability - In all systems there are single points of failure; therefore

the availability of all systems can be easily compromised. The only

system who can handle some servers' failures is the Evox-MA: it can

tolerate simultaneous failure of up to n − t Administrators. However,

there still exist singular points of failure, namely the Manager and the

Anonymizer.

• Resume-ability - In Sensus and Evox if the voter looses his signed

vote before submission there is no possibility of recovery, because the

Administrator only signs once for each voter and keeps just a sign/not

52

sign record for each voter. In Evox-MA the voter can loose up to

n− t signatures of the Administrators because only t are required, but

cannot loose the signature of the Manager. Only the Vienna's system

has resume-ability: the Registration and the Trust Center servers keep

the blinded signed tokens, therefore if a voter looses his tokens he

can reapply for the tokens, the servers will return the previous signed

tokens.

• Collusion-resistance - Here we present a resume on how systems

stand for accuracy, democracy and privacy in the presence of colluded

servers. If only one server alone is able to wreck a property we say that

the system as no collusion-resistance concerning that property.

Regarding the accuracy property, only the Vienna's system as prob-

lems: it allows the Counter to change votes. In what concerns democ-

racy all systems have at least one aspect that can be ruined by only

one server, therefore none of the systems can be considered collusion-

resistant; however in an overall analysis of the democracy property we

can consider the Evox-MA and the Vienna's systems more resistants

to collusion than Sensus and Evox (cf. the democracy analysis).

As said before in the privacy analysis, all systems require the use of

an anonymous channel between the voters and the Counter to really

protect the privacy of the voters. The Evox and Evox-MA proposed

the use of an extra server, the Anonymizer, to provide the anonymous

channel between the voter and the Counter ; Sensus and Vienna's sys-

tem do not propose the use of any special anonymous channel. We

present the number of necessary colluding servers to break the privacy

of the voters, using network address based attacks, in the resume Table

4.6.

53

Table 4.6: Robustness analysis resume

Concerning the robustness property, there is no satisfactory system. Every

system has several single points of failure. For a system that must be avail-

able in a very restricted time frame, the existence of single points of failure

is, at least, a very concerning problem. Only Evox-MA and Vienna's voting

system have some tolerance to server and communication failures. Further-

more, an election can be easily disturbed in all systems by the misbehav-

iour/collusion of only one entity involved in the election; only the Evox-MA

system tries to give a better protection against the collusion of entities but

due to a weak voter's authentication protocol, the real protection in less than

it could be.

Conclusions

In table 4.7 is presented a resume of the analysis presented before.

The �rst conclusion that we take from this analysis is that, in general,

the solutions encountered satisfy the accuracy and veri�ability properties.

Regarding the privacy of the voters all systems are also similar: (1) they

protect the privacy of voters if the servers are honest; otherwise, they require

the use of an anonymous channel between the voters and the Counter ; and

54

Table 4.7: Overall systems analysis

55

(2) none is receipt-free.

We can also conclude that the use of public key authentication vs user-

name/password authentication has major impact on the democracy prop-

erty, namely in what concerns to the prevention of a voter to vote, and

the voting for absentee voters. However, and despite the weakness of the

username/password authentication when compared to the public key au-

thentication, it still as the common knowledge advantage. The other aspects

of the democracy property, namely the introduction of valid votes and the

leak of partial results, need better protection against collusions of servers

running the election.

None of the systems here analysed can be considered robust: (1) all of

them have single points of failure; (2) in all systems a single server can ruin

the democracy property; and (3) half of them do not have resume-ability.

In the real world it is usual to run multiple elections simultaneously. In

Evox and Evox-MA systems it is possible to run multiple elections simultane-

ously, however this is a weak support; it is only possible to have simultaneous

elections if each one has a di�erent electorate. The multiple elections' sup-

port in Evox and Evox-MA is based on the ballot distribution: if a voter

A is registered for the election E1 it will get the ballot EB1; if the voter

B is registered in election E2 it will receive the ballot EB2. This process

does not prevent the voters from exchanging votes, therefore from voting

in elections that they should not vote. In the Vienna's system the ballot

is obtained using the blind signed tokens, therefore with no connection to

the real voter. Because of this characteristic there is no possible support for

multiple elections. In Sensus paper [CC97] we have not found any reference

to the multiple elections issue.

As seen in this analysis, the few implementations of electronic voting

56

systems do not take in a proper consideration some essential properties for

the real use of the system, such as availability, resume-ability and collusion-

resistance. These aspects that together we call robustness are the ones that

we will tackle in REVS.

57

58

Chapter 5

REVS

The availability, resume-ability and collusion-resistance of voting systems

are critical properties when considering their deployment in real-life envi-

ronments. However, in Chapter 4 we noticed that they are often forgotten

in the design and in the implementation of voting systems.

The availability of an electronic voting system is critical because those

systems are used only in very restricted time frames. Consequently, the

unavailability of a voting system can only be acceptable during very short

time periods, such as a few minutes.

The availability of an electronic voting system can be compromised by

accidental software and/or hardware crash or by deliberate attacks against

the system. In an Internet voting system the availability of the system

can be a�ected by known Internet's security problems, such as: tampering

basic services (e.g. DNS name resolution) and using DoS attacks against the

participating machines or applications (e.g. �ooding attacks).

Despite the relevance of availability to the real exploitation of electronic

voting systems, we have not seen much discussion about this issue in the

analyzed voting systems. For instance, all systems have at least one singular

59

point of failure, while the �rst step to improve the availability of a system is

the elimination of all singular points of failure.

As there is no solution that guarantees 100% of availability, we should

also handle temporary unavailability scenarios, leading us to the resume-

ability of voting processes. In electronic voting system we say that a system

has resume-ability if it supports interruptions in the voting protocol. Such

interruption can be unintentional, when resulting from availability problems,

or can be intentional, when the voter decides by its own to stop the voting

process to resume it later.

However, to have resume-ability we have to keep some per-voter state

of the voting protocol. This state will allow the voter to resume the voting

protocol but it also could be used as a receipt. We will come back to this

issue in more detail while presenting the REVS voting protocol in Section

5.2.

The remaining aspect of a robust electronic voting system is the collusion-

resistance. Inside threats are many times forgotten while trying to protect a

system from the outside threats. The inside threats of an electronic voting

system result from misbehaviour of one or more colluding electoral author-

ities with consequences in the properties of electronic voting processes and

outcome (cf. Section 4.2.5). Therefore a robust electronic voting system

must also minimize the possibility of collusion. Like in paper-based voting

processes, the basic principle is divide to conquer: divide the power among

several electoral authorities in order to assume that only a large enough set

of them is capable to corrupt the voting process.

In this Chapter we present REVS, a Robust Electronic Voting System.

Our main goal with REVS was to provide a robust system in all three as-

pects: (1) availability, by providing a system with no singular points of fail-

60

ure, and with a voting protocol that supports communication and machine

failures; (2) resume-ability, by allowing voters to stop the voting protocol,

intentionally or not, and resume it anytime and anywhere latter; and (3)

collusion-resistance, by not letting a server alone, or up to a certain con�g-

urable degree of collusion, to interfere with the election.

We chose to use a blind signature based voting protocol for REVS. Conse-

quently, as all systems based on blind signatures REVS has some interesting

intrinsic advantages, such as: simplicity, low costs (it is computational and

network e�cient) and ballot independence. These are aspects that are im-

portant to facilitate the deployment of REVS to support large scale elections

or several types of elections or opinion surveys.

Since an electronic voting system is a complex system, we decided to

start from an already existing system and to adapt it to reach our goals.

From all the systems analyzed, the Evox-MA is the only one that addresses

some robustness issues. However, the results are not as good as they could

be (in part because of the weak authentication mechanism used, cf. 4.2.3).

Nevertheless we liked the architecture of the system and we used it as the

starting point for designing REVS architecture. Naturally, during the de-

scription and analysis of REVS along this chapter we will compare it against

its direct or indirect predecessors: Evox-MA and Evox.

5.1 REVS architecture

In REVS we have four types of servers: Ballot Distributor, Administrator,

Anonymizer and Counter. There is also a Voter Module that is used by

voters to support their participation in elections, and a module to prepare

the election called Commissioner.

61

• Commissioner: The Commissioner is the module used to prepare

the election: register the voters, de�ning the operational con�guration

for the election (election key pair, ballot, addresses and public keys of

servers, number of required signatures, etc.). The Commissioner also

signs all the election data, so that anyone can verify the authenticity of

it. The Commissioner can be seen as a kind of electoral commission.

• Ballot Distributor: The Ballot Distributor is responsible for the dis-

tribution, for the voters, of the data set up by the Commissioner for

the election: ballots and operational con�guration. This procedure is

expensive in terms of data exchange, so we decided to introduce this

dedicated server in REVS. With the introduction of a Ballot Distrib-

utor we also separated every logical function into a di�erent server,

leading to a more modular system than Evox or Evox-MA.

All the information distributed by a Ballot Distributor must be signed

by the Commissioner, in which all voters trust. Thus, there may be

several Ballot Distributors. This replication, besides reducing the work

load on each Ballot Distributor, improves e�ciency in large-scale elec-

tions and provides toleration to communication or machine failures

a�ecting Ballot Distributors, therefore bringing robustness to the dis-

tribution process.

• Administrators: The Administrators are the electoral entities that

have the power to decide upon the acceptability of a ballot from a

voter. A ballot is acceptable for the �nal tally of the election only if

it has a minimum set of signatures from di�erent Administrators. If n

is the total number of Administrators, a voter must get t > n/2 valid

signatures from di�erent Administrators to make its ballot acceptable.

62

With such a value for t it is impossible for any voter to get two valid

votes.

A voter uses a di�erent password to authenticate himself with each Ad-

ministrator. And because one Administrator cannot derive any other

password of the voter from the one it knows, as we will show in Section

5.3.3, it cannot alone impersonate a voter.

• Anonymizer: The Anonymizer server provides anonymity to the

voter's machine, preventing a Counter from associating a ballot with

a machine. The Anonymizer hides the voter's location and randomly

delays and shu�es several submitted ballots before sending them to

Counters. The randomization of ballot submissions prevents time

analysis trying to associate votes to voters using the time of the par-

ticipation on the election.

• Counter: The Counter is the server who veri�es the validity of the

ballots, checking that all required signatures are on the ballot. Then

the Counter removes the repeated ballots verifying a bit commitment

(made by the voter in the ballot signing phase, see Section 5.2) and

performs the tally.

Voters send their �nal ballots to the Counters through the Anonymiz-

ers, encrypted with the public key of the election, thus preventing

Anonymizers and Counters from watching votes during the election.

REVS can also be used without Anonymizers, in this case the voters

send their votes directly to the Counters; further discussion about the

REVS con�gurations will be made later in this Section.

• Voter Module: The Voter Module is the module used by the voter

to participate in the election. It performs all the proper interactions

63

with election servers in behalf of the voter, such as: get the ballot,

get it signed by Administrators and submit it. It also generates the

passwords for the voter (see Section 5.3.3) and controls the correct

ful�lment of the ballot.

In REVS the Ballot Distributor and the Anonymizer/Counter pair can be

replicated at will. The only server that requires special attention when repli-

cating is the Administrator, because having more Administrators means more

signatures to be obtained by the voters (because t > n/2).

REVS can be used with or without Anonymizers. As we said before the

Anonymizer provides anonymity to the machine used by the voter. However

there are operational scenarios where this kind of anonymity is unnecessary,

for instance: (1) when voting from voting polls, where several voters use

the same machines; (2) when voting from home or o�ce using an Internet

Service Provider that masquerades the network address; or (3) when using

the system in less privacy-demanding environment such as surveys.

5.2 REVS protocol

The �exibility of REVS arquitecture requires a �exible voting protocol. The

only restriction made is to the number of required signatures to make a

ballot valid, t, which must be greater than n/2, where n is the number of

Administrators.

From the voters' point of view, the REVS protocol is divided in three

steps (see Figure 5.1, detailed messages in Figure 5.2):

1) Ballot distribution: The voter contacts a Ballot Distributor to

get a blank ballot for a given election. The Ballot Distributor returns the

requested ballot, the election's public key and the operational con�guration

64

Figure 5.1: REVS voting protocol

of the election, all signed by the election Commissioner.

This is done in two phases. First the voter contacts a Ballot Distribu-

tor and provides a voter ID to receive the list of elections in which he can

participate. Then the voter chooses the election and requests a ballot for it

from a Ballot Distributor.

2) Ballot signing: After expressing his will on the ballot, the voter com-

mits to the ballot digest with a random bit string and blinds the committed

digest with a random blinding factor.

Then the voter sends the blinded committed digest of his vote to at least

t Administrators for signing. The Administrator, after receiving a request

for signing, veri�es if it had already signed for the requesting voter. If not,

he signs and saves the signature; if he had signed before, the Administrator

returns the previously saved data, i.e. the signature of the blinded commit-

ted ballot digest. After receiving a signature the voter updates it using an

unblinding factor and veri�es the correctness of the result using the original

ballot digest and the Administrator's public key. This process is repeated

until all required t signatures are collected.

The voter's module can save the voter's answers, the bit commitment

and the blinding factor into non-volatile storage, preferably provided by a

65

Figure 5.2: REVS voting protocol (message details)

66

mobile media, before using them. This enables the voter to stop and latter

resume its participation in the election, but can a�ect the voter's privacy

because it can be used as a receipt. We discuss this issue at the end of this

Section.

3) Ballot submission: in this step the voter constructs the ballot sub-

mission package, joining the ballot, its signatures and the bit commitment.

At this time the voter can save this data into secure storage. Once again this

is an optional step, because it helps improving accuracy but a�ects privacy

(see the discussion at the end of this Section). Then he submits this package,

ciphered with a hybrid cryptosystem using a random symmetric session key

and the election public key, through an Anonymizer, concluding the voting

protocol.

The voter can submit the same package to any Counter as many times

as he feels necessary to be sure that the ballot reaches its destination. This

means that di�erent Counters can get di�erent sets of votes at the end of the

election, and those sets may even contain repeated votes. A selected master

Counter obtains the �nal tally after gathering all the valid votes from the

several Counters and discarding the repeated ones. Any person with access

to the ballots collected by all Counters can act as a master Counter. This

fact increases the con�dence in the election outcome.

After collecting all votes the counting process involves the following steps:

I. Decipher the submission packages with the election's private key.

II.Verifying that all required t signatures fromAdministrators are present.

III. Removing repeated votes, which are the ones with the same bit

commitment. If the length of the bit commitment is large enough (160 bits

in REVS) the danger of collisions is negligible.

IV. Tallying the remaining votes.

67

V. When using multiple Counters, the master Counter collects all pre-

viously veri�ed votes. Then checks for repeated votes using the bit commit-

ment and proceeds with the �nal tally.

All the Counters publish the contents of all received submission packages,

and the Administrators publish all the signatures provided for the blinded

digests. After this publication the voter can verify if his vote was counted. If

the vote is not present at the tally he can reclaim presenting, anonymously,

the previously saved vote.

5.2.1 Multiple election support

As we describe in Section 4.2.5, none of the analysed systems has a good

support for multiple, simultaneous elections. We addressed this problem

and REVS allows voters to participate in several elections simultaneously.

REVS allows the use of a di�erent set of signature keys for each election.

Such sets prevent the exchange of ballots by the voters, something that

could not be done by just controlling the distribution of the ballots. In

REVS every Administrator has a di�erent asymmetric key pair for each

election, so when the voter requests the signature from the Administrator he

also sends the election identi�er. The Administrator checks if the voter is

registered in the election, and only in that case the Administrator signs with

the corresponding key. If voters manage to exchange ballots the signatures

will not match and the ballots will be invalid, therefore discarded.

5.2.2 To keep or not to keep voting state?

By saving his voting state a voter is able to protect himself against any

problem occurring at some stage in the voting protocol. However, this can

a�ect the voter's privacy because the saved state can be used as a receipt.

68

In fact, the bit commitment used by the voter is used by Counters to detect

replicas of the same vote, thus the bit commitment is a direct link between

a voter and his vote.

Of course, the implications of having a receipt are not the same if we

are participating in a political election or if we are answering to an opinion

survey. Furthermore, even when participating in a political election, there

may be operational scenarios where such receipt is not an issue. For instance,

when voting in a voting poll, the voter could save his voting state to allow the

resolution of any problem occurred during its voting process and, at the end,

the voter could be forced to destroy his voting state before exiting voting

poll (to protect his privacy). Or, alternatively, the voter could be forced to

put a hardware token containing the state and the �nal vote in a physical

ballot box, in order to protect its privacy and allow an alternative audition

of electoral results.

Concluding, REVS simply allows voters to save their voting state for

enabling them to stop and latter resume their voting process. Choosing the

right way to manage such state for protecting the voters' privacy and to

allow to check the results and also to protest against them are political and

operational issues beyond the design of REVS.

5.3 Implementation

REVS was fully implemented in Java, enabling it to be installed and exe-

cuted on any computational platform. We also used a free database back-end

in REVS servers, namely the 3.23.53-max version of MySQL. To provide se-

cure communication channels between the voter and the servers we use JAVA

RMI with SSL/TLS. Using SSL/TLS channels also allows an authentication

of the servers using their asymmetric key pair. More details about the im-

69

plementation are presented in the following sections. The steps needed to

install, con�gure and run REVS are presented in Appendix A.

5.3.1 REVS modules and servers

Servers

All servers have three layers: 1) server interface, 2) server engine and, 3)

server database. In the server interface are de�ned the services provided by

the server. The server engine is where all the logic of the server is imple-

mented. The methods to access permanent data storage are implemented in

the server database layer. All services provided are idempotent, with also

idempotent database accesses, therefore, for larger elections, a cluster can

be easily implemented to improve performance of the servers.

Ballot Distributor The Ballot Distributor server provides two services:

the getElectionsList and the getBallot. The �rst service returns a list of

elections in which the voter can participate; the second service returns

the ballot and all the other needed information to participate in the

election (the election public key, the number of required signatures, the

administrators' public keys, etc.). All services provided by this server

are stateless, therefore there is no restriction to the replication of this

server.

Administrator The Administrator server only provides the sign service.

The �rst time the voter requests the service the administrator signs

the blind ballot and stores the signature in the database; in subsequent

requests it is returned the signature made for the �rst request. Since

the storage of the signature in the database is atomic and the signing

process is computationally heavy, there could be used a cluster, sharing

70

a database, to provide more computational power.

Anonymizer The Anonynizer hides the network address of the voter ma-

chine. The REVS Anonymizer has a thread that runs from time to

time (random interval). It veri�es if there are some votes waiting to

be forwarded to the Counter, if so a random number of them are for-

warded to the Counter. Since the use of the Anonymizer is optional (cf.

Section 5.1) we de�ned the interface ISubmission, where it is de�ned

the vote submission service, submitVote, and both Anonymizers and

Counters implement this interface. Since a primary goal of REVS is

robustness, we use this simple way to implement an anonymous chan-

nel. However, more su�sticated anonymous channel can be used with

REVS, they only need to implement the ISubmission interface.

Counter As said before, the Counter server implements the ISubmission

interface to allow transparency in the vote submission process. The

Counter additionally provides the getVotes service; this service is used

at the end of the election, by a master Counter, to collect all the votes

received by the Counter. The Counter also has the tasks of deciphering

and veri�cation of the votes. To decipher the votes it is necessary to

use the election's private key, something that is only possible with

the cooperation of the electoral commission (because the key is in its

hands, see the Commissioner description bellow).

Voter Module

The Voter Module is the voter interface to REVS, it performs all the steps

and cryptographic transformations needed by the voting protocol. This

module is also responsible for displaying the ballot and for collecting the

71

voter's answers. The Voter Module has a modular design divided in three

parts: (1) the voter's interface, implemented by the FrameVoter class; (2)

the VoterEngine class, containing all the logic of the module; and (3) an

IBallotViewer implementation, to display the ballot and collect the answers.

The Voter's Module can be distributed to the voters in the registration

process or can be downloaded later from the election o�cial site or from

some Ballot Distributor server.

Commissioner

The Commissioner server is the server used by the electoral commission to

prepare the election. It is used to register the voters, to de�ne the election

con�guration, and to create the elections' asymmetric key pairs. The elec-

tions' private keys are encrypted and saved in a �le, the key used to encrypt

the �le is signed by the Commissioner and also saved in a �le. These two �les

should be kept secret and appart until the end of the election by the elec-

toral commission. Anyone with access to the two �les can, in collaboration

with a Counter produce intermediate results, therefore in a future release

the elections' keys should be created in a threshold way (cf. Section 3.2.1).

5.3.2 Cryptography

In REVS all signatures are 1024-bit RSA-SHA1 signatures, i.e., RSA signa-

tures, using 1024-bit keys, over the digest of the data made with the SHA-1

algorithm. For symmetric cipher it was used the Triple-DES algorithm. For

ciphering the ballot submission package with an hybrid cryptosystem it was

used the RSA-Triple-DES combination: data ciphered with Triple-DES and

the symmetric key ciphered with RSA.

To perform blind signatures we developed the RSABlindSignature class,

72

as the name suggest it implements RSA blind signatures, cf. Section 3.3.1.

5.3.3 Voter's authentication

For authenticating voters we used the well-known username/password method.

The voter must use a di�erent password for each di�erent Administrator for

preventing impersonation. But, for keeping the authentication user-friendly,

we should not force the voter to memorize several passwords. Thus, we de-

signed an algorithm for generating all necessary passwords from a small set

of secrets.

Our algorithm uses two secrets (see Figure 5.3): a strong password (non

trivial password, like a large random alphabetical string, that could be keep

safe inside an envelope or in a magnetic card or even in a tamperproof smart-

card) and an activation PIN, that should be memorized by the voter. The

voter introduces these two passwords in the Voters Module and it computes

all required passwords, one for each Administrator. Because the algorithm

uses digest functions, an Administrator Ai knowing a voter's password Pi

cannot compute any other password Pj, j 6= i, known by Administrator Aj.

With this algorithm we prevent the impersonation of voters by less than t

colluded Administrators.

For improving security, the voter should choose both passwords. At a

registration phase the voter should give the actual passwords, in an Unix

like method, that will be used to authenticate itself to the Administrators.

Another possibility is to give the passwords to the voters and allow them to

choose new ones.

73

Figure 5.3: Password generation algorithm

5.3.4 Ballots

One of the advantages of the blind signature protocols is ballot independence.

Taking advantage of this property, we have implemented the ballots and

answers in XML. This way we bring several others advantages to the system,

such as:

• It is easy to build ballots; it can be done in any text editor.

• Anyone who knows a little of XML can easily read the ballots and

answers.

• It easy to extend the ballot, e.g. add new question types, add addi-

tional information, etc.

In Figure 5.4 is presented the general XML construction of ballots and an-

swers. A ballot is composed by a description and several groups of questions.

A group of questions has a description and several questions. A question is

composed by a description, the question it self, and by the possible answers.

Currently four types of questions are supported:

• Single: the answer must be one and only one of the presented choices;

74

Figure 5.4: XML ballot and answer

• Multiple: we can choose any number of choices for our answer;

• OpenS: open single;

• OpenM: open multiple.

The OpenS and OpenM types are similar to the Single and Multiple types

respectively, but it is also possible to give another answer. The OpenS and

OpenM types of question are very useful for surveys. Because all questions

have a well de�ned type the Voter Module can verify the correct ful�lment

of the ballot.

5.4 Evaluation

The evaluation of the functionality of REVS is made under several assump-

tions. First we will clarify those assumptions, and then evaluate REVS

considering the properties presented in Section 2.2. The assumptions are:

• The cryptographic algorithms used are hard to break. REVS uses

three cryptographic algorithms: (i) RSA, for producing and checking

75

blind and non-blind signatures, and also for encrypting the keys used

to encrypt the submission packages; (ii) Triple-DES, used to encrypt

the submission packages; and (iii) SHA-1, for all required digest com-

putations.

• The communications are secure. All communications in REVS use SSL

and servers are authenticated with their public keys witch are certi�ed

by the Commissioner.

• The voters' computers are clear from infection by Trojan horses or

viruses.

• The required number of signatures respects t > n/2, and there are t

honest Administrators.

• The voter decides to save his data in secure non-volatile storage in

steps I and II of the voting protocol.

Accuracy

A vote cannot be altered because that would invalidate all Administrators'

signatures. A voter can verify if his vote was eliminated from the �nal tally,

by examining the list of received votes published by Counters, and can correct

this by sending his submission package anonymously. The elimination of

votes when using several Counters is not a trivial task because it implies the

elimination of the vote from all Counters; even so the voter can anonymously

submit his ballot and correct the tally. Because the signatures can be veri�ed

by anyone and are published with the votes, it is impossible for an invalid

vote to be part of the �nal tally. Therefore, all three aspects of accuracy are

respected.

76

Democracy

Each voter can only vote once in each election because t > n/2 (a voter

cannot produce two valid votes). To prevent a voter from voting it is needed

the collusion of n− t + 1 Administrators; the voter is prevented from voting

if he is prevented from obtaining the t required signatures.

In REVS the introduction of false valid votes is only possible if there is

t colluding Administrators. As in the other systems analyzed, this fraud can

be detected but cannot be corrected. However, in the case of introduction

of votes for absentee voters, the fraud can pass undetected.

The leak of partial results in REVS is only possible with the collusion

of the electoral commission and a Counter or an Anonymizer. The Counter

or Anonymizer have the ciphered votes and the electoral commission the

election private key.

Concluding, if the electoral commission and at least t Administrators are

honest all aspects of democracy are guaranteed.

Privacy

While the Anonymizers are honest no electoral authority can link a vote

to a voter, the only way to break this anonymity is by a collusion of the

Administrator, Anonymizer and Counter servers.

As all other voting prototypes analysed, REVS is not receipt-free, there-

fore the second part of the privacy property in no accomplished.

Veri�ability

The �nal tally can be made by anyone by verifying the signatures on the

votes and summing all votes. Each voter can verify if its own vote is correct,

and assumes that the other votes are correct because of the signatures they

77

have.

Robustness

• Availability - Since all servers can be replicated REVS has no single

point of failure. The system is available as long as there is a minimal

set of servers running correctly. The minimal set is actually one Ballot

Distributor, t Administrators, and one Anonymizer or Counter.

• Resume-ability - As explained in Section 2.2, the voter can recover

from an interruption in the voting protocol as long as the voter keeps

its voting data, i.e. the bit commitment and the blinding factor.

• Collusion-resistance - In REVS no electoral authority alone can

disturb any property of the system. However the collusion against the

democracy property deserves special attention. To a�ect the democ-

racy property, in a con�guration with n Administrators and t required

signatures, it needs the cooperation of t Administrators to cast a valid

vote (increases as t grows). To prevent a voter from voting n − t + 1

Administrators must conspire, preventing the voter from obtaining the

required t signatures (decreases as t grows). So, its obvious that its

necessary to make a trade-o� between these two opposite weaknesses.

Furthermore, to increase fault-tolerance t should be as low as possible.

78

Table 5.1: Overall systems analysis with REVS

Table 5.1 presents a side-by-side evaluation of the systems presented in Sec-

tion 4.2 and REVS. In this table we can observe that the goals of REVS were

accomplished, REVS robustness is from far the best without compromising

the other fundamental voting properties.

79

5.4.1 Performance evaluation

REVS was designed to support large scale elections. In this section we

evaluate the prototype of REVS concerning implementation decisions, time

consumed in cryptographic functions, both by the voters module and by

Administrators, and amount of data transferred.

As seen before, REVS can run without single points of failure, therefore

avoiding bottlenecks. All the servers have a database back-end and were im-

plemented in a way that, if necessary, a cluster can be easily implemented to

improve performance. With this design and implementation considerations

we believe that REVS can easily support large scale elections.

To evaluate the performance of the prototype we have made some tests

using a computer with a Pentium III processor at 550 MHz, 384 MB of RAM

running Windows XP Professional.

Regarding the Voter's Module we determined that it would take less

than half a second to compute 1000 passwords; the blinding process is done

in less than 200 ms; and the veri�cation of a blind signatures is done in less

than 30 ms. So, when using REVS in a con�guration requiring 5 signatures

the Voter's Module would compute all cryptographic operations in about a

second.

The Administrator is the other entity that must compute cryptographic

operations (signing blinded digests of the ballots). In the tested machine

we veri�ed that an Administrator takes less than 200 ms to verify the voter

identity and sign the blinded ballot (about 15% for the �rst action and 85%

for the second). An Administrator, with the test con�guration, can produce

5 signatures per second. For getting better performance results we can use a

more powerful computer or deploy the Administrator as a cluster of machines

sharing a high-performance database.

80

Table 5.2: Protocol data transfer resume

Besides servers' performance, its also necessary to analyze the amount

of data transferred in the protocol (cf. Figure 5.2). Being REVS a ballot

independent voting system we must make some assumption before analyzing

any data transfers: we assumed that the elections' list is 1 KB long; the

election data is divided in a �xed part with 2 KB (ballot questions, election

con�guration and election public key), and a variable part with n * 1024

bits long (public keys of the Administrators running the election), �nally we

assume that the vote (the ballot answers) is 256 bytes long.

From the �gures presented in Table 5.2 we can conclude that REVS o�ers

a good data transfer performance. For instance we can compare the data

transferred for each voter with the size of the Google's main page, which is

about 16 KB. REVS also provides a good trade-o� between increased security

and data transfer, about 0.5 KB for each additional signature required. Note

that all calculations do not take into account the additional tra�c generated

by communicating over SSL.

Another important aspect to observe from Table 5.2 is that 60% to 75%

of all data transferred is relative to the Ballot Distribution phase. Therefore

it was a good option to use stateless dedicated servers for this operation.

Regarding the required computation and data transfer aspects, the pre-

81

viously presented �gures allows us to conclude that our prototype of REVS

is e�cient and can be used in large scale elections.

5.5 The �rst experiment

The �rst prototype and experiment of REVS was done in the Instituto Supe-

rior Técnico to support elections, namely surveys for evaluating the quality

of courses. To this particular scenario, REVS servers were deployed and

managed by separate entities, namely central computer services, several de-

partments and students organizations, in order to reduce the possibility of

collusion. A set of trusted machines was made available to voters, but they

could use any other machine to participate in the elections.

The students were able to vote during a period of two weeks. During the

survey period it was achieved 100% of availability, even in the presence of

a few server and communications failures. This �rst experiment proved the

robustness of REVS.

5.6 Proposed improvements

In 2004 Lebre et al. [LJZF04] proposed two changes in the voting protocol

to make it even more robust. The �rst change addresses the problem of ma-

licious Administrators trying to prevent voters from voting by not signing

correctly the voter's ballot. The second change tries to prevent the sub-

mission of garbage to the Counter : the data submitted to the Counter is

encrypted, therefore there is no way to distinguish a real encrypted vote from

a garbage. We will now present a resume of the improvements proposed.

Both improvements use a certi�ed key pair generated by each voter during

the voting process (KVpub, KVpri). The voter certi�es his key KVpub with

82

the signature of k Administrators. This process can be repeated as many

times as the voter wants with any KVpub. After acquiring the required

signatures, the protocol is similar to REVS. The voter sends the blinded

digest of the committed ballot for signing, but now signs it with KVpriv. In

the same message goes the KVpub certi�cate, i.e. the key KVpub and its

k Administrators' signatures. Now each Administrator only signs a voter's

blinded digest if all its k signatures are correct, and any supervision author-

ity can verify the correctness of such decision. Likewise, an incorrect reply

from an Administrator can be detected by a supervision authority. This

is repeated until all the required t Administrators' signatures are obtained.

The Administrators store the complete voters' requests as a proof for future

claims. Note that in both interactions, to certify the key pair and to ob-

tain the signature on the blinded ballot, the voter authenticates himself to

each Administrator contacted with the current username/password scheme

of REVS.

The solution proposed for the second problem is similar to the one previ-

ously used for signing voters' requests sent to Administrators. A submission

package is signed by the voter's private key and the corresponding certi�ed

public key is sent along with the submission package. Since only authorized

voters can get the required blind certi�cate, only authorized voters may suc-

cessfully interact with Anonymizer/Counters. The key pair used for authen-

ticating submitted votes must be di�erent from any of the key pairs used for

authenticating voter's requests to Administrators. Otherwise Administrators

could easily link votes to voters by checking the results publicly presented

by Counters at the end of elections. Note that this solution does not prevent

authorized voters from submitting correctly signed random data. But this

behavior can be detected by keeping some extra state in Counters and us-

83

ing auditing systems in Administrators. If Counters store blind certi�cates

in order to �lter out di�erent submissions using the same certi�cate, then

malicious voters are forced to require several blind certi�cates from Admin-

istrators. This way they reveal their potentially malicious attempts and can

easily be identi�ed by election authorities, because the interaction with Ad-

ministrators requires identi�cation of voters. Another possibility is to allow

Administrators, under a proper supervision, to slow down blind certi�cations

for voters requiring them very often.

84

Chapter 6

Conclusions and future work

The robustness of voting systems is essential for our democracies. The

democracy principle is the right that everyone has to vote; without a ro-

bust voting system people could be prevented to vote, therefore corrupting

the democracy basic requisite.

A robust electronic voting system has to have fault-tolerance, to com-

munications or servers failures, and also should have protection against the

misbehaviour of isolated or colluded electoral authorities. However, that is

not what we observe in the analysed implementations of electronic voting

systems, in part because an Internet voting system is a complex application

and any slight change in it can seriously compromise the system.

REVS goal was to provide a robust system concerning three aspects: (1)

availability, by providing a system with no singular points of failure, and

with a voting protocol that supports communication and machine failures;

(2) resume-ability, by allowing voters to stop the voting protocol, intention-

ally or not, and resume it anytime and anywhere latter; and (3) collusion-

resistance, by not letting a server alone, or up to a certain con�gurable

degree of collusion, to interfere with the election. The REVS goal was fully

85

accomplished, as shown in Section 5.4.

REVS is also a very con�gurable system (cf. Section 5.1) therefore easy

to adapt to distinct operational environments, either opinion surveys or na-

tional elections.

REVS has also all the advantages of being a blind signature based vot-

ing system, such as: simplicity, low costs (it is computational and network

e�cient) and ballot independence. Taking advantage of the ballot indepen-

dency we de�ned the ballots an answers in XML. Therefore, it is easy to

expand the ballot format to accommodate future needs.

Concerning the multiple elections support REVS is the only, from the

analysed systems, that allows the secure realization of simultaneous elections

without electorate restrictions, therefore the only one that provides a real

multiple elections support.

Concluding, REVS is a very con�gurable Robust Electronic Voting Sys-

tem that can be easily used to support a large variety of elections and surveys

in a secure and robust way.

Future work

To facilitate the election preparation and analysis there should be developed

some add-ons to REVS, such as: a graphic ballot editor and a graphic results

analyzer.

The generation of the election key pair should be reviewed to give a better

protection against the leak of partial results, in future releases of REVS there

should be an option to create and use threshold election keys.

Another aspect that should also be reviewed is the anonymous channel,

we provide a simple anonymous channel construction based on the use of

an Anonymizer server. However, as explained in Section 5.1, the need to

86

use an anonymous channel depends of the operational environment of the

election/survey.

REVS uses a username/password authentication mechanism because it

is more user-friendly to the general public. However, we are aware of the

security advantages of the public key authentication mechanism, therefore

we intend to integrate this type of authentication on REVS.

The mobility of voters is the major contribution that electronic voting

systems can give to the democratic voting process. With the developments

of the mobile communications world it starts to become possible to extend

the mobility of voters to allow voting virtually from anywhere anytime. We

plan to develop a Voter's Module of REVS for the mobile communications

environment. The deployment platform of this new Voter's Module could be

smart-phones or even GSM/UTMS smartcards.

87

88

Appendix A

Installation and use

A.1 Pre-requisites

To run REVS it is needed additional software, namely:

• MySQL version ≥ 3.23.53 MAX installed

(available at http://www.mysql.com/)

• Java runtime version ≥ 1.4 installed

(available at http://java.sun.com/)

Optional software

• OpenSSL (available at http://www.openssl.org/)

A.2 Key management

After the installation of the required software, the �rst step is to create and

sign the keys of all servers (Commissioner, Ballot Distributors, Administra-

tors, Anonymizers and Counters). To generate the keys we used the Java

command line tool keytool.

89

A.2.1 Create a key

To create a key type the following command should be executed in the com-

mand line:

keytool -genkey -keystore kstore.ks -alias server -keyalg RSA -keysize 1024

-validity 365

This command creates a 1024 bits RSA key valid for 365 days. The key is

stored in a keystore �le named kstore.ks with the server alias. To �nd out

more about keytool utility please check the Java documentation.

A.2.2 Sign a key

First we must create the signature request and submit it to a Certi�cation

Authority (CA) for signing. To create a signature request type the following

command:

keytool -certreq -keystore kstore.ks -alias server -�le server.req

This command will create a signature request for the key with the alias server

and store it in the server.req �le.

The second step is to get the certi�cate request signed. You can get

your keys signed by a certi�cation authority such as VerySign or you can

create your own CA. We used the OpenSSL tool to create our own CA.

After installing OpenSSL properly we use the following command to sign

the request:

openssl x509 -req -in server.req -out server.crt -CA demoCA\cacert.crt

-CAkey demoCA\private\cakey.crt -CAserial demoCA\serial

This command will use the CA installed in the demoCA directory to sign

our request, the cacert.crt contains the CA public key certi�cate and the

90

cakey.crt contains the CA private key. The signed request is stored in the

server.crt �le.

A.2.3 Import the signed certi�cate

Before importing the signed public key certi�cate we should �rst import the

CA public key certi�cate.

keytool -import -�le cacert.crt -keystore kstore.ks -alias ecca

This command imports the CA public key certi�cate cacert.crt to the key-

store using the alias ecca (electoral commission certi�cation authority). Then

we can import our signed certi�cate:

keytool -import -�le server.crt -keystore kstore.ks -alias server

Since the CA certi�cate is already in the keystore, it is possible to verify the

signature on it and construct a valid certi�cate chain.

Note: use a di�erent keystore �le for each server.

A.3 Installing servers

A.3.1 Con�guration �le

For the Ballot Distributor, Administrator, Anonymizer and Counter servers

there should be a con�guration �le de�ning the server and database ad-

dresses.

The con�guration �le is a text �le that should look like this:

SERVER <address (//host/service_name)>

DATABASE <address (//host/database)>

Example:

91

SERVER //localhost/administrator

DATABASE //localhost/adm_database

A.3.2 Setting up servers

We have separated REVS in two jar �les (revs_servers.jar and revs_voter.jar).

For setting up the servers we use the revs_servers.jar �le. To set up a REVS

server follow these steps:

1. Create the server's database in MySQL.

2. Copy the revs_servers.jar to the installation directory.

3. Create the subdirectories �conf� and �ext�.

4. Copy to the �conf� subdirectory the following �les:

(a) kstore.ks �le: containing the key of the server, the signed public

key certi�cate by the CA and the CA public key certi�cate (cf.

Section A.2).

(b) tstore.ks �le: containing the CA public key certi�cate (only for

Anonymizers and Counters).

(c) commissioner.crt �le: The commissioner public key certi�cate

signed by the CA.

(d) server.cfg �le: the server con�guration �le (cf. Section A.3.1).

(e) policy.txt : this �le is a Java policy �le; for more information about

it consult the Java documentation. An example of a policy �le is

available at REVS download site.

5. Copy to the �ext� subdirectory the following �les:

92

(a) soap.jar : available at REVS download site.

(b) mysql-connector-java.jar : available at REVS download site and

at MySQL site.

Now we are ready to start the server. To start a Ballot Distributor, Admin-

istrator, Anonymizer or Counter server just type the following command:

java -classpath "revs_server.jar;ext/soap.jar;ext/mysql-connector-java.jar;"

-Djava.security.policy=conf/policy.txt -Djava.rmi.server.codebase=

�le:/<full_directory_path>/revs_servers.jar inescID.revs.servers.StartServer

If everything is ok it should appear a menu to choose the server's type:

Select server type

0 - Distributor

1 - Administrator

2 - Anonymizer

3 - Counter

Server type:

After selecting the server's type it will be asked for the passwords for the

database authentication, the keystore and the private key:

Press Enter for defaults.

user: REVSuser

password:REVSpassDB

KeyStore

password: REVSpassKS

Private key

password: REVSpassPK

93

The default values are only for the database authentication (user: sa,

password: <no_password>). Finally, there should appear a list of actions

allowed by the selected server:

K - Create signing keys (only Administrator)

F - Forward Counter selection (only Anonymizer)

G - Gather votes (only Counter)

T - Tally votes (only Counter)

C - Create database

D - Delete database

R - Redo database

U - Update database

S - Start server

E - Exit

Option:

To start the Commissioner server type the following command:

java -classpath "revs_servers.jar;ext\mysql-connector-java.jar;"

-Djava.security.policy=conf/policy.txt inescID.revs.commissioner.Commissioner

First it will be asked for the authentication information:

Press Enter for defaults.

user: REVSuser

password:REVSpassDB

KeyStore

password: REVSpassKS

Private key

password: REVSpassPK

94

And then the actions menu should appear:

C - Create tables

D - Delete tables

R - Redo tables

F - Fill tables

G - Graphic mode

E - Exit

Option:

All servers have three database management actions: create, delete and redo.

Before we can start using a server for the �rst time we must create

the database tables.

The remaining actions of each server will be explained in the next Sec-

tions.

A.4 Setting up an election

In REVS the election is prepared by using the Commissioner server. To set

up an election start the Commissioner server as described in Section A.3.2;

if it is the �rst time do not forget to create the database tables. Then choose

the option G to enter the graphic mode (see Figure A.1), alternatively you

can start the Commissioner server with the -G option (add -G at the end

of the command to start the server). Now just follow these three steps:

1. First it is necessary to register the voters, option Voters in the Commis-

sioner main menu (Figure A.1). In the Voter Administration menu it

is possible to add, remove or change the voters' records (Figure A.2).

When de�ning the passwords of the voters there are two options: a

password and a pin or only one password (cf. Figure A.3). In the

95

case of using only one password the system internally splits it into two

pieces, a �password� and a pin, to be used in the authentication algo-

rithm de�ned in Section 5.3.3.

The voters are organized in groups and each voter can belong to sev-

eral groups. To manage the groups of voters choose the option Voters

Groups in the Voter Administration menu. In the Group Adminis-

tration menu (Figure A.4) it is possible to add and remove groups, to

rename the group and to manage the voters in the groups (Figure A.5).

Note that the election electorate will be a voters' group.

2. The second step is to de�ne an election con�guration, option Con�g-

urations in the main menu. To de�ne an election con�guration it is

necessary to de�ne the polling period (start and end dates), the number

of Administrators to use, the required signatures to make a vote valid

and if Anonymizers are to be used. The Con�guration Administration

menu is shown in Figure A.6.

3. To �nish the election setups select the option Elections in the main

menu. In the Election Administration menu (Figure A.7) it is possible

to create, delete or edit elections. To de�ne an election it is necessary

to de�ne the name of the election, the election's ballot (cf. Section

A.4.1), the election's electorate (a voters' group) and the election's

con�guration. Note that several elections can use the same voters'

group and/or election con�guration.

96

Figure A.1: Commissioner main menu

Figure A.2: Voters Administration menu

97

Figure A.3: Password menu

Figure A.4: Group Administration menu

98

Figure A.5: Group management menu

Figure A.6: Con�guration Administration menu

99

Figure A.7: Election Administration menu

A.4.1 Create a ballot

The ballots are de�ned in XML as presented in Figure A.8. A ballot is

composed by a description and several groups of questions. A group of

questions has a description and several questions. A question is composed

by a description, the question it self, and by the possible answers.

100

Figure A.8: XML ballot

Currently four types of questions are supported: Single, the answer must

be one and only one of the presented choices; Multiple, we can choose any

number of choices for our answer; OpenS (open single) and OpenM (open

multiple) types are similar to the Single and Multiple types respectively, but

101

it is also possible to give another answer.

Currently there is no speci�c ballot editor. Therefore, it is necessary to

use a text editor to create the election ballot.

A.4.2 De�ning the election servers

Part of the setting up of REVS consists in de�ning the election servers, option

Servers in the main menu. In the Servers Administration menu (Figure A.9)

it is possible to de�ne the address and import the public key of the elections

servers (Ballot Distributors, Administrators, Anonymizers and Counters).

To import the public key of the server load the public key certi�cate �le (cf.

Section A.2). Only the servers that are enabled can be used in the election.

Figure A.9: Servers Administration menu

A.4.3 Import voters and elections

It is possible to import voters and elections from text �les, using the ap-

propriate commands at the Utilities menu, cf. Figure A.10. The text �les

should have the following format:

102

Figure A.10: Utilities menu

• Voters �le (one line per voter):

<id>;<name>[;password[;pin]]

If the voters have no password information, use the option Create Vot-

ers' Passwords in the Utilities menu to create them.

• Voters' groups (one line per association group->voter):

(<group id>|<group description>);<id_voter>

• Elections �le (one line per election):

[<election id>;]<election description>;(<voters group id>|<voters group

description>);<election con�guration description>;<ballot �le>

Note that the election con�guration must be created previously to the

import of the elections �le.

103

A.5 Start an election

To start an election it is necessary to create the servers' databases, option

Create Election Data in the main menu of the Commissioner. The databases

are created based on an election con�guration instead of based on individual

elections. Therefore, the databases created contain information concerning

all the elections that have the selected con�guration. In the Con�guration

Selection menu, cf. Figure A.11, it is possible to select the election con�gu-

ration and if it is necessary to create the elections' keys and/or the Admin-

istrators signing keys. If the keys are not in the Commissioner database an

error message will appear. For security reasons the administrators signing

keys should be created by the Administrators and not by the Commissioner,

cf. Section A.5.1.

Figure A.11: Con�guration Selection (create databases)

After selecting the con�guration press the Finish button to create the

data �les. The following �les will be created:

1. One encrypted �le containing the elections' private keys.

104

2. One �le containing the decryption key to decipher the elections' private

keys �le.

3. One �le for each enabled Administrator.

4. One �le for the Ballot Distributors.

5. One �le for the Anonymizers and Counters.

6. One �le containing a list of the active Ballot Distributors.

7. One �le containing a list of the active Counters.

All �les are signed by the Commissioner.

The next step is to setup the servers' databases whith the created �les.

To load the �les into a server's database, launch the server, cf. Section A.3.2,

select the U - Update database option and enter the �le name. Now the server

is ready to be started, just select the option S - Start server.

An additional step is required to start the Anonymizer server, it is neces-

sary to select the Counter to which forward the votes. Select the option F -

Forward Counter selection and enter the name of the �le containing the list

of active Counters, then select one. Now the server is ready to be started,

just select the option S - Start server. It will be asked for the maximum

number of ballots to be sent after each delay and the maximum delay time,

cf. Section 5.3.1.

A.5.1 Administrators signing keys

If the signing keys are created by the Commissioner is it possible for the

Commissioner to keep the signing keys and use them produce valid votes,

corrupting the election by it self. Therefore, is is recommended the creation

105

of the signing keys by the Administrators and then import the veri�cation

keys to the Commissioner. The steps needed are the following:

1. Export the elections list to a �le. Go to the Utilities menu and select

the Export Elections option.

2. Create the signing keys for each Administrator. Start the Administrator

server (cf. Section A.3.2) and select the K - Create signing keys option.

Then use the �le saved in step one as input. The output is a �le

containing the signature veri�cation keys.

3. Import the signature veri�cation keys. In the Utilities menu and select

the Import Administrators Signing Keys option.

A.6 Voting process

A.6.1 Start the Voter's Module

To install the Voter's Module copy the revs_voter.jar �le to the installation

directory and the following �les to the �conf� subdirectory in the installation

directory:

• distributors: the �le containing the active Ballot Distributors list (cf.

Section A.5).

• policy.txt : this �le is a Java policy �le, for more information about it

consult the Java documentation. An example of a policy �le is available

at REVS download site.

• commissioner.crt : this �le contains the commissioner public key cer-

ti�cate signed by the CA.

106

• tstore.ks: this �le contains the CA public key certi�cate. To create

this �le follow the instructions in cf. Section A.2.3.

• welcome.html : this �le contains the welcome message, formatted in

HTML that appears on the welcome screen of the Voter's Module (Fig-

ure A.12).

A.6.2 Voting steps

The voting steps are the following:

1. Start the Voter's Module with the following command:

java -classpath "voter.jar" -Djava.security.policy=conf/policy.txt

inescID.revs.voter.VoterEngine

A welcome screen should appear (Figure A.12). To continue press OK.

2. Then the voter authentication is requested (Figure A.13). To continue

press OK. A voter authentication con�rmation should appear (Figure

A.14), to con�rm press Yes.

3. The next screen presents the list of elections in which the voter can

participate. The voter should pick one an press OK to continue (Figure

A.15).

4. Now it is displayed the ballot (Figure A.16). The voter should �ll in

the ballot and when done press OK to submit the vote.

5. A validate con�rmation message will appear (Figure A.19). After the

con�rmation the vote is send to the Administrators for signing, but

before that it is possible to save the voting state, cf. Figure A.18,

which is necessary to recover the voting process in the case of being

impossible to submit the vote.

107

6. After collecting the administrators signatures it will appear a submit

con�rmation message (Figure A.19). The vote is only submitted af-

ter this con�rmation. If the voter does not con�rm the submission,

the submission is aborted. To resume the submit process it will be

necessary the previously saved voting state.

7. Finally it is displayed the voting process report (Figure A.20). From

this menu it is possible to go to the election selection menu or to the

welcome message menu.

If the vote cannot be submitted successfully there will be an error message

on voting process report. To resume the voting protocol go to the File

menu, in the welcome screen, and select the Resume Voting option (Figure

A.21). Then the authentication menu should appear and the voting process

is resumed.

Figure A.12: Welcome screen

108

Figure A.13: Authentication screen

Figure A.14: Authentication con�rmation

109

Figure A.15: Election selection screen

Figure A.16: Ballot display

110

Figure A.17: Validate con�rmation

Figure A.18: Save vote state

111

Figure A.19: Submit con�rmation

Figure A.20: Report screen

112

Figure A.21: Resume voting

A.7 Election tally

After the election polling close select the Counter's option T - Tally votes

to decipher the votes, verify the Administrators' signatures and to produce

the �nal election tally. For this action operation it will be needed the �le

containing the encrypted elections' private keys and the �le containing the

decryption key for the �rst one.

To view the results open the �le index.htm in the �results� directory, a

resume table of the elections results will appear (Figure A.22). There it is

possible to choose two views of the elections results (Figures A.23 and A.24).

The Counters' option G - Gather votes should be used if there were

multiple counters used in election to gather the voter from all of them. For

this task it is necessary the �le containing the list of active counters.

113

Figure A.22: Results resume table

Figure A.23: Overall results

114

Figure A.24: Results details

115

116

Bibliography

[Abe98] M Abe. Universally veri�able mix-net with veri�cation work in-

dependent of the number of mix-servers. In Advances in Cryptol-

ogy � Eurocrypt '98, volume 1403 of Lecture Notes in Computer

Science, pages 437�447, Helsinki, Finland, 31 May� 4 June 1998.

Springer-Verlag.

[Abe99] Masayuki Abe. Mix-networks on permutation networks. In

Kwok-Yan Lam, Eiji Okamoto, and Chaoping Xing, editors,

Advances in Cryptology - ASIACRYPT '99, International Con-

ference on the Theory and Applications of Cryptology and In-

formation Security, volume 1716 of Lecture Notes in Computer

Science. Springer, 1999.

[AH01] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network

based on permutation networks. In Public Key Cryptography,

4th International Workshop on Practice and Theory in Pub-

lic Key Cryptography, volume 1992 of LNCS, pages 317�??

Springer, 2001.

[BCR87] G. Brassard, C. Crépeau, and Jean-Marc Robert. All-or-nothing

disclosure of secrets. In A.M. Odlyzko, editor, Proceedings of

117

Advances in Cryptology � CRYPTO '86, volume 263 of LNCS,

pages 234�238. Springer-Verlag, 1987.

[BF85] J. Benaloh and M. Fischer. A robust and veri�able crypto-

graphically secure election scheme. In Proceedings of 26th IEEE

Symposium on Foundations of Computer Science - FOCS '85,

pages 372�382. IEEE Computer Society, 1985.

[BFP+01] Baudron, Fouque, Pointcheval, Stern, and Poupard. Practi-

cal multi-candidate election system. In PODC: 20th ACM

SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, 2001.

[BG02] Dan Boneh and Philippe Golle. Almost entirely correct mixing

with applications to voting. In Vijay Atlury, editor, Proceedings

of the 9th ACM Conference on Computer and Communication

Security (CCS-02), pages 68�77, New York, November 18�22

2002. ACM Press.

[BO2] Bo2k. http://www.bo2k.com.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot

elections (extended abstract). In Proceedings of the Twenty-

Sixth Annual ACM Symposium on the Theory of Computing,

pages 544�553, Montréal, Québec, Canada, 23�25 May 1994.

[BY86] J. Benaloh and M. Yung. Distributing the power of government

to enhance the power of voters. In Proc. 5th ACM Symp. on

Principles of Distributed Computation, pages 52�62. ACM, 1986.

118

[Cal00] California Internet Voting Task Force. A report on the feasi-

bility of internet voting. http://www.ss.ca.gov/executive/ivote,

18 January 2000.

[Cal01] Caltech-MIT Voting Technology Project. Voting - What Is,

What Could Be. http://www.vote.caltech.edu/Reports, July

2001.

[CC97] L. Cranor and R. Cytron. Sensus: A security-conscious elec-

tronic polling system for the internet. In Proceedings of the

Hawaii International Conference on System Sciences. Wailea,

Hawaii., 1997.

[CFSY96] Ronald Cramer, Matthew Franklin, Berry Schoenmakes, and

Moti Yung. Multi-authority secret-ballot elections with lin-

ear work. In Ueli Maurer, editor, Advances in Cryptology�

EUROCRYPT 96, volume 1070 of Lecture Notes in Computer

Science, pages 72�83. Springer-Verlag, 12�16 May 1996.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and

optimally e�cient multi-authority election scheme. In Advances

in Cryptology � EUROCRYPT '97, pages 103�118, 1997.

[Cha81] David Chaum. Untraceable electronic mail, return addresses,

and digital pseudonyms. Communications of the ACM,

24(2):84�88, 1981.

[Cha82] David Chaum. Blind signatures for untraceable payments. In

Rivest R. L. Chaum, D. and A. T. Sherman, editors, Proceedings

of Advances in Cryptology � CRYPTO '82 (New York), pages

199�203. Plenum Press, 1982.

119

[Cha88] David Chaum. Elections with unconditionally- secret ballots

and disruption equivalent to breaking rsa. In Proceedings of

Advances in Cryptology � Eurocrypt'88, volume 300 of LNCS,

pages 177�182. Springer-Verlag, 1988.

[Coh87] Josh D. Cohen. Veri�able secret-ballot elections /�Josh Daniel

Cohen Benaloh. PhD thesis, Yale University, 1987, 1987.

[Cra96] Lorrie Faith Cranor. Electronic voting � computerized polls

may save money, protect privacy. ACM Crossroads, 2(4), April

1996.

[Cra01] Lorrie F. Cranor. Voting after �orida: No easy answers. Ubiq-

uity: An ACM IT Magazine and Forum, (47), February 2001.

[DJ01] Ivan B. Damgård and Mads J. Jurik. A generalisation, a simpli-

�cation and some applications of Paillier's probabilistic public-

key system. pages 119�136, 2001. RS-00-45.

[DuR99] Brandon DuRette. Multiple administrators for electronic voting.

Bachelor's thesis, Massachusetts Institute of Technology, May

1999.

[ElG85] T. ElGamal. A Public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms. IEEE Trans. on In-

formation Theory, 31(4):469�472, July 1985.

[FOO92] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting

scheme for large scale elections. In Jennifer Seberry and Yu-

liang Zheng, editors, Advances in Cryptology�AUSCRYPT 92,

volume 718 of LNCS, pages 244�251. Springer-Verlag, 13�16 De-

cember 1992.

120

[FS01] Jun Furukawa and Kazue Sako. An e�cient scheme for prov-

ing a shu�e. In Joe Kilian, editor, Advances in Cryptology �

CRYPTO ' 2001, volume 2139 of Lecture Notes in Computer

Science, pages 368�387. International Association for Crypto-

logic Research, Springer-Verlag, Berlin Germany, 2001.

[GMR85] S. Goldwasser, S Micali, and C. Racko�. The knowledge com-

plexity of interactive proofs. In Proceedings of the Seventeenth

Annual ACM Symposium on Theory of Computing, pages 291�

305, 6�8 May 1985.

[Gol95] Oded Goldreich. Foundations of Cryp-

tography - Fragments of a Book.

http://www.wisdom.weizmann.ac.il/ oded/homepage.html,

1995.

[Her97] Mark Herschberg. Secure electronic voting over the world wide

web. Master's thesis, Massachusetts Institute of Technology,

May 1997.

[HS98] Qi He and Zhongmin Su. A new practical secure e-voting

scheme. In Proceedings of 14th International Information Se-

curity Conference (SEC'98), 1998.

[HS00] Martin Hirt and Kazue Sako. E�cient receipt-free voting

based on homomorphic encryption. In Advances in cryptology�

EUROCRYPT 2000 (Bruges), volume 1807 of Lecture Notes

in Comput. Sci., pages 539�556. Springer-Verlag, Berlin, Ger-

many / Heidelberg, Germany / London, UK / etc., 2000.

121

[Int01] Internet Policy Institute. Report of the National Work-

shop on Internet Voting: Issues and Research Agenda.

http://www.diggov.org/archive/library/dgo2000/dir/PDF/vote.pdf,

March 2001.

[Jak98] M. Jakobsson. A practical mix. In Advances in Cryptology �

EUROCRYPT '98, pages 448�461, 1998.

[Jak99] Markus Jakobsson. Flash mixing. In Proceedings of the Eigh-

teenth Annual ACM Symposium on Principles of Distributed

Computing (PODC '99), pages 83�90, New York, May 1999.

Association for Computing Machinery.

[JJ01] Jakobsson and Juels. An optimally robust hybrid mix network.

In PODC: 20th ACM SIGACT-SIGOPS Symposium on Princi-

ples of Distributed Computing, 2001.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix

nets robust for electronic voting by randomized partial check-

ing. In Proceedings of the 11th USENIX Security Symposium

(SECURITY-02), pages 339�353, Berkeley, CA, USA, August

5�9 2002. USENIX Association.

[KKP03] Robert Ko�er, Robert Krimmer, and Alexamder Prosser. Elec-

tronic voting: Algorithmic and implementation issues. In 36th

Hawaii International Conference on System Sciences, 2003.

[LJZF04] Ricardo Lebre, Rui Joaquim, André Zúquete, and Paulo Fer-

reira. Internet voting: Improving resistance to malicious servers

in REVS. In IADIS International Conference on Applied Com-

puting, March 2004.

122

[LK02] Lee and Kim. Receipt-free electronic voting scheme with a

tamper-resistant randomizer. In ICISC: International Confer-

ence on Information Security and Cryptology. LNCS, 2002.

[LMMM00] A. Lioy, F. Maino, M. Marian, and D. Mazzocchi. DNS security.

In TERENA Networking Conference, pages 22�25, 2000.

[MK00] Mitomo and Kurosawa. Attack for �ash MIX. In ASIACRYPT:

Advances in Cryptology � ASIACRYPT '00: International Con-

ference on the Theory and Application of Cryptology. LNCS,

Springer-Verlag, 2000.

[MOV97] A. J. Menezes, P. C. Van Oorschot, and A. S. Vanstone. Hand-

book of Applied Cryptography. CRC Press, 1997.

[MSOA01] A. Monteiro, N. Soares, R. Oliveira, and P. Antunes. Sistemas

electrónicos de votação. FCT/UL Technical Report DI-FCUL-

TR-01-9, October 2001.

[Mür00] O. Mürk. Electronic Voting Schemes. Semester work.

http://www.cs.ut.ee/ olegm/, 2000.

[Nef01] C. Andrew Ne�. A veri�able secret shu�e and its application to

e-voting. In Pierangela Samarati, editor, Proceedings of the 8th

ACM Conference on Computer and Communications Security,

pages 116�125, Philadelphia, PA, USA, November 2001. ACM

Press.

[NSS91] H. Nurmi, A. Salomaa, and L. Santean. Secret ballot elections

in computer networks. Computers and Security, 36(10):553�560,

1991.

123

[Oka96] Tatsuaki Okamoto. An electronic voting scheme. In Proceedings

of IFIP '96, pages 21�30. Chapman & Hall, 1996.

[Oka97] Tatsuaki Okamoto. Receipt-free electronic voting schemes for

large scale elections. In Proceedings of 5th International Com-

puter Security Conference, pages 25�35, 1997.

[OKST97] W Ogata, K Kurosawa, K Sako, and K Takatani. Fault toler-

ant anonymous channel. In Information and Communications

Security � First International Conference, volume 1334 of Lec-

ture Notes in Computer Science, pages 440�444, Beijing, China,

11�14 November 1997. Springer-Verlag.

[OMA+99] Ohkubo, Miura, Abe, Fujioka, and Okamoto. An improvement

on a practical secret voting scheme. In ISW: International Work-

shop on Information Security, LNCS. Springer-Verlag, 1999.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite

degree residuosity classes. Lecture Notes in Computer Science,

1592:223�238, 1999.

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. E�cient

anonymous channel and all/nothing election scheme. In Tor

Helleseth, editor, Advances in Cryptology�EUROCRYPT 93,

volume 765 of Lecture Notes in Computer Science, pages 248�

259. Springer-Verlag, 1994, 23�27 May 1993.

[Riv01] R. Rivest. Electronic Voting. In Proceedings of Financial Cryp-

tography'01. Grand Cayman, Cayman Islands, 2001.

124

[RSA77] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for

obtaining digital signatures and public-key cryptosystems. MIT

LCS Technical Report MIT/LCS/TM-82, 1977.

[Rub02] A. Rubin. Security Considerations for Remote Electronic Voting

Over the Internet. Communications of the ACM, 45(12), 2002.

[Sal91] A. Salomaa. Verifying and recasting secret ballots in computer

networks. In Hermann Maurer, editor, Proceedings of New

Results and New Trends in Computer Science, volume 555 of

LNCS, pages 283�289, Berlin, Germany, June 1991. Springer.

[SK94] Kazue Sako and Joe Kilian. Secure voting using partially com-

patible homomorphisms. In Yvo G. Desmedt, editor, Advances

in Cryptology�CRYPTO '94, volume 839 of Lecture Notes in

Computer Science, pages 411�424. Springer-Verlag, 21�25 Au-

gust 1994.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting

scheme: A practical solution to the implementation of a vot-

ing booth. In Louis C. Guillou and Jean-Jacques Quisquater,

editors, Advances in Cryptology�EUROCRYPT 95, volume 921

of LNCS, pages 393�403. Springer-Verlag, 21�25 May 1995.

[UKD] Uk-edemocracy. http://www.edemocracy.gov.uk.

125

