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Abstract
Accidental or intentional mismanagement of cloud soft-
ware by administrators poses a serious threat to the in-
tegrity and confidentiality of customer data hosted by
cloud services. Trusted computing provides an im-
portant foundation for designing cloud services that
are more resilient to these threats. However, current
trusted computing technology is ill-suited to the cloud
as it exposes too many internal details of the cloud in-
frastructure, hinders fault tolerance and load-balancing
flexibility, and performs poorly. We present Excal-
ibur, a system that addresses these limitations by en-
abling the design of trusted cloud services. Excalibur
provides a new trusted computing abstraction, called
policy-sealed data, that lets data besealed(i.e., en-
crypted to a customer-defined policy) and thenunsealed
(i.e., decrypted) only by nodes whose configurations
match the policy. To provide this abstraction, Excalibur
uses attribute-based encryption, which reduces the over-
head of key management and improves the performance
of the distributed protocols employed. To demonstrate
that Excalibur is practical, we incorporated it in the Eu-
calyptus open-source cloud platform. Policy-sealed data
can provide greater confidence to Eucalyptus customers
that their data is not being mismanaged.

1 Introduction
Managing cloud computing services is complex and
error-prone. Cloud providers therefore delegate this task
to skilled cloud administrators who manage the cloud
infrastructure software. However, it is difficult to assure
that their actions are error-free. In particular, an acci-
dental or, in some cases, intentional action from a cloud
administrator could leak, corrupt, or lose customer data.
The threat of potential violations to the integrity and
confidentiality of customer data is often cited as a key
barrier to the adoption of cloud services [2,15]. Further-
more, publicized incidents involving the loss of confi-
dentiality or integrity of customer data [1, 4, 7, 23, 25]
and the growing amount of security-sensitive data out-
sourced to the cloud [3,6] only heightens these concerns.

Recently, several proposals [22,39,45,53] have advo-
cated leveraging trusted computing technology to make
cloud services more resilient to integrity and confiden-
tiality concerns. This technology relies on a secure co-
processor – typically a Trusted Platform Module (TPM)
chip [17] – deployed on every node in the cloud. Each

TPM chip would store a strong identity (unique key) and
a fingerprint (hash) of the software stack that booted on
the cloud node. TPMs could then restrict the upload of
customer data to cloud nodes whose identities or finger-
prints are consideredtrusted. This capability offers a
building block in the design of trusted cloud services by
securing data confidentiality and integrity against insid-
ers, or confining the data location to a desired geograph-
ical or jurisdictional boundary.

Despite their benefits, current trusted computing ab-
stractions are ill-suited to the requirements of cloud ser-
vices for three main reasons. First, TPM abstractions
were designed to protect data and secrets on a stan-
dalone machine; they are thus cumbersome to use in
a multi-node datacenter environment where data mi-
grates across multiple nodes with potentially different
configurations. Second, TPM abstractions over-expose
the cloud infrastructure by revealing the identity and
software fingerprint of individual cloud nodes; external
agents could use this information to exploit vulnerabil-
ities in the cloud infrastructure or gain business advan-
tage [40]. Third, the current implementation of TPM
abstractions is inefficient and can introduce scalability
bottlenecks to cloud services.

This paper presents Excalibur, a system that provides
cloud service designers with new trusted computing ab-
stractions that overcome these barriers. These abstrac-
tions provide another critical building block for con-
structing services that offer better guarantees regarding
data integrity, confidentiality, or location. Excalibur’s
design includes two main innovations crucial to over-
coming the concerns posed by using TPMs in the cloud.

First, Excalibur provides a new trusted computing
abstraction, calledpolicy-sealed data, that allows cus-
tomer data to be encrypted according to a customer-
chosen policy and guarantees that only the cloud nodes
whose configuration satisfies that policy can decrypt and
retrieve the data. We devised this abstraction to address
the first two limitations of current TPM abstractions;
the abstraction permits multiple nodes with or without
identical configurations to flexibly access data as long
as they satisfy the customer policies. Moreover, since it
allows policies to be specified using human-readable at-
tributes, policy-sealed data hides the low-level identities
and software fingerprints of nodes.

Second, Excalibur implements the policy-sealed data
abstraction in a way that overcomes the inefficiency hur-
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dles of current TPMs and scales to the demand of cloud
services. To do this, we designed a centralizedmoni-
tor that checks the integrity of cloud nodes and acts as
a single point-of-contact for customers to bootstrap trust
in the cloud infrastructure. To prevent the potential scal-
ability challenges associated with a centralized monitor,
we designed a set of distributed protocols to efficiently
implement the new abstractions. Our protocols use the
Ciphertext Policy Attribute-Based Encryption (CPABE)
encryption scheme [11], which drastically reduces the
communication needs between the monitor and produc-
tion nodes by requiring each node contact the monitor
only once during a boot cycle, a relatively infrequent
operation. We validated the correctness of Excalibur’s
cryptographic protocols using a protocol verifier [12].

To demonstrate the practicality of Excalibur, we built
a proof-of-concept compute service akin to EC2. Based
on the Eucalyptus open source cloud management plat-
form [36], our service leveraged Excalibur to give users
better guarantees regarding the type of hypervisor or the
location where their VM instances run. Our experience
shows that Excalibur’s primitive is simple and versatile:
our changes required minimal modifications to the Eu-
calyptus codebase.

Our evaluation suggests that Excalibur scales well.
Due to CPABE, the monitor’s load scales independent of
the workload. In addition, according to our simulations,
one server acting as a monitor was sufficient to manage
a large cluster; for example, a server took∼15 seconds
to check the node configurations of a cluster with 10K
nodes that all rebooted simultaneously. Finally, offer-
ing trusted computing guarantees to the EC2-like ser-
vice added modest overhead during VM management
operations only.

2 Trusted Computing Concepts

The success of a cloud provider hinges on its customers
being willing to entrust the provider with their data [2,
15]. A key factor in strengthening customers’ trust is
providing strong assurances about the integrity of the
cloud infrastructure. TPMs can play a fundamental role
in providing these assurances.

The integrity of the cloud infrastructure depends on
the security of its hardware and software components.
For hardware security, cloud providers already rely on
surveillance devices and physical access control that
severely restrict physical access to cloud nodes, even by
cloud provider staff [19]. In certain cases, by deploy-
ing cloud nodes in sealed containers, they ensure that
physical access is fully disallowed [19]. For software
security, providers could take advantage of techniques
that reduce the size of the TCB [53], narrow the man-
agement interfaces [34], and verify the TCB code [24].
These techniques help designers build secure software

platforms (e.g., secure hypervisors) to host customers’
data and computations.

However, current cloud architectures provide scant
assurances that the data that customers ship to the cloud
is being handled by integrity-protected nodes running
secure software platforms. Insecure software platforms
(e.g., ones that have been tampered with or that run un-
patched software versions) put at risk cloud service in-
tegrity and thus customer data. Trusted computing tech-
nology addresses this problem by providing customers
with integrity guarantees of the cloud nodes themselves.

Trusted computing technology provides the hardware
support needed to bootstrap trust in a computer [38]. To
do so, it offers system designers four main abstractions.
First,strong identitieslet the computer be uniquely iden-
tified without having to trust the OS or the software run-
ning on the computer. Second,trusted bootproduces a
unique fingerprint of the software platform running on
the computer; the fingerprint consists of hashes of soft-
ware platform components (e.g., BIOS, firmware con-
trolling the computer’s devices, bootloader, OS) com-
puted at boot time. Third, this fingerprint can be se-
curely reported to a remote party using aremote attesta-
tion protocol; this protocol lets the remote party authen-
ticate both the computer and the software platform so it
can assess whether the computer is trustworthy, e.g., if it
is a trusted platform that is designed to protect the con-
fidentiality and integrity of data [20,32]. Fourth,sealed
storageallows the system to protect persistent secrets
(e.g., encryption keys) from an attacker with the ability
to reboot the machine and install a malicious OS that can
inspect the disk; the secrets are encrypted so that they
can be decrypted only by the same computer running
the trusted software platform specified upon encryption.

An important instance of trusted computing hard-
ware is the Trusted Platform Module (TPM) [17], a se-
cure co-processor widely deployed on desktops, laptops
and increasingly on servers. To offer a strong iden-
tity, the TPM uses an Attestation Identity Key (AIK).
To track the hash values that constitute a fingerprint, the
TPM uses special registers called Platform Configura-
tion Registers (PCRs). Whenever a reboot occurs, the
PCRs are reset and updated with new hash values. To
perform remote attestation, the TPM can issue aquote,
which includes the PCR values signed by the TPM with
an AIK. For sealed storage, the TPM offers two prim-
itives, calledseal and unseal, to encrypt and decrypt
secrets, respectively. Seal encrypts the input data and
binds it to the current set of PCR values. Unseal val-
idates the identity and fingerprint of the software plat-
form before decrypting sealed data.
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3 Threat Model
Our premise is that the attacker seeks to compromise
customer data by extracting it from integrity-protected
cloud nodes. An attack is successful if either the data
is accessible on a machine running an insecure software
platform or is moved outside the provider’s premises.

The attacker is assumed to be an agent with privileged
access to the cloud nodes’ management interface. Such
an agent is typically a cloud provider’s employee who
manages cloud software and behaves inappropriately
due either to negligence (e.g., misconfiguring the nodes
where a computation should run) or to malice (e.g., de-
sire to steal customer data). The management interface
is accessible only from aremote site. Therefore, we
assume the attacker cannot launch physical attacks. In
fact, software and hardware management roles are usu-
ally differentiated and assigned to different teams.

The management interface grants the attacker privi-
leges to the software platform running on the node (e.g.,
access to the root account) and to a dedicated hard-
ware component for power cycling the nodes. These
privileges empower him to access customer data on the
nodes: he can reboot any node, access its local disk af-
ter rebooting, install arbitrary software on the node, and
eavesdrop the network. However, whenever cloud nodes
boot a secure software platform whose TCB we assume
to be correct, the attacker can no longer exploit vulnera-
bilities through the software platform’s interface.

Multiple trusted parties perform all other manage-
ment tasks in the cloud provider’s infrastructure. These
tasks include, e.g., procuring and deploying the hard-
ware, securing the premises, developing the software
platforms, managing the provider’s private keys, endors-
ing whether a software platform is secure, certifying the
software and hardware, etc. Trusted parties can be em-
ployees of the cloud provider or external trusted organi-
zations. Due to the nature of their roles, however, trusted
partiesdo nothave access to the cloud nodes’ manage-
ment interface.

We assume that the TPMs are correct, and we do not
consider side-channel attacks.

4 Policy-sealed Data
This section makes the case for our new trusted com-
puting abstraction, calledpolicy-sealeddata. We first
discuss the limitations of existing TPM abstractions in
the context of the design of a strawman trusted cloud
service. We then describe how policy-sealed data ad-
dresses these limitations.

4.1 Strawman Design of a Trusted Cloud
Service

Our strawman trusted cloud service offers features sim-
ilar to Amazon’s EC2 but aims to provide better pro-

tection against the inspection or corruption of customer
VMs by a cloud administrator.

The first step in designing the strawman is to protect
the state of customer VMs running on cloud nodes. To
do this, we use recent proposals from research and in-
dustry that offer such guarantees buton a single node
only. For example, CloudVisor [53] retrofits Xen so that
the hypervisor guarantees the integrity and confidential-
ity of data and software running in guest VMs even in
the presence of a malicious system administrator. Cus-
tomers can leverage the TPM’s remote attestation capa-
bility to verify that a cloud node is running CloudVisor
before uploading data to it.

However, this verification step checks these guaran-
tees only for the cloud node on which the data is first
uploaded. Once in the cloud, the customer’s data and
VMs often migrate from one node to another, or are
suspended to disk and resumed at a later time. To of-
fer end-to-end protection, the checks must be repeated
upon such events.

Thus, to accommodate VM migration, the strawman
design of a trusted EC2 must perform remote attesta-
tion each time a customer’s VM migrates to verify that:
(1) the destination node’s identity is signed by the cloud
provider, and (2) the fingerprint matches that of Cloud-
Visor. To protect the VM upon suspension to disk, the
VM state must be encrypted using sealed storage before
suspension occurs.

4.2 Limitations of TPM Abstractions
The strawman design highlights some shortcomings of
current TPM abstractions stemming from a fundamen-
tal principle upon which TPMs were built: they were
designed to offer guarantees about one single computer.
In particular, TPMs suffer from three major problems
when they are used to build trusted cloud services.

First, the sealed storage abstraction was not designed
for a distributed and dynamic environment like the dat-
acenters where cloud services operate. It precludes the
application developer from encrypting and storing sen-
sitive data in an untrusted medium (e.g., a local hard
drive, or the Amazon S3 service) and retrieving it from
a different node or from the same node running a soft-
ware configuration that differs from that in place when
the data was encrypted. However, developers might be
interested in suspending the VM to disk and resuming it
later on a different node (e.g., if, in the interim, the orig-
inal node was shut down to save power) or on the same
node running a different configuration (e.g., if, in the
interim, the hypervisor was upgraded to a more recent
version).

Second, today’s TPMs are not built for high perfor-
mance. TPMs can execute only one command at a time,
and many TPM commands, such as remote attestation,
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Attribute Value Description
service “EC2” service name
version “1” version of the service
vmm “Xen”, “CloudVisor” virtual machine monitor
type “small”, “large” resources of a VM
country “US”, “DE” country of deployment
zone “Z1”, “Z2”, “Z3”, “Z4” availability zone

Table 1: Example of service attributes. In this case, EC2
supports two types of VM instances, two types of VMMs, and
four availability zones (datacenters) in the US and Germany.

Node Configuration
N service: “EC2” ; version: “1” ; type : “small” ; country

: “DE” ; zone: “Z2” ; vmm : “CloudVisor”

Table 2: Example of a node configuration.This configura-
tion contains the values for the attributes that characterize the
hardware and software of a specific nodeN .

Policy Policy Specification
P1 service= “EC2” and vmm = “CloudVisor” and

version≥ “1” and instance= “large”
P2 service= “EC2” and vmm = “CloudVisor” and

(zone= “Z1” or zone= “Z3”)
P3 service= “EC2” and vmm = “CloudVisor” and

country= “DE”

Table 3: Examples of policies.P1 expresses version and VM
instance type requirements,P2 specifies a zone preference for
different sites, andP3 expresses a regional preference.

take approximately one second to complete. This inef-
ficiency hampers the scalability of cloud services that
use the TPM and can even open avenues for denial of
service attacks if the TPM abstractions were invoked by
customer-accessible operations.

Finally, the cloud infrastructure may be overexposed.
By revealing TPM node identities and allowing cus-
tomers to remotely attest the nodes, any outsider could
learn, for instance: (1) the number of cloud nodes that
constitute the infrastructure of the cloud provider, and
(2) the distribution of different platforms they run. This
information could be used by external attackers to trace
vulnerabilities in the infrastructure, or by competitors to
learn business secrets. Handing over such information
is often unacceptable to cloud providers.

Recent proposals for TPMs in the cloud do not com-
pletely address these TPM limitations. Systems like
Nexus [50] or CloudVisor [53] use TPMs to allow cus-
tomers to remotely attest only a single cloud node and
therefore do not address the preceding issues. Essen-
tially, these systems address the complementary prob-
lem of securing the platform running on a single node.
Our previous workshop paper [45] took preliminary
steps to address some of these issues, but its solution
did not handle situations where sensitive data needed to
be secured persistently, which is unrealistic to assume
on real-world cloud services; our prior solution also suf-
fered from scalability limitations.

4.3 The Policy-sealed Data Abstraction
To overcome these limitations, we propose the new
policy-sealed dataabstraction. This abstraction allows
customer data to be bound to cloud nodes whose con-
figuration is specified by a customer-defined policy.
Policy-sealed data offers two primitives for securing
customer data:seal and unseal. Seal can be invoked
anywhere – either on the customer’s computer or on the
cloud nodes. It takes as input the customer’s data and
a policy and outputs ciphertext. The reverse operation,
unseal, can be invoked only on the cloud nodes that need
to decrypt the data. Unseal takes as input the sealed data
and decrypts itif and only if the node’s configuration
satisfies the policy specified upon seal; otherwise, de-
cryption fails.

With our abstraction, each cloud node has a configu-
ration, which is a set of human-readableattributes. At-
tributes express features that refer to the node’s software
(e.g., “vmm”, “version”) or hardware (e.g., “location”).
A policy expresses a logical condition over the attributes
supported by the provider (e.g., “vmm=Xen and loca-
tion=US”). Table 1 shows an example of the attributes
of a hypothetical deployment of a service akin to EC2.
Table 2 illustrates the configuration of a particular node,
and Table 3 lists example policies over node configura-
tions in that deployment.

Our primitive can replace the existing remote attesta-
tion and sealed storage calls for securing customer data
on the cloud. In particular, to protect data upon upload
or migration, the customer needs only to seal the data to
a policy: if the destination cannot unseal the data, then
its configuration does not match the policy; therefore,
the node is not trusted from the perspective of the cus-
tomer who originally specified the policy.

5 Excalibur Design
This section presents Excalibur, a system that provides
policy-sealed data support for building trusted cloud ser-
vices.

5.1 Design Goals & Assumptions
Our central goal is to design and implement a system
that offers the policy-sealed data primitive by making
use of commodity TPMs. Furthermore, the system de-
sign must overcome the preceding limitations of the in-
terface offered by current TPMs.

We focus on the design of the primitive used by the
cloud platforms running on individual nodes. There-
fore, we are not concerned with securing these plat-
forms themselves. In particular, our goal is not to pre-
vent the management interface exposed to cloud ad-
ministrators from leaking or corrupting sensitive data
(e.g., direct memory inspection of VM memory). Simi-
larly, we require that the individual cloud platforms pro-
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Figure 1: Excalibur deployment. The dashed lines show the
flow of policy-sealed data, and the solid lines represent inter-
actions between clients and the monitor. The monitor checks
the configuration of cloud nodes. After a one-time monitor at-
testation step, clients can seal data. Data can be unsealed only
on nodes that satisfy the policy (unshaded boxes).

tect certain key material used to seal and unseal data,
and that the system interface does not allow the finger-
print stored in the TPM to be changed so that it be-
comes inconsistent with the current system state. To
address these complementary goals, applications must
make use of a series of existing systems and hardening
techniques [20,24,33,53].

5.2 System Overview
The design of Excalibur is based on a centralized com-
ponent, called amonitor. The monitor is a dedicated
service running on a single cloud node (or, as we will
explain, on a small set of nodes for fault tolerance and
scalability). It coordinates the enforcement of policy-
sealed data on the entire cloud infrastructure by map-
ping TPM identities and fingerprints of the cloud nodes
to policy-sealed data attributes. Only the monitor can
trigger TPM primitives on the cloud nodes, minimizing
the negative performance impact of TPM operations and
preventing the exposure of infrastructure details.

Figure 1 illustrates a deployment of Excalibur, high-
lighting the separation between the two main system
components: theclientand themonitor. The client con-
sists of a library that allows the implementation of a
trusted cloud service to use the policy-sealed data prim-
itives. This library can be used on both the customer
side (e.g., before uploading data) and by the software
platforms running on the cloud nodes (e.g., before mi-
grating data between nodes). The customer-side client
does not expose the unseal primitive since the notion of
a configuration applies to cloud nodes only.

Whenever a cloud node reboots, the monitor runs a
special remote attestation protocol to obtain the finger-
print and identity of the node and translates these to a
node configuration by consulting an internal database.
The node configuration — which expresses physical
characteristics, like hardware or location, and software
features as a set of attributes — is then encoded as cre-

dentials that are sent to the node. These credentials are
required by cloud nodes to unseal policy-sealed data and
are destroyed whenever the nodes reboot.

The monitor exposes a narrow management interface
that lets the cloud administrator configure the mappings
between attributes and identities (i.e., fingerprints). This
is necessary for routing system maintenance as new soft-
ware platforms and cloud nodes are deployed on the
infrastructure. The management interface also allows
multiple clones of the monitor to be securely spawned
in order to scale up the system. To assure customers that
it is properly maintained, the monitor accepts only map-
pings that are vouched for by specialcertificates; cus-
tomers can directly attest the monitor in order to check
its authenticity and integrity.

Though our high-level design is simple, we still need
to overcome two main challenges: 1) to cryptographi-
cally enforce policies in a scalable, fault tolerant and ef-
ficient way, and 2) to assure customers that the monitor
operates correctly despite the fact that it is managed by
untrusted cloud administrators. To address these chal-
lenges, we: 1) use CPABE cryptography to enforce poli-
cies, and 2) devise certificates and a scalable monitor at-
testation mechanism to ensure that the monitor is trust-
worthy. We next explain these design choices in more
detail.

5.3 Cryptographic Enforcement of
Policies

The main challenge in implementing the seal and un-
seal primitives is avoiding scalability bottlenecks. A
possible design is for the monitor itself to evaluate the
policies: upon sealing, the client encrypts the data with
a symmetric key and sends this key and the policy to
the monitor; the monitor then encrypts this key and the
policy with a secret key and returns the outcome to the
client. To unseal, the encrypted key is sent to the moni-
tor, which internally recovers the original symmetric key
and policy, evaluates the policy, and releases the sym-
metric key if the node satisfies the policy. Although this
solution implements the necessary functionality, it in-
volves the monitor in every seal and unseal operation
and thereby introduces a scalability bottleneck.

An alternative design is to evaluate the policies on
the client side using public-key encryption. Each cloud
node receives from the monitor a set of private keys that
match its configuration; in this scheme, each key cor-
responds to an attribute-value pair of the configuration.
Sealing is done by encrypting the data with the corre-
sponding public keys according to the attributes defined
in the policies. This solution avoids the bottlenecks of
the first approach because all cryptographic operations
take place on the client side, without involving the mon-
itor. Its main shortcoming is complicated key manage-
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ment due to the number of key-pairs that nodes must
handle to reflect all possible attribute combinations us-
able by policies.

The solution we chose uses a cryptographic scheme
called Ciphertext Policy Attribute-Based Encryption
(CPABE) [11]. This scheme first generates a pair of
keys: a publicencryption keyand a secretmaster key.
Unlike traditional public key schemes, the encryption
key allows a piece of data to be encrypted and bound to
a policy. A policy is a logical expression that uses con-
junction and disjunction operations over a set of terms.
Each term tests a condition over an attribute, which can
be a string or a number; both types support the equality
operation, but the numeric type also supports inequali-
ties (e.g.,a = x or b > y). CPABE can then create
an arbitrary number ofdecryption keysfrom the same
master key, each of which can embed a set of attributes
specified at creation time. The encrypted data can be
decrypted only by a decryption key whose attributes sat-
isfy the policy (e.g., keys embedding the attributea = x

can decrypt a piece of data encrypted with the preceding
example policy).

Excalibur uses CPABE to encode the runtime config-
urations of the cloud nodes into decryption keys. At
setup time, the monitor generates a CPABE encryption
and master key pair and secures the master key. When-
ever it checks the identity and software fingerprint of
a cloud node, the monitor sends the appropriate creden-
tials to the node, which include a CPABE decryption key
embedding the attributes that correspond to the config-
uration of the node; the decryption key is created from
the master key and forwarded to all the nodes featuring
the same configuration. Sealing is done by encrypting
the data using the encryption key and a policy, and un-
sealing is done by decrypting the sealed data using the
decryption key. Policies are expressed in the CPABE
policy language used to specify the examples in Table 3
as well as more elaborate policies.

The security of the system then depends on the se-
curity of the CPABE keys. The monitor protects the
master key by: 1) ensuring that it cannot be released
through the monitor’s management interface, and 2) en-
crypting it before storing it on disk, as described in
Section 6.3. Additionally, cloud platforms must pro-
tect decryption keys. A software platform must pre-
vent leakage or corruption of key material through its
management interface (e.g., by direct memory inspec-
tion of VM memory); it must hold the key in volatile
memory so that key material is destroyed upon reboot.
Moreover, the software platform must force a reboot af-
ter changing TCB components that get measured during
a trusted boot (e.g., subsequent to upgrading the hyper-
visor). These properties ensure that the CPABE decryp-
tion keys of cloud nodes remain consistent with their

TPM fingerprints and therefore reflect current node con-
figurations.

The benefits of using CPABE are twofold. First, it lets
the system scale independently of the workload since
the seal and unseal primitives do not interact with the
monitor (and run entirely on the client side). Second,
it permits the creation of expressive policies directly
supported by the CPABE policy specification language
while only requiring two keys – the CPABE encryption
and decryption keys – to be sent to the nodes.

The cost using CPABE is a performance hit when
compared to traditional cryptographic schemes. Sec-
tion 6 explains how this impact can be minimized. A
second cost of using CPABE is key revocation, which is
typically difficult in identity- and attribute-based cryp-
tosystems. Since Excalibur assumes that the TCB of
nodes’ software platforms is secure, any TCB vulner-
ability accessible through the administrator’s interface
will invalidate the guarantees provided by our system.
To handle revocation of decryption keys, our current de-
sign requires that all sealed data whose original policy
satisfies the attributes of the compromised keys be re-
sealed. This operation can be done efficiently by re-
encrypting only a symmetric key, not the data itself.

5.4 Trusting the Monitor
Since the monitor is managed by the cloud administra-
tor, mismanagement threats that affect any cloud node
could also affect the monitor. Thus, another challenge
is to ensure that the monitor operates correctly and to
efficiently convey this guarantee to customers.

To meet this challenge, we must first prevent the mon-
itor from accepting flawed attribute mappings. For ex-
ample, a mapping would be flawed if the attribute “lo-
cation=DE” were mapped to the identity of a node lo-
cated in the US, or if the attribute “vmm=Xen” were
mapped to the fingerprint of CloudVisor. To prevent
this, the monitor only accepts attribute mappings that
are vouched for by acertificate. A certificate is issued
by one or multiplecertifiers, which validate the correct-
ness of mappings. For example, a certifier checks the
location of nodes and the fingerprints of software plat-
forms. This role could be played by the provider itself,
or by external trusted parties akin to Certification Au-
thorities.

Since anyone can issue certificates, the monitor must
let customers know the certifier’s identity so they can
judge the certifier’s trustworthiness and thereby be con-
fident that the attribute mappings are correct. Fur-
thermore, even if the certifier were judged trustworthy,
the system must nevertheless provide additional guar-
antees about the authenticity and integrity of the mon-
itor: only in this case can the customer be sure that
the certificate-based protections and the security proto-
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cols implemented by the monitor are correct. To pro-
vide these guarantees, customers must directly attest the
monitor when first using the system.

5.5 Monitor Scalability and Fault
Tolerance

To improve scalability and make Excalibur resilient to
faults, we enable several monitor replicas (clones) to be
spawned, and we optimize the monitor attestation pro-
tocol.

Monitor clones can be elastically launched and termi-
nated by the administrator, using the protocol described
in Section 6.7. The cloud provider can then use standard
load balancers to evenly distribute client attestation re-
quests from clients among clones. Each clone can serve
requests without communicating with other clones.

To eliminate critical bottlenecks within a clone, we
introduce two optimizations. The first improves the
throughput of clone attestations triggered by customers.
Due to TPM inefficiencies, the maximum throughput of
a monitor clone using a standard attestation protocol is
close to one attestation per second, clearly insufficient
even when spawning a reasonable number of clones. We
therefore enhance the attestation protocol with a tech-
nique based on Merkle trees that can batch a large num-
ber of attestation requests into a single TPM quote (see
Section 6).

A second optimization improves the throughput of
decryption key requests issued by the cloud nodes. The
algorithm for decryption key generation is also inef-
ficient, which could significantly slow down servicing
keys to the cloud nodes if a new key were to be gener-
ated per request. Since many machines in the datacenter
share the same configuration (e.g., machines that belong
to the same cluster), the monitor clone can instead se-
curely cache the decryption keys and send them to all
the nodes with the same profile.

6 Detailed Design

This section presents the design of Excalibur in more
detail. We first introduce certificates, which constitute
the root-of-trust of the system. We then describe the in-
terfaces offered by Excalibur for building cloud services
and managing the system. Finally, we present the secu-
rity protocols that enforce policy-sealed data.
Notation. For CPABE keys,KM, KE andKD denote
master, encryption, and decryption keys, respectively.
For asymmetric cryptography,K andKP denote pri-
vate and public keys, respectively. For symmetric keys,
we drop the superscript. Notation〈x〉K indicates datax
encrypted with keyK, and{y}K indicates datay signed
with keyK. We represent nonces asn. Session keys and
nonces are randomly generated. NotationD, P , E, and

Figure 2: Example certificate tree. The certificates in light
colored boxes form themanifestthat validates the monitor’s
authenticity and integrity.

M denote data, policy, envelope, and manifest; these
terms are clarified in Section 6.2.

6.1 Certificate Specification
Excalibur uses certificates to validate mappings between
attributes specific to a trusted cloud service and identi-
ties, i.e., fingerprints of cloud nodes. Certificates are
used both by the monitor, to check the configuration
of cloud nodes and attest new monitor clones, and by
the customer-side client, to attest the monitor. Our cer-
tificate specification supports multiple certifiers since a
single certifier may not have the expertise to assess all
the attributes of the cloud service, or simply to increase
customer trust. Therefore, certificates form a hierarchi-
cal tree. Figure 2 shows how a provider P can use the
certificates that correspond to the internal nodes in the
tree to delegate the certification of different attributes to
two certifiers, A and B. Additionally, each leaf in the
certificate tree vouches for a mapping between the at-
tributes that appear in node configurations and low-level
measurements, namely software fingerprints (PCRs) or
hardware identities (AIK keys).

Due to space limitations, we defer a discussion of the
details regarding the certification procedure, certificate
expiration, certificate revocation, and certificate man-
agement to a separate technical report [46].

6.2 System Interfaces
Excalibur’s interface has two parts: aservice interface,
which supports the implementation of cloud services,
and amanagement interface, which lets cloud admin-
istrators maintain the system.

The service interface exported by the client library
supports three operations, summarized in Table 4. Be-
fore the data can be sealed on the customer-side,attest-
monitormust be invoked to check the monitor’s authen-
ticity and integrity. It returns the encryption keyKE
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attest-monitor(mon-addr) → (KE,M) or FAIL
seal(KE, P,D) → E = 〈P,D〉K, 〈K〉KE

unseal(KE,KD, E) → (D,P ) or FAIL

Table 4: Excalibur service interface.

needed for sealing and amanifestM , which contains
the certificates needed to validate the monitor’s identity
and fingerprint (see Figure 2). The manifest is passed
to the customer, who learns from it which attributes can
be used in policies and identifies the provider and cer-
tifier identities needed to decide whether the service is
trustworthy. Since the client saves the manifest and en-
cryption key for sealing, this operation needs to be per-
formed only when the cloud service is first used.

The core primitives aresealandunseal. Seal can be
invoked by both cloud nodes and customers; it takes as
arguments the encryption keyKE, a policyP , and the
dataD and produces an envelopeE. This envelope is
passed to unseal, which returns the decrypted dataD or
fails if its caller does not satisfy the policy. In addition to
the decryption keyKD, unseal receives as an argument
the encryption keyKE, which is required by CPABE
decryption; the cloud node that invokes unseal must ob-
tain this key from the monitor. Unseal also returns the
original policyP so that a cloud node can re-seal the
data with the customer’s policy. The CPABE policy lan-
guage is used to express policies.

The management interface lets the cloud administra-
tor remotely maintain the monitor using a console. Its
main operations permit the administrator to initialize the
system, manage certificates, and spawn monitor clones.

6.3 System Initialization

Before the system can be used, the monitor must be ini-
tialized by binding a unique CPABE key pair to the ser-
vice. To do this, the cloud administrator loads the cer-
tificates that validate the service attributes into the mon-
itor and instructs the monitor to generate the key pair.
If these certificates form a consistent certificate tree, the
monitor creates unique encryption and master keys and
binds them to the tree’s root certificate (see Figure 2).
To permit for system maintenance, the administrator can
remove or add certificates as long as they form a valid
certificate tree.

The monitor maintains its persistent state in acer-
tificate store and akey store. Both stores keep their
contents in XML files on a local disk. The certificate
store contains the certificates loaded into the monitor.
The key store contains all the CPABE keys. To secure
the key material, the key store is sealed using the TPM
seal primitive, which ensures that the key store can be
accessed only under a trusted monitor configuration in
case the monitor reboots.

Monitor Node
1. AIKP

node

2. n

3. {n,PCRnode, K
P

session}AIKnode

4a. OK, 〈KE,KD〉KP

session4b. FAIL

Figure 3: Node attestation protocol.

6.4 Node Attestation Protocol

Once the setup is complete, the monitor delivers to each
cloud node a credential that reflects the boot time config-
uration of that node, which will allow the node to unseal
and re-seal data. The goal of the node attestation proto-
col is to deliver these credentials securely. Recall that,
under our assumptions, when a cloud node reboots, the
credentials kept by the node in volatile memory are lost.
Therefore, this protocol must be executed each time a
cloud node reboots so it can obtain a fresh credential.

The monitor first obtains a quote from the node that is
signed by the node’s AIK and contains the current PCRs.
Then, the monitor looks in the certificate database for
certificates that match the node’s PCRs and AIK. If any
are found, the monitor obtains the node configuration
by combining all the attributes of the matching certifi-
cates into a list like that shown in Table 2. Next, the
monitor sends the credentials to the node; these include
the encryption and decryption keys embedding these at-
tributes. Since generating a new decryption key is ex-
pensive, the monitor caches these keys in the key store
so they can be resent to nodes with the same configura-
tion.

Figure 3 shows the precise messages exchanged be-
tween the monitor and the customer-side client. The
protocol is based on a standard remote attestation in
which a noncen is sent to the node (message 2), and
the node replies with a quote (message 3); the nonce is
used to check the freshness of the attestation request.
Message 3 includes a session keyKP

sessionthat is used in
message 4 to securely send credentialsKE andKD to
the node. Since the session key is ephemeral, an adver-
sary could not perform a TOCTOU attack by rebooting
the machine after finishing attestation (message 3) but
before receiving the decryption key (message 4).

Note that the node does not need to authenticate the
monitor to preserve the security of policy-sealed data. In
the worst case, a node may receive a compromised de-
cryption key from an attacker. However, given that cus-
tomers seal their data with the encryption key obtained
from the legitimate monitor, unseal would fail in such a
scenario, and this attack would fail to compromise cus-
tomer data.
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Figure 4: Batch attestation example.The tree is built from
4 nonces. A summary for noncen10 comprises its tag and the
hashes in the path to the root.

Monitor Customer-side
1. n

2. s(n),AIKP

mon, {h(n),M,KE,PCRmon}AIKmon

Figure 5: Monitor attestation protocol.

6.5 Monitor Attestation Protocol

The monitor attestation protocol is triggered by the
attest-monitoroperation, which lets customers detect if
the monitor is legitimate by checking its authenticity and
integrity. In addition, this protocol obtains: 1) the en-
cryption key, which is used for sealing data, and 2) the
set of certificates that form the manifest, which let the
customer check the identity of certifiers and learn the
attributes that are available. The monitor is legitimate if
its identity and fingerprint are validated by the manifest.

The main challenge in designing this protocol is scal-
ability. If every customer-side client were to run a stan-
dard remote attestation, then the throughput of the mon-
itor would be extremely low due to TPM inefficiency.

To overcome this scalability problem, we batch mul-
tiple attestation requests into a single quote operation
using a Merkle tree, as shown in Figure 4. The Merkle
tree lets the monitor quote a batch ofN noncesni ex-
pressed as an aggregate hashh(nN

i=0
) and send an evi-

dence – summarys(ni) – to each customer-side client
that its nonceni is included in the aggregate hash in a
network-efficient manner (i.e., instead of sending allN

nonces, it sends just a summary of sizeO(log(N))).

The detailed monitor attestation protocol is shown in
Figure 5. In the first message, the customer-side client
sends noncen for freshness and then uses the informa-
tion returned in message 2 to validate the monitor in two
steps. First, it checks in the manifestM for the certifi-
cates with attribute “monitor”; it uses them to authen-
ticate the monitor keyAIKP

mon and to validate the fin-
gerprint of the monitor’s software platformPCRmon (see
Figure 2). Second, to validate the freshness of the re-
ceived messages, it compares noncen and the summary
s(n) against the aggregate hashh(n) produced by batch
attestation. If all tests pass, the monitor is trustworthy,

and the encryption keyKS is authentic. The customer
can then seal data securely.

6.6 Seal and Unseal Protocols
The use of CPABE lets seal and unseal execute without
contacting the monitor. In implementing these primi-
tives, we take into account two aspects of CPABE re-
lated to performance and functionality. First, since
CPABE is significantly more inefficient than symmetric
encryption, seal encrypts the data with a randomly gen-
erated symmetric key and uses CPABE to encrypt the
symmetric key. Second, given that CPABE decryption
does not return the original policy (which unseal must
return to let cloud nodes re-seal the data), we include in
the envelope the original policy and a digest for integrity
protection (see Table 4).

6.7 Clone Attestation Protocol
To scale the monitor elastically, the cloud administrator
can create multiple monitor clones. To do so, an existing
monitor instance must share the CPABE master key with
the new clone so the latter can generate and distribute
decryption keys to the cloud nodes. However, this can
be done only if the new clone can be trusted to secure the
key and to comply with the specification of Excalibur
protocols.

To enforce this condition, the existing monitor in-
stance and the clone candidate run a clone attestation
protocol analogous to that shown in Figure 3, but with
two differences. First, after message 3, the monitor
assesses if the candidate is trustworthy by checking
whether its AIK and PCR values map to the “moni-
tor” attribute contained in the manifest; if not, cloning
is aborted. Second, if the test passes, the monitor autho-
rizes cloning and sends the master key, the encryption
key, and a digest to the candidate. The digest identifies
the head of the certificate tree associated with the keys.
The new clone refrains from using the keys until the ad-
ministrator uploads the corresponding certificates to it.

7 Implementation
We implemented Excalibur in about 22,000 lines of C.
This included the monitor, a client-side library provid-
ing the service interface, a client-side daemon for se-
curing the CPABE decryption key on the cloud nodes, a
management console, and a certificate toolkit for issuing
certificates. The console communicates with the moni-
tor over SSL, and all other protocols used UDP mes-
sages. We used the OpenSSL crypto library [37] and
the CPABE toolkit [8] for all cryptographic operations,
and we used the Trousers software stack and its related
tools [51] to interact with TPMs.

We extended a cloud service so it could use Excalibur
to help us understand the effort needed to adapt services
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1324 sock.send( ” r e c e i v e\n” )
1325 sock.recv(80)
1326
1327 pipe = subprocess.Popen( ” / xen−/b i n / s e a l ”,
1328 stdin=subprocess.PIPE,
1329 stdout=sock.fileno())
1330 fd_pipe = pipe.stdin.fileno()
1331
1332 XendCheckpoint.save(fd_pipe, dominfo, True,
1333 live, dst)
1334 os.close(fd_pipe)
1335 sock.close()

Figure 6: Hook to intercept migration (from file XendDo-
main.py.) We redirect the state of the VM through a pro-
cess that seals the data before it proceeds to the destination
on socketsock(lines 1327-1330).

for Excalibur and to estimate the performance impact of
Excalibur on cloud services.

The example cloud service we adapted is an elastic
VM service where customer VMs can be deployed in
compute clusters in multiple locations, similar to Ama-
zon’s EC2 service. Our extension used Excalibur to bet-
ter assure customers that their VMs would not be acci-
dentally or intentionally moved outside of a cluster in a
certain area (e.g., the EU).

Our base platform was Eucalyptus [36], an open
source system that provides an elastic VM service with
an EC2-compatible interface. Eucalyptus supports vari-
ous VMMs; we used Xen [9] because it is open source.

Our implementation modified Xen to invoke seal and
unseal when the customer’s VM was created on a new
node, migrated from one node to another, or suspended
on one node and resumed on another. An attempt to
migrate the VM to a node outside the specified locations
would fail because the node would lack the credentials
to unseal the policy-sealed VM.

Implementing these changes was straightforward. In-
tegration with Excalibur required modifications to Xen,
in particular to a Xen daemon calledxend, which man-
ages guest VMs on the machine and communicates with
the hypervisor through the OS kernel of Domain 0. In
particular, the VM operationscreate, save, restore, and
migrate sealed or unsealed the VM memory footprint
whenever the VM was unloaded from or loaded to phys-
ical memory, respectively. To streamline this imple-
mentation, we took advantage of the fact thatxendal-
ways transfers VM state between memory and the disk
or the network in a uniform manner using file descrip-
tors. Therefore, we located the relevant file descriptors
and redirected their operations through an OS process
that sealed or unsealed according to the transfer direc-
tion. Figure 6 shows a snippet ofxendthat illustrates
this technique applied to migration. Overall, our code
changes were minimal: we added/modified 52 lines of
Python code toxend.

The other two changes we made included: (1) hard-
ening the software interfaces to prevent the system ad-

ministrator from invoking any VM operations other than
the four noted above, and (2) using a TPM-aware boot-
loader [5] to measure software integrity and to extend a
TPM register with the Xen configuration fingerprint.

8 Evaluation
This section evaluates the correctness of Excalibur pro-
tocols using an automated tool. We also assess the per-
formance of Excalibur and our example service.

8.1 Protocol Verification
We verified the correctness of our protocols using an au-
tomated theorem prover. We used a state-of-the-art tool,
ProVerif [12], which supports the specification of secu-
rity protocols for distributed systems in concurrent pro-
cess calculus (pi-calculus).

To use the tool, we specified all protocols used by our
system, which included all cryptographic operations (in-
cluding CPABE operations), a simplified model of the
TPM identity and fingerprint, the format of all certificate
types in the system, the monitor protocols, and seal and
unseal operations. In total, the specification contained
approximately 250 lines of code in pi-calculus.

ProVerif proved the semantics of policy-sealed data
in the presence of an attacker with unrestricted network
access. The attacker could listen to messages, shuffle
them, decompose them, and inject new messages into
the network; this model covers, for example, eavesdrop-
ping, replay, and man-in-the-middle attacks. ProVerif
proved that whenever a customer sealed data, the result-
ing envelope could be unsealed only by a node whose
configuration matched the policy. We provide the spec-
ification and proof online [35].

8.2 Performance Evaluation
To evaluate Excalibur’s performance, we first evaluated
the monitor’s scalability by measuring its performance
overhead as well as its throughput for its three main ac-
tivities: generating CPABE decryption keys, delivering
these keys to nodes, and serving monitor attestation re-
quests. We then measured the performance overhead of
seal and unseal on the client side.

8.2.1 Setup and Methodology

We used two different experimental setups. The first
used a two-node testbed; one node acted as a moni-
tor, and the other acted as a regular cloud node mak-
ing requests to the monitor. The second setup was used
to evaluate the monitor throughput for attesting cloud
nodes and serving customer attestation requests. For at-
testing cloud nodes, we simulated 1,000 nodes by using
one machine acting as the monitor and five machines
acting as cloud nodes, all running parallel instances of
the node attestation protocol. For monitor attestations,
we used a single machine acting as customers running
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Figure 7: Performance of decryption key generation.Time
to generate key as we vary the number of attributes (left), and
throughput for 10 attributes as we vary the number of cores
(right).

parallel instances of the monitor attestation protocol.
This number of nodes was sufficient to exhaust moni-
tor resources and ensure that there were no bottlenecks
in the client nodes.

Both setups used Intel Xeon machines, each one
equipped with 2.83GHz 8-core CPUs, 1.6GB of RAM,
and TPM version 1.2 manufactured by Winbond. All
machines ran Linux 2.6.29 and were connected to a
10Gbps network. We repeated each experiment ten
times and reported median results; the standard devia-
tion was negligible.

8.2.2 Decryption Key Generation

The overhead of generating a CPABE decryption key
depends on the number of attributes embedded in the
key. We measured the time to generate a decryption key
stemming from the same master key, in which we var-
ied the number of attributes from one to 50. This range
seemed reasonable to characterize a node configuration.

Figure 7 shows the results, which confirm two rele-
vant findings of the original authors of CPABE. First,
the overhead of generating keys grows linearly with the
number of attributes present in the key. Second, gener-
ating CPABE keys is expensive, e.g., a key with ten at-
tributes took 0.12 seconds to create, which corresponds
to a maximum rate of 8.33 keys/sec on a single core.

Although CPABE key generation is inherently inef-
ficient, we consider that its performance is acceptable
when throughput pressure on the monitor is relatively
low because large groups of machines are likely to have
the same configuration. The latency to generate a key
is experienced only by the first node that reboots with
a configuration new to the monitor. Since the key is
cached, it is reused in future identical requests without
additional costs.

8.2.3 Node Attestation

The latency of the node attestation protocol took 0.82
seconds. The bulk of the attestation cost (96%) was due
to the node’s performing a TPM quote operation neces-
sary for remote attestation. This result is not surprising
since such operations are known to be inefficient [31].
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Figure 8: Performance overhead of sealing and unsealing
data as a function of the complexity of the policy, with in-
put data of constant size (1K bytes).

Most of the work required by this protocol is car-
ried out by cloud nodes. Therefore, the attestation la-
tency should not represent a bottleneck to the coordina-
tor. To confirm this, we evaluated the monitor’s through-
put when running multiple parallel instances of this pro-
tocol. Results showed that the monitor could deliver up
to 632.91 keys per second, which is efficient and would
allow a single monitor machine to scale to serve a large
number of nodes.

8.2.4 Monitor Attestation

We measured the performance of the monitor attesta-
tion protocol. This protocol had a latency of 1.21 sec-
onds and a throughput of approx. 4800 reqs/sec on a
single node. The quote operation performed by the
monitor’s local TPM accounted for the bulk of the la-
tency (0.82 seconds), and the remaining time was due to
cryptographic operations and network latency. The high
peak throughput we observed was enabled by batch at-
testation. When we disabled batching, the throughput
dropped sharply to 0.82 reqs/sec. Thus, this technique
is crucial to the scalability of the monitor and delivered
a throughput speedup of over 5000x.

8.2.5 Sealing and Unsealing

The performance overhead of the seal and unseal opera-
tions performed by Excalibur clients was dominated by
the two cryptographic primitives: CPABE and symmet-
ric cryptography (which uses AES with a 256-bit key
size). We study their effects in turn.

To understand the overall performance overhead of
CPABE, we set the input data to a small, constant size.
Figure 8 shows the performance overhead of sealing and
unsealing 1KB of data as a function of policy complex-
ity. On the left is the cost of a seal operation as a func-
tion of the number of tests contained in the policy. For
instance, policyA=x and (B=y or B=z)contains three
comparisons. Our findings show that the sealing cost
grows linearly with the number of attributes. The cost
of sealing for a policy with 10 attributes was about 128
milliseconds.

On the right, Figure 8 shows the cost of an unseal op-
eration. Unlike encryption, CPABE decryption depends
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sealing, varying the size of the input data.
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Figure 10: CPABE fraction in the performance overhead
of unsealing, varying the size of the input data.

on the number of attributes in the decryption key that
are used to satisfy the policy. For example, consider a
decryption key with attributesA:x andB:y, and policies
P1 : A=x, andP2 : A=x and B=y. PolicyP1 uses one
attribute, whereasP2 uses two. As before, the perfor-
mance overhead of unseal grows linearly with the size
of the policy. The time required to unseal a policy with
10 attributes was 51 milliseconds.

To study the relative effect of CPABE on the overall
performance of Excalibur primitives, we varied the size
of the input data. Figures 9 and 10 show the fraction
of overhead due to CPABE, and Table 5 lists the abso-
lute operation times. Our findings show that CPABE ac-
counts for the most significant fraction of performance
overhead. Sealing 1 MB of data with a policy contain-
ing 10 leaf nodes took 134 milliseconds, and 87% of
the total cost of sealing was due to CPABE encryption.
For unsealing, the fraction of CPABE was slightly lower
than for sealing, but it was still very significant. Unseal-
ing 1 MB of data with a policy satisfying 10 attributes
of the private key took 68 milliseconds, where 68% of
the latency was due to CPABE.

In summary, our evaluation of Excalibur showed
these results: the costs of generating decryption keys
and the node attestation protocol were reasonable when
taking into account how infrequently they are required;
the monitor scaled well with the number of cloud cus-
tomers that used the service for the first time and with
the number of cloud nodes that were attested upon re-
boot; the monitor could be further scaled up using
cloning, and the latency of seal and unseal was reason-
able and dominated by the cost of symmetric key en-
cryption for large data items.

Data Latency (ms)
(bytes) Sealing Unsealing
1K 120 50
10K 120 49
100K 121 51
1M 134 68
10M 264 243
100M 1522 1765

Table 5: Performance overhead of sealing and unsealing
data, varying the size of the input data.
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Figure 11: Latency of VM operations in Xen. Encrypting
the VM state accounts for the largest fraction of the overhead,
while the execution time of CPABE is relatively small. En-
cryption runs AES with 256-bit key size.

8.3 Cloud Compute Service

We now evaluate the performance overhead that the
changes to Xen incur on its VM management opera-
tions, namelycreate, save, restore and migrate. We
measured the time to complete each operation using an
example VM for 10 trials. The example VM ran a De-
bian Lenny distribution, with Linux-xen 2.6.26, used a
4GB disk image, and its memory footprint was 128MB.

Figure 11 shows the results of our experiments. The
performance impact is noticeable, especially for the
save, restore, andmigrateoperations, where the com-
pletion time roughly doubled. The overhead, however,
came from encrypting the VM’s entire memory foot-
print; using Excalibur to secure or recover the encryp-
tion key added a small delay. Unlike the other opera-
tions, createexperienced a small overhead increase of
only 4%. This is because the system only decrypted
the kernel image, which occupied 4.6MB, instead of the
larger VM footprint as it did for the other operations.

As the results show, seal and unseal introduced no-
ticeable overhead to the VM operations due to the sym-
metric encryption of the VM image. However, given
that these operations occur infrequently, and consider-
ing the additional benefits to data security, we argue that
these results reflect an acceptable trade-off between se-
curity and performance.

9 Related Work

Over the past several years, there has been considerable
work on trusted computing [38]. Most of this work tar-
gets single computers with the goal of enforcing appli-
cation runtime protection [16,20,26,30,31], virtualizing
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trusted computing hardware [10], and devising remote
attestation solutions based on both software [18,48] and
hardware [13, 21, 42–44, 49]. Other work, focusing on
distributed environments, provides integrity protection
on shared testbeds [14] or distributed mandatory access
control [29]. More recently, trusted computing primi-
tives have been adapted to mobile scenarios to provide
increased assurances about the authenticity of data gen-
erated by sensor-equipped smartphones [27]. Our work
concentrates on the specific challenges of cloud comput-
ing environments, which fall outside the scope of these
prior efforts.

Excalibur shares some ideas with property-based at-
testation [42], whose goal is to make hash-based soft-
ware fingerprints more meaningful to humans. Like Ex-
calibur, property-based attestation maps low-level fin-
gerprints to high level attributes (properties) and relies
on a monitor (controller) to perform this mapping. How-
ever, this prior work offers an abstract model without
an associated system. Moreover, Excalibur extends this
work by proposing new trusted computing primitives.

Nexus [50], a new operation system for trustworthy
computing, introduces active attestation, which allows
attesting a program’s application-specific runtime prop-
erties and supports access control policies per applica-
tion. Both Nexus policies and policy-sealed data can
bind data based on attributes. However, the two systems
target complementary problems: Nexus policies focus
on nodes running Nexus and restrict the applications that
can access the data; Excalibur policies focus on multi-
node settings and restrict the cloud nodes that can access
the data, supporting multiple software platforms. Thus,
Nexus would be a good candidate to use as an attribute
in an Excalibur policy.

The work by Schiffman et al. [47] aims to improve
the transparency of IaaS cloud services by providing
customers with integrity proofs of their VMs and un-
derlying VMMs. Like Excalibur, a central compo-
nent, called cloud verifier (CV), mediates attestations of
nodes and uses high-level properties (attributes) for rea-
soning about node configurations. However, the scope
of this work is narrower than ours: while the CV pro-
vides only integrity proofs, Excalibur builds on these
proofs to enforce policy-sealed data, which is a general,
data-centric abstraction for protecting customer data in
the cloud. In addition, the CV administrator is assumed
to be trustworthy, representing a weaker threat model;
in our view, this assumption does not address an im-
portant class of problems that occur in cloud services
today. Finally, their system does not address the short-
comings of sealed storage TPM primitives, which could
raise concerns of data management inflexibility and iso-
lation crippling if these primitives need to be used by
cloud services to secure persistent data.

Multiple software systems have been proposed to in-
crease the security of sensitive data. At the OS layer,
hypervisors and OSes can protect the confidentiality and
integrity of data using isolation [24, 30, 39, 53] or in-
formation flow control [52] techniques. At the middle-
ware layer, frameworks that build Web services to of-
fer their users strict control over their data hosted at the
provider site [22] enable controlled sharing of sensitive
data using differential privacy [41] or provide general-
purpose encapsulation mechanisms for data [28]. These
proposals are complementary to our work: despite their
potential to increase security and control over data in
the cloud, these proposals lack a scalable mechanism
for bootstrapping trust in the multi-node cloud environ-
ment. By combining these platforms with Excalibur,
cloud providers could build new trusted cloud services.

10 Conclusion

This paper presented Excalibur, a system that imple-
ments policy-sealed data. This new abstraction ad-
dresses the limitations of trusted computing when used
in the cloud and enables the design of trusted cloud ser-
vices. Excalibur leverages TPMs, a novel architecture
with a set of associated protocols, and CPABE to offer
developers two new primitives, seal and unseal, for con-
structing cloud services with stronger protection over
how data is managed. We demonstrated the simplicity
and flexibility of policy-sealed data by using Excalibur
to build an elastic VM cloud computing service based
on Xen and Eucalyptus, which accesses customer’s data
only on customer-approved platform configurations.
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