
Antipode: Enforcing Cross-Service Causal Consistency
in Distributed Applications

João Ferreira Loff

INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

Daniel Porto

INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

João Garcia

INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

Jonathan Mace

Max Planck Institute for Software

Systems and Microsoft Research

Rodrigo Rodrigues

INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa

Abstract
Modern internet-scale applications suffer from cross-service
inconsistencies, arising because applications combine mul-

tiple independent and mutually-oblivious datastores. The

end-to-end execution flow of each user request spans many

different services and datastores along the way, implicitly

establishing ordering dependencies among operations at dif-

ferent datastores. Readers should observe this ordering and,

in today’s systems, they do not.

In this work, we present Antipode, a bolt-on technique

for preventing cross-service consistency violations in dis-

tributed applications. It enforces cross-service consistency

by propagating lineages of datastore operations both along-

side end-to-end requests and within datastores. Antipode

enables a novel cross-service causal consistency model, which

extends existing causality models, and whose enforcement

requires us to bring in a series of technical contributions to

address fundamental semantic, scalability, and deployment

challenges. We implemented Antipode as an application-

level library, which can easily be integrated into existing

applications with minimal effort, is incrementally deploy-

able, and does not require global knowledge of all datastore

operations. We apply Antipode to eight open-source and

public cloud datastores and two microservice benchmark

applications. Our evaluation demonstrates that Antipode is

able to prevent cross-service inconsistencies with limited

programming effort and less than 2% impact on end-user

latency and throughput.

ACM Reference Format:
João Ferreira Loff, Daniel Porto, João Garcia, JonathanMace, and Ro-

drigo Rodrigues. 2023. Antipode: Enforcing Cross-Service Causal

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0229-7/23/10.

https://doi.org/10.1145/3600006.3613176

Consistency in Distributed Applications. In ACM SIGOPS 29th Sym-
posium on Operating Systems Principles (SOSP ’23), October 23–
26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3600006.3613176

1 Introduction
Modern internet-scale applications, such as social networks,

online forums and e-commerce sites, are global-scale, de-

centralized distributed systems that comprise many differ-

ent services and back-end datastores. In these systems, the

end-to-end request flow of end-user interactions is complex,

spanning multiple different services and machines and in-

volving interactions with multiple different datastores [2,

23, 24, 48, 58, 65]. Popular design patterns like microservice

architectures further reinforce this complexity: services are

loosely coupled, each implements a small slice of application

logic, and each makes independent choices of datastores and

consistency model [34, 42].

Cross-service inconsistencies are a new challenge that arises

in this setting. Although consistency is well-studied in the

context of individual distributed datastores, new issues ap-

pear when an application uses multiple independent dis-
tributed datastores. In particular, a single end-to-end request

can make multiple writes to multiple different datastores

over the course of its execution; these writes are issued by

the different services (andmachines) traversed by the request.

As a whole, the request establishes an implicit visibility or-

dering for its writes, which readers must respect if they are

to be consistent.

However, in today’s systems, datastores are independent

and mutually oblivious. Each datastore implements its own

consistency model; there is no coordination between data-

stores when replicating updates; and no single service has

global knowledge of all datastore interactions of an end-to-

end application request. Consequently, existing systems can

neither detect cross-service consistency violations, nor en-

force a visibility ordering for readers. This challenge has

emerged recently, from both user bug reports [29–32] and

reports from practitioners [2, 4, 42, 59, 66].

In this work, our goal is to provide developers with prin-

ciples and tools to prevent cross-service inconsistencies in

distributed applications. This goal is particularly challenging

https://orcid.org/0000-0002-0942-9730
https://orcid.org/0000-0002-9001-9869
https://orcid.org/0000-0002-6820-6449
https://orcid.org/0000-0002-3701-9296
https://orcid.org/0000-0001-8367-4024
https://doi.org/10.1145/3600006.3613176
https://doi.org/10.1145/3600006.3613176


due to the size and complexity of the collection of services

and their interaction patterns, as we further motivate in §2,

using experiments with multiple services and a large-scale

trace from Alibaba [48]. Furthermore, the fact that different

systems are developed independently calls for a solution that

can be incrementally adopted and deployed by each system

that wants to prevent this class of inconsistencies.

To address these challenges, we present Antipode, a sys-

tem that enforces cross-service causal consistency for applica-

tions with requests that span multiple processes and interact

with multiple datastores. The design of Antipode brings to-

gether four main concepts, all of which are essential to the

effectiveness and practicality of our solution.

First, we extend Lamport’s causal consistency model to

a new cross-service causal consistency definition. The new

definition introduces the concept of lineages, embodying the

dependent actions of a request across multiple processes.

Furthermore, developers can select the relevant subset of

dependencies that are amassed as requests percolate, leading

to a sensible balance between semantics and scalability.

Second, we designed Antipode in a way that does not need

global knowledge of all services and datastores. Instead, ser-

vices only need to communicate lineage metadata with the

end-to-end execution flow of requests and within datastore

operations, piggybacking on existing request context propa-

gation mechanisms [50, 54].

Third, to avoid stalling every read to check for possible

incoming dependent updates, Antipode allows developers to

selectively enforce causal relationships through a simple and

generic API, with a service-specific implementation. This is

key to avoiding user-visible delays, while also decoupling

the generic specification aspects from the implementation

that is specific to each service.

Finally, to facilitate an incremental deployment on top

of existing service implementations, Antipode takes a prag-

matic bolt-on approach, inspired by prior work in causal

consistency [14], where a service developer integrates An-

tipode as an application-level library and datastore shim.

We demonstrate the practical benefits of Antipode through

experiments using eight popular cloud and open-source data-

stores (MySQL, Dynamo, Redis, S3, SNS, AMQ, MongoDB,

and RabbitMQ), an end-to-end evaluation on the DeathStar-

Bench [36] and TrainTicket [66] microservices benchmarks,

and a public-cloud microbenchmark. Our experimental eval-

uation pinpoints the existence of cross-service inconsisten-

cies in these systems, and shows that Antipode is able to

effectively prevent them with minimal performance impact.

In summary, the contributions of this paper are as follows:

● We exemplify empirically how cross-service consis-

tency violations arise both in open-source benchmark

applications and using public cloud datastores.

● We propose cross-service causal consistency (XCY), an

extension of Lamport’s causal consistency to systems

where requests span multiple processes and interact

with multiple datastores.

● We present Antipode, a system designed to enforce

cross-service causal consistency. The design of An-

tipode brings together the four main concepts men-

tioned above, to produce a solution that is (1) scalable,

(2) performant, and (3) easy to deploy through an incre-

mental integration with existing microservice systems

and datastores (in merely tens of LoC).

● We demonstrate experimentally that Antipode can ef-

fectively enforce cross-service causal consistency with

minimal impact on end-to-end performance.

The remainder of this paper is structured as follows: in

§2, we motivate how the increasingly complex architecture

of modern applications renders them vulnerable to cross-

service inconsistencies. §3 delves into the challenges associ-

ated with enforcing cross-service consistency and presents

the insights offered by Antipode to tackle them. In §4, we

define XCY and introduce the notion of lineages, and in §5

we detail how Antipode effectively tracks and enforces these

concepts. The design and implementation details of Antipode

are discussed in §6, and in §7 we present an experimental

evaluation of Antipode using a combination of public cloud

datastores and microservice benchmarks. In §8 we compare

Antipode to existing approaches, and in §9 we conclude by

summarizing our findings.

2 Motivation
2.1 On the complexity of modern applications
At an intuitive level, the more complex an application’s ar-

chitecture and the patterns of interaction between its compo-

nents, the higher the chances of cross-service inconsistencies

occurring – in particular when a single request accesses mul-

tiple datastores and triggers numerous state externalizations.

This is particularly relevant for modern applications [2,

23, 24, 58, 65], as they prevailingly resort to architectural

patterns that prescribe a loose coupling of services, using

various different consistency models for datastores, and al-

lowing for independence between different services [34, 42].

Furthermore, the complexity of end-to-end request flows

and resulting graphs of interacting services can be daunting:

a single user request may span hundreds of sub-queries that

traverse multiple microservices [2, 36, 59]. We therefore ar-

gue that these architectural features are fertile ground for

cross-service inconsistencies.

Substantiating this claim through real-world examples is,

however, a challenging task. While there are many anecdotal

reports of inconsistencies in large-scale services, they rarely

have enough detail to diagnose whether their cause is due

to cross-service issues or not. (An exception is a report from

Facebook [2], which we elaborate on in the next section.)



Figure 1. (Left) CDF of the number of calls to services per request,

and (right) CDF of unique services called per request, on Alibaba’s

trace dataset. For ease of presentation, we cut off the long tail to

only show values within the 95
th

and 99
th

percentile, respectively.

Fortunately, Alibaba recently released a comprehensive

dataset [48], from which we can glean deeper insights re-

garding both deployment size, and, more interestingly, the

respective request patterns. In terms of the scale of the de-

ployment, we found that out of Alibaba’s more than 17k

microservices, more than 80% are stateful services, namely

databases, caches or message queues. The prevalence of state-

ful services in the requests’ large call graphs is also very high.

In fact, Fig. 1 shows that more than 20% of requests perform

20 or more calls to stateful services. Moreover, more than

half of the requests call 5 or more unique stateful services,

with 10% calling more than 20. Furthermore, Alibaba’s situ-

ation is by no means an exception: Uber has also disclosed

comparable findings regarding the intricacies of their call

graphs [65]. In particular, they report that a single request

can call up to 1400 unique endpoints, has an average of 112

RPC calls per request – and a maximum of 275k – and has

an average request depth of 8.5 and a maximum of 35.

Overall, all these findings confirm not only the sheer scale

of modern large-scale applications, but also how complex the

call graphs of a typical request have become. Furthermore,

the analysis shows that it is common for a single request to

externalize state through multiple stateful services, which

we argue can lead to cross-service inconsistencies.

Next, to motivate our work more concretely and precisely

characterize cross-service inconsistencies, we abstract away

from the complexity of Alibaba’s trace, and focus on a dis-

tilled, but realistic example that we use throughout the paper.

2.2 Example: Post-Notification application
The following motivating example, which closely follows

a description of a real problem in Facebook’s infrastruc-

ture [2], illustrates cross-service consistency violations, and

highlights how and why these occur in distributed applica-

tions. We consider a simplified version of a post-notification
application, depicted in Fig. 2. In this application, users can

upload posts and followers receive notifications, similarly

to applications such as social networks, online forums, and

e-commerce sites.

Internally, the application comprises four different ser-

vices, each responsible for a different task in the end-to-end

request flow, namely: a post-upload service that works as

a proxy for the clients; a post-storage service responsible

Figure 2. Request flow for publishing a post in the Post-Notification

example application.

for storing and processing the contents of posts; a notifier
service in charge of disseminating notification events; and a

follower-notify service that notifies followers of new posts.

Cross-service consistency violations can occur in this ap-

plication: followers in Region B can be notified of posts that

do not yet exist in that region. Concretely, we step through

the end-to-end request flow to illustrate how this can occur:

➀ A user in Region A invokes the top-level post-uploadAPI,
which internally makes an RPC to post-storage passing
the post data as argument.

➁ post-storagewrites the post data to its internal replicated
datastore, returning a post ID as the RPC response.

➂ post-upload makes an RPC to notifier passing the post
ID and user ID. notifier writes a notification event to its

internal replicated queue.

➃ Eventually, the notification arrives to Region B, where it

is dequeued by notifier and delivered to follower-notify.
➄ To deliver notifications, follower-notify first retrieves the

post data by calling post-storage and passing the post ID.
➅ post-storage reads the post data from its internal repli-

cated datastore and replies to follower-notify.
➆ follower-notify delivers the post and notification to fol-

lowers in that region.

The cross-service inconsistency is visible in step ➅ of

this request flow. The internal replicated datastore of post-
storage might not have replicated the post data to Region B

yet, and thus reading the post could yield an empty or stale

result. This inconsistency occurs because our example uses

two independent datastores in the end-to-end flow of appli-

cation logic: the posts datastore at ➁ and the notifications

queue at ➂. Individually, each of these datastores correctly

implements some consistency model. Yet together, we fail to

achieve our expected consistent behavior: post data should

be visible by the time the notification event is delivered.

2.3 Exploring cross-service inconsistencies
To further highlight the risk of cross-service inconsistencies

and their sensitivity to deployment aspects, we performed

an experiment to measure these inconsistencies in several

cloud datastores from Amazon Web Services (AWS). We

implemented the post-notification example application de-

scribed in §2.2 and deployed the services across two global

regions. We measure inconsistencies as previously described:



post-storage

MySQL DynamoDB Redis S3

no
ti
fie

r SNS 95% 95% 88% 100%

AMQ 8% 7% 13% 100%

DynamoDB 0% 0% 0% 13%

Table 1. Percentage of observed inconsistencies for several combina-

tions of off-the-shelf AWS services. Both post-storage and notifier
are geo-replicated between US and EU using the built-in mecha-

nisms for the respective service (experimental setup details in §7).

how often a notification is received before the corresponding

post can be read. We used multiple different cloud datastores,

namely MySQL (a RDBMS), DynamoDB (a NoSQL database),

S3 (an object store), and Redis (an in-memory cache) for

posting data; and SNS (a publish-subscribe system), AMQ (a

message broker), and DynamoDB for notification events.

Table 1 details the percentage of observed inconsistencies.

The results show that some combination of systems experi-

ence more inconsistencies than others. For example, using

S3 as post-storage, we observed numerous inconsistencies

across all notifier datastores, suggesting a slower internal

replication. In contrast, with DynamoDB as notifier, we ob-
served low rates of inconsistencies across all post-storage
datastores, suggesting a less optimized replication for the

notification’s specific type of payload – which enables the

post to replicate sooner than the notification. We study this

scenario in more depth in §7.

3 Challenges & Insights
To enforce cross-service consistency in the challenging set-

ting of large-scale deployments with several independent

microservices, the design of Antipode addresses the follow-

ing main challenges through the corresponding key insights.

3.1 Extending causal consistency
First, we need to understand at a conceptual level what is the

disconnect between the current view on causal consistency

and the architecture of modern distributed systems, and how

to address that mismatch. Recall that the original definition

of causality stems from the happened-before partial order
defined by Lamport [43], which states that two events are

(causally) related by this partial order if they are either con-

secutive events from the same process, or the sending and

corresponding receiving events for a given inter-process mes-

sage (plus the transitive closure of the previous two classes).

This definition assumed a simple model where a system was

a collection of processes and events were either executing a

single machine instruction (or subprogram) or sending and

receiving messages between processes.

This definition was later extended in the context of the

ISIS system to causal broadcast [16] and shortly after by

Ahamad et al. to causal memory [1]. In particular, the latter

definition makes the observation that, in a shared memory

system, communication occurs via reading and writing from

shared memory positions, and therefore the causality partial

order needs to be extended with awrites-into order, capturing
the reading of a value that was written by another process.

Insight #1. In this paper, we observe that the brave new

world of microservices and large scale distributed systems no

longer has a simple and logically centralized view of a shared

memory, through which processes read and write all the side

effects that need to be shared among them. Instead, we have

complex patterns of interactions between services that stem

from a single user request, as exemplified in our simple post-

notification example (but translated to a much larger scale,

as evidenced by the Alibaba trace [48]). To address this, we

strengthen Lamport’s notion of causality to have a broader

view of the meaning of “writing to a shared memory”, so that

it encompasses all the side effects that percolate throughout

different services – a novel concept named lineage.

3.2 Capturing cross-service dependencies
Addressing cross-service inconsistencies through a causal

approach also poses inherent scalability challenges, namely

due to the fact that the number of dependencies that are

amassed in our target scenarios can be prohibitively large.

The most common approach for tracking these depen-

dencies is to use vector clocks, where each entry contains

the most recent version observed for each process. More

recent solutions optimize this by coalescing vector clocks

into a single scalar [18, 27] (at the cost of requiring frequent

state dissemination). Regardless of the technique used to

track and enforce causal dependencies, the large dependen-

cies trees amassed (and the corresponding metadata size)

have been shown to lead to scalability and performance

bottlenecks [13, 17, 20, 21, 51]. We argue the effects will

be largely magnified in a cross-service setting. For exam-

ple, in an ecosystem as large as Alibaba’s [48], this would

require enforcing dependencies from possibly hundreds of

services (each of which will depend on the same order of

other services, and so on). At the protocol level, this implies a

proportional number of entries in a vector clock, or frequent

expensive cross-service synchronization calls.

On top of that, we argue that some of these dependencies

may not be worth enforcing. Going back to our running

example, if the post also triggered a write to a continuously

updated data analytics stream, it would not make sense to

wait for the entire set of analytics to be recomputed before

reading any data that was produced from it.

Insight #2. Our goal is to devise a system that empowers

the developer with tools for capturing and enforcing these

dependencies, in a way that is as automated as possible, while

also giving the developer some control over the subset of

these dependencies that need to be enforced. To automati-

cally detect the relevant dependencies, we track dependent

operations across services by communicating metadata, con-

veying this set of dependencies both within datastores and

alongside end-to-end requests. This metadata can easily be



extracted and conveyed through existing systems by leverag-

ing causal tracing frameworks [40, 50, 53, 56, 60, 63] already

commonly deployed. Furthermore, we provide developers

with an API to explicitly add and remove dependencies that

will be enforced at a later stage. We argue that this com-

bination leads to a smaller dependency graph, resulting in

improved performance at scale, at the cost of requiring some

intervention from developers, which our evaluation shows

to be simple in practice.

3.3 Enforcing cross-service consistency
Enforcing cross-service consistency is particularly challeng-

ing within these increasingly complex environments, espe-

cially since each service individually lacks both (a) the end-

to-end knowledge about previous datastore operations made

by other services, and also (b) the knowledge regarding the

protocol implementation and semantics of other datastores.

To illustrate this through our running example, notifier lacks
both (a) the knowledge of the initial write to post-storage,
and (b) the knowledge of the asynchronous replication that

was triggered in response to the write post operation.

As straw man solutions, we could ameliorate both classes

of problems by strengthening the guarantees of post-storage
tomake its replication synchronous, but this introduces unde-

sirable delays that are discouraged in practice [34, 47, 48]. We

could also try to incorporate more global knowledge about

end-to-end requests. For example, the notifier service could
manually check the post-storage service before delivering
the notification. Alternatively, all datastores could synchro-

nize their replication progress. Generically, this requires de-

velopers to enforce consistency at an application-wide scale

– which, although it is the status-quo in microservice-based

applications [34, 42], is precisely the burden we aim to mini-

mize. Overall, these approaches break the design philosophy

of microservice applications, which intentionally imposes

strict boundaries and loose coupling between services, to en-

able rapid and independent development [34, 42]. Recently,

Google introduced Service Weaver [38], a framework that

enables developers to build microservice-based application

using a programming model similar to writing a monolith

application. While this framework helps developers tame

the complexity of managing a microservice deployment, it

is not meant to address either data placement or possible

cross-service inconsistencies.

A related challenge is that existing approaches typically

enforce the visibility of causal dependencies at either read

or write operations [3, 5, 18, 26, 27, 44–46, 55], which, in a

scenario with cross-service dependencies, can inadvertently

add user-facing delays that degrade the user experience. For

instance, in the post-notification application, the applica-

tion delivers a notification to the end-user, which triggers

the fetching of the corresponding post from post-storage.
However, if this read is performed with a set of cross-service

dependencies, it may result in the end-user having to wait

for the replication process to complete before obtaining a

consistent view of both the notification and post objects.

Insight #3. In order to avoid the performance penalty of

checking and enforcing cross-service dependencies at every

single datastore operation, Antipode decouples the enforce-

ment into a separate barrier call. This offers a more flexible

approach by allowing the developer to selectively enforce

the visibility of cross-service dependencies through a spe-

cific API call with a generic interface and semantics, but

a service-specific implementation that is opaque to other

services. Additionally, it allows the developer to select the

best barrier placement in order to hide the delay from the

end-users, independently of datastore operations.

3.4 Incremental deployment
Many existing solutions for preventing cross-service incon-

sistencies require architectural and internal changes to ex-

isting applications (as detailed in §8). However, we believe

that the instrumentation for such prevention should not re-

quire a forklift upgrade of the entire set of applications: we

should aim for a minimal and self-contained set of changes

that allows each individual service to benefit from the new

consistency semantics.

Insight #4. Inspired by prior work [12], Antipode takes

a pragmatic bolt-on design, where its logic runs as a shim

layer around existing services. This approach does not re-

quire deep changes to the internals of services or datastores

(unlike FlightTracker [59]), making it a more flexible and

adaptable solution for gradually correcting cross-service in-

consistencies. In addition, Antipode is agnostic to the inter-

face or semantics of the services that comprise the system,

and provides an API that does not require end-to-end appli-

cation knowledge.

4 Cross-Service Causal Consistency (XCY)
In this section, we define XCY, which, unlike prior causality

definitions, captures data inconsistencies such as those ex-

emplified in §2 and allows for an efficient and scalable design

(§5) that can be readily applied to existing applications (§6).

4.1 Lineages
The concept of a lineage captures a tree of events (or ac-

tions) across different services, corresponding to the various

branches that are spawned as a consequence of a given client

request. For example, in the case of the post-notification ex-

ample (§2.2), there are two distinct lineages. The first has two

concurrent branches corresponding to the write post and no-

tification operations, including their respective replications.

A separate lineage starts when the follower-notify reads the

notification, followed by the post read at post-storage.
The concept of lineage has actually been used extensively

within the distributed tracing community [19, 33, 50, 54, 60],

but was never formalized nor incorporated into Lamport’s



causal consistency. (We provide a formal definition of the

system model and the concept of lineage in appendix.)

Although lineages are a simple concept, their instantiation

can be very complex. For instance, at Alibaba, user requests

typically form a tree, where more than 10% of stateless mi-

croservices fan out to at least five other services, and where

the average call depth is greater than four [48]. Addition-

ally, this tree contains, on average, more than five stateful

services (Fig. 1). This attests to how scattered application

state is in microservice-based applications, which makes it

more challenging to track and aggregate the dependencies

between states into lineages.

4.2 XCY definition
To define XCY, we begin by outlining the abstract model on

which it operates. We restrict our model to a system that en-

compasses two operations: write(k,v) and read(k). Gen-
eralizing to complex queries and updates would be straight-

forward. We denote lineages as ℒ and we define ℒ(𝑎) to be

the lineage ℒ such that operation 𝑎 ∈ ℒ. XCY also makes use

of the Lamport happened-before relationship [43], denoted

→, which relates operations that either succeed each other

in the same execution thread or the sending and receiving

the same message across processes.

We denote the cross-service causal order between oper-

ations as ↝, which extends the canonical happened-before
to our setting. Given two operations 𝑎 and 𝑏, if 𝑎 ↝ 𝑏, we

use the terms that 𝑏 depends on 𝑎 or 𝑎 is a dependency of 𝑏.

Three rules define this relationship:

1. Happened-before. If 𝑎 → 𝑏 then 𝑎 ↝ 𝑏

2. Reads-from-lineage. If 𝑎′ is a write operation and 𝑏

is a read operation that returns the value written by

𝑎′, then 𝑎 ↝ 𝑏,∀𝑎 ∈ ℒ(𝑎′)

3. Transitivity. For any operations 𝑎, 𝑏, and 𝑐 , if 𝑎 ↝ 𝑏

and 𝑏 ↝ 𝑐 , then 𝑎 ↝ 𝑐 .

Note that Lamport’s causality definition only uses rules 1

and 3, and therefore the additional dependencies stemming

from rule 2 create a stronger definition, as we elaborate next.

We can now define XCY consistency in a similar way

to causal memory [1], i.e., by taking the ↝ operator, and

imposing that each process sees the execution of operations

in an order that respects ↝, i.e.:

Definition. An execution 𝑥 is XCY consistent if, for each

process 𝑝𝑖 , there is a serialization of the all write and 𝑝𝑖 ’s

read events of 𝑥 that respects ↝.

Intuitively, what we capture is that, after an operation 𝑏

from one lineage reads the value written by an operation

𝑎 from another lineage, any further operations that depend
on 𝑏 must observe the effects of the entire ℒ(𝑎) (and not

just 𝑎 itself, as in classical definitions). In the context of our

post-notification example, given that writing the post and

the notification belong to the same lineage, then reading

the notification will not only establish a causal dependency

Figure 3. This example illustrates the difference between Lamport’s

→ and XCY’s ↝. While the red dependency is present in both

definitions, the green dependency stems from the concept of lineage

and is only present in↝.

to that operation, but also to the post itself. This causal

dependency will then be transitively carried to subsequent

operations, namely reading the post (which thus precludes a

post not found scenario).

HowXCY relates to Lamport’s causal consistency.Given
the commonalities between XCY and traditional causal con-

sistency definitions [1, 43], it is natural to ask whether one is

stronger than the other. The answer is that XCY is stronger

(i.e., more restrictive) than Lamport’s causality. This is be-

cause a read operation adds a causal dependency to the entire

lineage and not just the operation that wrote the value that

was read. In other words, read operations that observe the

result of a particular write operation require causally subse-

quent operations to observe the entire offshoot of execution

branches resulting from the external client request that orig-

inally generated the observed write.

Fig. 3 illustrates this distinction between the happens-

before relation as defined by Lamport [43] and extended

by Ahamad et al. [1], and XCY’s definition of ↝. This ex-

ample includes two requests: request 1 (𝑅1) highlighted in

orange and request 2 (𝑅2) in blue. 𝑅1 begins with an initial

action that triggers multiple subsequent events across vari-

ous services. Meanwhile, 𝑅2 originates from reading a value

previously written by 𝑅1 at Service A. Note that these two

events, write(y) and read(y), are considered to be causally
related according to traditional happens-before relation by

Lamport [43] and extended by Ahamad et al. [1]. Then, after

that relation was established, 𝑅2 percolated through the ap-

plication and one of its branches ended in Service B, where

it performs read(x). Furthermore, one of the branches 𝑅1
performed a write operation, write(x), also at Service B. At
this point, this raises the question of whether write(x) and

read(x) should be causally related. The answer in Lamport’s

happens-before relation is that these events are concurrent,

since they come from different branches of execution, mean-

ing that they can be ordered in any way. In contrast, XCY is

more restrictive than Lamport’s causality definition, because

as soon as there is a read of a value that was written by

another lineage – such as read(y) and write(y) – a new



relation is established between lineage 𝑅1 and the new event

from 𝑅2, which means that all events from 𝑅1 are ordered

before read(y) and the causally subsequent events from 𝑅2.

Therefore, within XCY, read(x) should wait for the effects

of write(x) to be visible.

Note, however, that for scalability and incremental deploy-

ment considerations, our implementation enables developers

to relax XCY by selectively choosing a relevant subset of op-

erations, as we will describe next.

5 Enforcing XCY
This section presents the main design choices of Antipode, a

system that enforces XCY in a scalable way.

5.1 Tracking dependencies in Antipode
Keeping track of dependencies within lineages entails a de-

sign choice that was articulated in a recent system [12],

namely between potential and explicit causality. Potential
causality refers to the traditional definition [43], where all

possible influences via (transitive) dependencies are implic-

itly established. Transparently tracking all dependencies

leads to large dependency graphs, which can degrade the

performance and scalability of the system [13, 17, 20, 51].

In turn, explicit causality [13, 41] requires applications to

explicitly identify and declare dependencies between write

operations. For example, applications can mark these depen-

dencies based on user interactions (e.g., replying to a post

establishes a dependency between the post and the reply).

This results in smaller dependency graphs (and hence bet-

ter performance at scale), at the cost of requiring developer

intervention and knowledge.

In Antipode, we aim to strike a balance between the two

approaches, namely by automating the dependency tracking

process to the fullest extent, while giving developers control

over relevant dependencies so that the dependency set is

reduced, leading to improved performance at scale.

Implicit dependency tracking. By leveraging context

propagation tools, such as the ones used for distributed trac-

ing [40, 50, 53, 56, 60, 63], we are able to automatically track

dependencies across the graph of traversed services that com-

municate via message passing. However, this is not sufficient

to track and propagate dependencies through replicated data-

stores (due to writing and then reading from the same key, in

possibly different replicas). To address this, we use a bolt-on
approach [14], where the interaction with the underlying

datastores is conducted indirectly via a shim layer, allowing

datastores to remain unchanged. This enables us to interpose

write operations and automatically capture dependencies

across replicas of traversed datastores. Both techniques al-

low us to collect dependencies gradually and automatically

over time, as requests percolate through the application.

Explicit dependency tracking. To allow developers to ex-

plicitly add or remove dependencies from the current lineage

context, Antipode provides a generic append and remove

API. This granular control over dependency management

enables developers to, in exceptional cases, capture depen-

dencies that were not automatically detected and remove

irrelevant dependencies for an optimized user experience.

In addition, Antipode further reduces the dependency

set by dropping the ongoing set when the execution ends

(or when stop is called). While this is Antipode’s default

behavior, developers can selectively override it by explicitly

calling the transfer procedure. This procedure transfers

the dependency set from one lineage to a subsequent one,

explicitly establishing the transitivity between them.

The rationale behind this design choice is simple: if a lin-

eage already has a high number of dependencies, blindly

transferring dependency sets between lineages might result

in an explosion of the dependency graph, a challenge even

traditional causal consistency approaches wrestle with [13].

This is especially relevant for objects that are constantly

read and written (known as linchpin objects [2]). By giving

developers the ability to control this behavior, we empower

them to make informed decisions to manage the dependency

graph effectively and optimize performance. While this API

increases the programming overhead and changes the origi-

nal semantics (namely the transitivity rule of the↝ operator)

we found this to be an acceptable trade-off that promotes

scalability, since, by default, long dependency chains across

lineages are truncated.

As a result of the previous design choice, developers are

required to use transfer to ensure a correct XCY order of

the application. To illustrate this scenario, we extend our

running example (Fig. 2) so that, before writing a new post,

user Alice blocks her follower Bob by writing to an access

control list, held in a geo-replicated storage. This results in

two lineages:ℒ𝑏𝑙𝑜𝑐𝑘 , the request from Alice to block user Bob

in the acl-storage, and ℒ𝑝𝑜𝑠𝑡 , the request from Alice to create

a post. In this case, after Alice blocks Bob, Bob should not

receive a notification for the subsequent post. However, this

would happen in case the acl-storage replication is slower

than the post-storage replication, allowing Bob to see the

notification and the post, resulting in an XCY consistency

violation. To correct this scenario with Antipode, the depen-

dency set of ℒ𝑏𝑙𝑜𝑐𝑘 (containing the write to the acl-storage)
is copied to ℒ𝑝𝑜𝑠𝑡 by having the developer explicitly call

transfer(ℒ𝑏𝑙𝑜𝑐𝑘,ℒ𝑝𝑜𝑠𝑡).
Overall, the combination of the implicit and explicit ap-

proaches (1) facilitates the tracking of dependencies within a

lineage, while also (2) preventing the system from amassing

huge sets of causal dependencies, and (3) allowing developers

to pinpoint which lineages are logically connected.

5.2 Enforcing dependencies in Antipode
While dependency tracking provides one dimension of XCY,

there is also the need to enforce the visibility of captured

dependencies before a new operation takes effect. Tradi-

tionally, dependency enforcement is done implicitly, i.e., the



underlying service is able to resolve a list of causal depen-

dencies without developer intervention. In a cross-service

setting, however, this approach has a significant drawback:

it requires the services to enforce the set of dependencies at

every read or write operation. This is undesirable in our con-

text since it requires frequent cross-service communication,

which introduces unacceptable delays.

For this reason, Antipode uses explicit dependency en-

forcement, allowing developers to select the places where

XCY dependencies must be enforced. To this end, developers

place barrier calls in selected locations of their applications.
This primitive takes the current lineage and enforces an

order of operations that is consistent with the definition

of XCY by unpacking the causally-dependent operations

that are currently being carried by the lineage. It then en-

forces the visibility of these operations at the corresponding

services by invoking the barrier operation, which has the

semantics of blocking until those dependent operations are

made visible (or superseded by more recent operations). This

approach has two advantages. First, it provides developers

with a fine-tuned balance between correctness (by enforcing

important dependencies) and performance (by bypassing

irrelevant ones). Second, it gives developers control over

the best location for that enforcement to happen, which is

crucial to avoid negatively affecting the user experience. We

elaborate on barrier placement in §6.3 and showcase its

tradeoffs in §7.4.

One argument that can be made against barrier is that it
is as explicit as today’s application-level solutions, since both

of them require the developer to manually select its locations.

What makes Antipode’s approach better suited is not only

barrier, but its combination with the implicit/explicit de-

pendency tracking, which keeps services loosely coupled and

does not require end-to-end knowledge of what to enforce.

For instance, in the previous ACL example, barrier enforces
dependencies that were automatically gathered from all data-

stores involved in the post lineage (acl-storage and post-
storage) in a way that does not require knowledge about

which systems were involved and how they are implemented.

As we mentioned, a downside of relying on developer in-

put for enforcing the visibility of dependent operations is that

not all consistency violations will be necessarily prevented,

and some undesired behaviors may be observed when devel-

opers do not place the required barrier calls. We envision

that Antipode can also be helpful in this context by addition-

ally working as a testing tool: instead of exhaustively trying

to prevent every possible variant of XCY violation, develop-

ers can (as part of their development cycle) use Antipode to

incrementally correct them.

6 Antipode
Antipode is an application-level library for enforcing XCY.

Table 2 outlines Antipode’s API operations, and Fig. 5 illus-

trates their interactions. Integrating Antipode entails three

Figure 4. Antipode prevents the identified XCY violation in the

Post-Notification example application (Fig. 2).

.

concerns for service developers. First, datastore invocations

(read and write) are replaced with proxy calls to Antipode’s
Shim API, in the same manner as prior work [14]. Second,

Antipode’s Lineage API piggybacks on the system’s con-

text propagation [49, 54], which requires instrumentation

if not already present in the system. In practice, context

propagation is widespread in microservice systems, as it is

a prerequisite for commonplace tools like distributed trac-

ing [40, 50, 53, 56, 60, 63]. (In our evaluation, for example,

context propagation already exists in the benchmark sys-

tems.) Third, to actually enforce causal dependencies, de-

velopers selectively add calls to Antipode’s barrier API to

block an execution until its causal dependencies are satisfied.

End-to-end flow. Internally, Antipode comprises several

components that together enforce XCY. Fig. 4 depicts the

end-to-end flow of the example from §2.2, annotated with

Antipode interactions; we refer to the numbers in the figure

in our description.

➀ The request begins at the post-upload service which

starts a new lineage. The lineage is passed with the RPC

to post-storage.
➁ The call to write on the post-storage database is proxied

via Antipode’s Shim API, and the lineage is included as

an argument. The write call returns an updated lineage

that reflects this new database operation.

➂ In its RPC response, post-storage includes the updated
lineage. Likewise, post-upload then passes the updated

lineage with the RPC to notifier.
➃ The call to write on the notifier queue is proxied via

Antipode’s Shim API, passing the lineage as an argument.

➄ When the notification has replicated and is read in Region

B, the read call also returns the lineage.

➅ The notifier includes the lineage in calling follower-notify.
Here, the follower-notify service calls barrier.

➆ Internally, the call to barrier at follower-notify will in-

spect the dependencies contained in the lineage, then

await replication to finish at the relevant datastores.

➇ barrierwill only return once replication has completed;

follower-notify can now safely read the post and deliver

the notification to followers.



Core API
barrier(ℒ) Enforces lineage’s dependencies

Shim API
ℒ′ ← write(𝑘 ,∐︀𝑣,ℒ̃︀) Writes key along with lineage

∐︀𝑣,ℒ̃︀← read(𝑘) Reads key and returns the lineage

wait(ℒ) Waits for all the lineage dependencies

Lineage API

ℒ← root() Initialize lineage in the running process

stop(ℒ) Closes lineage in the running process

append(ℒ,𝑑𝑒𝑝) Appends dependency to a lineage

remove(ℒ,𝑑𝑒𝑝) Removes dependency from a lineage

transfer(ℒ𝑎 ,ℒ𝑏 ) Transfers ℒ𝑏 dependencies into ℒ𝑎
𝑠 ← serialize(ℒ) Serializes the lineage

ℒ← deserialize(𝑠) Deserializes the lineage

Table 2. Antipode API reference. Shim layer method arguments

might change according to the underlying datastore.

6.1 Creating and updating lineages
We implement lineages as a set of write identifiers. A write

identifier uniquely identifies a write to a datastore (e.g., a

∐︀𝑑𝑎𝑡𝑎𝑠𝑡𝑜𝑟𝑒,𝑘𝑒𝑦, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛̃︀ [45]). Antipode relies on the under-

lying datastore to generate the unique write identifiers (e.g.,

at ➁ and ➃), by assuming a versioned key-object model

(we believe that this does not reduce generality, e.g., Flight-

Tracker [59]makes a similar assumption). Furthermore, many

of the existing datastores natively offer this model, such as

the rowversion of Azure SQL Database [11] or hlc in Cock-

roachDB [25], while others can be trivially extended to sup-

port it, such as AWS DynamoDB [6]. These identifiers are

later used by calls to barrier (e.g., at ➅), in order to check

if writes have been replicated.

Every Shim API write call takes a lineage as an argument

and returns an updated lineage. The returned lineage simply

extends the lineage given as input argument to include the

new write identifier.

6.2 Propagating lineages
Antipode propagates lineages in two dimensions: alongside

end-to-end requests as they traverse services via RPC calls

(e.g.,➂,➅); and with data values as they are replicated within

datastores (e.g., ➄, ➆).

Request propagation. To maintain and propagate lin-

eages with end-to-end requests, developers use Antipode’s

Lineage API. At each point in time when a request is ex-

ecuting in a thread, it will have a corresponding lineage;

typically, this is stored in a pre-existing (thread-local) re-

quest context [50]. The root API call initializes an empty

lineage; it is used only at the beginning of a request’s execu-

tion, before any reads or writes have occurred. Conversely,

the stop API call discards a lineage from the request context.

In practice, stop calls are rare because execution tends to

just end, discarding contexts (and lineages) in the process.

After a call to write, the returned lineage is written to the

request context. Services must include their lineages with all

Figure 5. Overview of the interactions between a service and the

Antipode APIs. write’ and read’ are the original operations on
the underlying datastore.

RPC requests and responses. The transfer API call estab-
lishes continuity between two lineages by combining their

dependency sets (as detailed in §5.1).

Datastore propagation. Antipode propagates lineages

alongside data values within datastores. For each call to the

Shim write API, Antipode serializes the lineage given as

an argument, and writes it alongside the data value in the

underlying datastore. For a subsequent call to the Shim read
API elsewhere, Antipode calls read’ (i.e., the read opera-

tion from the underlying datastore) and deserializes the data

value and its corresponding lineage. The caller of read can
then combine the returned lineage with their own current

lineage using the Lineage transfer API. Datastore propaga-
tion requires datastore-specific Shim Layer implementations.

However, as described below, this entailed no more than 50

LoC for each of the 8 datastores in our evaluation.

6.3 Enforcing consistency
Antipode’s barrier API call enforces the visibility of a lin-

eage. It takes a lineage as an argument and will block until all

writes contained in the lineage are visible in the underlying

datastores. Internally, a barrierwill inspect the write identi-
fiers in the lineage and contact the corresponding datastores.

For each datastore, barrier will call the datastore-specific
wait API, which will block until the write identifier is vis-
ible in that datastore. Note that wait is datastore-specific

because visibility depends on the design choices and con-

sistency model of the underlying datastore. Once wait has
returned for all identifiers in the lineage, barrierwill return.

For developers adopting Antipode, placing barrier calls

is the main new implementation decision. Developers are

free to decide where in the code barrier should be called.

Naïvely we could place a barrier call immediately preced-

ing any read call, and this would achieve XCY. While this

fully automated solution is attractive, by placing barrier
on the critical path of every read request we would add un-

acceptable delays and lead to user-visible slowdowns (as we

show in §7.4). For a better user experience, it may be more

sensible to call barrier earlier in a request’s execution –

Antipode gives developers the flexibility to make this choice.



To guide developers in choosing barrier locations, An-

tipode can work as a passive consistency checker by provid-

ing a dry-run mode which allows developers to simulate

the enforcement of barrier locations without actually en-

forcing them. This procedure returns developers insights

into lineages that were unable to be enforced during the first

attempt, which might hint at the presence of cross-service in-

consistencies. In our experience, we found that relationships

between different datastores can be empirically detected

by developers, namely from commonalities between their

data models and schemas. E.g., notifications objects in noti-
fier have a post-id referring to the corresponding post in

post-storage. These foreign key-like relationships provide a

practical way of identifying necessary barrier locations.
We also implemented other variants of barrier that ac-

cept a timeout, and an asynchronous barrier that triggers
a callback to application code once dependencies are visi-

ble. Furthermore, we implemented a practical optimization

strategy specifically tailored for geo-replicated datastores.

This involves implementing the wait procedure to enforce

dependencies only from replicas that are co-located with its

caller, thereby avoiding (whenever the underlying datastore

allows it) global enforcement.

6.4 Implementation
Antipode APIs. We have implemented Antipode’s Lineage

API and Core API in C++ (250 LoC), Java (175 LoC), and

Python (40 LoC). Antipode piggybacks lineage metadata

on OpenTelemetry baggage [53] and thus requires minimal

additional implementation for lineage propagation.

Shim layers. Antipode requires a new shim layer imple-

mentation for any supported datastore. The shim layer’s

purpose is to implement datastore-specific lineage propaga-

tion and wait logic. This often requires a one-time change by

the developer to the underlying data model schema, which

is still preferable to changing the complex internals of the

underlying datastores. Note that, in a bolt-on approach, con-

cerns such as replication, fault-tolerance, and availability are

delegated to the underlying datastore [14].

As we mentioned, Antipode is able to enforce XCY irre-

spective of the consistency level of the underlying systems,

as long as it is possible to implement wait with at least

monotonic reads [62] semantics. For example, even though

DynamoDB is originally eventually consistent – which could

lead to semantics that make it hard to ensure that an object

is visible – we were able to implement wait by simply lever-

aging the available strongly consistent reads [8]. We imple-

mented Antipode Shim layers for the following datastores:

MySQL, DynamoDB, Redis, S3, SNS, AMQ, MongoDB and

RabbitMQ. No shim layer implementation exceeded 50 LoC.

All code is open source and publicly available [10].

7 Evaluation
We evaluate Antipode in terms of its effectiveness and per-

formance by applying it to three benchmarks representa-

tive of real-world, microservice-based applications: a Post-

Notification microbenchmark, the DeathStarBench bench-

mark [36], and the Train Ticket benchmark [66]. Our analysis

is structured around two questions, which capture the main

costs and benefits of using Antipode:

● How prevalent are XCY violations, and does Antipode

effectively prevent them?

● What is the overhead of enforcing XCY dependencies?

7.1 Case studies
Post-Notification. As amicrobenchmark, we implemented

a serverless version of the post-notification example in §2.2,

using various public cloud geo-replicated storage solutions.

In our implementation, we have two cloud functions (Reader

and Writer), which access off-the-shelf services for the

post-storage and notifier logic. Each client request spawns a

Writer call, which writes a new post to post-storage, and
then creates a new notification in the notifier. A new Reader

is spawned when a new notifier replication event is received.

For this scenario, we consider that an XCY violation occurs

when reading a post outputs object not found. We solve

this violation by placing a barrier right after the Reader re-
ceives the notification replication event. For the off-the-shelf

datastores, we used our previously developed shim layers.

These changes resulted in modifying less than 20 LoC.

DeathStarBench. The DeathStarBench is a suite of mi-

croservice based common web applications. One such ap-

plication is a social network application where users can

perform standard actions like writing posts, following users

and reading their timelines. In comparison to the first bench-

mark, DeathStarBench has a scale that is closer to a real-

world application: it has more than 30 unique microservices,

with a mix of datastores, cache services, and pub-sub queues,

mainly implemented in C++. For our evaluation, we extended

the original services with geo-replication logic.

We focus on the interaction where a user publishes a new

post, which causes an asynchronous task to be placed on a

pub-sub queue. When that message is processed, the corre-

sponding post is fetched, and the timeline of each follower

is updated with the contents of the post. An XCY violation

occurs when the follower tries to read a post, and it out-

puts object not found1. Antipode solves this error with
a barrier call right after it dequeues the notification ob-

ject. We implemented lineage tracking by leveraging the

already existing context propagation tool (Jaeger). We devel-

oped the shim layers for the respective datastores (RabbitMQ

1
We found that DeathStarBench’s media service had a similar violation,

whereas hotel reservation has a very simple architecture with no cross-

datastore references, resulting in no XCY violations being found.



Figure 6. Percentage of inconsistencies found in Post-Notification

after an artificial delay was added before publishing the notification.

The notifier is always SNS.

and MongoDB). All changes considered, these modifications

comprised under 350 LoC.

TrainTicket. Developed as a testbed for replicating indus-

trial faults, the TrainTicket benchmark [66] is a microservice-

based application that provides typical ticket booking func-

tionalities, such as ticket reservation and payment. It is im-

plemented in Java and it consists of more than 40 services

including web servers, datastores and queues.

We focus on the XCY violation that occurs when a user

cancels a ticket. This operation is split into two tasks: (𝑎)

changing the status of the ticket to be cancelled, and (𝑏)

refunding the ticket price to the client. These events are per-

formed by different services, interacting with different data-

stores. A violation happens when the refund (𝑏) is delayed,

resulting in the customer not seeing the refunded amount

right away. This scenario was identified as a prevalent issue

in the fault-analysis survey performed by the benchmark au-

thors [66]: using asynchronous tasks within a request might

result in events being processed in a different order, which

might lead to incorrect application behavior. Unlike previ-

ous applications, no replication was needed to observe an

XCY violation. Antipode was added by placing a barrier be-
fore returning the cancellation output to the user. We detail

the consequences of this in §7.4. We implemented lineages

leveraging the already existing context propagation tool and

reused previously developed shim layers, thereby fixing the

violation in just 10 LoC.

7.2 Experimental setup
Post-Notification. We deployed the Post-Notification ap-

plication on the AWS Lambda platform. For the datastores,

we used several off-the-shelf products with built-in global

replication features. For MySQL, S3 and Redis, the post ob-

ject size is roughly 1MB. For DynamoDB, post objects are

400KB (which is the maximum allowed object size). Notifi-

cation objects, in turn, are a ∐︀notification-id,post-id̃︀
pair of about 120B. For each experiment, we submit 1000

post creations requests at the Frankfurt (EU) data center, and

notifications were read from a data center in Central US (US).

DeathStarBench. WedeployedDeathStarBench onGoogle

Cloud platform, through a Docker-based deployment. Each

Figure 7. Consistency window in Post-Notification for the original

post-storage, and with Antipode enabled. notifier is always SNS.

service was deployed on machines with 4 vCPUs and 16 GB

RAM, and data was replicated across East US (US) and either

Frankfurt (EU) or Singapore (SG). Clients ran on machines

with 2 vCPUs and 8 GB RAM, for 5 minutes in open-loop,

using a load varying between 50 and 150 requests per second.

TrainTicket. We deployed TrainTicket on Google Cloud

platform, through a Docker-based deployment. Each service

was deployed on machines with 8 vCPUs and 32 GB RAM.

Clients ran on machines with 2 vCPUs and 8 GB RAM, for 5

minutes in open-loop. For both benchmarks, we repeat each

experiment 15 times and report the average.

7.3 Does Antipode prevent XCY violations?
As a first experiment, we determined the prevalence of XCY

violations, and validated whether Antipode prevented them.

Post-Notification. Table 1 shows the percentage of incon-

sistencies found. The observed differences in their prevalence

is caused by different levels of delay by different services in

replicating data asynchronously.

To confirm this, we ran an experiment where we allow

more time for post replication by adding an artificial delay

before publishing the notification. Fig. 6 shows the results of

this experiment, where each line corresponds to a different

post-storage datastore type (the notifier datastore is always
SNS). The results show that, as the notification delay in-

creases, fewer inconsistencies are found. This is because, by

adding a delay before publishing the notification, we allow

the post to replicate sooner than the notification, and hence

reduce the possibility of an XCY violation.

Finally, we report that, regardless of the combination of

individual datastore consistency semantics, by applying An-

tipode, we saw that this inconsistency was always corrected.

DeathStarBench. On average, we observed 0.1% of viola-

tions for the US→EU replication pair, whereas for the US→SG

replication pair we observed 34%. We note that we found a

standard deviation of 42% for the US→SG scenario. A likely

explanation for the discrepancy is that this results from a

mix between the network conditions and MongoDB’s repli-

cation protocol (which is reported to suffer in the presence

of network latency [52]). When we applied Antipode, the

inconsistency was always corrected.



post-storage notifier

DynamoDB MySQL Redis S3 MongoDB SNS RabbitMQ

+42B

(0.01%)

+14kB

(1.5%)

+105B

(2%)

+320B

(0.03%)

+46B

(9%)

+32B

(4.8%)

+87B

(20%)

Table 3. Average object size increase from the original applications

to the Antipode enabled version.

TrainTicket. On average, 0.57% violations were found in

normal behavior – this relatively low value is expected for

an application that has no replication, and where all services

are in the same datacenter. When we applied Antipode, the

inconsistency was always corrected.

7.4 What is the overhead of enforcing XCY
dependencies?

Preventing XCY violations imposes a coordination penalty

on the application, which is materialized when Antipode

enforces the visibility for a set of dependencies in a barrier
call. In this set of experiments, we quantify the performance

overhead of Antipode in terms of latency and throughput.

In addition, we introduce a consistency window metric:

Consistency Window. This refers to the time window be-

tween one client issuing an initial write and another client

attempting to read the written data. We measure the consis-

tency window regardless of whether a consistent result is

returned – in baseline experiments, many attempted reads

result in XCY violations. However, when Antipode is used,

the consistency window represents the time-to-consistency,
since the barrier call prevents progress until a consistent
read is possible.

Post-Notification. In Fig. 7 we show the results of an

experiment that measures the consistency window for the

Post-Notification application, comparing its original version

with the one using Antipode. For this application, we con-

sider that the consistency window spans from the moment

the post is written at theWriter, until the Reader tries to

read it. In the original application, reads are allowed to pro-

ceed immediately, despite returning an inconsistent result.

With Antipode, the barrier call will block until a consistent
result is available. Consequently, the consistency window

of the applications increases proportionally to the datas-

tore’s replication delay. This delay is substantially different

across datastores, and thus the consistency window varies

based on how long barrier must block. For instance, AWS

states that S3 can spend up to 15 minutes to fully propagate

an object [9]. In contrast, MySQL uses a faster replication

scheme, and propagation happens within 1 second of the

initial write [7]. These observations are consistent with the

longer consistency windows in Fig. 7, but also with the mea-

sured inconsistencies in Fig. 6: e.g., with 50 seconds of ar-

tificial delay, S3 presents a 20% chance of observing XCY

violations. In this case, Antipode was able to fix violations by

Figure 8. (Left) Average throughput vs. Latency and (Right) Consis-

tency window (at peak 125 req/s) in the original DeathStarBench,

and with Antipode enabled. Results split between US→EU and

US→SG replication pairs.

waiting for a replication confirmation from S3, which took

≈18 seconds on average.

Overall, we conclude from this experiment that the over-

heads induced by the lineage propagation instrumentation

and shim layer mechanisms of Antipode are negligible and

that the increased duration of the consistency window stems

almost exclusively from replication delays of the underlying

systems and the consequent wait for consistency.

DeathStarBench. In Fig. 8 we compare DeathStarBench

with and without Antipode, under two replication pairs:

US→EU and US→SG. For this application, we consider that

the consistency window ranges from the post being written

to the datastore (MongoDB), until reading the notification

from the message queue (RabbitMQ) and fetching the corre-

sponding post to be added to the followers’ timeline.

The left side of Fig. 8 shows the throughput-latency re-

sults of the experiment from the point of view of the post

writers. Since we placed the barrier call right after the asyn-
chronous read from RabbitMQ of the notification object, the

impact of the barrier call is not felt by the writer. There-

fore, in this case, we only observe the effect of creating and

propagating lineages and using the shim layer. Regarding

lineage metadata size, we found that the maximum size was

below 200 bytes. This was also the maximum metadata size

across all experiments. As a follow-up, we use the Alibaba

dataset to assess how metadata size would fare in a realistic

deployment. Assuming the worst-case scenario where all

stateful operations are part of the dependency chain, we

found that for 99% of requests the maximum metadata size

is below 1 KB and, on average, just 200 bytes. In addition, we

assessed the impact and overhead of modifying the datastore

schema to accommodate Antipode’s metadata, as summa-

rized in Table 3. The results show that the increase in average

object size is under 200 bytes, which is in line with the re-

ported metadata size. The only notable exception is MySQL,



Figure 9. (Left) Average throughput vs. Latency and (Right) Con-

sistency window (at peak 360 req/s) with and without Antipode

enabled for TrainTicket. Latency is increased due to barrier place-
ment in the request’s critical path.

where the average object size increased by 14 KB, which we

attribute to more complex data structures surrounding the

new column and index created for lineage identifiers.

Overall, Antipode is able to fix all XCY violations with-

out incurring in a significant performance impact, as we

observe a maximum of 2% penalty on the DeathStarBench

throughput.

The placement of the barrier creates a wait for consis-

tency that postpones notification message delivery, increas-

ing the consistency window. The right side of Fig. 8 shows

that, at peak throughput, this increase accounted for a maxi-

mum of 2ms for US→EU, and 6ms for US→SG. The extension

of the consistency window is significantly smaller than in

the previous application due to the use of MongoDB, which

has a faster replication strategy.

This scenario highlights the advantages of explicit enforce-

ment, which allows developers to choose the best placement

for barrier, in order to minimize the negative effects for

the end user experience. In this instance, it resulted in just a

small delay in the time to deliver the notification.

TrainTicket. In contrast to the previous two applications,

where the XCY violation resulted from a race condition be-

tween the replication protocols of two different datastores,

in the TrainTicket application, the identified XCY violation

results from the “lack of sequence control in the asynchronous
invocations of multiple message delivery microservices” [66].
More concretely, the twomessages that lack coordination are

the cancel order message, and the refund money message. In

this scenario, the goal would be to have a consistent output

where both the order is cancelled and the refund is issued.

In order to fix this scenario, the barrier call must be

placed in the request’s critical path, thereby forcing the user

to actively wait for the conclusion of both actions. Fig. 9

showcases the impact of this enforcement on performance.

Compared with the original application, the Antipode cor-

rected version (without inconsistent outputs) exhibits just

over 15% overhead on throughput and 17% on latency.

This TrainTicket scenario highlights the trade-offs be-

tween performance and correctness that barrier allows to

developers. For instance, in the DeathStarBench scenario

we were able to hide the consistency window penalty on

the reader side – outside the writer request critical path –

whereas in TrainTicket that is not possible. Consequently,

due to the placement of the barrier in the critical path, the

consistency window delays the barrier imposes, are then

directly reflected in the throughput-latency analysis (around

4ms which corresponds to the same 17% increase). In this

instance, the developer has to decide whether to expose to

the user the increased latency caused by ensuring that no

inconsistent intermediate states will be observed.

8 Related Work
Existing noteworthy systems that address cross-service con-

sistency take one of the following approaches: they either

wrap requests in other abstractions, resort to centralized

coordination mechanisms, add transactions to the design, or

propose an overall revision of the system architecture.

Wrapping approaches. Developed at Facebook, the Flight-

Tracker [59] metadata server was designed to provide read-

your-writes (RYW) guarantees across a variety of datastores.

It identifies a user session through a ticket abstraction, to
which all of a user’s write operations are associated. Tickets

are created and updated through a metadata server, and are

passed between different services and datastores.

FlightTracker requires applications to correctly identify

a user session, which – as its authors acknowledge – is not

always easy. In contrast, request contexts in Antipode can be

started on-demand without the need for user sessions. Fur-

thermore, FlightTracker requires changes to the datastore

public and internal APIs. We argue that this is a heavy im-

plementation burden, whose cost is acceptable only to a few

large industry players. Antipode requires no such changes,

and is usable with off-the-shelf cloud-provider datastores.

Additionally, FlightTracker is an all-or-nothing approach

that does not allow for gradual corrections of violations,

unlike Antipode.

Coordination-based approaches. Traditionally, for mul-

tiple systems to interact, the use of a logically centralized

coordination mechanism like Zookeeper [39] was the nat-

ural design choice. However, strongly consistent coordina-

tion systems introduce a performance bottleneck and go

against microservice principles. In particular, the proponents

of this class of architectures encourage the community to

embrace eventual consistency due to its better performance

and higher scalability [34]. Antipode provides cross-service

consistency in a way that is decentralized, can be gradu-

ally adopted, and allows for more behaviors than strongly

consistent solutions.

Transaction-based approaches. Distributed transactions

can also be applied in this context, e.g., in the form of 2PC

protocols [15]. Just as coordination-based approaches, dis-

tributed transactions suffer from low performance [61]. Faced

with this problem, the community migrated towards an ap-

proach known as Sagas [37]. A saga is a continuous sequence

of local transactions. If any saga transaction fails, a costly



series of compensating transactions that undo the already ap-

plied effects must be run. Although sagas gained acceptance

within the community [22, 28], they fall short when com-

pensating mechanisms are not possible or hard to achieve.

Reversal is especially challenging when transactions trigger

third-party side effects [4]. Furthermore, Sagas often still

rely on an orchestrator-like entity that sequences the steps

of a saga.

Antipode’s approach is fundamentally different for several

reasons: (1) it is decentralized and therefore does not require

any orchestrator, (2) it can be gradually adopted, since it does

not require coordination between all entities in the same re-

quest; and (3) it does not require compensation mechanisms

since violations are prevented in the first place.

Full-rewrite approaches. There are also proposals that

opt for a complete redesign of the application, often ending

up merging different services – and their respective datas-

tores – into a single one. A good example of this approach is

Diamond [64], where a reactive application with two differ-

ent datastores (distributed storage and notification service),

was merged into a single service that provided both func-

tionalities. In fact, service re-design is a hot topic in the

microservice community [22, 35]. Aegean [4] proposes a re-

design of the replication layer of datastores that are based on

state machine replication [57], with the intention of ensur-

ing that dependent services always see a strongly consistent

view of ongoing operations. While this approach provides

strong consistency across services, it assumes that the in-

dividual replicated systems implement a serializable state

machine, unlike Antipode which supports different underly-

ing consistency models.

In our view, this represents an alternative approach to the

problem, where Antipode has the advantage of not needing

profound changes to existing code bases or protocols.

9 Conclusion
Microservices emerged as an architectural style that provides

loosely coupled and independently deployable services, lead-

ing to good scalability, performance, and maintainability.

And while they fulfilled this promise, data consistency was

sacrificed and developers were left with accepting eventual

consistency as the norm.

We presented Antipode, a library with a simple yet pow-

erful API, allowing developers to enforce XCY consistency

with: (1) no need to rewrite their entire applications, (2) no

global management of large-scale applications, and (3) grad-

ual and independent adoption according to the microservice

ethos. Our evaluation with eight open-source and cloud-

based datastores, and using two large microservice bench-

marks, shows that Antipode prevents inconsistencies with a

limited programming effort and low performance overhead.

Acknowledgements
This paper is dedicated to the memory of Daniel Porto. We

sincerely thank our shepherd, Mahesh Balakrishnan, as well

as the anonymous reviewers of not only SOSP but also OSDI

and EuroSys, for their tireless efforts and insightful feed-

back. We would also like to thank Nuno Preguiça and Carlos

Baquero for insights into earlier iterations of XCY and lin-

eages. We also wish to thank the INESC-ID DPSS and MPI-

SWS Systems groups for their support and feedback. This

research was supported by the Fundação para a Ciência e a

Tecnologia, under grants UIDB/50021/2020 and PTDC/CCI-

INF/6762/2020.

References
[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. 1995. Causal memory: definitions, implementation,

and programming. Distributed Computing 9, 1 (1995), 37–49. https:
//doi.org/10.1007/BF01784241 (§3.1, 4.2, 4.2, and A).

[2] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and

Kaushik Veeraraghavan. 2015. Challenges to Adopting Stronger Con-

sistency at Scale. In 15th Workshop on Hot Topics in Operating Systems
(HotOS’15). https://www.usenix.org/conference/hotos15/workshop-
program/presentation/ajoux (§1, 2.1, 2.2, and 5.1).

[3] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo,

Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno Preguica, and

Marc Shapiro. 2016. Cure: Strong Semantics Meets High Availability

and Low Latency. In 36th IEEE International Conference on Distributed
Computing Systems (ICDCS ’16). https://doi.org/10.1109/ICDCS.2016.
98 (§3.3).

[4] Remzi Can Aksoy and Manos Kapritsos. 2019. Aegean: replication

beyond the client-server model. In 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). https://doi.org/10.1145/3341301.3359663
(§1 and 8).

[5] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction.

In 8th ACM European Conference on Computer Systems (EuroSys ’13).
https://doi.org/10.1145/2465351.2465361 (§3.3).

[6] Amazon Web Services. 2020. Implementing version control using

Amazon DynamoDB. https://aws.amazon.com/blogs/database/
implementing-version-control-using-amazon-dynamodb/ (§6.1).

[7] Amazon Web Services. 2022. Amazon Aurora Global Database. https:
//aws.amazon.com/rds/aurora/global-database/ (§7.4).

[8] Amazon Web Services. 2022. Amazon DynamoDB. https:
//docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.ReadConsistency.html (§6.4).

[9] Amazon Web Services. 2022. Amazon S3. https://aws.amazon.com/
s3/features/replication/ (§7.4).

[10] Antipode. 2023. Artifacts. https://github.com/Antipode-SOSP23
(§6.4).

[11] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejan-

dro Hernandez Saenz, Jack Hu, Hanuma Kodavalla, Donald Koss-

mann, Sandeep Lingam, Umar Farooq Minhas, Naveen Prakash, Vi-

jendra Purohit, Hugh Qu, Chaitanya Sreenivas Ravella, Krystyna

Reisteter, Sheetal Shrotri, Dixin Tang, and Vikram Wakade. 2019.

Socrates: The new SQL server in the cloud. In ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’19). https:
//doi.org/10.1145/3299869.3314047 (§6.1).

[12] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.

Hellerstein, and Ion Stoica. 2014. Coordination avoidance in database

systems. VLDB Endowment 8, 3 (2014), 185–196. https://doi.org/10.
14778/2735508.2735509 (§3.4 and 5.1).

https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
https://doi.org/10.1109/ICDCS.2016.98
https://doi.org/10.1109/ICDCS.2016.98
https://doi.org/10.1145/3341301.3359663
https://doi.org/10.1145/2465351.2465361
https://aws.amazon.com/blogs/database/implementing-version-control-using-amazon-dynamodb/
https://aws.amazon.com/blogs/database/implementing-version-control-using-amazon-dynamodb/
https://aws.amazon.com/rds/aurora/global-database/
https://aws.amazon.com/rds/aurora/global-database/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://aws.amazon.com/s3/features/replication/
https://aws.amazon.com/s3/features/replication/
https://github.com/Antipode-SOSP23
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/2735508.2735509


[13] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. 2012. The potential dangers of causal consistency and an

explicit solution. In 3rd ACM Symposium on Cloud Computing (SoCC
’12). https://doi.org/10.1145/2391229.2391251 (§3.2 and 5.1).

[14] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.

Bolt-on Causal Consistency. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’13). https:
//doi.org/10.1145/2463676.2465279 (§1, 5.1, 6, and 6.4).

[15] Philip A Bernstein, Nathan Goodman, and Vassos Hadzilacos. 1987.

Concurrency Control and Recovery in Database Systems. Addison-

Wesley. https://dl.acm.org/doi/book/10.5555/17299 (§8).

[16] Kenneth P. Birman and Robbert van Renesse. 1994. Reliable Distributed
Computing with the ISIS Toolkit. IEEE Computer Society Press. https:
//doi.org/10.1109/M-PDT.1996.532142 (§3.1).

[17] Manuel Bravo, Nuno Diegues, Jingna Zeng, Paolo Romano, and Luís

Rodrigues. 2015. On the use of Clocks to Enforce Consistency in the

Cloud. IEEE Computer Society Technical Committee on Data Engineering
38, 1 (2015), 18–35. https://dblp.org/rec/journals/debu/BravoDZRR15.
html (§3.2 and 5.1).

[18] Manuel Bravo, Luis Rodrigues, and Peter Van Roy. 2017. Saturn: a

Distributed Metadata Service for Causal Consistency. In 11th European
Conference on Computer Systems (EuroSys ’17). https://doi.org/10.1145/
3064176.3064210 (§3.2 and 3.3).

[19] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. 2007. Who-

dunit: Transactional Profiling for Multi-tier Applications. ACM SIGOPS
Operating Systems Review 41, 3 (2007), 17–30. https://doi.org/10.1145/
1272998.1273001 (§4.1).

[20] Bernadette Charron-Bost. 1991. Concerning the size of logical clocks

in distributed systems. Inform. Process. Lett. 39, 1 (1991), 11–16. https:
//doi.org/10.1016/0020-0190(91)90055-M (§3.2 and 5.1).

[21] David R. Cheriton and Dale Skeen. 1993. Understanding the limitations

of causally and totally ordered communication. ACM SIGOPS Operating
Systems Review 27, 5 (1993), 44–57. https://doi.org/10.1145/173668.
168623 (§3.2).

[22] Chris Richardson. 2021. Microservices.io. https://microservices.io/
(§8).

[23] Jeremy Cloud. 2013. Decomposing Twitter: Adventures in Service-

Oriented Architecture. In QConNY’13. https://www.infoq.com/
presentations/twitter-soa/ (§1 and 2.1).

[24] Adrian Cockcroft. 2014. Migrating to Cloud Native with Microservices.

In GOTO Conference ’14. http://gotocon.com/dl/goto-berlin-2014/
slides/AdrianCockcroft_MigratingToCloudNativeWithMicroservices.
pdf (§1 and 2.1).

[25] Cockroach Labs. 2023. CockroachRB: Transaction Layer. https://www.
cockroachlabs.com/docs/stable/architecture/transaction-layer (§6.1).

[26] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.

2013. Orbe: Scalable Causal Consistency Using Dependency Matrices

and Physical Clocks. In 4th ACM Symposium on Cloud Computing
(SoCC ’13). https://doi.org/10.1145/2523616.2523628 (§3.3).

[27] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.

2014. GentleRain: Cheap and Scalable Causal Consistency with Physi-

cal Clocks Jiaqing. In 5th ACM Symposium on Cloud Computing (SoCC
’14). https://doi.org/10.1145/2670979.2670983 (§3.2 and 3.3).

[28] Eventuate. 2021. Eventuate. https://eventuate.io/ (§8).
[29] Facebook Help Community (Entry now inaccessible) Retrieved 2017-

06-03. 2017. Anyone know why I can click on a post and I get the page

not found? (§1).

[30] Facebook Help Community (Entry now inaccessible) Retrieved 2017-

06-03. 2017. Notification links with picture only brings to page not

found.

[31] Facebook Help Community (Entry now inaccessible) Retrieved 2017-

06-03. 2017. Why am I not receiving all of my notifications on posts

that I comment on?

[32] Facebook Help Community (Entry now inaccessible) Retrieved 2017-

06-03. 2017. Why when I get notifications but then not showing up

on my page? (§1).

[33] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and

Ion Stoica. 2007. X-trace: a pervasive network tracing framework. In

4th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI ’07). https://www.usenix.org/conference/nsdi-07/x-trace-
pervasive-network-tracing-framework (§4.1).

[34] Martin Fowler. 2015. Microservice Trade-Offs. https://martinfowler.
com/articles/microservice-trade-offs.html (§1, 2.1, 3.3, and 8).

[35] Jonas Fritzsch, Justus Bogner, StefanWagner, and Alfred Zimmermann.

2019. Microservices Migration in Industry: Intentions, Strategies, and

Challenges. In EEE International Conference on Software Maintenance
and Evolution (ICSME ’19). https://doi.org/10.1109/ICSME.2019.00081
(§8).

[36] Yu Gan, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He,

Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan

Wang, Leon Zaruvinsky, Yanqi Zhang, Mateo Espinosa, Rick Lin,

Zhongling Liu, Jake Padilla, Christina Delimitrou, Dailun Cheng,

Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin

Hu, and Brian Ritchken. 2019. An Open-Source Benchmark Suite for

Microservices and Their Hardware-Software Implications for Cloud &

Edge Systems. In 24th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’19).
https://doi.org/10.1145/3297858.3304013 (§1, 2.1, and 7).

[37] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. ACM SIGMOD
Record 16, 3 (1987), 249–259. https://doi.org/10.1145/38714.38742 (§8).

[38] Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker,

Parveen Patel, Ivan Posva, and Amin Vahdat. 2023. Towards Modern

Development of Cloud Applications. In 19th Workshop on Hot Topics
in Operating SystemsJune 2023 (HotOS ’23). https://doi.org/10.1145/
3593856.3595909 (§3.3).

[39] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Ben-

jamin Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-

scale Systems. In 2010 USENIX Annual Technical Conference (ATC
’10). https://www.usenix.org/conference/usenix-atc-10/zookeeper-
wait-free-coordination-internet-scale-systems (§8).

[40] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor

Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,

Brendan Viscomi, Vinod Vekataraman, Kaushik Veeraraghavan, and

Yee Jiun Song. 2017. Canopy: An End-to-End Performance Tracing

And Analysis System. In 26th ACM Symposium on Operating Systems
Principles (SOSP ’17). https://doi.org/10.1145/3132747.3132749 (§3.2,

5.1, and 6).

[41] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992.

Providing high availability using lazy replication. ACM Transactions
on Computer Systems 10, 4 (11 1992), 360–391. https://doi.org/10.1145/
138873.138877 (§5.1).

[42] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian

Liu, and Marcos Kalinowski. 2021. Data management in microservices.

VLDB Endowment 14, 13 (2021), 3328–3361. https://doi.org/10.14778/
3484224.3484232 (§1, 2.1, and 3.3).

[43] Leslie Lamport. 1978. Time, clocks, and the ordering of events in

a distributed system. Commun. ACM 21, 7 (1978), 558–565. https:
//doi.org/10.1145/359545.359563 (§3.1, 4.2, 4.2, 4.2, and 5.1).

[44] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno

Preguiça, and Rodrigo Rodrigues. 2012. Making Geo-Replicated Sys-

tems Fast as Possible, Consistent when Necessary. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’12). https://www.usenix.org/conference/osdi12/technical-sessions/
presentation/li (§3.3).

[45] Wyatt Lloyd,Michael J. Freedman,Michael Kaminsky, andDavid G. An-

dersen. 2011. Don’t settle for eventual: Scalable Causal Consistency for

Wide-Area Storage with COPS. In 23rd ACM Symposium on Operating

https://doi.org/10.1145/2391229.2391251
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://dl.acm.org/doi/book/10.5555/17299
https://doi.org/10.1109/M-PDT.1996.532142
https://doi.org/10.1109/M-PDT.1996.532142
https://dblp.org/rec/journals/debu/BravoDZRR15.html
https://dblp.org/rec/journals/debu/BravoDZRR15.html
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/3064176.3064210
https://doi.org/10.1145/1272998.1273001
https://doi.org/10.1145/1272998.1273001
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1016/0020-0190(91)90055-M
https://doi.org/10.1145/173668.168623
https://doi.org/10.1145/173668.168623
https://microservices.io/
https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
http://gotocon.com/dl/goto-berlin-2014/slides/AdrianCockcroft_MigratingToCloudNativeWithMicroservices.pdf
http://gotocon.com/dl/goto-berlin-2014/slides/AdrianCockcroft_MigratingToCloudNativeWithMicroservices.pdf
http://gotocon.com/dl/goto-berlin-2014/slides/AdrianCockcroft_MigratingToCloudNativeWithMicroservices.pdf
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://doi.org/10.1145/2523616.2523628
https://doi.org/10.1145/2670979.2670983
https://eventuate.io/
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/38714.38742
https://doi.org/10.1145/3593856.3595909
https://doi.org/10.1145/3593856.3595909
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://www.usenix.org/conference/usenix-atc-10/zookeeper-wait-free-coordination-internet-scale-systems
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/138873.138877
https://doi.org/10.1145/138873.138877
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.14778/3484224.3484232
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li


Systems Principles (SOSP ’11). https://doi.org/10.1145/2043556.2043593
(§6.1).

[46] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.

Andersen. 2013. Stronger Semantics for Low-Latency Geo-Replicated

Storage. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’13). https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/lloyd (§3.3).

[47] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt,

Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd.

2015. Existential consistency. In 25th ACM Symposium on Operating
Systems Principles (SOSP ’15). https://doi.org/10.1145/2815400.2815426
(§3.3).

[48] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping

Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing

microservice dependency and performance: Alibaba trace analysis. In

2021 ACM Symposium on Cloud Computing (SoCC ’21). https://doi.
org/10.1145/3472883.3487003 (§1, 2.1, 3.1, 3.2, 3.3, and 4.1).

[49] Jonathan Mace and Rodrigo Fonseca. 2018. Universal Context Prop-

agation for Distributed System Instrumentation. In 13th European
Conference on Computer Systems (EuroSys ’18). https://doi.org/10.
1145/3190508 (§6).

[50] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:

Dynamic causal monitoring for distributed systems. In 25th ACM
Symposium on Operating Systems Principles (SOSP ’15). https://doi.
org/10.1145/2815400.2815415 (§1, 3.2, 4.1, 5.1, 6, and 6.2).

[51] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi,

Nathan Bronson, and Wyatt Lloyd. 2017. I Can’t Believe It’s Not

Causal! Scalable Causal Consistency with No Slowdown Cascades. In

14th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI ’17). https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/mehdi (§3.2 and 5.1).

[52] MongoDB. 2021. Replication Lag Causes. https://docs.mongodb.com/
manual/tutorial/troubleshoot-replica-sets (§7.3).

[53] OpenTelemetry. 2021. OpenTelemetry. https://opentelemetry.io/
(§3.2, 5.1, 6, and 6.4).

[54] Austin Parker, Daniel Spoonhower, Jonathan Mace, Rebecca Isaacs,

and Ben Sigelman. 2020. Distributed Tracing in Practice: Instrumenting,
Analyzing, and Debugging Microservices. O’Reilly Media. https://www.
oreilly.com/library/view/distributed-tracing-in/9781492056621/ (§1,
4.1, and 6).

[55] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte,

Valter Balegas, Carlos Baquero, and Marc Shapiro. 2014. SwiftCloud:

Fault-Tolerant Geo-Replication Integrated all the Way to the Client

Machine. In 33rd International Symposium on Reliable Distributed Sys-
tems Workshops (SRDSW ’14). https://doi.org/10.1109/SRDSW.2014.33
(§3.3).

[56] Raja R. Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R.

Ganger. 2014. So, you want to trace your distributed system? Key design
insights from years of practical experience. Technical Report. Parallel
Data Laboratory - Carnegie Mellon University. https://www.pdl.cmu.
edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf (§3.2, 5.1, and 6).

[57] Fred B. Schneider. 1990. Implementing fault-tolerant services using

the state machine approach: a tutorial. Comput. Surveys 22, 4 (1990),
299–319. https://doi.org/10.1145/98163.98167 (§8 and A).

[58] Malte Schwarzkopf. 2015. Operating system support for warehouse-
scale computing. Ph. D. Dissertation. University of Cambridge. https:
//doi.org/10.17863/CAM.26443 (§1 and 2.1).

[59] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim

Carrig, John Hugg, and Nathan Bronson. 2020. FlightTracker: Consis-

tency across read-optimized online stores at Facebook. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’20). https://www.usenix.org/conference/osdi20/presentation/shi (§1,
2.1, 3.4, 6.1, and 8).

[60] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat

Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-

dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google. https://research.google/
pubs/pub36356/ (§3.2, 4.1, 5.1, and 6).

[61] Michael Stonebraker and Uǧur Çetintemel. 2005. "One Size Fits All": An

Idea Whose Time Has Come and Gone. In 21st International Conference
on Data Engineering (ICDE ’05). https://doi.org/10.1109/ICDE.2005.1
(§8).

[62] Doug Terry. 2013. Replicated data consistency explained through

baseball. Commun. ACM 56, 12 (2013), 82–89. https://doi.org/10.1145/
2500500 (§6.4).

[63] Cory G. Watson. 2013. Observability at Twitter. https://blog.twitter.
com/engineering/en_us/a/2013/observability-at-twitter.html (§3.2, 5.1,
and 6).

[64] Irene Zhang, Niel Lebeck, Ariadna Norberg, Pedro Fonseca, Bran-

don Holt, Raymond Cheng, Arvind Krishnamurthy, and Henry M

Levy. 2016. Diamond: Automating Data Management and Stor-

age for Wide-area, Reactive Applications. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
’16). https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/zhang-irene (§8).

[65] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek

Parwal, Timothy Sherwood, and Milind Chabbi. 2022. CRISP: Criti-

cal Path Analysis of Large-Scale Microservice Architectures. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). https://www.
usenix.org/conference/atc22/presentation/zhang-zhizhou (§1 and 2.1).

[66] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan

Ding. 2021. Fault Analysis and Debugging of Microservice Systems:

Industrial Survey, Benchmark System, and Empirical Study. IEEE
Transactions on Software Engineering 22, 4 (2021), 243–260. https:
//doi.org/10.1109/TSE.2018.2887384 (§1, 7, 7.1, and 7.4).

https://doi.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://doi.org/10.1145/2815400.2815426
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3190508
https://doi.org/10.1145/3190508
https://doi.org/10.1145/2815400.2815415
https://doi.org/10.1145/2815400.2815415
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/mehdi
https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets
https://docs.mongodb.com/manual/tutorial/troubleshoot-replica-sets
https://opentelemetry.io/
https://www.oreilly.com/library/view/distributed-tracing-in/9781492056621/
https://www.oreilly.com/library/view/distributed-tracing-in/9781492056621/
https://doi.org/10.1109/SRDSW.2014.33
https://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf
https://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf
https://doi.org/10.1145/98163.98167
https://doi.org/10.17863/CAM.26443
https://doi.org/10.17863/CAM.26443
https://www.usenix.org/conference/osdi20/presentation/shi
https://research.google/pubs/pub36356/
https://research.google/pubs/pub36356/
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1145/2500500
https://doi.org/10.1145/2500500
https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html
https://blog.twitter.com/engineering/en_us/a/2013/observability-at-twitter.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhang-irene
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384


A System Model
We model the system as a collection of 𝑁𝑝 processes that

collectively implement 𝑁𝑠 services.

Processes are modelled as state machines [57] that can

perform five types of actions: (a) perform a local compu-

tation, (b) send a message to another process, (c) receive

a message from another process, (d) invoke an operation

on a service, or (e) read the corresponding reply from a ser-

vice. We define an execution of a process to be a sequence

of states and actions: 𝑠0, 𝑎1, 𝑠1, 𝑎2, 𝑠2,⋯ obeying the state ma-

chine specification for that process.

Services, in turn, are available through a request/response

interface. Since we may not know how a given service is

implemented internally, we model a service as a black box.

However, an opaque service cannot be simply modeled as a

state machine, since its implementation may cause behav-

iors that differ from a linear sequence of transitions between

states. For example, in an eventually consistent storage ser-

vice, the invocation of a write operation does not imply that

subsequent operationswill see that state change. As such, ser-

vices support two operations with the following semantics:

(a) receiving an invoke action (𝑘𝑛), and (b) conveying the

corresponding reply action (𝑒𝑛) to the process, where the ex-

ecution of a service is a sequence of (paired but not necessar-

ily alternating) invocations and replies 𝑘0, 𝑘1, 𝑒0, 𝑘2, 𝑒1, 𝑒2, . . .,

with the specification that each reply reflects some subset
of the preceding invocations of the sequence. In the defini-

tion of XCY, we further specialize the existence of a storage

service with a read/write interface, which allows us to pro-

vide a definition that is better suited for the consistency of

replicated data, in the same way as in the original causal

memory definition [1].

B Lineages
We define a lineage as a partial order of dependent actions

that stem from an initial root action and end in one or more

stop actions. The root action corresponds to the initial

invocation of the application (e.g., a client request, or the

launching of a periodic job). A stop action marks the end of

the handling of an external invocation at each process. We

formally define a lineage as follows:

Definition. The lineage of a given root action 𝑟𝑖 , denoted

as ℒ𝑟𝑖 is a directed acyclic graph (DAG) defined as follows
2
:

1. The vertex 𝑟𝑖 is the single root of ℒ𝑟𝑖 .

2. 𝑎1 → 𝑎2 ∈ ℒ𝑟𝑖 , if 𝑎1 (a vertex of ℒ𝑟𝑖 and ≠ stop) pre-

cedes 𝑎2 in the execution of a process 𝑝 .

3. 𝑎1 → 𝑎2 ∈ ℒ𝑟𝑖 , if 𝑎1 (a vertex of ℒ𝑟𝑖 ) is a send from pro-

cess 𝑝1 and 𝑎2 is the corresponding receive at process

𝑝2, where both 𝑝1 and 𝑝2 belong to the same service 𝑆 .

2
To simplify our model, we assume that when a process receives a message,

it handles the corresponding request without interleaving it with the pro-

cessing of other messages until the stop action, allowing for a one to one

mapping between actions and lineages.

Figure 10. Depiction of our lineage definition.

4. 𝑘 → 𝑎𝑘 ∈ ℒ𝑟𝑖 if 𝑘 (a vertex of ℒ𝑟𝑖 ) is the invoke ac-

tion from service 𝑆 to service 𝑅, and 𝑎𝑘 is the action

corresponding to the service execution at 𝑅.

5. 𝑒 → 𝑎𝑒 ∈ ℒ𝑟𝑖 if 𝑒 (a vertex of ℒ𝑟𝑖 ) is the reply to a pre-

vious invoke on service 𝑅, and 𝑎𝑒 is the corresponding

action of the reply at the caller service 𝑆 .

Fig. 10 depicts an example of the previous definition: (1)

each lineage begins with a single root from an external client

request; (2) any successive local actions within the same

process (𝑝1 → 𝑝2), belong to the same lineage; (3) successive

actions between different processes of the same service (𝑝2 →

𝑞1), belong to the same lineage; (4) invoke related actions

(𝑞1 → 𝑟1), belong to the same lineage; and (5) reply related

actions (𝑟2 → 𝑞2), belong to the same lineage. Lineage ℒ1 is

delimited by stop actions at processes 𝑝 , 𝑞 and 𝑟 .


	Abstract
	1 Introduction
	2 Motivation
	2.1 On the complexity of modern applications
	2.2 Example: Post-Notification application
	2.3 Exploring cross-service inconsistencies

	3 Challenges & Insights
	3.1 Extending causal consistency
	3.2 Capturing cross-service dependencies
	3.3 Enforcing cross-service consistency
	3.4 Incremental deployment

	4 Cross-Service Causal Consistency (XCY)
	4.1 Lineages
	4.2 XCY definition

	5 Enforcing XCY
	5.1 Tracking dependencies in Antipode
	5.2 Enforcing dependencies in Antipode

	6 Antipode
	6.1 Creating and updating lineages
	6.2 Propagating lineages
	6.3 Enforcing consistency
	6.4 Implementation

	7 Evaluation
	7.1 Case studies
	7.2 Experimental setup
	7.3 Does Antipode prevent XCY violations?
	7.4 What is the overhead of enforcing XCY dependencies?

	8 Related Work
	9 Conclusion
	References
	A System Model
	B Lineages

