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ABSTRACT
In recent years, there have been a few proposals to add
a small amount of trusted hardware at each replica in a
Byzantine fault tolerant system to cut back replication fac-
tors. These trusted components eliminate the ability for a
Byzantine node to perform equivocation, which intuitively
means making conflicting statements to different processes.

In this paper, we define non-equivocation and study its
power in the context of distributed protocols that assume
a Byzantine fault model. We show that non-equivocation
alone does not allow for reducing the number of processes
required to reach agreement in the presence of Byzantine
faults in the asynchronous communication model, by proving
a lower bound of n > 3f processes for agreement with non-
equivocation. However, when we add the ability to guar-
antee the transferable authentication of network messages
(e.g., using digital signatures), we show that it is possible to
use non-equivocation to transform any protocol that works
under the crash fault model into a protocol that tolerates
Byzantine faults, without requiring an increase in the num-
ber of processes.

Categories and Subject Descriptors
B.8.1 [PERFORMANCE AND RELIABILITY]: Re-
liability, Testing, and Fault-Tolerance; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Dis-
tributed applications; D.4.6 [OPERATING SYSTEMS]:
Security and Protection—Cryptographic controls

General Terms
Algorithms, Reliability, Security, Theory
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1. INTRODUCTION
The Byzantine fault model [15] is an important founda-

tion for building protocols that offer strong guarantees in
the presence of processes that fail in ways other than silently
crashing. This model has been adopted by a series of prac-
tical replicated systems [5] that are resilient to arbitrary
faults, which can originate from issues ranging from soft-
ware bugs to malicious attacks.

In recent years, several proposals [7, 16] have emerged to
add a trusted hardware component to each process running
in a Byzantine fault tolerant replicated system in order to
make the replication protocols more efficient, most notably
by reducing the number of processes that are required to
build a replicated state machine. The capability behind this
trusted component is to prevent a Byzantine process from
equivocating other nodes, which intuitively means making
conflicting statements to two or more other processes. Since
this can be enforced using a very simple design that can be
implemented on today’s hardware, the expectation is that
this new capability might be widely adopted in the design
of more efficient secure distributed systems.

In this paper we set to study the power of non-equivocation.
To this end, we formally define non-equivocation in the con-
text of a distributed system with Byzantine processes, and
we study whether non-equivocation can aid in finding ef-
ficient solutions to the problems of agreement and reliable
broadcast.

Our first finding is that non-equivocation is unable to re-
duce the number of processes required to solve Byzantine
agreement in an asynchronous system. In particular, we
prove a lower bound of 3f + 1 processes to solve agreement
in a system model that considers both Byzantine faults and
non-equivocation. This proof does not contradict the bene-
fits in terms of reducing replication factors achieved by sys-
tems like A2M [7] and TrInc [16], since the proof assumes
the nonexistence of a primitive that allows for the transfer-
able authentication of network messages (e.g., digital sig-
natures). The second result in this paper focuses precisely
on the system model where the unforgeability of network
messages can be guaranteed. In this setting, we show how
we can use non-equivocation to obtain a generic transforma-
tion from a protocol that works under the crash fault model
into a protocol that provides the same guarantees under the
Byzantine fault model, without requiring an increase in the
number of processes. Such transformation can be used, for
instance, to solve consensus with 2f + 1 processes.

With this work, and namely by introducing a new system



model where Byzantine processes are constrained in their
behavior by the presence of trusted hardware, we hope to
initiate the formal study of the role of trusted computing
in the design of secure distributed protocols, an area that is
gaining increasing visibility in the security community. Fur-
thermore, we envision that our generic transformation can
be an initial step in a research avenue of building distributed
protocols that are secure by design, at the cost of adding in-
expensive trusted hardware at each process plus a modest
increase in protocol complexity.

1.1 Related Work
Chun et al. [7] observe that one of the most disruptive

behaviors of Byzantine processes is lying in different ways
to different clients or servers. They coin the term equiv-
ocation for this adversarial behavior, and propose a small
trusted computing facility, attested append-only memory
(A2M), that makes protocol designs immune to equivoca-
tion and enables a lower degree of replication. In particu-
lar, using the non-equivocation mechanism from A2M, they
provide a Byzantine fault-tolerant state machine replication
system that requires only 2f + 1 replicas instead of 3f + 1
required in the general Byzantine environment [5]. Levin et.
al. [16] reduce the hardware trust assumption required for
non-equivocation to a trusted non-decreasing counter and
a key that provides unique, once-in-a-lifetime attestations.
Nevertheless, the general idea that these papers convey is
that using a non-equivocation mechanism results in an im-
proved resiliency bound, which we show not to be true, at
least from using non-equivocation per se. We instead find
that, along with non-equivocation, the use of digital sig-
natures as transferable authentication in A2M and TrInc
results in an improved resiliency bound.

The concept of transforming a protocol tolerating f crashes
to a protocol tolerating f Byzantine faults with translations
using more processes is not new. Bracha [4] defined such a
translation for a crash-tolerant consensus protocol to toler-
ate the same number of Byzantine faults. Coan [8] gener-
alizes this translation to a larger variety of consensus and
related protocols. Ho, Dolev, and van Renesse [13] observe
that Coan’s generalized translation is suitable only for con-
sensus and related problems, and does not work for arbi-
trary distributed protocols. They instead define the concept
of ordered authenticated reliable broadcast (OARcast) over
FIFO communication links, and use an OARcast protocol to
convert a crash-tolerant system into a system tolerating the
same number of Byzantine faults. In follow-up work [14],
they further improve their translation to be more scalable
and reconfigurable and prove the practicality of the transla-
tion by applying it to a link-based routing protocol and an
overlay multicast protocol.

Our generic translation provides significant improvement
over the above discussed translations: using non-equivocation
and transferable authentication mechanisms, we translate a
crash-tolerant protocol to a Byzantine fault tolerant protocol
without asking for any additional processes or any additional
messages (though substantially increasing the message size);
we do not restrict our links to be FIFO; finally, our transla-
tion is simple, and easy to analyze and specialize for various
distributed protocols.

Furthermore, small trusted hardware components have
been considered as part of hybrid fault models [18]. Such
devices enable a smaller number of replicas and reduce the

communication complexity as shown for distributed cryp-
tographic protocols in the security literature [2, 11]. Al-
though these systems inherently use the concepts of non-
equivocation and transferable authentication, they do not
formally define or study the power of non-equivocation and
transferable authentication.

2. SYSTEM MODEL
This section presents our system model, and precisely de-

fines the capability of non-equivocation.

2.1 Fault and communication model
The system consists of n processes p1, . . . , pn connected

by a network such that processes are pairwise connected by
an asynchronous channel, i.e., messages between two pro-
cesses can be arbitrarily delayed, or reordered. However,
we assume messages are eventually delivered. At most f
of n processes may exhibit faulty behavior. The remaining
processes are correct. We consider in this work two distinct
models for faulty processes:

Crash. A faulty process does not execute further steps once
it crashes;

Byzantine. A faulty process may deviate arbitrarily from
the correct behavior of the protocol it implements.

2.2 Computation Model
A system S consists of a complete graph of system pro-

cesses and an algorithm for each process in the graph. An
algorithm for a process is a (possibly infinite state) automa-
ton, which has an initial state Σ0 and performs the following
actions in each step it takes:

• it receives a message through the incoming channels;

• given its state and the message received, it moves to a
new state and sends a (possibly empty) set of messages
through the outgoing channels.

This allows us to define a process behavior Bp,h for pro-
cess p as a sequence of the form: Σp,0, (Rp,1,Σp,1,Sp,1),
(Rp,2,Σp,2,Sp,2), . . . , (Rp,h, Σp,h,Sp,h) such that

• Σp,0 is an initial state of the process,

• Rp,j is the jth set of messages received by p1,

• Σp,j is the state of the process p after processing the
message Rp,j while in state Σp,j−1, and

• Sp,j is the set of messages (if any) sent by p after en-
tering in the state Σp,j .

2.3 Authentication
An authenticated message m is accompanied by an au-

thentication token σpi that allows a recipient pj to verify
that pi generated the message using verify(m,σpi). A key
property of message authentication is that authentication to-
kens are unforgeable: if pi is non-faulty then verify(m,σpi)
evaluates to true if and only if pi generated the message m;
for a faulty pi, verify(m,σpi) ∧ verify(m′, σpi) ⇒ m = m′.
An authentication token provides transferable authentication
if correct processes pj and pk always evaluate verify(m,σpi)

1In some cases Rp,j will be a singleton set.



in the same way, when pk receives message m and authen-
tication token σpi from pj . An authentication token pro-
vides non-transferable authentication if process pj can eval-
uate verify(m, σpi) to true while process pk may not be
able to correctly evaluate it. For example, digital signatures
provide transferable authentication while arrays of MACs
provide non-transferable authentication [1].

2.4 Non-equivocation
A process p equivocates if it sends different messages to

different replicas in the same round while it was supposed to
send the same message according to the protocol. To prevent
equivocation, the system model provides the protocol de-
signer with the capability of non-equivocation. This capabil-
ity consists of being able to validate a pair (k,m) from a pro-
cess p, where key k ∈ N and m is an arbitrary message, with
the guarantee that the same key k cannot be used to validate
contradicting messages from process p. Let validp(k,m) be
a predicate that evaluates to true if and only if k validates m
and (k,m) has been generated by p. Non-equivocation guar-
antees that validp(k,m) ∧ validp(k,m′) ⇒ m = m′. Note
that the valid predicate is generally realized using the ver-
ify predicate of the authentication mechanism discussed in
Section 2.3.

3. LOWER BOUNDS
In this section, we study the lower bounds for the reliable

broadcast primitive using the non-equivocation Byzantine
model considered in A2M [7] and TrInc [16]. Contrary to the
belief, subjacent to these papers, that the non-equivocation
restriction on a Byzantine adversary improves the degree
of replication from n ≥ 3f + 1 to n ≥ 2f + 1, we ob-
serve that signatures (or transferable authentication) also
play an instrumental role along with the non-equivocation
restriction in improving the resiliency bound. In particular,
we prove that assuming at most f Byzantine faults in an
asynchronous system of n processes, the non-equivocation
restriction and transferable-authentication tokens together,
but not individually, are sufficient to improve the resiliency
bound to n ≥ 2f + 1.

Note that our resiliency results also apply to other related
distributed computing primitives such as consensus, state
machine replication and verifiable secret sharing, since they
are stronger problems compared to the reliable broadcast
problem we target [6].

3.1 Definition
We start by defining the Reliable Broadcast (r-broadcast)

primitive.
r-broadcast is a fundamental primitive for synchronization

among a group of processes, which can be characterized by
the following liveness and safety properties.

Definition 1. In an asynchronous system of n processes
having a distinguished sender s and an f-limited adversary
with point-to-point authenticated links, a reliable broad-
cast (r-broadcast) protocol satisfies the following liveness
and safety conditions:

Liveness.

Sender Termination (L1). If the sender is correct
and sends m, then the sender delivers m.

Completeness (L2). If a correct process delivers a
message, then all correct processes deliver a mes-
sage.

Safety.

Validity (S1). If the sender is correct and a correct
process delivers a message m, then the sender
must have sent m.

Agreement (S2). If a correct node pi delivers mi

and another correct node pj delivers mj, then mi =
mj.

Integrity (S3). A correct node delivers at most one
message.

Note that the r-broadcast primitive cannot guarantee ter-
mination of a protocol instance for a faulty sender. It fol-
lows from the impossibility of guaranteeing consensus in the
asynchronous setting with even a single crash fault [10].

The r-broadcast primitive only needs n ≥ f+1 in the crash
fault model [12] while it requires n ≥ 3f+1 in the Byzantine
model [3]. We include the corresponding resilience-optimal
r-broadcast protocols in Appendix A.

3.2 Analysis
We now show two lower bound claims for the degree of

replication of r-broadcast when considering non-equivocation
and transferable authentication. The first claim assumes
that faulty processes cannot equivocate, but there is no
transferable authentication. The second claim makes the
opposite assumption: the model does not give access to
non-equivocation, but does allow for transferrable authenti-
cation.

In the following proofs, we use the notion of locality. If
two isomorphic subsystems consisting of correct processes
are such that corresponding processes start in the same ini-
tial states and corresponding input edges to the subsystems
carry the same messages, then the two subsystems exhibit
identical behavior, independent of the overall systems. This
property is called the locality axiom [9].

Claim 3.1. Suppose an asynchronous system of n pro-
cesses such that at most f processes fail under the Byzantine
model and n < 3f + 1. If processes do not implement trans-
ferable authentication and faulty processes cannot equivocate,
then there is no solution for r-broadcast.

Proof. Proof by contradiction. Suppose that there ex-
ists a protocol that solves r-broadcast with n < 3f+1 without
using transferable authentication even when the adversary
cannot equivocate. Without loss of generality, we assume
that n = 3f .

Suppose that we partition the set of processes n into dis-
joint subsets A, B, and C, such that each subset contains
exactly f processes. Using this partition of the set of pro-
cesses, we construct several runs of the protocol, the last
of which violates a safety property. In all runs there is a
distinguished process s ∈ A that broadcasts a message.

Run 1. Processes in C crash at the beginning of the run
(time t0):

• Process s broadcasts m′, all processes in C crash
at time t0, and all other processes are correct;



• Messages between A and B are delivered in a
timely fashion;

• By the Liveness and Agreement properties of r-
broadcast, all processes in A and B deliver m′ by
time t.

Run 2. Processes in A crash after processes in B have de-
livered m′, and messages to and from C are arbitrarily
delayed:

• Process s broadcasts m′, all processes in A crash
at time t and all other processes are correct;

• Messages between A and B are delivered in a
timely fashion and the steps of processes in A and
B are the same as in Run 1 until time t;

• Processes in B deliver m′ by time t, since they
cannot differentiate Run 2 from Run 1;

• Messages between B and C are delayed until time
t′, t′ arbitrarily large and t′ > t;

• Messages between A and C are not delivered (pro-
cesses in A are faulty in this run);

• By the Agreement property of r-broadcast, pro-
cesses in C deliver m′ by time t′′ > t′.

Run 3. All processes are correct, but messages from and to
processes in C are arbitrarily delayed:

• Process s broadcasts m′, and all processes are cor-
rect;

• Messages between A and B are delivered in a
timely fashion and the steps of processes in A and
B are the same as in Run 1 until time t;

• Processes in B have all delivered m′ by time t,
since they can’t differentiate Run 3 from Run 2;

• Messages betweenB and C are delayed until time t′;

• Messages between A and C are delayed until time
t′′′ > t′′.

• Processes in C deliver m′ by time t′′, since they
cannot distinguish Run 3 from Run 2.

Run 4. All processes in B are faulty:

• Process s broadcasts m, processes in B are faulty,
and all other processes are correct;

• Messages between processes in B and C are de-
layed until time t′ and the steps of processes in
B and C are the same as in Run 3, in which the
sender broadcasts m′;

• Messages between A and C are delayed until time
t′′′;

• Processes in C deliver m′ by time t′′, since they
cannot distinguish Run 4 from Run 3;

• By Liveness, process s delivers m.

Run 4 constitutes a violation of the Agreement property
and contradicts the assumption of a protocol that solves r-
broadcast for n ≤ 3f processes.

Note that in the proof of Claim 3.1, Run 4 is valid even if
faulty processes cannot equivocate. This is because Byzan-
tine processes in B (in Run 4, Step 2) repeat sequences of
messages of another run, while not equivocating. Correct
processes in C cannot distinguish between Run 3 and Run
4, since there is no transferable authentication scheme im-
plemented by assumption.

The next theorem considers the opposite setting, where
Byzantine nodes can equivocate, but the system model al-
lows for transferable authentication.

Claim 3.2. Suppose an asynchronous system of n pro-
cesses such that at most f processes fail under the Byzan-
tine model and n < 3f + 1. If processes implement transfer-
able authentication and faulty processes can equivocate, then
there is no solution for r-broadcast.

Proof. Proof by contradiction. Suppose that there ex-
ists a protocol such that it solves r-broadcast with n < 3f+1
assuming transferable authentication and that faulty pro-
cesses can equivocate. Without loss of generality, we assume
that n = 3f .

Suppose that we partition the set of processes n into dis-
joint subsets A, B, and C, such that each subset contains
exactly f processes. Using this partition of the set of pro-
cesses, we construct three runs. In all runs there is a distin-
guished process s ∈ A that broadcasts a message.

Run 1. Processes in B crash:

• Process s broadcasts m and all processes in B
crash at the beginning of the run (t0);

• By the agreement and the liveness properties of r-
broadcast all process in A and C eventually deliver
m by time t.

Run 2. Processes in C crash:

• Process s broadcasts m′ and all processes in C
crash at the beginning of the run (t0);

• By the agreement and the liveness properties of r-
broadcast all process in A and B eventually deliver
m′ by time t′.

Run 3. Processes in A are faulty:

• Processes in A execute the same steps as in Run 1
when exchanging messages with processes in C;

• Processes in A execute the same steps as in Run 2
when exchanging messages with processes in B;

• Messages between B and C are delayed until time
max{t, t′};
• Processes in C cannot distinguish Run 3 from

Run 1, and they deliver m;

• Processes in B cannot distinguish Run 3 from
Run 2, and they deliver m′.

Run 3 constitutes a violation of the Agreement property
and contradicts the assumption of a protocol that solves r-
broadcast for n ≤ 3f processes.

Note that in the proof of Claim 3.2 the faulty processes in
Run 3 do not violate transferable authentication, although
the first two steps of the run possibly violate non-equivocation.
We also note the similarity between the argument in the
proof of the theorem and the argument provided by Pease,
Shostak, and Lamport for interactive consistency [17]; we
adapted it to the r-broadcast problem.



Initial process architecture that assumes a crash fault model.

Translated process architecture that is designed for a Byzantine fault model.

Figure 1: Overview of the translation from a crash fault tolerant system to a Byzantine fault tolerant system.

4. TRANSLATION
In this section we demonstrate the power of combining

non-equivocation with transferable authentication. In par-
ticular, we show that there exists a translation of a dis-
tributed protocol that can tolerate f crash faults into one
that tolerates f Byzantine faults using the same number of
processes and the same number of (longer) messages. This
transformation makes use of both non-equivocation and dig-
ital signatures. This result implies that we can solve Byzan-
tine agreement with only 2f + 1 processes, thus confirming
the potential of non-equivocation evidenced by A2M [7] and
TrInc [16].

4.1 Requirements
The basic idea of the translation mechanism is to replace

the primitives for sending and receiving messages through
the network with a more complex protocol that provides
the same key guarantees about the contents of the delivered
messages that are expected by the original protocol in the
crash fault model.

This strategy is similar to the one used by another pro-
posal by Ho et al. [13, 14] for transforming protocols that
tolerate crash faults into protocols that provide the same
guarantees in the Byzantine fault model. In particular, they
identify the following key safety properties that are expected
by a crash fault tolerant protocol regarding the messages
that are delivered by the network, and that must also be
provided by our translation mechanism.

Safety. If the sender pi is correct and a correct process pj
receives a message m from pi, then the sender pi must
have executed send with m.

Integrity. If a correct process receives a message m, then
m is a valid state machine message.

Regarding the Integrity property, message m sent by pro-
cess pi is valid if it corresponds to the output of applying
a sequence of valid messages to the state machine of the
process (and considering that external inputs, like messages
coming from clients of a replicated service, are valid), i.e.,
there is a correct process behavior Bpi,h = Σ0, (R1,Σ1,S1),
(R2,Σ2,S2), . . . , (Rh, Σh,Sh) such that m ∈ Sh and all Ri

are valid.
Ho et al. [13, 14] also include the liveness property that

if a correct sender pi sends a message to a correct process
pj , then process pj will receive the message eventually. This
property is generally satisfied by asynchronous communica-
tion models assumed by many distributed protocols, e.g.,
the r-broadcast primitive in Section 3.1. However, it is not
considered mandatory for every crash fault tolerant proto-
col, and to make our list of requirements more generic, we
do not include this liveness property in the list.

The previous generic transformation work [13, 14] stated
another property, which we modify in our set of require-
ments. The original missing property stated that the trans-
formed network implements a first in, first out (FIFO) pol-
icy [13, 14]. However, this is insufficient, since two correct



upon B-receiving a message ((kp,m,Rp,Sp), σp) from p:

verify((kp,m,Rp,Sp), σp)
Check that kp = |Rp| = |Sp|
For all the messages in Rp and Sp check authenticity
Instantiate copy of state machine in initial state, feed messages inputs in Rp, confirm outputs match those in Sp
For all the messages in Rp, recursively apply same checks to ensure checks were made by sender
if all checks pass then

Deliver T-receive message m from p
add ((kp,m,Rp,Sp), σp) to the set of received messages R

end if

upon receiving a T-send(m) to set P from the state machine:

Increment k
σp = GenerateAuthentication (k,m,R,S)
B-send ((k,m,R,S), σp) to all processes in P
Add ((k,m,R,S), σp) to the set of sent messages S

Figure 2: Pseudocode for the generic translation

processes might receive contradictory but valid messages
from a Byzantine process (i.e., the final output of two forks,
both corresponding to correct executions) without violating
FIFO since each correct process only receives one of the two
messages. This is a situation that crash fault tolerant pro-
tocols do not expect, and may not be ready to handle. We
therefore modify this final requirement as follows.

Consistency. If correct processes p1 and p2 receive valid
messages mi ∈ Si and mj ∈ Sj respectively from pro-
cess pg, then either (a) Bpg,i is a prefix of Bpg,j , (b)
Bpg,j is a prefix of Bpg,i, or (c) Bpg,i = Bpg,j∧Si = Sj
(where Bpg,x is the process behavior that supports the
validity of message mx).

4.2 Translation Implementation
Now, we show a translation, defined as a set of wrapper

functions for processes to send and receive messages, that
meets the above listed properties. Given that the terms send
and receive will be overloaded, we will make the following
distinction throughout our description:

• B-send and B-receive refer to the lower level sending
and receiving of messages through the network in the
Byzantine model (i.e., used by the implementation of
the translation).

• T-send and T-receive are the resultant higher level
primitives, i.e., the interface exported by the transla-
tion layer to the implementation of the original crash
fault tolerant protocol sitting above that layer.

The goal of the translation layer is to implement T-send

and T-receive primitives that satisfy the three requirements
defined in Section 4.1 despite f Byzantine faults, by lever-
aging the non-equivocation and transferable authentication
mechanisms. Note that our transformation encapsulates and
runs instances of the state machine. Consequently, it is not
independent of the state machine, and does not clearly sep-
arate the communication layer and the application layer.

The safety requirement can be ensured by retrying the B-

send attempts and by authenticating messages in B-send

and B-receive. Our assumption of transferable authen-
tication is thus sufficient (and even too strong since non-
transferable authentication would also suffice).

The integrity requirement requires the receiver to obtain
a guarantee that a message from process pi is based on a

sequence of valid messages. In this case, the transferable
authentication mechanism helps by allowing pi to prove the
validity of its output message to its receivers by attaching
the corresponding signatures (or authentication tokens) of
pi’s inputs that led to sending the output message. Then by
replaying these authentic inputs, the integrity requirement
can be validated.

Finally, the consistency requirement can be enforced through
non-equivocation, simply by including a sequence number in
the key associated with each outgoing message, thus forcing
a total order on the outputs of each process, and by forcing
the sender process to also transmit all the previous sequence
numbers in each message step.

We therefore reach the translation mechanism that is de-
picted in a block diagram in Figure 1. In Figure 2 we present
the pseudocode for the translation.

The idea is that to T-send a message a node must pass
it through a non-equivocation layer and a transferable au-
thentication layer. The non-equivocation layer causes the
output of the ith state transition that is sent to be associ-
ated with key k, and passes the (k,m) message to the next
layer. The transferable authentication layer associates with
each outgoing message the sequence of signed inputs that
led to generating this message, and also signs the message
before B-sending it.

On the receiver side, the transferable authentication layer
checks that the message is signed by the correct sender, re-
plays the execution of the sequence of inputs encapsulated in
the message, checking if the output matches the payload that
was received, and recursively applies these checks to every
message in the sequence, to ensure that the messages were
based on valid inputs. The non-equivocation layer merely
has to check that the key k matches the number of inputs
in the sequence.

We present a correctness argument for this transformation
in Appendix B.

5. CONCLUSION AND FUTURE WORK
Non-equivocation is a practical capability available to the

design of systems that tolerate Byzantine faults. It has re-
ceived some attention from the designers of distributed sys-
tems in recent years because of the important practical fea-
tures it enables: a simple implementation and a lower degree
of replication.



In this paper, we formally defined non-equivocation, and
showed that, contrary to the belief implied by the initial pro-
posals for using hardware support for non-equivocation, this
capability by itself does not decrease the number of replicas
required to solve problems like consensus in the Byzantine
fault model. However, coupled with transferable authenti-
cation, it is possible to reduce the degree of replication. To
demonstrate it, we show a generic transformation from a
crash-tolerant protocol into one that is Byzantine tolerant,
using non-equivocation and transferable authentication, re-
quiring the same number of processes as the crash-tolerant
counterpart.

This work opens some near term follow-up research direc-
tions, namely it would be interesting to make our translation
mechanism more efficient. The current translation uses an
expensive mechanism of replaying the execution of almost
the entire system to ensure that the message that is received
is legitimate. While it shows that a translation exists with-
out increasing the number of processes, it is also clearly not
a practical strategy and can be highly optimized, e.g., by
reusing previous verifications, and also by using checkpoint-
ing mechanisms that allow nodes to agree on a correct view
of the system.

Given the potential of non-equivocation to enable more
efficient protocols that tolerate Byzantine faults, and the vi-
ability of the concept that has been shown by the existence of
efficient hardware implementations and its application to ex-
isting distributed systems, we believe that the formal study
of non-equivocation is an important research direction. Fur-
thermore, the translation we provide is an important initial
step towards the design and implementation of distributed
systems that are secure by construction, and yet efficient in
the required number of processes.
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APPENDIX
A. RELIABLE BROADCAST PROTOCOLS

We consider two reliable broadcast protocol in the asyn-
chronous setting from the literature. In Figure 3, we present
a r-broadcast protocol [12] in the crash fault model for n ≥
f+1, while in Figure 4, we include a r-broadcast protocol [3]
in the Byzantine model for n ≥ 3f + 1.



broadcast protocol for process pi during session (τ, s)

upon a message (τ, in, r-broadcast,m) /* for the sender s*/

for all j ∈ [1, n] do
send the message (τ, s, send,m) to pj

end for
output (τ, s, out,m)

upon a message (τ, s, send,m) from pm for the first time:

for all j ∈ [1, n] do
send the message (τ, s, send,m) to pj

end for
output (τ, s, out,m)

Figure 3: Reliable Broadcast for n ≥ f + 1 for the
crash Model [12]

broadcast protocol for process pi during session (τ, s)

upon initialization:

for all m do
em ← 0; rm ← 0

end for

upon a message (τ, in, r-broadcast,m) /*for the sender s*/

for all j ∈ [1, n] do
send the message (τ, s, send,m) to pj

end for

upon a message (τ, s, send,m) from s for the first time:

for all j ∈ [1, n] do
send the message (τ, s, echo,m) to pj

end for

upon a message (τ, s, echo,m) from p` for the first time:

em ← em + 1
if em = dn+f+1

2
e
∧
rm < f + 1 then

for all j ∈ [1, n] do
send the message (τ, s, ready,m) to pj

end for
end if

upon a message (τ, s, ready,m) from p` for the first time:

rm ← rm + 1
if rm = f + 1

∧
em < dn+f+1

2
e then

for all j ∈ [1, n] do
send the message (s, τ, ready,m) to pj

end for
else if rm = n− f then

output (τ, s, out,m)
end if

Figure 4: Bracha’s Reliable Broadcast for n ≥ 3f + 1
for the Byzantine Fault Model [3]

B. A CORRECTNESS ARGUMENT FOR THE
GENERIC TRANSLATION

We present an argument that the translation satisfies the
safety, integrity, and consistency properties. We note that

many crash fault tolerant protocols also require liveness; i.e,
if a correct sender pi sends a message to a correct process
pj , then process pj will receive the message eventually. As
we discussed in Section 4.1, this requirement is satisfied by
the asynchronous communication model itself, e.g., our com-
munication model defined in Section 2 for the r-broadcast
primitive.

Safety.
Our (transferable) authentication mechanism ensures that

a faulty process cannot impersonate a correct process. There-
fore, if the sender pi is correct and a correct process pj re-
ceives a message m from pi, then the sender pi must have
executed send with m.

Integrity.
Integrity requires that if a correct process pj receives a

message m, then m is a valid state machine message. It is
provable using the transferable authentication mechanism in
a recursive manner as follows:

In our translated system, every sender ps attaches a proof
of correctness in the form of transferable authentication to-
kens to a message sent to a receiver pr. The transferable
authentication tokens include the corresponding messages
(Ri for i ∈ [1, h]) ps received. These messages also carry
authentication tokens σi for i ∈ [1, h], which process pr uses
to verify the authenticity of Ri. When these verification are
successful, pr sequentially runs the received messages Ri for
i ∈ [1, h] through a state machine Σps for ps starting from
the initial state Σps,0. If the received message m corresponds
to the state Σps,h, pr is ensured that m is a valid message.

Consistency.
Consistency requires that if correct processes p1 and p2

receive valid messages mi ∈ Si and mj ∈ Sj respectively
from process pg, then either (a) Bpg,i is a prefix of Bpg,j ,
(b) Bpg,j is a prefix of Bpg,i, or (c) Bpg,i = Bpg,j ∧Si = Sj .

We ensure this properties using the non-equivocation mech-
anism. As we discuss in the pseudocode, every message sent
by a sender pg is registered in its local non-equivocation
mechanism. This enforces a total order on the messages
sent sender pg. Jointed with integrity, this itself can be
sufficient to consistency. However, we further simplify the
consistency enforcement by mandating pg to transmit all the
previous sequence numbered messages along with its current
message. This ensures that a receiver does not miss any past
of messages. Resultantly, when two receivers p1 and p2 hear
from the same sender pg their behaviors corresponding to the
sender pg will follow the exact same state transition path.
However, as pg may not send all messages, a behavior of
process (say) p1 can form a prefix of a behavior by process
p2, and vice versa.


