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Abstract
To deliver fast responses to users worldwide, major In-
ternet providers rely on geo-replication to serve requests
at data centers close to users. This deployment leads to
a fundamental tension between improving system per-
formance and reducing costly cross-site coordination for
maintaining service properties such as state convergence
and invariant preservation. Previous proposals for man-
aging this trade-off resorted to coarse-grained opera-
tions labeling or coordination strategies that were obliv-
ious to the frequency of operations. In this paper, we
present a novel fine-grained consistency definition, Par-
tial Order-Restrictions consistency (or short, PoR consis-
tency), generalizing the trade-off between performance
and the amount of coordination paid to restrict the or-
dering of certain operations. To offer efficient PoR con-
sistent replication, we implement Olisipo, a coordina-
tion service assigning different coordination policies to
various restrictions by taking into account the relative
frequency of the confined operations. Our experimental
results show that PoR consistency significantly outper-
forms a state-of-the-art solution (RedBlue consistency)
on a 3-data center RUBiS benchmark.

1 Introduction
To cope with the demand for fast response times [36]
from an increasingly large user base, many Internet ser-
vice providers such as Google [8], Microsoft [9], Face-
book [13] or Amazon [3] replicate data across multi-
ple geographically dispersed data centers [38, 21, 20, 2].
However, geo-replication also leads to an inherent ten-
sion between achieving high performance and ensur-
ing properties such as state convergence (i.e., all repli-
cas eventually reach the same final state) and invari-
ant preservation (i.e., the behavior of the system obeys
its specification, which can be defined as a set of
application-specific invariants to be preserved) [22, 40,
30, 17, 16].

Some proposals address this fundamental tension in
geo-replication by weakening strong consistency to dif-
ferent extents: some researchers suggest to completely
drop strong consistency and instead adopt some form
of weaker consistency such as eventual consistency [22,
41, 19] or causal consistency [32]; other approaches
allow multiple consistency levels to coexist in a sin-
gle system [30, 17, 12, 4]. As an example of the latter

group, our prior proposal on RedBlue consistency [30],
allows some operations to execute under strong consis-
tency (and therefore incur a high performance penalty)
while other operations can execute under weaker con-
sistency (namely causal consistency). The core of this
solution is a labeling methodology for guiding the pro-
grammer to assign consistency levels to operations. The
labeling process works as follows: operations that either
do not commute w.r.t. all others or potentially violate in-
variants must be strongly consistent, while the remaining
ones can be weakly consistent.

This binary classification methodology is effective for
many applications, but it can also lead to unnecessary co-
ordination in some cases. In particular, as we will later il-
lustrate, there are cases where it is important to synchro-
nize the execution of two specific operations, but those
operations do not need to be synchronized with any other
operation in the system (and this synchronization would
happen across all strongly consistent operations in the
previous scheme). Furthermore, while concepts such as
conflict relation in generic broadcast [34] and token by
Gotsman et al. [24] allow for a finer-grained coordination
of operations, these either lack a precise method for iden-
tifying a set of restrictions to ensure safety or an imple-
mentation that achieves efficient coordination by adapt-
ing to the observed workload.

To overcome these limitations, in this paper, we
propose a novel generic consistency definition, Partial
Order-Restrictions consistency (or short, PoR consis-
tency), which takes a set of restrictions as input and
forces these restrictions to be met in all partial orders.
This creates the opportunity for defining many consis-
tency guarantees within a single replication framework
by expressing consistency levels in terms of visibility re-
strictions on pairs of operations. Weakening or strength-
ening the consistency semantics is achieved by imposing
fewer or more restrictions.

Under PoR consistency, the key to making a geo-
replicated deployment of a given application perform
well is to identify a set of restrictions over pairs of
its operations so that state convergence and invariant
preservation are ensured if these restrictions are enforced
throughout all executions of the system. However, this
is challenging because missing required restrictions may
cause applications to diverge state or violate invariants,
while placing unnecessary restrictions will lead to a per-
formance penalty due to the additional coordination. To
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this end, we design principles guiding programmers to
identify the important restrictions while avoiding unnec-
essary ones.

Furthermore, from a protocol implementation per-
spective, given a set of restrictions over pairs of opera-
tions, there exist several coordination protocols that can
be used for enforcing a given restriction, such as Paxos,
distributed locking, or escrow techniques. However, de-
pending on the frequency over time with which the sys-
tem receives operations confined by a restriction, dif-
ferent coordination approaches lead to different perfor-
mance trade-offs. Therefore, to minimize the runtime co-
ordination overhead, we also propose an efficient coor-
dination service called Olisipo that helps replicated ser-
vices use the most efficient protocol by taking into ac-
count the system workload.

To demonstrate the power of PoR consistency, we ex-
tended RUBiS to incorporate a closing auction function-
ality, determined how to best run it under PoR consis-
tency, replicated it with Olisipo, and compared its perfor-
mance against a RedBlue consistent version. Our experi-
mental results show that PoR consistency requires fewer
restrictions and offers a significantly better performance
than RedBlue consistency.

2 Preliminaries

2.1 System model
We assume a geo-distributed system with state fully
replicated across k sites denoted by site0 . . .sitek�1,
where each site hosts a replica, and each replica runs as a
deterministic state machine. In the rest of the document,
the terms “site” and “replica” are interchangeable.

The system defines a set of operations U manipulating
a set of reachable states S . Each operation u is initially
submitted by a user at one site which we call u’s primary
site and denote site(u). An operation is defined math-
ematically as a function that receives the current state
of the system and returns another function correspond-
ing to its side effects. We refer to the former function
as the generator function, denoted by gu; this generator
function, when applied to a given state S 2S , returns a
shadow function or shadow operation, denoted hu(S).

Implementation-wise, the generator function will first
execute in a sandbox against the current state of the
replica at the primary site, without interference from
other concurrent operations. In this phase, the execution
only identifies what changes u would introduce to state S
that is observed by u and will not commit these changes.
At the end of executing gu, the identified side-effect or
shadow operation hu(S) will be sent and applied across
all replicas including the primary site.

A desirable property is that all replicas that have
applied the same set of shadow operations are in the

same state, i.e., the underlying system offers state con-
vergence. In addition, the system maintains a set of
application-specific invariants. For instance, an online
shopping service cannot sell more items than those avail-
able in stock. To capture this notion, we define the func-
tion valid(S) to be true if state S satisfies all these invari-
ants and false otherwise.

2.2 RedBlue consistency
Our prior proposal called RedBlue consistency [30] is
based on a division of shadow operations into blue op-
erations, whose order of execution can vary from site to
site, and red operations that must execute in the same rel-
ative order at all sites. For guiding developers in making
use of RedBlue consistency, this work identified that a
condition for ensuring state convergence is that a shadow
operation must be labeled red if it is not globally commu-
tative. For ensuring that invariants are maintained, a suf-
ficient condition was identified, stating that all shadow
operations that may violate an invariant when being ap-
plied against a different state from the one they were gen-
erated must be labeled red. For the remaining shadow
operations, which have passed the two condition checks,
we can safely label them blue.

3 Partial Order-Restrictions consistency
3.1 Motivating example
We illustrate the limitations of coarse-grained labeling
schemes like RedBlue consistency through an eBay-like
auction service in Fig.1, where an operation placeBid

(Fig.1(a)) creates a new bid for an item if the correspond-
ing auction is still open, and an operation closeAuction
(Fig.1(c)) closes an auction and declares a single winner.
In this example, the application-specific invariant is that
the winner must be associated with the highest bid across
all accepted bids. The other two subfigures (Fig.1(b) and
Fig.1(d)) depict the commutative shadow operations of
these two operations.

When applying RedBlue consistency to replicate such
an auction service, we note that the concurrent execu-
tion under weak consistency of a placeBid with a bid
higher than all accepted bids and a closeAuction can
lead to the violation of the application invariant. This
happens because the generation of closeAuction’ will
ignore the highest bid created by the concurrent shadow
placeBid’. Unfortunately, the only way to address this
issue in RedBlue consistency is to label both shadow op-
erations as strongly consistent, i.e., all shadow operations
of either type will be totally ordered w.r.t each other,
which will incur a high overhead in geo-distributed set-
tings. Intuitively, however, there is no need to order pairs
of placeBid’ shadow operations, since a bid coming
before or after another does not affect the winner selec-
tion. This highlights that a coarse-grained operation clas-
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boolean placeBid(int itemId, int clientId, int bid){
boolean result = false;
beginTxn();
if(open(itemId)){
createShadowOp(placeBid’, itemId, clientId, bid);
result = true;

}
commitTxn();
return result;
}

(a) Original placeBid operation.

placeBid’(int itemId, int clientId, int bid){
exec(INSERT INTO bidTable VALUES (bid, clientId, itemId));

}

(b) Shadow placeBid’ operation.

int closeAuction(int itemId){
int winner = -1;
beginTxn();
close(itemId);
winner = exec(SELECT userId FROM bidTable WHERE iId = itemId

ORDER BY bid DESC limit 1);
createShadowOp(closeAuction’, itemId, winner);
commitTxn();
return winner;
}

(c) Original closeAuction operation.

closeAuction’(int itemId, int winner){
close(itemId);
exec(INSERT INTO winnerTable VALUES (itemId, winner));
}

(d) Shadow closeAuction’ operation.

Figure 1: Pseudocode for the placeBid and closeAuction operations of an auction site

sification into two levels of consistency can be conser-
vative, and some services could benefit from additional
flexibility in terms of the level of coordination.

To overcome these limitations of RedBlue consis-
tency, we next propose Partial Order-Restrictions con-
sistency (or short, PoR consistency), a novel consistency
model that allows the developer to reason about various
fine-grained consistency requirements in a single system.
The key intuition behind our proposal is that this model
is generic and can be perceived as a set of restrictions
imposed over admissible partial orders across the opera-
tions of a replicated system.

3.2 Defining PoR consistency
The definition of PoR consistency includes three impor-
tant components: (1) a set of restrictions, which specify
the visibility relations between pairs of operations; (2)
a restricted partial order (or short, R-order), which es-
tablishes a (global) partial order of operations respecting
operation visibility relations; and (3) a set of site-specific
causal serializations, which correspond to total orders in
which the operations are locally applied. We define these
components formally as follows:

Definition 1 (Restriction). Given a set of operations U , a

restriction is a symmetric binary relation on U⇥U .

For any two operations u and v in U , if there exists a
restriction relation between them, we denote this relation
as r(u,v).

Definition 2 (Restricted partial order). Given a set of

operations U , and a set of restrictions R over U , a re-
stricted partial order (or short, R-order) is a partial or-

der O = (U,�) with the following constraint: 8u,v 2U,
r(u,v) 2 R =) u� v_ v� u.

We say that the restrictions in R are met in the corre-
sponding R-order if this order satisfies the above defini-
tion. This definition places constraints on a global view
of a replicated system; however, it fails to explain how

each individual replica at every site will behave accord-
ing to this global view. When user requests are accepted
by any site, that site executes their generator operations
and creates corresponding shadow operations which will
be replicated across all sites. In addition, every site not
only commits shadow operations created by itself, but
also applies remote ones shipped from all other sites
against its local state. We denote U as the set of shadow
operations produced across all sites, while for a site i, we
denote Vi as its generator operation set. The following
definition models the execution of each site as a growing
linear extension of the global R-order, which incorpo-
rates a notion of causality, due to the fact that the visibil-
ity dependencies that are established when shadow op-
erations are initially generated, are then preserved while
the corresponding shadow operations are replicated.

Definition 3 (Causal legal serialization). Given a site i,
an R-order O = (U,�) and the set of generator opera-

tions Vi received at site i, we say that Oi = (U [Vi,<i)
is an i-causal legal serialization (or short, a causal seri-
alization) of O if

• Oi is a total order;

• (U,<i) is a linear extension of O;

• For any hv(S) 2U generated by gv 2 Vi, (1) S is the

state obtained after applying the sequence of shadow

operations preceding gv in Oi; (2) For any hu(S0)2U ,

hu(S0)<i gv in Oi iff hu(S0)� hv(S) in O.

Definition 4 (Partial Order-Restrictions consistency). A

replicated system S spanning k sites with a set of restric-

tions R is Partial Order-Restrictions consistent (or short,

PoR consistent) if each site i applies shadow operations

according to an i-causal serialization of R-order O.

Fig.2 shows a restricted partial order and its causal le-
gal serializations executed at two sites, namely EU and
US, where we restrict pairs of shadow operations where
one corresponds to a and the other to b. When the US
site executes a generator of b, gb, it realizes that the
shadow operation it would generate may need to be re-
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(b) Causal legal serializations of O

Figure 2: Restricted partial order of shadow opera-
tions and its causal legal serializations for a sys-
tem spanning two sites. There exists a restriction
r(ha(S),hb(S)) for all valid S. Dotted arrows in Fig.2a
indicate dependencies between shadow operations.
Loops in Fig.2b represent generator operations.

stricted w.r.t a concurrent shadow operation initially trig-
gered at the EU site. As a result, gb at the US site must
wait until the respective concurrent shadow operation
ha(S0) gets propagated from Alice’s site to Bob’s site.
Then gb will read the state introduced by locally apply-
ing ha(S0) from Alice, and produce a shadow operation
hb(S02). Note that this production will establish a depen-
dency between ha(S0) and hb(S02) (as shown in Fig.2a),
thus enforcing that they cannot be applied in different
relative orders in all causal legal serializations (as shown
in Fig.2b). Unlike these two shadow operations, we do
not restrict any pair of shadow operations of a; as such,
the first operations issued by both Alice and Bob will be
concurrently executed without being aware of each other.
This example indicates the flexibility and performance
benefits of having PoR consistency, compared with Red-
Blue consistency, since under the latter model all shadow
operations of a and b would be serialized w.r.t each other.

4 Restriction inference
When replicating a service under PoR consistency, the
first step is to infer restrictions to ensure two important
system properties, namely state convergence and invari-

ant preservation. The major challenge we face is to iden-
tify a minimal set of restrictions for making the repli-
cated service converge and not violate invariants. With
regard to state convergence, we take a similar method-
ology adopted in prior research [37, 30, 29], which is to
check operation commutativity.

To preserve application-specific invariants, instead of
totally ordering all non-invariant safe shadow opera-
tions, i.e., those that potentially transition from a valid
state to an invalid one, we try to identify a minimal set
of shadow operations that lead to an invariant violation
when they are running concurrently in a coordination-
free manner. By minimal, we mean that removing any
operation from that set would no longer meet that goal.
Once this set is identified, adding a restriction between
any pair of its operations is sufficient to eliminate the
problematic executions.

4.1 State convergence
A PoR consistent replicated system is state convergent if
all its replicas reach the same final state when the sys-
tem becomes quiescent, i.e., for any pair of causal le-
gal serializations of any R-order, L1 and L2, we have
S0(L1) = S0(L2), where S0 is a valid initial state. We state
a necessary and sufficient condition to achieve this in the
following theorem.

Theorem 5. A PoR consistent system S with a set of

restrictions R is convergent, if and only if, for any pair

of its shadow operations u and v, r(u,v) 2 R if u and v
don’t commute.

1

Unlike RedBlue consistency, under which all opera-
tions that are not globally commutative must be totally
ordered, PoR consistency only requires that an operation
must be ordered w.r.t another one if they do not commute.

4.2 Invariant preservation
In RedBlue consistency, the methodology for identifying
restrictions imposed on RedBlue orders for maintaining
invariants is to check if a shadow operation is invariant
safe or not (meaning whether it can potentially violate
invariants when executed against a different state from
the one that it was generated from). If not, to avoid in-
variant violations, the generation and replication of all
non-invariant safe shadow operations must be coordi-
nated. However, we observed that for some non-invariant
safe shadow operations u, the corresponding violation
only happens when a particular subset of non-invariant
safe shadow operations (including u) are not partially or-
dered. Therefore, to eliminate all invariant violating exe-
cutions with a minimal amount of coordination, we need
to precisely define, for each violation, the minimal set of
non-invariant safe shadow operations that are involved.

1All proofs are in a separate technical report [7].
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We call this set an invariant-conflict operation

set, or short, I-conflict set. Preserving invariants
only requires adding a single restriction over any two
shadow operations from each I-conflict set so that
the concurrent violating executions will be eliminated
from all admissible partial orders. We formally define
I-conflict sets as follows.

Definition 6 (Invariant-conflict operation set). A set of

shadow operations G is an invariant-conflict operation set
(or I-conflict set) if the following conditions are met:

• 8u 2 G, u is non-invariant safe;

• |G|> 1;

• 8u2G, 8 sequence P consisting of all shadow opera-

tions in G except u, i.e., P = (G\{u},<), 9 a reach-

able and valid state S, s.t. S(P) is valid, and S(P+u)
is invalid.

In the above definition, the last point asserts that G
is minimal, i.e., removing one shadow operation from
it will no longer lead to invariant violations. We will
use the following example to illustrate the importance
of minimality. Imagine that we have an auction on an
item i being replicated across three sites such as US,
UK and DE, and having initially a 5 dollar bid from
Charlie. Suppose also that three shadow operations,
namely, placeBid0(i, Bob, 10), placeBid0(i, Alice, 15),
and closeAuction0(i) are accepted concurrently at the
three locations, respectively. After applying all of them
against the same initial state at every site, we end up
with an invalid state, where Charlie rather than Bob and
Alice won the auction. This invariant violating execu-
tion involves three concurrent shadow operations, but
one of the two bid placing shadow operations is not
necessary to be included in G, as even after exclud-
ing the request from either Bob or Alice, the violation
still remains. This is reflected in Definition 6, according
to which {placeBid0,closeAuction0} is an I-conflict

set, while {placeBid0, placeBid0,closeAuction0} is not.
Intuitively, avoiding invariant violations requires pre-
venting all operations from the I-conflict set from
running in a coordination-free manner. The minimality
property enforced in the I-conflict set definition al-
lows us to avoid adding unnecessary restrictions.

Based on the above definition, we formulate the invari-
ant preservation property into the following theorem.

Theorem 7. Given a PoR consistent system S with a

set of restrictions RS , for any execution of S that starts

from a valid state, no site is ever in an invalid state, if the

following conditions are met:

• for any of its I-conflict set G, there exists a re-

striction r(u,v) in RS , for at least one pair of shadow

operations u,v 2 G; and

• for any pair of shadow operations u and v, r(u,v) in

RS if u and v do not commute.

Algorithm 1 Find state convergence restrictions
1: function SCRDISCOVER(T ) . T : the set of shadow

operations of the target system
2: R {} . R: the restriction set
3: for i 0 to |T |�1 do
4: for j i to |T |�1 do
5: if Ti do not commute with Tj then
6: R R[{r(Ti,Tj)}
7: return R

Algorithm 2 Find invariant preserving restrictions
1: function IPRDISCOVER(T )
2: R {} . R: the restriction set
3: Q power set of T
4: for all Q0 2 Q do
5: if ICONFLICTCHECK(Q0) then
6: if |Q0|== 1 then
7: R R[{r(Q00,Q

0
0)}

8: else if 8u,v 2 Q0,r(u,v) 62 R then
9: R  R [ {r(u,v)}, for an arbitrary

choice of u,v 2 Q0

10: return R
11: function ICONFLICTCHECK(T )
12: if |T |== 1 then
13: if ¬(T0.post =) T0.wpre) then
14: return true

15: if |T |> 1 then
16: subset icon f lict false

17: for i 2 to |T |�1 do
18: for all R s.t. |R|== i and R⇢ T do
19: if ICONFLICTCHECK(R) then
20: subset icon f lict true

21: break
22: if !subset icon f lict then
23: for all t 2 T do
24: post ^x2T\{t}x.post
25: if ¬(post =) t.wpre) then
26: return true

27: return false

4.3 Identifying restrictions
The key to striking a sensible balance between perfor-
mance and consistency semantics is to identify a min-
imal set of restrictions that ensure both state conver-
gence and invariant preservation. With regard to the for-
mer property, inspired by Theorem 5, we design a dis-
covery method for finding restrictions to ensure state
convergence (Alg. 1). This method systematically per-
forms an operation commutativity analysis between pairs
of shadow operations: if two shadow operations do not
commute, then a restriction between them is added to the
returning restriction set (line 5-6).

To discover restrictions for preserving invariants, we
could exhaustively explore all I-conflict sets consist-
ing of concurrent shadow operations that trigger viola-
tions. However, it is very challenging to achieve this
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//each permission consists of a set of operations

Permission p;

//receive a set of operations that need to be monitored

Permission getPermission(TxnId tid, String opName);

//wait until the set of operations in p have been applied

void waitForBeingExecuted(TxnId tid, Permission p);

//clean up all required resources occupied

void cleanUp(TxnId tid);

Figure 3: Olisipo coordination policy interface

since there might exist a large number of violating exe-
cutions containing at least one I-conflict set. To make this
exploration more efficient, we first collapse many similar
executions of a replicated system into a single execution
class, and then perform a weakest precondition and post-
condition analysis over these classes [23].

In particular, for every shadow operation u, we denote
u.wpre as its weakest precondition, a condition on the
initial state ensuring that u always preserves invariants.
We also denote u.post as the postcondition that captures
the side effects of operations through a condition that
always holds after the operation is executed. In Alg. 2,
we flag a set of shadow operations T as I-conflicting
if either of the following two conditions is met: (a) T
contains a single operation t and t is self-conflicting,
i.e., t.wpre is invalidated by t.post (line 12-14); or (b)
|T | > 1, any subset of T is not I-conflicting (but can
be self-conflicting) and there exists an operation u from
T such that u.wpre can be invalidated by the compound
postcondition of all the operations in T \{u} (line 16-26).

Once these I-conflict sets are determined, then for
each such set T , we add a restriction between an arbitrary
pair of shadow operations from T if no pair of operations
from that set was previously restricted (line 8-9). Other-
wise, T will be skipped since the preexisting restriction
suffices to preserve invariants. In addition, for shadow
operations that are self-conflicting, we have to place a re-
striction between pairs of shadow operations of that type
(line 6-7).

5 Design and Implementation of Olisipo
Several coordination protocols can be used for enforcing
a given restriction, such as Paxos, distributed locking, or
escrow techniques. However, depending on the observed
runtime frequency of operations confined by a restric-
tion, different approaches lead to different performance.

In the previously mentioned auction example, main-
taining the invariant that winners always match high-
est successful bidders requires a restriction between any
pair of placeBid’ and closeAuction’ operations. A
simple scheme would be forcing instances of either op-
eration to pay the same coordination cost. However,
since placeBid’ is likely to be more prevalent than
closeAuction’, reducing the latency for placeBid’

and penalizing closeAuction’ is likely to lead to bet-

ter performance.
To address this, we propose a coordination service

called Olisipo offering a range of coordination policies,
each of which presents a trade-off between the cost of
each operation and the overall cost. This service allows
us to use runtime information about the relative fre-
quency of operations to select an efficient coordination
mechanism for a given restriction.

5.1 Coordination protocols
Olisipo supports two built-in protocols, namely
symmetric (Sym) and asymmetric (Asym), but can
be extended with customized coordination policies,
which need to be compatible with our interface (Fig. 3).
The difference between the two protocols is that, in
the case of Sym, given a restriction r(u,v) between two
operations u and v, the protocol requires both u and v
to coordinate with each other for establishing an order
between them, whereas the Asym protocol allows one of
them to proceed by default, while requiring the other to
obtain permission before proceeding.
Sym. This protocol requires to set up a logically central-
ized counter service, which maintains, for each restric-
tion r(u,v), two counters cu and cv. Each one represents
the total number of operations of the corresponding type
that have been accepted by the underlying system. Addi-
tionally, every replica at different data centers maintains
a local copy of these counters, representing the number
of operations of each type that have been executed by that
replica. Initially, all local copies, as well as the global
counters, have all values set to zero. Whenever an op-
eration is received by a replica, that replica contacts the
counter service to increase the corresponding centralized
counter and get a fresh copy of the counter maintained
for both types of operations. Upon receiving the reply
from the counter service, that replica compares the re-
ceived values with its local copy. If they are the same,
then the replica can execute the operation without wait-
ing. Otherwise, the local execution can only take place
when all missing operations have been locally replicated.
To make the counter service fault tolerant, we lever-
age a Paxos-like state machine replication library (BFT-
SMART [18]) to replicate counters across geo-locations.
Asym. Unlike the above centralized solution, the asym-
metric protocol implements distributed barrier in a de-
centralized manner. Assume, for instance, that u is the
barrier. In this case, whenever a replica r receives an op-
eration u it would have to enter the barrier, and contact
all other replicas to request participation. This requires
all replicas in the system to stop processing operations of
type v and enter the barrier. After receiving an acknowl-
edgment of the barrier entrance from all replicas, r can
execute the operation, and then notify all replicas that it
has left the barrier (while at the same time propagating
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Figure 4: Olisipo architecture

the effects of the operation u it has just executed). Such a
coordination strategy might incur a high overhead; how-
ever, this is beneficial when one of the two operations in
the restriction is rarely submitted to the system.

5.2 Implementation details
As depicted in Fig. 4, the Olisipo architecture consists
of a counter service replicated across data centers and
a local agent deployed in each data center. The counter
service is required only for the Sym protocol, whereas
the local agent enforces the coordination that is needed
by both protocols. To this end, every agent also stores
some meta data required for different protocols: for the
Sym protocol, it maintains a local copy of the replicated
counter service, which is used for learning if the local
counters lag behind the global counters, which means the
corresponding data centers have to wait until all miss-
ing operations have been locally incorporated. For the
Asym protocol, every agent maintains a list of active bar-
riers, which are used for locally deciding if relevant op-
erations blocked on such barriers can proceed. Note that
these protocols are not optimized for performance, but
nonetheless suffice to demonstrate the benefits of using
PoR consistency and enforcing it in a way that takes into
account frequency of different operation types.

We implemented Olisipo using Java (2.8k lines of
code), linked with BFT-SMART [39] for replicating the
centralized counter service and MySQL as the backend
storage. We integrated Olisipo with our prior prototypes
for Gemini [5] and SIEVE [6], so that Gemini serves as
the underlying causally consistent replication tier while
SIEVE is used to produce commutative shadow opera-
tions at runtime. The code of Olisipo is available at [11].
Workflow. User requests are directed to an application
server running at the local data center, which executes the
corresponding generator operation. The result is a com-
mutative shadow operation, which is then forwarded to
the local Olisipo agent for placing coordination if needed
before committing; if the coordination allows for that se-
rialization (which is determined according to the specific

protocol for enforcing it) then the shadow operation is
sent to Gemini for replicating it across all data centers;
otherwise the generator operation must be retried in a
new serial order.

6 Evaluation
In our experimental evaluation, we first try to understand
if the methodology for inferring restrictions presented
in Sec. 4 is effective when applied to real world appli-
cations, i.e., it finds a minimal set of restrictions. Fi-
nally, we try to assess the impact on latency and sys-
tem throughput introduced by three factors: adopting
PoR consistent replication, using different protocols, and
adding more restrictions.

6.1 Case study
Next, we report our experience on discovering restric-
tions in RUBiS. RUBiS is a fairly simple auction-like
benchmark. The original benchmark we used as a start-
ing point contained only 16 transactions and did not in-
clude an operation to declare the winner of an auction, so
we added a close auction functionality. In the future, we
intend to explore other benchmarks with more complex
OLTP or OLAP queries.
State convergence. Given that we deploy RUBiS with
SIEVE, all shadow operations generated at runtime com-
mute w.r.t. each other by construction, and there is no
need modify the application nor restrict any pair of
shadow operations for state convergence purposes. All
that is required in SIEVE is to specify the desired con-
flict resolving semantics by choosing from a set of built-
in solutions [29].
Invariant preservation. We manually perform the
procedure of identifying restrictions to make a geo-
replicated RUBiS deployment invariant preserving, as
previously presented in Section 4.3. (We leave the au-
tomation of this step as future work.) In particular, we
determined four invariants of RUBiS, namely (a) identi-
fiers assigned by the system are unique; (b) nicknames
chosen by users are unique; (c) item stock must be non-
negative; and (d) the auction winner must be associated
with the highest bid across all accepted bids. We con-
tinued by manually determining the weakest precondi-
tions and postconditions of all RUBiS shadow opera-
tions. Those conditions are summarized in Tab. 1 and
used by the I-conflict set analysis (Alg. 2). With re-
gard to the first invariant, since we take advantage of the
coordination-free unique identifier generation method
offered by SIEVE, no I-conflict sets were found
for violating it. In turn, for the remaining three invari-
ants, we identified the following I-conflict sets:
• {registerUser0,registerUser0}. Invariant (b) would be

violated if the two operations proposed the same
nickname and were submitted to different sites simul-
taneously;
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placeBid0

(itId,cId,bid)
wp 9u 2 item table. u.id = itId^u.status = open valid auction
post bidTable = bidTable[{< itId,cId,bid >} new bid placed

closeAuction0

(itId,wId)
wp 9w 2 bidTable. w.cId = wId^8v 2 bidTable\{w}. w.bid > v.bid highest accepted bid
post winnerTable = winnerTable[{< itId,wId >} winner declared

registerUser0

(uId,username)
wp 8u 2 user table. u.name <> username username not seen before
post user table = user table[{< uId,username >} new user added

storeBuyNow0

(itId,delta)
wp 9u 2 item table. u.id = itId^u.stock >= delta enough stock left
post u.stock�= delta delta applied

Table 1: Weakest preconditions and postconditions of selected shadow operations of RUBiS
RedBlue consistency PoR consistency
r(registerUser0,registerUser0) r(registerUser0,registerUser0)
r(storeBuyNow0,storeBuyNow0) r(storeBuyNow0,storeBuyNow0)
r(placeBid0, placeBid0) r(placeBid0,closeAuction0)
r(closeAuction0,closeAuction0)
r(placeBid0,closeAuction0)
r(registerUser0,storeBuyNow0)
r(registerUser0, placeBid0)
r(registerUser0,closeAuction0)
r(storeBuyNow0, placeBid0)
r(storeBuyNow0,closeAuction0)

Table 2: Restrictions required when replicating the ex-
tended RUBiS under RedBlue or PoR consistency

• {storeBuyNow0,storeBuyNow0}. Invariant (c) would
be violated if both operations simultaneously sub-
tracted some number of items from stock, and the sum
of the purchases exceeded the previous stock value;

• {placeBid0,closeAuction0}. Invariant (d) would be vi-
olated if both operations were submitted at the same
time to different sites, and placeBid0 carried a higher
bid than all accepted bids.
Each I-conflict set above covers a class of

violating executions of the respective invariant. To
eliminate the corresponding violations, we added three
restrictions, namely r(registerUser0, registerUser0),
r(storeBuyNow0, storeBuyNow0) and r(placeBid0,
closeAuction0). In Tab.2 we compare to the PoR con-
sistency solution with using RedBlue consistency. The
latter solution would require more restrictions, since
the definition states that all non-invariant safe shadow
operations must be strongly consistent, i.e., the four
shadow operations presented in the above list must be
restricted in a pairwise fashion.

We assign the Sym protocol to coordinate shadow
operations confined by all these restrictions except
r(placeBid0, closeAuction0). This is because placeBid0

is significantly more prevalent than closeAuction0 in RU-
BiS, e.g., in a bidding mix workload, the ratio of the
number of closeAuction0 to the number of placeBid0

is only 2.7%. Therefore, we assign the Asym proto-
col to coordinate this restriction and additionally make
closeAuction0 act as the barrier.

6.2 Experimental setup
We run experiments on Amazon EC2 [1] using
m4.2xlarge virtual machine instances located in three
sites: US Virginia (US-East), US California (US-West)
and EU Frankfurt (EU-FRA). Table 3 shows the average

US-East US-West EU-FRA

US-East 0.299 ms 71.200ms 88.742 ms
1052.0 Mbps 47.4 Mbps 29.6 Mbps

US-West 66.365 ms 0.238 ms 162.156 ms
47.4 Mbps 1050.7 Mbps 17.4 Mbps

EU-FRA 88.168 ms 162.163 ms 0.226 ms
36.2 Mbps 20.1 Mbps 1052.0 Mbps

Table 3: Average round trip latency and bandwidth be-
tween Amazon data centers

round trip latency and observed bandwidth between ev-
ery pair of sites. Each VM has 8 virtual cores and 32GB
of RAM. VMs run Debian 8 (Jessie) 64 bit, MySQL
5.5.18, Tomcat 6.0.35, and OpenJDK 8 software.

Configuration and workloads. Unless stated otherwise,
in all experiments, we deploy the BFT-SMART library
under the crash-fault-tolerance model (CFT) with 3 repli-
cas across three sites, and assign the replica at EU-FRA
to act as the leader of the consensus protocol. We repli-
cate RUBiS under PoR consistency across three sites us-
ing the previously mentioned combination of Olisipo,
SIEVE, and Gemini. As additional baselines, we run
an unreplicated strongly consistent RUBiS in the EU-
FRA site, and a 3 site RedBlue consistency deployment,
in which we replicate RUBiS via the PoR consistency
framework but with the set of restrictions required by
RedBlue consistency (shown in Tab.2). We refer to these
three setups as “Olisipo-PoR”, “Unreplicated-Strong”,
and “RedBlue”, respectively. For all experiments, emu-
lated clients are equally distributed across three sites and
connect to their closest data center according to physical
proximity.

We choose to run the bidding mix workload of RU-
BiS, where 15% of user interactions are updates. To al-
low the client emulator to issue the newly introduced
closeAuction requests, we have to slightly change the
transition table in the original RUBiS code by assign-
ing a positive probability value for this request. The new
transition table can be found here [10]. For all experi-
ments we vary the workload by increasing the number
of concurrent client threads in every client emulator, and
disable the thinking time option so that there is no
waiting time between two contiguous requests from the
same client thread. We populate the data set via the fol-
lowing parameters: the RUBiS database contains 33,000
items for sale, 1 million users, and 500,000 old items.
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Figure 5: Performance comparison between three system configurations

6.3 Results
6.3.1 Average user observed latency
The main advantage of adopting PoR consistent replica-
tion with Olisipo is to reduce user-perceived latency. To
assess this improvement, we start by analyzing the av-
erage latency for users at each data center. In this set of
experiments, each user issues a single request at a time
in a closed loop.

As shown in Fig.5(a), all users except those in EU-
FRA observe a lower latency in the Olisipo-PoR and Red-
Blue configurations, compared to the users from the same
locations in the Unreplicated-Strong configurations. This
improvement is because, under both PoR and RedBlue
consistency, most requests are handled locally within a
data center, whereas in the unreplicated setting, requests
from users at the two US data centers have to commu-
nicate with EU-FRA, which incurs an expensive inter-
datacenter communication. At a more detailed level, in
the Unreplicated-Strong experiment, the raw latency val-
ues perceived by users at both US-East and US-West are
higher than the round-trip time from the user to the server
site (EU-FRA) because processing each request involves
sending one or more images to the user.

Compared to RedBlue, Olisipo-PoR improves the av-
erage latency for users at the three sites by 38.5%, 37.5%
and 47.1%, respectively. We further observed that users
at EU-FRA in the replicated experiments experience a
higher latency than users from the same region access-
ing an unreplicated RUBiS. This is due to the additional
work required for incorporating remote shadow opera-
tions into the local causal serialization and placing coor-
dination when needed for serializing conflicting requests.
Note that although the user observed latency for Olisipo-
PoR at EU-FRA is almost twice as large as the latency
of the unreplicated setup, the absolute number (9 ms) is
reasonably low.

6.3.2 Peak throughput
We now focus on the improvement in scalability with the
client load achieved by PoR consistency. Fig.5(b) shows
the peak throughput achieved by the three configura-
tions, which is measured when the corresponding system
is saturated. The improvement of the Olisipo-PoR de-
ployment is 1.43X when compared to the Unreplicated-

Strong setup. This increase in throughput is because PoR
consistency offers fine-grained consistency so that only
a minority of requests need to pay the coordination cost,
while the remaining can be processed locally. Compared
to a RedBlue consistent RUBiS, the PoR consistent ver-
sion increases peak throughput by 21.5%, since PoR con-
sistency avoids the cost for coordinating several restric-
tions required by RedBlue consistency (shown in Tab.2).
6.3.3 Per request latency
Next, we evaluate the per request latency of RUBiS re-
quests. For this round of experiments, each site runs a
single user issuing a request at a time.
Latency of non-conflicting requests. Among all RUBiS
non-conflicting requests, we chose one representative re-
quest called storeComment, which places a comment
on a user profile, as the illustrating example. Fig.6(a)
shows that PoR consistent RUBiS makes users across the
three sites observe evenly low latency, and the speedup in
the user observed latency for the remote users located at
US-East and US-West is 84.9x and 106.8x, respectively,
compared to the unreplicated strongly consistent deploy-
ment. These performance gains happen because, under
PoR consistency, the storeComment request requires no
coordination and can be processed locally. In contrast, in
the unreplicated experiment, users at the two US sites
have to contact the server at EU-FRA and thus perceive
a higher latency. We also notice that users from EU-FRA
in both experiments have almost identical latency, which
is different from the results in Fig.5(a), since the cost
of generating and applying the shadow operations of the
storeComment request is modest.
Latency of conflicting requests. Next, we shift our at-
tention from non-conflicting requests to conflicting ones.
As introduced before, Olisipo uses two different proto-
cols (Sym and Asym) to coordinate conflicting requests.
We start by analyzing the latency of requests handled by
the Sym protocol. The illustrative example we selected is
storeBuyNow, which produces self-conflicting shadow
operations. As shown in Fig.6(b), the user observed la-
tency of the storeBuyNow request at all three sites is
significantly higher than the latency of storeComment
(shown in Fig.6(a)), which is a non-conflicting request.
This is because most of the lifecycle of these requests
was spent asking permission to the centralized counter
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Figure 6: Average latency bar graph of four requests for users at three sites. storeComment produces non-conflicting

shadow operations, while the ones of storeBuyNow conflict w.r.t themselves and are regulated by the Sym protocol.
placeBid and closeAuction produce two conflicting shadow operations regulated by the Asym protocol.

service, which consists of 3 replicas spanning three sites
and executing a Paxos-like consensus protocol. Addi-
tionally, user observed latency at EU-FRA is lower than
the remaining two sites, since the leader of the consensus
protocol is co-located with EU-FRA users.

We continue by analyzing the average latency of re-
quests that are coordinated by the Asym protocol. Un-
like the Sym protocol, any pair of operations confined
in a restriction will be treated differently by the Asym

protocol, since one acts as a distributed barrier and
the other proceeds if no active barriers are running. In
Sect. 6.1, we assigned the Asym protocol to regulate
the r(placeBid0,closeAuction0) restriction, while select-
ing the less frequent shadow operation closeAuction0

as a barrier. As shown in Fig.6(c), the average latency
measured for the placeBid request, which produces
placeBid0, is very similar to the results obtained for non-
conflicting requests shown in Fig.6(a). This is because
the ratio of closeAuction to placeBid is very low and
most of the time the placeBid request commits immedi-
ately without waiting for joining or leaving barriers.

Next, we consider the barrier request closeAuction
handled by the Asym protocol. As expected, Fig.6(d)
shows that, compared to placeBid, the average latency
of closeAuction is noticeably higher due to the coordi-
nation across sites, through which this request forces all
sites not to process incoming placeBid requests and col-
lects results of all relevant completed placeBid requests.
We also notice that users issuing closeAuction observed
a latency that is slightly higher than the maximum RTT
between their primary site and the remaining sites. For

example, as shown in Tab.3, the maximum RTT for US-
East users to the other two sites is 88.7 ms, while the
average latency of closeAuction observed by the same
group of users is 96.1 ms.

6.3.4 Impact of different protocols
The purpose of offering different coordination proto-
cols is to improve runtime performance by taking into
account the workload characteristics. To validate this,
we first deploy an experiment denoted by Olisipo-
Correct-Usage, in which we take into account the
runtime information that closeAuction0 occurs sparsely
and assign the Asym protocol to regulate the restric-
tion r(placeBid0,closeAuction0). We then deploy another
experiment denoted by Olisipo-All-Syms, in which
the restriction r(placeBid0,closeAuction0) is handled by
the Sym protocol. Fig. 7 summarizes the comparison of
peak throughput and average latency among three exper-
iments, namely Unreplicated-Strong, Olisipo-All-
Syms and Olisipo-Correct-Usage. The Olisipo-
All-Syms setup improves the peak throughput of the
unreplicated RUBiS system by 105.7%, because of the
coordination-free execution of non-conflicting requests.
However, compared to Olisipo-Correct-Usage, the
performance of Olisipo-All-Syms degrades in two di-
mensions, namely a 15.3% decrease in peak throughput
and a 65.2%, 50.0%, 60.0%, 88.9% increase in request
latency for all, EU-FRA, US-East, US-West users, re-
spectively. The reason for this performance loss is as fol-
lows: every placeBid’ shadow operation in Olisipo-
All-Syms requires a communication step between its
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Figure 7: Peak throughput and overall average latency bar graphs of systems using different protocols.

primary site and the centralized counter service for be-
ing coordinated, while most of time placeBid’ shadow
operations in Olisipo-Correct-Usage work as non-
conflicting requests provided that closeAuction re-
quests sparsely arrive in the system.

7 Related work
In the past decades, many consistency proposals fo-
cused on reducing coordination among concurrent op-
erations to improve scalability in geo-replicated sys-
tems [25, 40, 30, 29, 14, 15, 42, 12, 4, 32]. However,
they only allow the programmer to choose from a lim-
ited number of consistency levels that they support, such
as strong, causal or eventual consistency. Unlike these
approaches, PoR consistency offers a fine-grained tun-
able trade-off between performance and consistency us-
ing the visibility restrictions between pairs of operations
to express consistency semantics. Some of these pro-
posals for consistency models with reduced coordina-
tion also analyzed or even enforced conditions for en-
suring state convergence despite the lack of coordina-
tion [14, 25, 40, 15, 32, 40]. In addition to state conver-
gence, our solution also analyzes invariant preservation.

In the space of consistency proposals that looked into
how to enforce application-specific invariants, Bailis et
al. [16] proposed I-confluence, which avoids coordi-
nation by determining if a set of transactions are I-
confluent, i.e., if the integrity constraints might be vio-
lated when they are executing without coordination. In-
digo [17] defines consistency as a set of invariants that
must hold at any time, and presents a set of mechanisms
to enforce these invariants efficiently on top of eventual
consistency. Similar to Indigo, warranties [31] map con-
sistency requirements to a set of assertions that must hold
in a given period of time, but it needs to periodically in-
validate assertions when updates arrive. Roy et al. addi-
tionally propose a program analysis against transaction
code for producing warranties [35]. In contrast, PoR con-
sistency takes an alternative approach by modeling con-
sistency as restrictions over operations.

A few proposals map consistency semantics to the
ordering constraints defined over pairs of operations.
Generic Broadcast defines conflict relations between

messages for fast message delivery, which are analogous
to visibility restrictions used in our solution [34]. How-
ever, they do not analyze how to determine the conditions
for ensuring invariant preservation. The recent work of
Gotsman et al. [24] encodes the concept of a conflict re-
lation into a proof system, which allows for analyzing
if consistency choices expressed as conflict relations is
sufficient for enforcing application invariants. In com-
parison, our work makes three contributions. First, our
methods allow to find a minimal set of restrictions to be
used. Second, we propose a set of coordination methods
that adapt to the workloads in order to be more efficient.
Third, we present the design and implementation of a
complete system that offers PoR consistency.

Some variants of Paxos [26] have explored operation
semantics to relax the need to process all operations
in the same sequential order. Generalized Paxos allows
replicas to execute commutative operations in different
orders [27]. EPaxos uses dependencies between pairs of
operations to order concurrent conflicting requests [33].
Our work differs from these Paxos variants in that we
develop an analysis to extract pairs of conflicting opera-
tions by considering the impact of concurrent executions
on achieving state convergence and invariant preserva-
tion. Furthermore, unlike these protocols, in our work,
operations that are not confined by conflicting relations
can be first accepted in a single replica and later asyn-
chronously replicated to other replicas.

Finally, our own previous workshop paper described
the motivation and a high-level overview of a solution to
this problem [28].

8 Conclusion
In this paper, we proposed a technique for achieving
convergence and invariant-preservation in geo-replicated
systems with a minimal amount of coordination. This
combines a new generic consistency model called PoR
consistency, an analysis for determining a minimal set of
restrictions, and a coordination service called Olisipo for
efficiently serializing pairs of operations. Our evaluation
of running RUBiS with different setups shows that the
joint work of PoR consistency and Olisipo significantly
improves the performance of geo-replicated systems.
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