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Abstract—Trusted Execution Environments (TEEs) ensure the
confidentiality and integrity of computations in hardware. Subject
to the TEE’s threat model, the hardware shields a computation
from most externally induced fault behavior except crashes. As
a result, a crash-fault tolerant (CFT) replication protocol should
be sufficient when replicating trusted code inside TEEs. However,
TEEs do not provide efficient and general means of ensuring the
freshness of external, persistent state. Therefore, CFT replication
is insufficient for TEE computations with external state, as this
state could be rolled back to an earlier version when a TEE
restarts. Furthermore, using BFT protocols in this setting is too
conservative, because these protocols are designed to tolerate
arbitrary behavior, not just rollback during a restart.

In this paper, we propose the restart-rollback (RR) fault
model for replicating TEEs, which precisely captures the possible
fault behaviors of TEEs with external state. Then, we show
that existing replication protocols can be easily adapted to this
fault model with few changes, while retaining their original
performance. We adapted two widely used crash fault tolerant
protocols — the ABD [6] read/write register protocol and the
Paxos [34] consensus protocol — to the RR model. Furthermore,
we leverage these protocols to build a replicated metadata service
called TEEMS, and then show that it can be used to add TEE-
grade confidentiality, integrity, and freshness to untrusted cloud
storage services. Our evaluation shows that our protocols perform
significantly better than their BFT counterparts (between 1.25
and 55× better throughput), while performing identically to the
CFT versions, which do not protect against rollback attacks.

I. INTRODUCTION

Replication is a standard technique in distributed systems,
which adds fault tolerance to a service implemented by an
individual networked node. To ensure that the replicated ser-
vice appears to clients like its single-node equivalent except
for higher availability, a replication protocol coordinates the
replicated nodes. For instance, a state machine replication
(SMR) protocol like Paxos [34] may be used for this purpose.

Networked services implemented inside a trusted execution
environment (TEE) like ARM TrustZone [4], AMD SEV-
SNP [2], [3], Intel SGX [23], or the future Intel TDX [31] and
ARM CCA [5] can similarly benefit from replication. Repli-
cated TEE-based systems aim to combine the confidentiality,
integrity, and remote attestation of TEEs with replication
to ensure high availability. Examples include permissioned

blockchains [37], monotonic counters for ensuring state fresh-
ness [42], in-memory key-value stores [8], as well as broadcast
and common random number generator primitives [32].

A key design decision in all replicated systems is the choice
of fault model underlying the replication protocol. This model
captures the set of faults that can affect an individual replica.
For instance, in the crash fault model, faulty nodes are assumed
to execute correctly until they crash at an arbitrary point in
their execution, when they cease to perform further steps until
they restart. Alternatively, in the Byzantine fault model, faulty
nodes may perform arbitrary actions. The choice of fault model
affects the complexity, overhead, and tolerance threshold of a
replication protocol, and is important for both performance
and security. In particular, a fault model that is too pessimistic
may lead to unnecessary safeguards, which can impact both
performance and the cost of replication. Conversely, a fault
model that is too optimistic may fail to account for all faults
that can occur, which then leads to broken assumptions and
loss of correctness or security of the replicated system.

In the case of TEE-based replication, the choice of existing
systems that store replica state persistently [37], [42] was to
employ Byzantine fault tolerant (BFT) replication. This may
seem necessary given that rollback of persistent state is a
behavior not covered by the crash fault model. However, the
Byzantine model is much stronger than necessary for this
setting. Intuitively, this is because it assumes arbitrary behavior
of faulty components, thus not taking into account the integrity
guarantees for the code running inside TEEs.

In this paper, we fill a gap in distributed replication research
by introducing the restart-rollback (RR) fault model, which
captures precisely the set of faults that TEEs can suffer
according to their specification. The main insight behind RR
is that, apart from crash faults, whenever a TEE restarts, the
fault model allows for a rollback of externally stored state to
an earlier version. Such rollback events are possible because
TEEs lack general and high-performance means of ensuring
the freshness of externally stored state. During an execution,
however, the integrity of the internal, volatile state of a TEE is
ensured by hardware, and the integrity of any externally stored
state can be ensured by standard cryptographic means.

The RR fault model occupies a middle ground between
crash fault tolerance (CFT) and BFT. As we will show, unlike
CFT it provides security for replicated TEEs by tolerating
state roll-back at a cost that is similar to CFT and better
than BFT. Specifically, it is able to substantially reduce the
required communication, particularly for read operations, in
the common case where restarts are infrequent.
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To demonstrate the potential of the RR model, we apply
it to two types of replication protocols, namely the Attiya,
Bar-Noy, Dolev (ABD) replication protocol for a read/write
register [6] and the Paxos state machine replication (SMR)
protocol [34], showing that this adaptation is relatively straight-
forward. We then use these protocols to devise a replicated
metadata service called TEEMS, which enables Cloud storage
with the same strong confidentiality and integrity guarantees
provided by TEEs, while also ensuring freshness of data.
TEEMS is used with one or more untrusted cloud storage
services. TEEMS maintains metadata for each data item (in-
cluding the encryption key, authentication code, latest version
number and policy), while ensuring strong security and en-
abling concurrent sharing of data.

We implemented both the read/write and SMR replication
protocols for three different fault models (RR, crash, and
Byzantine), and we also implemented TEEMS and used it to
implement a new class of secure cloud storage services. We
evaluated the protocols using microbenchmarks and the storage
system using both microbenchmarks and YCSB [21]. Our
experimental results show that the protocols for the RR model
perform significantly better than their BFT counterparts, and
compared to CFT, they perform identically while additionally
tolerating rollback attacks. Furthermore, TEEMS offers secure,
shareable storage at modest overhead.

Our contributions include: (1) The RR fault model, which
is the first to capture precisely the fault behavior of TEEs that
rely on external storage; (2) a derivation of quorum sizes for
replication protocols in the RR model; (3) principles for the
adaptation of CFT protocols to the RR model; (4) two proto-
cols adapted to RR, which implement read-write storage and
SMR, respectively; (5) the TEEMS generic metadata service
and its integration with untrusted cloud storage services to give
clients the ability to share and concurrently access persistent
data with strong confidentiality, integrity, and freshness; (6)
an experimental evaluation of our protocol and the storage
solutions based on TEEMS in different deployment scenarios.

The remainder of the paper is organized as follows. We
motivate our work and provide some background §II, describe
the RR model in §III, present the replication protocols in the
new model in §IV, and TEEMS as an example application
built using those protocols in §V. We describe our prototype
implementations in §VI, evaluate them experimentally in §VII,
survey related work in §VIII, and conclude in §IX.

II. MOTIVATION: TEE PROPERTIES

In this section, we review the properties of TEEs and
motivate the RR fault model. While the precise guarantees pro-
vided by a TEE vary with the TEE design, we can summarize
common guarantees across platforms.

a) Confidentiality. TEEs allow a computation to execute with
hardware-enforced confidentiality over the internal code and
data used by the computation. Data and instructions are
decrypted in hardware as they are fetched from memory inside
the CPU chip and modified data is re-encrypted before it leaves
the CPU chip. Only code executing inside the TEE has access
to cleartext data, therefore ensuring confidentiality even from
OS, hypervisor, and platform operators.

b) Integrity and attestation. When a TEE is started, the secure
platform computes a hash of the TEE’s initial code and data
and compares it to the expected measurement hash for the
instance. Only when this attestation succeeds is the TEE
provided with the key material it needs to authenticate itself to
third parties and to access and decrypt persistent data stored
externally on its behalf. A remote party can ascertain that it
is communicating with a TEE instance that has a particular
initial measurement hash and executes on a legitimate TEE
platform via remote attestation. Furthermore, to protect the
TEE’s integrity during execution, the hardware isolates the
TEE and detects modification of encrypted code and data while
stored in main memory. Implementations like Intel SGX even
protect code and data from certain physical attacks.

c) State continuity in the presence of external state. TEEs
may store encrypted state in external persistent storage across
activations through a process called sealing. As described
above, a correctly attested TEE receives a secret key unique to
its instance, which allows the TEE to store encrypted external
state with confidentiality and integrity guarantees. To ensure
the recency of its external state, however, a TEE must ensure
that the encrypted external state it is presented with after a
restart is the most recent version it had previously stored. More
generally, TEE computations may require state continuity,
which states that a TEE never executes an operation with a
stale state, or executes an operation with different inputs from
the same state [51].

TEE implementations lack general, high-performance sup-
port for ensuring freshness and state continuity of com-
putations with external state. Some TEE platforms provide
trusted, persistent monotonic counters associated with the CPU
platform. While these counters can ensure state continuity in
principle, they are not sufficient in practice [51]. In particular,
hardware intentionally slows the time to increment these coun-
ters to milliseconds in order to avoid wrap-around attacks [51],
[42]. As a result, such counters can at best support state
continuity for TEEs that exhibit infrequent, orderly shutdowns,
during which a TEE can update the counter and store its exter-
nal state with the latest counter value embedded [51]. Trusted
counters are inadequate for TEEs that frequently update their
external state (e.g., a database or key-value store) and can crash
at any time; ensuring state continuity for such TEEs requires
rapid counter updates. Moreover, trusted counters are tied to a
particular CPU/motherboard and do not support safe migration
of TEE computations.

Note that state continuity implies fork protection [11],
i.e., guaranteeing that no duplicate TEEs are instantiated with
access to the same stored state. We discuss fork protection and
how it can be achieved in replicated systems in Section VIII.

d) TEE threat model and guarantees.

The design of TEEs assumes a powerful adversary, who has
full control over the operating system and hypervisor that hosts
a TEE. The adversary can arbitrarily create and shutdown TEE
instances at any time, as well as delay, read, drop or modify
all messages sent to and received by the TEE. Moreover, an
adversary can tamper with or replace the external (encrypted)
state associated with a TEE instance.

TEE security is rooted in the hardware design and im-
plementation, as well as the vendor’s certificate chain used
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for remote attestation. As a result, the threat model of TEEs
excludes compromise of the vendor’s TEE platform design
and implementation, physical attacks on the CPU chip, or
compromise of the vendor’s certificate chain. Some TEE im-
plementations also exclude physical attacks using bus probes.
Side channels are outside the threat model of current TEEs.

e) Choosing a fault model for replicated TEEs

Subject to the TEE threat model, computations that do not
depend on external state enjoy confidentiality and integrity,
and can be considered to suffer only crash faults (as opposed
to Byzantine faults, where an adversary may induce arbitrary
behavior in a component). Therefore, a crash-tolerant replica-
tion protocol is sufficient to replicate TEE-encapsulated com-
putations that do not use external state. If a TEE computation
relies on external state, however, then it can additionally suffer
a rollback of the external state to an earlier version whenever
the TEE restarts. This behavior is beyond the crash fault model;
therefore the use of crash-tolerant replication protocols is not
safe. Currently, BFT protocols are typically used instead [37],
[42]. Using BFT is safe but needlessly expensive, because
these protocols are designed to tolerate arbitrary behavior, most
of which is masked by the properties of TEEs. In the next
section, we describe a novel fault model that captures precisely
the set of behaviors exhibited by TEEs with external state:
crash failures plus state rollback after a restart.

III.RR MODEL

In this section, we define the RR fault model, which serves
as a foundation for replicated TEE-based systems. Then, we
derive requirements for intersecting quorums in replication
protocols based on RR.

A. RR model definition

Nodes in the RR model are TEE instances with external
persistent state. Nodes can crash at any point in their execution
and restart at a later instant. Additionally, nodes can suffer a
rollback failure upon a restart, where their externally stored,
persistent state is valid but stale. After each restart, nodes flag
their state as suspicious when replying to requests, signaling
that they have restarted and thus may have been subject to a
rollback. The integrity properties of TEEs imply that a node
can reliably determine when it has executed its initialization
code and thus restarted. A node stops indicating the suspicious
flag once it has ascertained that its state is fresh, e.g., by
ensuring that a sufficiently large number of other nodes have
the same state (see Section IV). The integrity of TEEs implies
that, other than possibly holding stale persistent state after
restarting, nodes correctly execute the expected code. Figure 1
shows the state transitions a TEE-based node can go through
under the RR model.

B. Background: replicated systems

Replication protocols operate within a message-passing
system, in which clients and server replicas are connected by a
network through which any pair of nodes may communicate.
(In the context of this paper, the replicas each execute in a
separate TEE.) The replicas collectively implement a service
exporting a set of operations, which clients may invoke. For
instance, a storage system may export a simple interface with
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Fig. 1: States of a TEE node in the RR model. Compared to
the crash-fault model, there is an additional “Suspicious” state.

read and write operations, whereas a replicated database has
a richer interface supporting SQL operations. To collectively
implement a replicated service, replicas store their view of
the current state of the system, and client operations are
implemented by contacting a group of replicas to either query
or update that state. In general, replication protocols leverage
a “quorum RPC” communication pattern [40], [41], where a
machine (either a client or one of the replicas) sends a message
to a group of replicas and waits for a reply from a quorum.
In the fault tolerance literature, a quorum is a set of subsets
of the group of replicas, where these subsets have certain
intersection properties that are important for the correctness of
the replication protocol [25]. These properties depend on the
fault model: with crash faults it suffices that any two quorums
have a non-empty intersection — majorities are an example
of a quorum system with this property. Byzantine quorums,
on the other hand, require a larger intersection to account for
incorrect replies from malicious replicas [40].

C. Replication in the RR model

A key idea for replication in the RR model is to grow
quorums dynamically when replicas are suspicious of their
state. We quantify this suspicion by counting, in each instance
of the quorum RPC pattern, how many replicas indicated the
suspicious flag, and we refer to this count using a per-RPC
variable s. In addition to this (dynamic) value, we also define
a (static) maximum bound on the number of nodes that may
actually suffer a rollback attack within the replica group, MR.

Note that s and MR are different and unrelated in several
respects. First, s is measured by a node that gathers a set of
replies, and therefore its value is specific to each invocation
of an operation on a group of replicas, whereas MR is a
constant bound that is assumed to hold for a group of replicas
during the entire execution of the system. As a consequence,
s varies at runtime whereas MR needs to be set by an
administrator according to an expectation of the deployment
conditions. Second, s can vary from zero (common case, no
recent replica restart) up to N (simultaneous system shutdown
followed by a restart). In contrast, MR will be parameterized
according to the likelihood of a correlated rollback attack,
which in turn depends on the deployment and its independence
expectations. For example, one could deploy replicas across
different administrative domains, in which case (and assuming
that there is no collusion between administrators of different
domains), MR should be at least the maximum number of
replicas within a single domain. This encompasses the worst
non-colluding attack where a malicious administrator rolls
back all the replicas in the domain simultaneously.

Note that the parameter MR also subsumes a bound on
permanent crash faults (e.g., due to hardware failure), since
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permanent crashes and hardware replacement can be seen as
an instance of a rollback, where we replace a failed node
with a new one that starts from the initial state of the system
(or fetches a recent but possibly not the most recent state).
Furthermore, we define a liveness bound F , i.e. the system
is live provided that no more than F replicas are temporarily
unreachable at any given moment, due to network partitions,
power outages, or reboot.

Example parameterization. Consider a deployment with 4
data centers (DC), each managed by one of 3 providers: the
first and second DCs are operated by the same provider and
host 2 replicas each, while the third and fourth host 3 replicas
each and are under the control of separate providers. Since
any DC can independently crash, the F parameter should be
set to 3. Additionally, since each provider controls at most 4
replicas, MR should be 4.

D. Deriving RR quorums

The correctness of replication protocols hinges on the prop-
erty of quorum intersection: any pair of operations executed in
the system must execute in replica subsets (or quorums) that
intersect sufficiently for the system to return a result that obeys
the protocol specification. We now revisit this intersection
property for the design of protocols for the RR model. To
this end, we need to first specify the set of properties that this
intersection should achieve.

Property 1 (freshness). The safety property of replicated
systems normally includes the need for the most recently
written value to be seen by subsequent operations. In quorum-
based protocols, this property is enforced by ensuring that any
pair of quorums intersects in at least one replica that does
not deviate from its prescribed behavior. In the case of the
RR model, a correct replica is one that has received the most
recent write and has not been rolled back.

Property 2 (durability). Durability is guaranteed if any op-
eration that updates the state of the system survives any
combination of faults that is allowed by the RR model. In
our case, this means that even if MR replicas are rolled back,
there will be at least one replica with the up-to-date value.

Property 3 (operational liveness). Generally, a system is live
if all operations it supports eventually conclude. We consider a
more granular property of operational liveness, which separates
the liveness with respect to two classes of operations that are
normally defined in replicated systems: read-only (or simply
read) operations, which query but do not modify the replicated
state, and update (or write) operations that may operate on that
state to create a new system state or simply overwrite it.

Using these properties, we place constraints on the compo-
sition of the quorum systems. We differentiate read quorums,
of size RQ, which are sufficient to conduct read operations,
from write quorums, of size WQ, for write operations.

a) Freshness.

We start by observing that, for a given read operation
and within the entire replica set, the number of nodes that
could possibly have their state rolled back is min(s,MR).
This means that a read operation has access to a pool of
replicas where WQ − min(s,MR) are up-to-date and N −

WQ + min(s,MR) may be stale. Given that the most recent
write operation contacted WQ nodes, thus bringing them up-to-
date, we derive the following minimum size for a read quorum:

RQ > N −WQ + min(s,MR) (1)

In our derivation, we turn the inequalities into equalities by
adding a positive (or in some cases non-negative) ∆ parameter,
which captures by how much each variable is larger than
strictly necessary, in this case:

RQ = N −WQ + min(s,MR) + ∆R ∆R > 0 (2)

b) Durability.

Since MR replicas can be rolled back, surviving such a
rollback implies that a write quorum must include more than
MR replicas, i.e.,

WQ > MR

WQ = MR + ∆W ∆W > 0 (3)

c) Write liveness. We must also guarantee liveness for write
operations. This requires that a write quorum is available
despite F unreachable nodes, which is guaranteed provided
that:

N − F ≥WQ

N = WQ + F + ∆N ∆N ≥ 0 (4)

d) Final derivation. The formulae above allow us to arrive
at a precise formulation for the system and quorum sizes. In
particular, by combining 3 and 4, we obtain:

N = MR + F + ∆W + ∆N ∆W > 0,∆N ≥ 0 (5)

Then, by replacing WQ (3) and N (5) in Equation 1, we
obtain the following equation for read quorums.

RQ = F + min(s,MR) + ∆N + ∆R ∆R > 0,∆N ≥ 0
(6)

e) Read Liveness. We conduct the analysis of the liveness con-
ditions for read quorums separately, since these are dynamic
conditions due to their dependency on the current number of
possibly stale nodes, s. As such, we introduce another dynamic
value: f ′, the number of replicas that are unreachable at any
given point. This allows us to express the dynamic liveness
condition for reads as follows:

N − f ′ ≥ RQ ⇔ f ′ + min(s,MR) ≤MR + ∆W −∆R (7)

This equation allows us to reason about the liveness for
reads, depending on specific runtime conditions and on how
the static parameters are chosen. For instance, we could require
reads to be live in the worst possible case of f ′ = F and
s = MR, yielding ∆W ≥ ∆R + F .

However, this is a conservative assumption. An example of
a more realistic one would be to assume that we forfeit read
liveness in the event of a worst case level of unreachability
(f ′ = F ) and there is at least one rollback (MR ≥ 1). This
yields ∆W ≥ ∆R + F − r. We also choose to set ∆N =
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0,∆R = 1 to minimize replication costs, allowing us to derive
the value for ∆W from Equation 7:

∆W ≥ ∆R + F −MR (8)
∆W ≥ 1 + F −MR (9)

When also taking into account that ∆W > 0, and turning
the inequality into an equality to minimize replication costs,
this allows us to derive:

∆W = max(1, 1 + F −MR) (10)
∆W = 1 + max(F −MR, 0) (11)

This results in these possible deployment parameters:

N = max(MR, F ) + F + 1 (12)
WQ = max(MR, F ) + 1 (13)
RQ = F + min(s,MR) + 1 (14)

f) Atomic update operations. As we mentioned, more complex
systems such as replicated databases go beyond a simple
read/write interface and support rich operations that read the
most recent value of the system and update it with a new value
derived from the value that was read. To achieve this, their
protocols may need to gather both a read and write quorum
(i.e., max(RQ,WQ) replies). We dub these quorums super
quorums and use SQ to represent their size.

g) Quorum properties. This derivation of the various quorum
sizes leads to the following set of properties that RR quorum
systems obey (also illustrated in Figure 2):

I1. Any read quorum intersects with any write quorum in
at least one replica whose state was not rolled back;

I2. It is possible that some pairs of read quorums do not
intersect.

Using these properties, we can derive the following prop-
erty of super quorums:

I3. The intersection between a super quorum and a
quorum of any other type is non-empty and includes
a replica whose state has not been rolled back.

These properties, along with the fact that read quorums can
be smaller than write quorums in the normal case when there
are no restarts, play a role in the design and performance of
protocols in the RR model, as we will see next.

h) Reflections on the parameterization of the system. RR
quorums are more complex than regular quorum systems. They
include two parameters (MR and F ) instead of one, with an
additional runtime value (s). Moreover, the quorum system
is inherently asymmetric, leading to three different types of
quorums (read, write, and super quorums), as opposed to a
single one. This puts a burden on the system designer to use the
right type of quorums for different protocol steps, and also, at
deployment time, to consider how to choose MR (to represent
the anticipated maximum number of simultaneous rollback
attacks on the system), and F (to encode the availability
of the system, by estimating how many replicas can crash
without jeopardizing liveness). However, this complexity is
warranted because it naturally follows from the nature of the
faults (in particular, the fact that it is possible to determine

R'Q RQ

WQ

R'Q

RQ

WQ

(a) (b)

Fig. 2: Example of a RR quorum system (MR = 4, F = 2).
In (a), there were 3 restarts (shaded) and 2 rollbacks (crossed).
Thus, the read quorum receives suspicious replies and grows
larger, ensuring that both read quorums still intersect WQ in
at least one up-to-date replica (as required by I1). In (b), there
are no restarts (and, by extension, no suspicion of rolled back
state), and thus read quorums can be disjoint, as noted by I2.

precisely when a replica is or is not susceptible to a rollback
of its persistent state) and because it allows us to extract the
maximum performance from the system and avoid wasting
resources used in replication.

i) Comparison with existing asymmetric quorum schemes.

Previous proposals for asymmetric quorum schemes differ
significantly from RR quorum systems. The idea of asymmet-
ric quorums dates back to one of the initial proposals for
quorum systems by Gifford [25], where a replicated object
has a certain number of votes and in order to read the value,
r votes must be gathered, while w votes are required to write
the value. The equivalent to the intersection property I1 is
guaranteed by ensuring that r + w exceeds the total number
of votes of the object. This use of asymmetric quorums has
been motivated by various goals. In particular, asymmetric
quorums have been proposed in the context of asymmetric trust
assumptions [13], where each node makes its own assumptions
about which nodes might be Byzantine. Another type of use
of asymmetric quorums is to obtain better performance, by
making the commonly used quorums smaller than the ones that
are used less often [30], [49], [27] or reducing the asymptotic
complexity of quorums at the expense of more replicas [18].

Compared to these approaches, the asymmetry in RR
quorums is derived from the dynamic nature of the number
of possible rollbacks that are present in the system at any
given moment. This natural construction leads to interesting
properties of the system, namely allowing for performance to
improve in the normal case when there are no recent replica
restarts, by using smaller read quorums.

IV.REPLICATION PROTOCOLS

Designing and implementing new replication protocols,
as well as proving their correctness, is a non-trivial effort.
Consequently, rather than building protocols for the RR model
from scratch, we propose a set of principles for adapting
existing protocols to the RR model. In this section, we identify
principles for this adaptation and apply them to existing
protocols, showing that the adaptation is straightforward.
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A. Principles and challenges for protocol adaptation

When adapting existing protocols to the RR model, it is
convenient to start from a crash fault tolerant protocol. Due to
the integrity guarantees of TEEs, nodes observe mostly crash
fault behavior; the only additional fault behavior is that their
externally stored state may be stale after a restart.

Most replication protocols are quorum-based, where a
client or a replica needs to obtain responses from an appro-
priate quorum of replicas to perform an operation. Therefore,
an important aspect of adapting a crash fault tolerant protocol
consists of adopting the quorum sizes defined in Section III-D.

Each node must be augmented to maintain a suspicion flag.
When a node restarts, it sets the suspicion flag to true. At this
point, the node must run a recovery subprotocol (eagerly or
lazily), which is not required in the crash model. While the
details of the recovery subprotocol depend on the specifics of
the protocol being modified, the general method is as follows.
Upon restart, a replica queries a read quorum of replicas for a
digest of their state, retaining the replies that contain the most
recent state as determined, for instance, via timestamps. From
this read quorum of digests, it can determine the digest of the
current system state, check whether its own state is up-to-date,
and clear its suspicion flag if so. If not, then the specific parts
of the state that are stale need to be fetched from other replicas
to bring the recovering replica up-to-date. To efficiently find
which elements of the state are out of date, replicas may
maintain a Merkle tree, which allows for determining which
parts of the state need to be fetched without transmitting a
large amount of information. Note that this subprotocol can
run lazily and in the background, while the replica continues
to respond to requests. Doing so might allow for clearing the
suspicion flag in case of an update where the new state does
not depend on the previous version.

Finally, if the adapted replication protocol is to be con-
figured such that F < MR, read quorums may not intersect
(see quorum property I2 in Section III-D). Here, two disjoint
read quorums may in general have different system states — a
phenomenon usually described as split brain. This can happen
when an operation that changes the system state is still in
progress (or even halted, due to the crash of the initiator).
When adapting protocols, designers must take this into account
and implement mechanisms to ensure that a single value is
reported by all read quorums, if required.

Next, we will present two example protocols that follow
these principles and illustrate some of the above challenges.

B. Read-write register

In this section, we present an adapted version of the
ABD [6] protocol for a distributed read/write register with
linearizable semantics1 [29] under the RR model. ABD pro-
vides a simple read/write interface, which is useful for storage
systems or services that offer such an interface. Read/write reg-
ister protocols have the advantage of guaranteeing termination
even in asynchronous systems with faults, and having good
performance due to a simple message pattern that is linear in

1A concurrent object is linearizable iff there exists a serialization of all
operations which is equivalent to a sequential execution and the serialization
matches the real-time order of invocation/reply.

the number of replicas [12]. Figure 3 shows the pseudocode for
the read operation while the write logic is shown in Figure 4.
Since the code follows closely the original ABD protocol, our
explanation highlights where we adapted the protocol to the
new fault model.

a) Timestamp Structure. Each data item is associated with
a timestamp, which defines the linearization order of the
stored version. Timestamps have two numeric components:
〈seqno, client id〉, where client id is the unique, ordered id
of the client issuing the write. It can be used to break ties
when two clients write different values with the same sequence
number.

b) Write. This operation is similar to the ABD protocol, but
uses the RR quorum system. In the first round a read quorum is
gathered to discover the most recent sequence number (the one
associated with the highest timestamp). In the second round,
that sequence number is incremented by the client, appended
with the client id, and the resulting timestamp is sent with the
value to be written. Upon receiving this second round message,
replicas overwrite values only if the received timestamp is
greater than the one associated with the data they store.

c) Read. Following the ABD protocol, reads occur in one round
in the common case, with a second round being required if a
value needs to be written back. In particular, in the original
ABD protocol, the first round queries replicas for their data and
timestamp, waits for replies from a majority (which equates to
both a read and write quorum) and the return value corresponds
to the reply with the highest timestamp. However, when there is
no majority that holds that timestamp value, the second phase
is required, writing this timestamp and data to a majority.
(This is needed to conclude a write operation that executes
concurrently or was left unfinished.)

Translating the notion of a majority to read and write
quorums in the RR model presents a subtle challenge. Even
though intuitively the initial read round only requires a read
quorum (and in fact this is sufficient to determine the read
reply), the optimization of skipping the second round is only
applicable if there is unanimity for that timestamp in a write
quorum. This is because read quorums do not necessarily
intersect (property I2), which implies that contacting only
a read quorum would allow for a “split brain” situation,
where clients read different values depending on which quorum
they contact, thus breaking linearizability. The problem with
waiting for a larger quorum, however, is that in scenarios
where inter-node latency has a large variance (e.g., with geo-
replication), this introduces an additional latency that erodes
the performance advantage of the smaller quorums.

d) Stabilization. To address this issue, we introduce an extra
asynchronous phase, called the stabilization phase. This phase
takes place in the background after a value has been success-
fully written to a write quorum (either in a write operation or in
the writeback phase of a read operation), without blocking the
operation from returning to the client. A STABILIZE message is
sent to the replicas so that they will set a stable flag associated
with the recently written timestamp and value. Since this is
an optimization, there is no need for replicas to reply to
this message. Marking a value as stable means that the write
operation for this value has concluded (i.e., reached a write
quorum), which implies that all read quorums include at least
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Read at client c
itemsep=0pt,parsep=0pt

1) send READ-REPLICA to all replicas
2) wait until received either RQ replies, such that, for

the highest timestamp ht, ht.stable == TRUE or until
received WQ replies where the highest timestamp has
ht.stable == FALSE

3) if ht.stable == true then
return SUCCESS(ht, val(ht))

4) if ∃WQ of replies with ht then
send STABILIZE(ht) to all replicas;
return SUCCESS(ht, val(ht))

5) send WRITE-REPLICA(ht, val(ht)) to all replicas
6) wait until received WQ of SUCCESS replies
7) send STABILIZE(ht) to all replicas
8) return SUCCESS(ht, val(ht))

Fig. 3: Pseudo-code for the register read operation.

Write (value v) at client c
itemsep=0pt,parsep=0pt

1) send READ-REPLICA to all replicas
2) wait until received RQ replies
3) let ht be the largest timestamp in quorum
4) let new ts be 〈ht.seqno + 1, c,false〉
5) send WRITE-REPLICA(new ts, v) to all replicas
6) wait until received WQ SUCCESS replies
7) send STABILIZE(ht) to all replicas
8) return SUCCESS

Fig. 4: Pseudo-code for the register write operation.

one replica that will report either this or a newer value, given
that a write quorum intersects all read quorums (I1). Therefore,
in the first phase of the read operation, if the most recent value
in a read quorum is marked stable, even if it was present only
in a single replica, it can be immediately returned, since the
stable flag indicates that it has been written to a write quorum
and will therefore be seen by any subsequent read quorum,
thus obeying linearizable semantics.

e) Proof sketch. We prove the correctness of the resulting pro-
tocol in the appendix, and sketch here a correctness argument.
The proof of linearizability of a read/write object follows a
helper theorem [38], requiring, for any execution, the existence
of a total order that is both consistent with the results the
operations return and consistent with the real time order of
request invocations and replies. In our proof, this total order
is established by the timestamp order (in case of operations
with the same timestamp, reads follow both writes and other
reads that precede them in real time order). Then we prove
that this meets both consistency requirements above: for the
output of reads, this is by construction due to reads being
ordered after the corresponding writes; then, the consistency
with the real time request order follows from the fact that the
quorum intersection property I1 from Section III implies that
reads see the effects of previously completed reads or writes
either directly, because the preceding operation contacted a
write quorum, or indirectly, via the stable flag.

Execute (operation op)
itemsep=0pt,parsep=0pt

1) client send EXECUTE(op) to leader
2) leader assigns slot number s to op
3) leader broadcast PREPARE(s, op), after logging to disk
4) replica broadcast ACCEPT(s, op), after logging to disk
5) wait until #accepts(s) ≥ SQ, marks op as accepted

Fig. 5: Pseudo-code for the normal case SMR operation.

Fig. 6: Diagram of a normal case SMR operation (from [33])

C. State machine replication

State machine replication (SMR) allows for replicating
any deterministic service by enforcing that operations are
executed in the same order by all replicas. Paxos [34] is the
best known instance of this paradigm, but there are several
different descriptions, with little consensus on what the exact
Paxos protocol entails. Since our goal is to showcase the
changes required by the RR model, we chose as a starting
point the versions that describe the persistent state that is
logged at each protocol step [33], [17]. In contrast, most other
Paxos descriptions only store the replica state in memory, and
therefore do not allow, for instance, the simultaneous restart
of all the replicas — only up to F of them can restart at a
time. We next present the adaptation of this protocol to RR,
focusing on the normal case operation for conciseness.

a) Normal case operation. We follow the multi-Paxos proto-
col [35], [17], where there is a component of the protocol that
elects a stable leader replica, guaranteeing that only that replica
can propose the sequencing of new operations while it remains
the leader. That sequencing corresponds to the normal case
operation, which is described in the pseudocode in Figure 5,
and is depicted in Figure 6 (following the protocol description
from [33]). In summary, the leader replica proposes a sequence
number for incoming client requests, and this sequencing must
be accepted by a quorum of replicas (a majority in Paxos),
who validate that this sequence number had not been assigned
yet. Once such a majority is gathered, replicas execute the
client operation in that order and the leader replica replies with
the output of the operation to the client. Our protocol follows
directly from this protocol description [33], modifying only the
quorum size when gathering the quorum of accept messages.
When moving from majority quorums to the separate quorum
types, we need to observe that a Paxos round both reads and
writes the current state of the Paxos protocol. This is because it
must check that the slot that is being proposed is not yet taken,
and at the same time record the fact that the slot becomes taken
and cannot be used in subsequent proposals. Thus, majorities
are replaced with super quorums in the RR version of Paxos.

b) Leveraging the RR model. So far, the protocol adaptation
does not leverage the small read quorums enabled by the RR
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model. In particular, even read-only operations are serialized
in the state machine, and therefore need to update the system
state, namely to fill the position in the sequence of operations.

To leverage small read quorums, we adapt the read-only
optimization described in some protocols such as PBFT [16]
or the Paxos description by van Renesse and Altinbuken [53].
In this optimization, the client contacts a read quorum with an
OPTIMIZED-READ message, asking for the result of executing
the read-only command against current state of each replica.
If the replies are unanimous, the client can return the value.

Applying this optimization requires careful reasoning to
avoid violating the linearizable semantics of the protocol. To
understand why, consider the possibility of two successive read
operations, r1, r2, where r1 ends before r2 begins, and that use
quorums QR1 and QR2 (respectively) and execute concurrently
with a write w that gathers a quorum of accepts QW . In this
case, and given property I2 (read quorums may not intersect),
r1 may see w as being complete in a read quorum, but r2 only
contains replicas that have not yet gathered a write quorum of
accepts for w, since those replicas might have sent but not yet
received the necessary number of accepts. This would violate
linearizability since r1 precedes r2 in real time but, given their
outputs, they cannot be linearized in that order.

This is yet another occurrence of a split brain scenario, but
the solution in this situation is different: instead of confirming
a written value via stabilization, we abort the optimized read
when it is possible that another value has been written to the
state machine, falling back to reading using a state machine
operation. A replica can detect this situation if it has sent
an ACCEPT message for a slot higher than the last executed
operation (as it indicates the possibility of another read quorum
with a different value). If no replicas in a read quorum have
done this, then no other operation has concluded (I1).

c) Proof sketch. Just as in the ABD protocol, we sketch the
proof based on the existence of a total order for the operations
that is consistent with both the output of operations and the
real time order of request execution and replies [38]. This
total order is built in the same manner as before, i.e., it is
given by the slot number s, breaking ties by having read-
only operations succeeding both the most recent read/write
operation reflected in the reply and read-only operations with
the same slot number that precede them in real time. By the
construction of the protocol, this order is consistent with the
results that are output to the client, since the replies reflect
the execution of the preceding sequence of state machine
commands. The proof that the order is consistent with the real
time order of requests is straightforward for the non-optimized
protocol but more subtle for the case where one or both of the
requests follow the read-only optimization. In this case, a later
read-only operation cannot revert to a previous state because
of the protocol feature that replicas with pending accepts deny
an optimized read. This ensures that it is impossible to have a
more recent state that could have been reflected by a preceding
read/write or optimized read, because intersection property I1
implies that at least one node from the read quorum in the
later read would have sent the accept for the operation that
created the more recent state, since its execution requires a
write quorum of accepts.

D. Security properties

Assuming the threat model for TEEs explained in Section II
holds, the protocols described in this section achieve freshness,
integrity and confidentiality. Confidentiality of the overall
system is inherited trivially from the TEEs. Integrity and
freshness of data follow from the correctness of the protocols,
guaranteed by their linearizability proofs (presented in full in
the Appendix). These proofs rely on the intersection properties
of the quorum system, in particular that they mask the rolled
back replicas. Moreover, they assume the RR model applies
to the replicas, which is guaranteed by encapsulating replicas
inside the TEEs. Crucially, the usage of TEEs (which ensure
integrity of the computation) guarantees that the protocol is
followed by all replicas, even though they may have stale data.

Remote Attestation. Attesting TEEs is a crucial setup step,
needed to guarantee their properties hold. In our prototype,
each pair of communicating nodes remotely attest each other
once to verify their measurement hash and maintain secure
connections thereafter.

V. METADATA SERVICE FOR TRUSTED CLOUD STORAGE

As an example application built using the protocols from
Section IV, we designed and implemented a trusted metadata
service for securing cloud storage, which is an important
research problem in itself.

A. Motivation

TEEs have enabled services like Azure Confidential Com-
puting [45] and Google Confidential VMs [26], where Cloud
tenants can use compute services without trusting the platform
provider. However, the strong security properties of TEEs
do not automatically extend to Cloud storage. To address
this shortcoming, we propose a TEE-encapsulated metadata
service, replicated for availability and fault-tolerance, which
maintains encryption keys and version information for data
blobs stored in untrusted Cloud storage. By ensuring confi-
dentiality, integrity, and freshness of the metadata, the service
extends the same guarantees to the encrypted and versioned
data blobs. Moreover, by supporting an atomic update oper-
ation on metadata, the service enables concurrent sharing of
data blobs.

We designed and implemented a replicated metadata ser-
vice called TEEMS (for TEE-based Metadata Service) based
on the RR fault model. TEEMS’s replicas can be hosted in
a diverse set of cloud providers for high availability and
resilience. TEEMS provides a read/write interface for metadata
and guarantees that readers always receive the metadata (e.g.,
encryption key) of the most recent version of a data blob.
TEEMS also supports access control policies for metadata, and
therefore allows clients to selectively share the associated data
blobs. The service therefore enables trusted storage services
that extend the strong guarantees of today’s TEE-based cloud
compute services to persistent storage. The full TEEMS inter-
face is summarized in Table I.

TEEMS follows the RR threat model, assuming the correct-
ness of the TEE-encapsulated replicas except for the freshness
of the persistent state upon restart. It further aims to implement
a cloud storage service with confidentiality, integrity and
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Return Value Command and Arguments
{status } ← teems-init(client ID)
{status } ← teems-close()
{status } ← teems-write(id, val)

{status, val, ver } ← teem-read(id)
{status } ← teems-delete(id)
{status } ← teems-change-policy(id, policy-code)

TABLE I: TEEMS Interface

freshness, with safe concurrent sharing of data among clients.
The overall availability of the system (but not its correctness)
depends on the availability of the TEEMS replicas and the
untrusted cloud storage. To increase the availability of the
system, system administrators may choose to geo-replicate
TEEMS nodes and further replicate the data among different,
independent untrusted storage providers. This ensures that even
if an adversary shuts down a data center or a subset of the
storage providers, data remains available.

B. TEE-grade cloud storage with TEEMS

Clients can use TEEMS to lend untrusted cloud storage
TEE-level guarantees, by using the API in Table I. TEEMS
maintains metadata for each data blob, i.e., a short summary
of the most recent version of a data blob, namely its hash
and encryption key. The encrypted data blob is then stored
in one or more ordinary cloud storage services. This extends
the integrity, confidentiality, freshness and selective concurrent
sharing properties of the metadata service to the cloud storage,
while relying on the cloud for storage and availability only.

Concurrent sharing of mutable data fundamentally requires
a read-modify-write operation (i.e., some form of SMR).
However, state machine operations are more expensive than
read/write register operations. TEEMS minimizes the use of
state machine operations in situations where writers typically
perform multiple updates of a data blob before other writers
perform an update, as follows. We mediate access to the
metadata via single writer policies, and implement policy
changes via the more expensive state machine operation. This
allows for reading and updating the metadata of a blob (by
the current writer) through efficient register operations. The
approach ensures safe concurrent sharing of data blobs while
minimizing the more expensive policy changes to cases when
the writer for a blob changes.

Storage operations involve the following sequence of steps.
When an operation to write a new data blob d associated
with id i is invoked, the client library starts by generating
a symmetric encryption key k. In our implementation, we
use an authenticated encryption scheme (AES-GCM), which
generates a ciphertext (〈d〉k) and a MAC (MAC(d)) of d. The
encrypted object and corresponding MAC are then stored in
one or more untrusted cloud storage services, under a randomly
created identifier istore. Let a be the access control list for the
newly stored data blob d. After the data has been successfully
written to untrusted storage, the library contacts the TEEMS
metadata service to update the metadata for id i:

〈i, k, a, istore,MAC(d)〉

The write operation concludes successfully after both the data
write and the metadata update complete. Finally, the library

deletes earlier versions of the blob from the data store.

When a read for id i is invoked, the client library starts
by querying the TEEMS service for the most recent version of
the metadata associated with the id i. After retrieving the tuple
〈i, ki, istore,MAC(di)〉, the client library then uses the id
istore to retrieve the encrypted data from (one of) the untrusted
storage systems. This encrypted data 〈d′〉ki

is read and then
decrypted using ki, obtaining d′ and MAC(d′). Finally, its
integrity is validated by comparing MAC(d′) and MAC(di).

While TEEMS ensures the confidentiality, integrity, and
freshness of stored data blobs, the untrusted storage is relied
upon for the availability of data blobs. For increased avail-
ability, clients may store multiple copies of a data blob (or
erasure-coded fragments) at independent storage providers.

Finally, access to untrusted storage can be optimized by
employing caching at the client. We can either: 1) cache full
blobs, wherein the client fetches the metadata, compares the
hash of the data with the cache contents, returning the data if
there is a match, and thus avoiding the access to the untrusted
store; or 2) use a name hint, where the untrusted and metadata
accesses are issued in parallel (with the untrusted access being
issued based on the hint) and, when they both finish, the hash is
verified and the operation proceeds. In either case, the metadata
always has to be fetched and compared with the cached or
retrieved version, since only the TEEMS metadata service can
ensure freshness of data blobs. If the hash comparison fails, the
encrypted blob is re-fetched using the (now assuredly fresh)
identifier in the metadata.

C. Leveraging different storage protocols

TEEMS implements the metadata read/write operations
efficiently using our RR-tolerant ABD protocol (Section IV-B).
However, updating the policies stored by TEEMS — which
enables concurrent sharing — requires a read-modify-write
operation, because changing a policy requires reading the
policy first to check if the client has permission to modify
it. Therefore, policy changes are implemented using the RR-
tolerant SMR protocol (Section IV-C). This combination of
protocols allows us to achieve both efficient reads and writes
in the normal case, and concurrent write sharing via atomic
policy changes through state machine updates.

In this design, the state of our state machine is an epoch
number and an associated policy description. Crucially, the
epoch number is also readable by the read/write protocol.
As such, a policy change is a state machine operation that
evaluates the current policy, replacing it with the proposed
policy and incrementing the epoch number, if the client has
permission to execute this operation. The epoch number in-
crement is then immediately visible to register operations.

For reads and writes, a slow but trivially correct combi-
nation of the protocols would be to issue a read operation
on the state machine to obtain the policy and then issue the
register operation, retrying if the epoch number has advanced.
The correctness of the combination hinges on the fact that 1)
the policy is correctly read and enforced; and 2) by ensuring
the epoch has not changed between checking the policy and
operating on the register, the policy is guaranteed to be valid
for that version of the object.
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Write Metadata (key k, value v)
itemsep=0pt,parsep=0pt

1) smr optimized get policy (k) in parallel with regis-
ter get version (k)

2) if smr optimized get policy fails then
fallback to slow operation

3) if eval(policy) == ACCESS DENIED then
return ACCESS DENIED

4) broadcast WRITE REPLICA (epoch, new ts, v) and wait
for WQ replies;

5) return SUCCESS

Fig. 7: By overlapping (and piggybacking) the optimized read
to the state machine to get the policy and the reading of the
current timestamp of the register (which is the first step of
the write protocol), we can run both operations in parallel,
since writing the value to the register only happens after the
policy is verified. Note that the read operation can be similarly
piggybacked (the value is only returned after the policy check)
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center. The shaded area represents a LAN (or a data center).
Latencies will be used in the evaluation. C is the client, R is
a replica and P is the proxy replica.

We note, however, that the initial phase of the register
operation has the same communication pattern as the opti-
mized read state machine operation. As such, it is possible
to piggyback the optimized read request with the first phase
of the register operation, as shown in Figure 7. If the fast
policy read succeeds, the policy is evaluated and the operation
proceeds. Otherwise, the system falls back on the slow path
above. The optimization is correct because it is equivalent to
the slower combination: the operation succeeds only if the
policy is enforced and the register sub-operation only succeeds
if it happens within the epoch of the policy.

The client side policy evaluation and protocol execution re-
quire trusted computation, meaning the implementation needs
to either rely on a TEEMS replica as a proxy or on a client-
operated TEE, attested by the replicas. In our description, as
well as in our prototype implementation, we chose the former.

D. Deployment scenarios

To minimize the chance of correlated faults of individual
metadata servers, each replica can be at a different location,
depending on the deployment scenario. For example, the
TEEMS replicas may be distributed over multiple adminis-
trative domains to make it less likely that several of them

can be rolled back at any given time. One way to achieve
this distribution is to colocate some replicas with a client in a
data center, with the remaining replicas in other administrative
domains (Figure 8a). In another example scenario, clients
execute on their own premises and wish to share data items
stored in the Cloud with other clients, without trusting the
Cloud. They can use TEEMS replicas deployed at a local
collocation center, where subsets can be physically isolated and
operated by independent providers, possibly using storage in
the same center (Figure 8b). Even though current public cloud
services do not offer TEEs in colocation centres, offering such
services would be technically straightforward and, as this work
shows, have interesting use cases.

As mentioned, depending on their cost and availability
needs, clients may opt to store a single copy on a single
cloud storage service provider, multiple copies on independent
providers, or multiple erasure coded fragments on independent
providers. In the common case, a copy or a small set of frag-
ments can be efficiently retrieved from the nearest providers.

VI. IMPLEMENTATION

We implemented both the read/write register and SMR
protocols in the three fault models (crash, RR, and Byzantine)
and the TEEMS prototype in Intel SGX (version 1), using
C++. Alternatively, any TEE implementation that provides the
properties described in Section II could be used, as we relied
only on these properties throughout the paper. All prototypes
were implemented using the same codebase, limiting the
changes between prototypes to what was required by the
protocols (e.g., extra protocol steps, different quorums). The
PBFT implementation uses the standard optimization of using
MACs instead of digital signatures.

SGX applications have two separate regions of memory:
the application (untrusted) and the enclave (trusted). In all
cases, the application code comprises 1KLoC (mostly for
bootstrap and interfacing with the local OS). All replicas
are implemented using a single-threaded event loop, and take
between 3KLoC (SMR) and 6KLoC (TEEMS) each. Addition-
ally, the client libraries, which interact with the replicas and,
in the case of TEEMS, interact with the untrusted storage, take
up between 2KLoC (SMR) and 5KLoC (TEEMS) each.

All prototypes are open-sourced under the MIT license and
available at https://gitlab.mpi-sws.org/restart-rollback.

VII. EVALUATION

We experimentally evaluate prototype implementations of
the various combinations of protocols and fault models using
micro-benchmarks, and a prototype of TEEMS using bench-
mark workloads. Our experiments seek to answer the following
questions:

1) How significant is the effort to change a CFT protocol
implementation to support the RR model? (§VII-A)

2) How does the performance of protocols based on the
RR model compare with that of their counterparts
based on the Crash and Byzantine fault models, under
different workload conditions? (§VII-B)

3) What is the overhead of TEEMS when used to secure
a cloud storage system under different deployments?
(§VII-C)
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Fig. 9: Operation latency for different protocols in different network topologies

4) What is the performance of TEEMS when used to
store metadata for a key-value store (Redis) under a
benchmark workload (YSCB)? (§VII-D)

Experimental Setup. We performed experiments using 7
machines with Intel® Xeon® E-2174G processors running
Debian Linux version 4.19 as the server replicas, plus 2
machines equipped with Intel® Xeon® Platinum 8260M pro-
cessors running Debian Linux version 5.4: one of them to
execute the clients and the other to host Redis. All machines
were connected to same local network. We used netem [28]
to emulate different deployment scenarios: a 20 Gbit/s local
area network where all machines are connected by links whose
latency follows a normal distribution with mean 1ms and
standard deviation of σ = 0.5ms (which we will refer to as
the 1ms topology); the deployment scenarios of Figure 8; and
a geo-replication scenario, based on the measured link prop-
erties (latency and bandwidth) between several AWS EC2 [1]
instances (t2.medium or t3.medium types), located in regions
spread across the globe (AWS topology). This setup ensures
flexibility and experimental reproducibility.

In the plots that report our experimental results, each data
point represents the median measurement over 3, 000 requests
(except throughput numbers as described below) and the error
bars show the 5th and 95th percentile values.

A. Code changes

Changing a CFT implementation to work in the RR model
required few changes. For the read/write register prototype,
we modified 72 LoC and added 211 new ones. For the SMR
prototype, we modified 24 LoC and added 28. (Note that
the full size of the protocol implementation is reported in
Section VI.) These changes are rather small compared to the
total size of the implementations, which share a significant
amount of fault-model agnostic infrastructure related to their
execution inside SGX. Mainly, the adaptation needs to main-
tain the suspicion/restart flag, use different quorum sizes, and
add mechanisms to prevent split brain.

B. Protocol performance in different models

Next, we compare the performance of both classes of pro-
tocols under different fault models. We compare our adapted
read-write register with the original ABD protocol and the BFT
read-write register protocol described in [40]. For SMR, we
compared our protocol with Paxos as described by Kirsch and
Amir [33] and the PBFT protocol [16]. Except when noted,

we fixed the fault threshold parameter as F=2 across quorum
systems (with MR=2 in the RR quorum system), yielding
quorums with 3 replicas in the crash and RR models and 5
replicas in the Byzantine model. Throughout the experiments,
we use small and uniformly sized payload objects to minimize
data transfer costs and thereby fully expose protocol costs.

The results in Figure 9a- 9d show the latency of the
protocols under different fault models and network latency
scenarios. We observe that larger quorums make the operations
slower, since the operation latency is bound by the latency of
the slowest replica in the quorum. Notably, in both cases the
performance of the RR protocols matches that of the CFT ones,
which is to be expected as they have equally sized quorums.

Next, we measure the latency and throughput of different
quorum systems under increasing system load. In the experi-
ment, we vary the offered load by increasing the number of
concurrent client requests of a given type (read/write/update),
and measure both latency and throughput. Throughput is
measured by counting the number of replies obtained per time
interval. Each data point corresponds to the median latency or
throughput over 5 seconds of continuous load after a warm-up.
Figure 10a shows that the read-write register with the RR con-
figuration achieves a maximum throughput of approximately
200 and 110 Kops/s for reads and writes, respectively, which
matches the CFT register, as expected. The BFT register has
significantly lower throughput, peaking at approximately 30
and 2 Kops/s for reads and writes, respectively, a result of
larger quorums and the additional protocol step. Throughput
in this setup, where the network has sufficient bandwidth not to
form a bottleneck, is bound by the overhead of processing the
protocol messages, and thus limited by the processing speed
of the replicas.

In Figure 10b we can again observe that the CFT and RR
protocols for SMR behave comparably, peaking at approxi-
mately 65 and 200 Kops/s for updates and optimized reads,
respectively. The BFT protocol peaks at 20 and 160 Kops/s
for updates and optimized reads, respectively. This is due to
both larger quorums and the extra protocol round of PBFT.

In the preceding experiments, the crash and RR protocols
used equally sized quorums, and as such had very similar
performance. However, as discussed in Sections III and IV,
the RR model has asymmetric quorums, which lends itself to
faster reads (at the expense of slower writes). Moreover, in
the preceding experiments the number of restarts has been
set to zero, as this is the common case. To better explore
the configuration space of RR quorums and their performance
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Fig. 10: Throughput-Latency curve for different protocols
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Fig. 11: Latency for different configurations and models in the
1ms topology. CFT uses F = 3 and RR(MR, F, s) denote RR
with parameters MR and F , with s restarts.

difference to CFT, we performed the latency experiments
from Figures 9a–9b with different quorum configurations. In
Figures 11a–11b, we can observe that by leveraging the smaller
quorums of RR, read operations become faster than their
equivalents in CFT, at the expense of more expensive writes.
Moreover, as the number of restarts increases, the difference

to CFT shrinks, and eventually CFT reads outperform RR, in
the uncommon case where most replicas have just restarted
and have yet to run their recovery protocol. Similarly, as
the number of restarts increases, write/update operations also
become more expensive (as they require read quorums in some
steps).

Overall, the results show that RR has performance very
close to CFT, while offering rollback protection and better read
performance in some configurations and the common case of
few restarts. Compared to BFT, RR offers significantly better
performance due to smaller quorums.

C. TEEMS-based storage

Next, we study the performance of the TEEMS-based
secure storage service under different deployments, which
differ in the relative location of the client, the metadata servers,
and the type and location of the untrusted storage. In this
set of experiments, our baselines are the untrusted storage
systems being used in each situation, namely Amazon S3
and an instantiation of Redis on our local cluster, where we
optionally add a variable latency on the access link. In the
context of TEEMS with a cache, these baselines offer a point
of reference but do not allow a direct comparison, since they
do not implement caching. Enabling caching on the untrusted
storage baselines would be possible and would provide a more
direct comparison. However, distributed caching is a research
topic of its own, with a wide variety of solutions to ensure the
freshness of the cache. These issues do not arise in TEEMS,
since the freshness is guaranteed by the metadata. One option
for adding caching to S3, for instance, would be to use Redis,
or a similar key-value store, as a cache. Therefore, we can also
consider the Redis baseline as a conservative point of reference
of how an S3 deployment with a Redis cache would perform
in the best case scenario where all accesses are cache hits. We
consider three representative deployment scenarios, illustrated
in Figure 8.

a) Client in the Cloud. In this deployment (Figure 8a), the
client is co-located with three metadata servers and the re-
maining four servers are in another data center. We use two
variants of storage: a remote Redis deployment, and S3.

b) Collocation Center. In this scenario (Figure 8b), all metadata

12



 0

 20

 40

 60

 80

 100

 120

 140

 160

get put

L
a

te
n

c
y
 (

m
s
)

S3
Teems

Teems + Name Cache
Teems + Value Cache

(a) Client in the Cloud w/ S3

 0

 20

 40

 60

 80

 100

 120

get put

L
a

te
n

c
y
 (

m
s
)

Redis
Teems

Teems + Name Cache
Teems + Value Cache

(b) Client in the Cloud w/ Redis

 0

 5

 10

 15

 20

 25

get put

L
a

te
n

c
y
 (

m
s
)

Redis
Teems

Teems + Name Cache
Teems + Value Cache

(c) Colocation Center w/ Redis

Fig. 12: Latency in different deployment scenarios. The “s3” and “redis” bars refer to direct accesses to the untrusted storage,
providing a performance baseline without rollback protection. “teems” refers to accesses without caching. “teems + name cache”
and “teems + blob cache” refer to accesses where the name and blob caches had a hit, respectively.

servers and the Redis deployment are in the same collocation
center, being hosted by different cloud providers.

In both cases, the largest administrative domain has 4
replicas, while at most 2 replicas are expected to crash in a
correlated fashion. As such, we consider MR = 4 and F = 2.

From the result in Figure 12a–12c, we conclude that: 1) the
performance of TEEMS depends heavily on the deployment
scenario (in particular on the existence of local read quorums,
which are enabled by RR); 2) name caching is effective in
masking the overhead of accessing the metadata store; 3)
blob caching, when combined with local read quorums, allows
for local reads of both data and metadata, outperforming the
baseline. Fundamentally, we observe that the performance of
TEEMS is directly tied to the network topology, in particular to
the latencies of the network. Since the object sizes are small,
the performance is dominated by the message exchanges that
must be incurred on the critical path. From this, we can further
understand the importance of local read quorums: they allow
read operations to avoid incurring high remote latencies. With
effective caching, we see that the latency of a read operation
is proportional to the larger of the data access latency and
the highest latency among a read quorum of TEEMS servers.
Since write operations cannot parallelize the data and metadata
accesses, their latency is the sum of the data access latency
and of the highest latency within the collected write quorum
of TEEMS servers.

D. TEEMS-based storage running YCSB

Next, we compare the performance of TEEMS with Re-
dis to a configuration using only Redis, on the YCSB [21]
benchmark workloads. We deployed TEEMS in the “Client in
the Cloud” setting with Redis, using name caches. We use
all six core workloads of YCSB (A–F), which have different
key distributions and read/write ratios. The size of the objects
varies between 100B and 1KB, depending on the workload.
The total size of the database is 1000 objects of 1KB each.
The results in Figures 13b and 13a show that writes incur a 2×
overhead, which is expected since the Redis access must be
preceded by the TEEMS metadata access. Again, this overhead
results from the network topology of the deployment. In this
setting, a write quorum requires a remote access, which is
roughly 50ms from the client. The Redis server is connected
with the same latency, which adds to the 100ms. Reads perform
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Fig. 13: Latency with YCSB workloads

comparably to the baseline, due to local read quorums and
effective usage of the cache.

VIII. RELATED WORK

a) Replication and fault tolerance. The RR model allows for
the system to tolerate a combination of crash faults and faults
where a replica has stale state after a restart. RR is strictly more
encompassing than the crash and omission models, allowing
for fault behaviors that are not tolerated by either. Compared to
BFT, it is tailored to the behavior of TEEs, leading to simpler,
more efficient protocols with smaller quorums in the common
case. Finally, compared to hybrid crash-BFT models [44], [7],
[22], [20], while RR is also a hybrid model, it differs in the
type of non-crash behavior it admits, since incorrect behaviors
in RR are limited to those resulting from rollback after a
restart, whereas previous hybrid models tolerated arbitrary
Byzantine faults.

Prior work proposed replicated systems where each replica
runs in a trusted execution environment, namely to build a
secure in-memory key-value store [8], a monotonic counter
to protect against rollback attacks [42], payment channels in
a blockchain [37], broadcast and common random number
generator primitives [32], or generic transformations of crash
protocols to tolerate Byzantine behavior [39]. These proposals,
however, resorted to replication protocols in traditional models,
which varied depending on the trust model: either they trust the
correctness of the TEE and assume that TEEs cannot restart
from persistently stored state, in which case they can use
CFT replication [32], [8], or they pessimistically assume that
adversaries can break the TEE protections, in which case they
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need BFT (or hybrid crash-BFT) protocols [37], [42], [39],
with intrinsically higher complexity and overhead.

There are other proposals that augment the replica logic
with a small trusted module [19], [36] (e.g., a trusted mono-
tonic counter), sharing our goal of making replicated systems
more efficient and correct under adversarial attacks. However,
their premise is quite different from our work, since they try
to devise, from a clean slate, abstractions that can be imple-
mented easily (e.g., in hardware) and that aid in the design
of replication protocols under a Byzantine model (augmented
with these trusted components). In contrast, we observe that the
behavior of existing TEE systems require a new fault model,
and devise efficient replication protocols for that model.

The RR model leads to dynamic quorum sizes, where the
size depends on the number of replies from recently restarted
nodes. As we discussed in Section III, prior proposals that
also resort to asymmetric quorums [30], [49], [27], [13],
[18] work in traditional fault models (CFT or BFT) and use
different quorum sizes to improve performance or encode
trust assumptions. In contrast, RR captures the possible fault
behaviors of TEEs, which naturally leads to dynamic and
asymmetric quorums.

b) Built-in storage support for TEEs. Current TEEs offer some
support for securely storing persistent data in an encrypted
form outside the TEE, such that it can be decrypted only
by the TEE that stored it and only if it was not modified.
If this support would offer perfect protection, then a CFT
replication protocol might suffice to replicate TEE-based sys-
tems. However, different systems have different limitations that
preclude a direct use of CFT. In particular, ARM TrustZone-
based devices include an eMMC storage controller that allows
for configuring a small storage partition (on the order of tens
of megabytes), named the “Replay Protected Memory Block”
(RPMB), which only accepts commands from authenticated
secure world domains, and withstands rollback attacks [47].
However, the size and access to this block is quite inflexible:
the RPMB is configured as a separate partition of the eMMC
storage device, and a shared cryptographic secret must be em-
bedded in the host and the storage device during manufacture.
Intel SGX supports data sealing, i.e., encrypting it in a way
that it can be decrypted only by the same enclave on the same
platform [23]. However, this abstraction alone does not protect
against rollback attacks, where an attacker replaces the most
recent sealed data object stored in an untrusted medium with a
stale version of the object [46]. Recent versions of SGX use a
persistent, monotonic counter that is uniquely tied to the TEE
instance by packaging the counter storage physically with a
CPU, which is itself tied to the TEE [23]. Upon sealing, this
counter is read from the CPU, incremented and stored with the
sealed data. Upon unsealing, the counter that was previously
stored with the data is compared to the current counter value
in the CPU. However, as noted in [42], writes to the Intel SGX
monotonic counter are very slow (on the order of hundreds of
milliseconds) and wear can cause its memory to fail after a
few days of continuous use.

c) Protection against rollback attacks. The storage associated
with the TEE can also be secured using methods other than the
built-in support. The strategies used by these methods fall into
two categories. The first category of defenses relies on a small
amount of non-volatile state tied to the TEE platform, which is

used to assert the freshness of the TEE’s externally stored state
upon a restart of the TEE. Memoir [46] relies on a TPM [52]
to store a hash chain of all external state updates. To avoid
wearing out the TPM’s NVRAM, whenever the TEE executes
an operation, it extends the hash chain in a volatile TPM
PCR register. Upon power failure, an uninterruptible power
supply is used to run a shutdown handler that copies the latest
PCR value into the TPM’s NVRAM. ICE [50] relies on a
specialized CPU extension with volatile “guarded memory”,
which stores the latest freshness information. During a power
failure, a capacitor supplies enough power for the CPU to write
the freshness information into off-chip, untrusted NVRAM.
Ariadne [51] writes freshness information to on-chip NVRAM,
but minimizes wear by using a Gray code to represent a
monotonic counter, such that any increment requires only a
single bit flip. Ariadne also describes an attack with the “store-
then-increment” monotonic counter approach where a TEE is
made to crash repeatedly between the store and the counter
increment, and proposes a fix by incrementing the counter
twice upon a recovery from a crash.

The drawback of defenses in this category is that, in
practice, either the rate at which a TEE can save its state
is limited by wear of the non-volatile memory (latest SGX,
Ariadne), or there is a dependency on specialized hardware or
an uninterruptible power supply (ICE, Memoir).

A second category of defenses stores freshness information
in a separate trusted server, or set of servers that are assumed to
not all be subject to a coordinated rollback attack. ROTE [42]
addresses the performance and wear shortcomings of mono-
tonic counters in Intel SGX by replicating a monotonic counter
in several TEEs, using a hybrid crash-BFT protocol [44], [20],
where a subset of the replicas may become unavailable and
another subset may return arbitrary results. However, since
ROTE maintains the counter in the enclave’s volatile memory,
it will lose the counter state after a simultaneous restart of all
replicas, e.g., due to a system-wide power failure. Moreover,
the use of BFT is too pessimistic and leads to needless
overhead, as we discussed.

Furthermore, defenses in both categories, although ad-
equate for single-client applications, fundamentally cannot
support concurrent sharing between clients since they do not
provide atomic updates of data and metadata.

d) Protection against forking attacks. A forking attack on a
TEE occurs when two instances of the same enclave are created
and executed in parallel, unbeknownst to each other. Such an
attack can create a branch in the state of the TEE, breaking
state continuity. There are three main mitigations to forking,
either relying on trusted monotonic counters [42], [51], [19],
[36], [46], on client cooperation/intervention [10], [14], [15],
[11], [24], [43], [48], or on some centralized (possibly repli-
cated) source of truth [9]. Relying on monotonic counters
shares the disadvantages already discussed, and relying on
clients may be impractical or even impossible as it requires
clients to remain online and to trust each other. In the context
of replicated systems, using the system configuration (modified
using consensus) as the source of truth is a natural mechanism
to prevent forking attacks.
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IX.CONCLUSION

This paper introduces the RR fault model, which captures
precisely the fault behavior of TEEs, and applies the model
to read/write and state machine replication protocols. More-
over, we designed and implemented a metadata service called
TEEMS and used it build a system that brings TEE-grade
security as well as concurrent sharing to cloud storage. Our
evaluation shows that the new fault model is more efficient than
BFT and performs identically to systems tolerating crash faults,
but with stronger security guarantees for replicated TEEs. It
also shows that it is possible to extend existing cloud storage
services to offer TEE-grade protection at modest overhead.
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APPENDIX

In this appendix, we provide the proofs of correctness
for the protocols presented in the paper. The appendix is

organized as follows: A presents a proof of an auxiliary
theorem regarding RR quorum systems; B contains a proof of
correctness of the distributed register protocol; and C a proof
of correctness of the state machine replication protocol.

A. RR quorum systems

Given the way that we designed quorum systems presented
in Section III-D, we can prove the following theorem that states
the key property of RR quorums.

Theorem 1. The quorum system defined by arbitrary subsets
with the cardinalities in Equations (3,5,6) is a Dissemination
Quorum System [40].

Proof. The D-Consistency property from Definition 5.1 in [40]
follows from the fact that the constraint stated in Equation (1)
was preserved throughout the derivation. More precisely, in
the final quorum sizes that define RR quorum systems, we can
show that read and write quorums intersect in the following
minimum number of replicas:

WQ +RQ −N =
MR + ∆W +RQ −MR − F −∆W −∆N =

RQ − F −∆N =
F + min(s,MR) + ∆N + ∆R − F −∆N =

min(s,MR) + ∆R

which obeys the D-Consistency property because it contains
at least one non-rolled back replica (since ∆R > 0), which
directly implies that such a replica does not belong to any set
B ∈ B according to the definition in [40].

Similarly, the D-Availability property from [40] follows
from the fact that the liveness equations were preserved
throughout the derivation. More precisely, in the final quorum
sizes we consider, we have that:

N −WQ =
MR + F + ∆W + ∆N −MR −∆W =

F + ∆N

and

N −RQ =
MR + F + ∆W + ∆N − F −min(s,MR)−∆N −∆R =

MR + ∆W −∆R −min(s,MR) ≥ f ′

These imply that faulty nodes can never disable a write
quorum, i.e., for any possible set of faults, there will exist a
write quorum comprised exclusively of non-faulty nodes [40],
and the same applies to read quorums, but in this case this is
given the additional read liveness conditions that were set by
Equation 7.
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B. Distributed register

Next, we prove the safety of the distributed register proto-
col, namely that it obeys linearizable semantics.

1) Specification

The specification is simply stated as linearizability of an
object that supports read and write operations. Linearizability
states that there exists a sequential history (or linearization) of
the operations that took place in a history of the execution of
the system, such that the linearization leads to the same outputs
according to a sequential specification, and is compatible with
the real time precedence of the operations. More precisely, this
can be stated as:

R-L1: there is a total order < of operations (reads and
writes), consistent with the real-time invocation/reply
order (meaning that if op1 returns before op2 is
invoked then op1 < op2);

R-L2: reads return the value written by the most recent
write according to that order.

Note that a theorem and proof that these properties imply
linearizable semantics can be found in [38].

2) Proof

a) R-L1

For proving the existence of this order, we construct the
the total order < as the lexicographic order of timestamps
〈sequence number, id〉. However, this is not yet a total order,
since reads will have the same timestamp as the operation
that created the value that was returned. We thus add the
additional constraint that reads are ordered immediately after
the operation that wrote the value that was read. When several
read operations return the same value, then we order the reads
among themselves in any total order that is compatible with
the real-time order of invocation, i.e., with the constraint that
if read1 returns before read2 is invoked then read1 < read2.

Given this construction, we now need to proof that this
order is consistent with the real-time precedence order, i.e.,
that if operation op2 is invoked after operation op1 returns,
then op1 < op2.

If op1 is a read, then it only concludes after either writing
back the return value to a write quorum, or reading unani-
mously from a write quorum, or being signaled by the stable
flag that the value was previously present at a write quorum.
Therefore, according to Theorem 1, a subsequent first phase of
a read or write (op2) will see that timestamp at its read quorum
(or, given that timestamps grow monotonically at each replica,
a higher one), and will therefore be serialized at a subsequent
point in the total order either by picking a higher timestamp
for writes, or by returning the same or a higher timestamp for
reads. (In case op2 is a read that returns the same timestamp,
then it obeys the required property directly by the way that <
is constructed for that particular case.)

The previous reasoning also applies when op1 is a write,
since the second phase of write operations propagates the
timestamp to a write quorum, and writes only return after that
propagation is concluded.

b) R-L2

This follows directly from the way that the total order < is
constructed. In particular, reads are, by construction, ordered
after the write with the same timestamp, and this is precisely
the write that wrote the value that is returned by the read.

�

C. State machine replication

Finally, we prove the safety of the normal case operation
(fixed leader) state machine replication protocol, again using
linearizable semantics as the correctness property

1) Specification

The specification is stated as linearizability of an object
that supports read and update operations. By the definition of
linearizability, there exists a sequential history (linearization)
of operations that took place in the execution of the system.
This sequential history must be compatible with the real time
order of operations and be equivalent (i.e., lead to the same
outputs as) a sequential specification of the state machine.
More precisely, it can be stated as:

SM-L1: there is a total order < of state machine
operations (reads and updates), consistent with the
real-time invocation/reply order (i.e., if op1 returns
before op2 is invoked, then op1 < op2);
SM-L2: state machine operations return the value that
results from the sequential execution of the sequence
of preceding operations according to that order.

As in the previous proof, the same helper theorem [38]
can be used to show that these properties imply linearizable
semantics, since it can apply to any atomic object, including
a state machine.

2) Proof

a) SM-L1

For proving the existence of this order, we construct the
the total order < as the order produced by slot numbers.
However, this is not yet a total order, since reads will have
the same slot number as the operation that created the value
that was returned. We thus add the additional constraint that
reads are ordered immediately after the operation that issued
the update that produced the state that was read. When several
read operations reflect (i.e., were executed against) the same
state, then we order the reads among themselves in any total
order that is compatible with the real-time order of invocation,
i.e., with the constraint that if read1 returns before read2 is
invoked then read1 < read2.

Given this construction, we now need to prove that this
order is consistent with the real time order, i.e., that if operation
op2 is invoked after operation op1 returns, then op1 < op2.

If op1 is an update or a non-optimized read, this follows
from the construction of the protocol, wherein the leader
chooses the slot position for that update and then, by collecting
a super quorum of accepts, guarantees that no subsequent
update will be assigned to that position (or a lower one), and
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no subsequent read will see a lower slot number. Furthermore,
for the case that the first operation is a read, it will require
a unanimous read quorum, and additionally that the replicas
in this read quorum have not sent out accept messages for
subsequent updates to other replicas. This implies two things:
first, that an update (or non-optimized read) that succeeds op1
will have to choose a higher sequence number (or see the
same in case of a read), thus obeying op1 < op2, since the
read quorum of op1 intersects the super quorum of accepts
of op2 at a correct replica; and, second, that it would be
impossible for a subsequent optimized read (op2) to observe a
lower timestamp, since that could only happen if there existed
a node in the intersection between the read quorum of op2
and the super quorum that sent an accept for the update that
produced the state observed op1 that would elide the effects
of op1 or otherwise allow the state sequence to go backwards.

b) SM-L2

This follows from the way that the total order < is
constructed. In particular, (1) reads are serialized after the
update with the same slot number, which is the latest update
in the sequence of updates that leads to the state that the read
is executed against, and (2) updates are serialized according to
their slot number order, with is also the order in which replicas
execute those updates, leading to outputs that are the same as
the sequential specification of the state machine.

�
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