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Abstract: Online services distribute and replicate state
across geographically diverse data centers and direct user
requests to the closest or least loaded site. While ef-
fectively ensuring low latency responses, this approach
is at odds with maintaining cross-site consistency. We
make three contributions to address this tension. First,
we propose RedBlue consistency, which enables blue
operations to be fast (and eventually consistent) whi-
le the remaining red operations are strongly consistent
(and slow). Second, to make use of fast operation when-
ever possible and only resort to strong consistency when
needed, we identify conditions delineating when opera-
tions can be blue and must be red. Third, we introduce
a method that increases the space of potential blue op-
erations by breaking them into separate generator and
shadow phases. We built a coordination infrastructure
called Gemini that offers RedBlue consistency, and we
report on our experience modifying the TPC-W and RU-
BiS benchmarks and an online social network to use
Gemini. Our experimental results show that RedBlue
consistency provides substantial performance gains with-
out sacrificing consistency.

1 Introduction
Scaling services over the Internet to meet the needs of

an ever-growing user base is challenging. In order to im-
prove user-perceived latency, which directly affects the
quality of the user experience [32], services replicate sys-
tem state across geographically diverse sites and direct
users to the closest or least loaded site.

To avoid paying the performance penalty of synchro-
nizing concurrent actions across data centers, some sys-
tems, such as Amazon’s Dynamo [9], resort to weaker
consistency semantics like eventual consistency where
state can temporarily diverge. Others, such as Yahoo!’s
PNUTS [8], avoid state divergence by requiring all oper-
ations that update the service state to be funneled through
a primary site and thus incurring increased latency.

This paper addresses the inherent tension between
performance and meaningful consistency. A first step to-
wards this goal is to allow multiple levels of consis-
tency to coexist [19, 34, 35]: some operations can be exe-
cuted optimistically, without synchronizing with concur-
rent actions at other sites, while others require a stronger
consistency level and thus require cross-site synchroniza-

tion. However, this places a high burden on the developer
of the service, who must decide which operations to as-
sign which consistency levels. This requires reasoning
about the consistency semantics of the overall system to
ensure that the behaviors that are allowed by the different
consistency levels satisfy the specification of the system.

In this paper we make the following three contribu-
tions to address this tension.
1. We propose a novel consistency definition called Red-

Blue consistency. The intuition behind RedBlue con-
sistency is that blue operations execute locally and
are lazily replicated in an eventually consistent man-
ner [9, 25, 38, 26, 12, 33, 34]. Red operations, in con-
trast, are serialized with respect to each other and re-
quire immediate cross-site coordination. RedBlue con-
sistency preserves causality by ensuring that depen-
dencies established when an operation is invoked at its
primary site are preserved as the operation is incorpo-
rated at other sites.

2. We identify the conditions under which operations
must be colored red and may be colored blue in order
to ensure that application invariants are never violated
and that all replicas converge on the same final state.
Intuitively, operations that commute with all other op-
erations and do not impact invariants may be blue.

3. We observe that the commutativity requirement lim-
its the space of potentially blue operations. To address
this, we decompose operations into two components:
(1) a generator operation that identifies the changes the
original operation should make, but has no side effects
itself, and (2) a shadow operation that performs the
identified changes and is replicated to all sites. Only
shadow operations are colored red or blue. This al-
lows for a fine-grained classification of operations and
broadens the space of potentially blue operations.
We built a system called Gemini that coordinates

RedBlue replication, and use it to extend three applica-
tions to be RedBlue consistent: the TPC-W and RUBiS
benchmarks and the Quoddy social network. Our evalu-
ation using microbenchmarks and the three applications
shows that RedBlue consistency provides substantial la-
tency and throughput benefits. Furthermore, our expe-
rience with modifying these applications indicates that
shadow operations can be created with modest effort.

The rest of the paper is organized as follows: we po-
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Consistency
level Example systems

Immediate
response

State
convergence

Single
value

General
operations

Stable
histories

Classification
strategy

Strong RSM [20, 31] no yes yes yes yes N/A
Timeline/snapshot PNUTS [8], Megastore [3] reads only yes yes yes yes N/A

Fork SUNDR [24] all ops no yes yes yes N/A

Eventual
Bayou [38], Depot [26] all ops yes no yes yes N/A
Sporc [12], CRDT [33] all ops yes yes no yes N/A
Zeno [34], COPS [25] weak/all ops yes yes yes no no / N/A

Multi PSI [35] cset yes yes partial yes no
lazy repl. [19], Horus [39] immed./causal ops yes yes yes yes no

RedBlue Gemini Blue ops yes yes yes yes yes

Table 1: Tradeoffs in geo-replicated systems and various consistency levels.

sition our work in comparison to existing proposals in §2.
We define RedBlue consistency and introduce shadow
operations along with a set of principles of how to use
them in §4 and §5. We describe our prototype system in
§6, and report on the experience transitioning three ap-
plication benchmarks to be RedBlue consistent in §7. We
analyze experimental results in §8 and conclude in §9.

2 Background and related work
Target end-to-end properties. To frame the discussion
of existing systems that may be used for geo-replicat-
ion, we start by informally stating some desirable proper-
ties that such solutions should support. The first property
consists of ensuring a good user experience by provid-
ing low latency access to the service [32]. Providing low
latency access implies that operations should proceed af-
ter contacting a small number of replicas, but this is at
odds with other requirements that are often sacrificed by
consistency models that privilege low latency. The first
such requirement is preserving causality, both in terms
of the monotonicity of user requests within a session and
preserving causality across clients, which is key to en-
abling natural semantics [28]. Second, it is important that
all replicas that have executed the same set of operations
are in the same state, i.e., that they exhibit state conver-
gence. Third, we want to avoid marked deviations from
the conventional, single server semantics. In particular,
operations should return a single value, precluding solu-
tions that return a set of values corresponding to the out-
come of multiple concurrent updates; the system should
provide a set of stable histories, meaning that user ac-
tions cannot be undone; and it should provide support for
general operations, not restricting the type of operations
that can be executed. Fourth, the behavior of the system
must obey its specification. This specification may be de-
fined as a set of invariants that must be preserved, e.g.,
that no two users receive the same user id when regis-
tering. Finally, and orthogonally to the tension between
low latency and user semantics, it is important for all op-
erations executed at one replica to be propagated to all
remaining replicas, a property we call eventual propa-
gation.

Table 1 summarizes several proposals of consistency
definitions, which strike different balances between the

requirements mentioned above. While other consistency
definitions exist, we focus on the ones most closely re-
lated to the problem of offering fast and consistent re-
sponses in geo-replicated systems.
Strong vs. weak consistency. On the strong consistency
side of the spectrum there are definitions like lineariz-
ability [17], where the replicated system behaves like a
single server that serializes all operations. This, however,
requires coordination among replicas to agree on the or-
der in which operations are executed, with the corre-
sponding overheads that are amplified in geo-replication
scenarios. Somewhat more efficient are timeline consis-
tency in PNUTS [8] and snapshot consistency in Megas-
tore [3]. These systems ensure that there is a total order
for updates to the service state, but give the option of
reading a consistent but dated view of the service. Sim-
ilarly, Facebook has a primary site that handles updates
and a secondary site that acts as a read-only copy [23].
This allows for fast reads executed at the closest site but
writes still pay a penalty for serialization. Fork consis-
tency [24, 27] relaxes strong consistency by allowing
users to observe distinct causal histories. The primary
drawback of fork consistency is that once replicas have
forked, they can never be reconciled. Such approach is
useful when building secure systems but is not appropri-
ate in the context of geo-replication.

Eventual consistency [38] is on the other end of the
spectrum. Eventual consistency is a catch-all phrase that
covers any system where replicas may diverge in the
short term as long as the divergence is eventually re-
paired and may or may not include causality. (See Saito
and Shapiro [30] for a survey.) In practice, as shown
in Table 1, systems that embrace eventual consistency
have limitations. Some systems waive the stable his-
tory property, either by rolling back operations and re-
executing them in a different order at some of the repli-
cas [34], or by resorting to a last writer wins strategy,
which often results in loss of one of the concurrent up-
dates [25]. Other systems expose multiple values from
divergent branches in operations replies either directly
to the client [26, 9] or to an application-specific conflict
resolution procedure [38]. Finally, some systems restrict
operations by assuming that all operations in the system
commute [12, 33], which might require the programmer
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to rewrite or avoid using some operations.
Coexistence of multiple consistency levels. The solu-
tion we propose for addressing the tension between low
latency and strongly consistent responses is to allow dif-
ferent operations to run with different consistency lev-
els. Existing systems that used a similar approach in-
clude Horus [39], lazy replication [19], Zeno [34], and
PSI [35]. However, none of these proposals guide the ser-
vice developer in choosing between the available consis-
tency levels. In particular, developers must reason about
whether their choice leads to the desired service behav-
ior, namely by ensuring that invariants are preserved and
that replica state does not diverge. This can be challeng-
ing due to difficulties in identifying behaviors allowed by
a specific consistency level and understanding the inter-
play between operations running at different levels. Our
research addresses this challenge, namely by defining a
set of conditions that precisely determine the appropriate
consistency level for each operation.
Other related work. Consistency rationing [18] allows
consistency guarantees to be associated with data instead
of operations, and the consistency level to be automati-
cally switched at runtime between weak consistency and
serializability based on specified policies. TACT [41]
consistency bounds the amount of inconsistency of data
items in an application-specific manner, using the follow-
ing metrics: numerical error, order error and staleness. In
contrast to these models, the focus of our work is not on
adapting the consistency levels of particular data items
at runtime, but instead on systematically partitioning the
space of operations according to their actions and the de-
sired system semantics.

One of the central aspects of our work is the notion of
shadow operations, which increase operation commuta-
tivity by decoupling the decision of the side effects from
their application to the state. This enables applications to
make more use of fast operations. Some prior work also
aims at increasing operation commutativity: Weihl ex-
ploited commutativity-based concurrency control for ab-
stract data types [40]; operational transformation [10, 12]
extends non-commutative operations with a transforma-
tion that makes them commute; Conflict-free Replicated
Data Types (CRDTs) [33] design operations that com-
mute by construction; Gray [15] proposed an open nested
transaction model that uses commutative compensating
transactions to revert the effects of aborted transactions
without rolling back the transactions that have seen their
results and already committed; delta transactions [36] di-
vide a transaction into smaller pieces that commute with
each other to reduce the serializability requirements. Our
proposal of shadow operations can be seen as an ex-
tension to these concepts, providing a different way of
broadening the scope of potentially commutative opera-
tions. There exist other proposals that also decouple the

execution into two parts, namely two-tier replication [16]
and CRDT downstreams [33]. In contrast to these pro-
posals, for each operation, we may generate different
shadow operations based on the specifics of the execu-
tion. Also, shadow operations can run under different
consistency levels, which is important because commuta-
tivity is not always sufficient to ensure safe weakly con-
sistent operation.

3 System model

We assume a distributed system with state fully rep-
licated across k sites denoted site0 . . .sitek−1. We follow
the traditional deterministic state machine model, where
there is a set of possible states S and a set of possible op-
erations O, each replica holds a copy of the current sys-
tem state, and upon applying an operation each replica
deterministically transitions to the next state and possi-
bly outputs a corresponding reply.

In our notation, S ∈ S denotes a system state, and
u,v ∈ O denote operations. We assume there exists an
initial state S0. If operation u is applied against a system
state S, it produces another system state S′; we will also
denote this by S′ = S+u. We say that a pair of operations
u and v commute if ∀S∈ S ,S+u+v = S+v+u. The sys-
tem maintains a set of application-specific invariants. We
say that state S is valid if it satisfies all these invariants.
Each operation u is initially submitted at one site which
we call u’s primary site and denote site(u); the system
then later replicates u to the other sites.

4 RedBlue consistency

In this section we introduce RedBlue consistency,
which allows replicated systems to be fast as possible
and consistent when necessary. “Fast” is an easy concept
to understand—it equates to providing low latency re-
sponses to user requests. “Consistent” is more nuanced—
consistency models technically restrict the state that op-
erations can observe, which can be translated to an or-
der that operations can be applied to a system. Eventual
consistency [25, 38, 26, 12], for example, permits oper-
ations to be partially ordered and enables fast systems—
sites can process requests locally without coordinating
with each other—but sacrifices the intuitive semantics of
serializing updates. In contrast, linearizability [17] or se-
rializability [5] provide strong consistency and allow for
systems with intuitive semantics—in effect, all sites pro-
cess operations in the same order—but require signifi-
cant coordination between sites, precluding fast opera-
tion. RedBlue consistency is based on an explicit divi-
sion of operations into blue operations whose order of
execution can vary from site to site, and red operations
that must be executed in the same order at all sites.
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(b) Causal serializations of O
Figure 1: RedBlue order and causal serializations for a
system spanning two sites. Operations marked with ? are
red; operations marked with 4 are blue. Dotted arrows
in (a) indicate dependencies between operations.

4.1 Defining RedBlue consistency
The definition of RedBlue consistency has two com-

ponents: (1) A RedBlue order, which defines a partial
order of operations, and (2) a set of local causal serial-
izations, which define site-specific total orders in which
the operations are locally applied.

Definition 1 (RedBlue order). Given a set of operations
U = B∪R, where B∩R = /0, a RedBlue order is a partial
order O = (U,≺) with the restriction that ∀u,v ∈ R such
that u 6= v, u≺ v or v≺ u (i.e., red operations are totally
ordered).

Recall that each site is a deterministic state machine
that processes operations in a serial order. The serial or-
der executed by site i is a causal serialization if it is
compatible with the global RedBlue order and ensures
causality for all operations initially executed at site i. A
replicated system with k sites is then RedBlue consis-
tent if every site applies a causal serialization of the same
global RedBlue order O.

Definition 2 (Causal serialization). Given a site i, Oi =
(U,<) is an i-causal serialization (or short, a causal se-
rialization) of RedBlue order O = (U,≺) if (a) Oi is a

1 float balance, interest = 0.05;
2 func deposit( float money ):
3 balance = balance + money;
4 func withdraw ( float money ):
5 if ( balance - money >= 0 ) then:
6 balance = balance - money;
7 else print "failure";
8 func accrueinterest():
9 float delta = balance × interest;

10 balance = balance + delta;

Figure 2: Pseudocode for the bank example.

linear extension of O (i.e., < is a total order compatible
with the partial order ≺), and (b) for any two operations
u,v ∈U, if site(v) = i and u < v in Oi, then u≺ v.

Definition 3 (RedBlue consistency). A replicated system
is O-RedBlue consistent (or short, RedBlue consistent) if
each site i applies operations according to an i-causal
serialization of RedBlue order O.

Figure 1 shows a RedBlue order and a pair of causal
serializations of that RedBlue order. In systems where
every operation is labeled red, RedBlue consistency is
equivalent to serializability [5]; in systems where every
operation is labeled blue, RedBlue consistency allows
the same set of behaviors as eventual consistency [38,
25, 26]. It is important to note that while RedBlue consis-
tency constrains possible orderings of operations at each
site and thus the states the system can reach, it does not
ensure a priori that the system achieves all the end-to-
end properties identified in §2, in particular, state con-
vergence and invariant preservation, as discussed next.

4.2 State convergence and a RedBlue bank
In order to understand RedBlue consistency it is in-

structive to look at a concrete example. For this exam-
ple, consider a simple bank with two users: Alice in the
EU and Bob in the US. Alice and Bob share a single
bank account where they can deposit or withdraw funds
and where a local bank branch can accrue interest on the
account (pseudocode for the operations can be found in
Figure 2). Let the deposit and accrueinterest opera-
tions be blue. Figure 3 shows a RedBlue order of deposits
and interest accruals made by Alice and Bob and causal
serializations applied at both branches of the bank.

State convergence is important for replicated sys-
tems. Intuitively a pair of replicas is state convergent if,
after processing the same set of operations, they are in
the same state. In the context of RedBlue consistency we
formalize state convergence as follows:

Definition 4 (State convergence). A RedBlue consistent
system is state convergent if all causal serializations of
the underlying RedBlue order O reach the same state S.

The bank example as described is not state conver-
gent. The root cause is not surprising: RedBlue consis-
tency allows sites to execute blue operations in differ-
ent orders but two blue operations in the example corre-
spond to non-commutative operations—addition (dep-
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Alice in EU Bob in US

 accrueinterest() deposit(20) 

(a) RedBlue order O of operations issued by Alice and Bob

deposit(20)accrueinterest()

¹

deposit(20)

balance:100

accrueinterest()

Alice in EU Bob in US

balance:100

balance:120 balance:105

balance:126 balance:125

(b) Causal serializations of O leading to diverged state

Figure 3: A RedBlue consistent account with initial bal-
ance of $100.

osit) and multiplication (accrueinterest). A suffi-
cient condition to guarantee state convergence in a Red-
Blue consistent system is that every blue operation is
globally commutative, i.e., it commutes with all other op-
erations, blue or red.

Theorem 1. Given a RedBlue order O, if all blue op-
erations are globally commutative, then any O-RedBlue
consistent system is state convergent.1

The banking example and Theorem 1 highlight an
important tension inherent to RedBlue consistency. On
the one hand, low latency requires an abundance of blue
operations. On the other hand, state convergence requires
that blue operations commute with all other operations,
blue or red. In the next section we introduce a method
for addressing this tension by increasing commutativity.

5 Replicating side effects
In this section, we observe that while operations

themselves may not be commutative, we can often make
the changes they induce on the system state commute.
Let us illustrate this issue within the context of the Red-
Blue bank from §4.2. We can make the deposit and
accrueinterest operations commute by first comput-
ing the amount of interested accrued and then treating
that value as a deposit.

5.1 Defining shadow operations
The key idea is to split each original application op-

eration u into two components: a generator operation
gu with no side effects, which is executed only at the
primary site against some system state S and produces
a shadow operation hu(S), which is executed at every
site (including the primary site). The generator operation
decides which state transitions should be made while the
shadow operation applies the transitions in a state-indep-
endent manner.

The implementation of generator and shadow oper-
ations must obey some basic correctness requirements.
Generator operations, as mentioned, must not have any

1All proofs can be found in a separate technical report [22].

side effects. Furthermore, shadow operations must pro-
duce the same effects as the corresponding original oper-
ation when executed against the original state S used as
an argument in the creation of the shadow operation.

Definition 5 (Correct generator / shadow operations).
The decomposition of operation u into generator and sh-
adow operations is correct if for all states S, the genera-
tor operation gu has no effect and the generated shadow
operation hu(S) has the same effect as u, i.e., for any
state S: S +gu = S and S +hu(S) = S +u.

Note that a trivial decomposition of an original oper-
ation u into generator and shadow operations is to let gu
be a no-op and let hu(S) = u for all S.

In practice, as exemplified in §7, separating the de-
cision of which transition to make from the act of ap-
plying the transition allows many objects and their as-
sociated usage in shadow operations to form an abelian
group and thus dramatically increase the number of com-
mutative (i.e., blue) operations in the system. Unlike pre-
vious approaches [16, 33], for a given original operation,
our solution allows its generator operation to generate
state-specific shadow operations with different proper-
ties, which can then be assigned different colors in the
RedBlue consistency model.

5.2 Revisiting RedBlue consistency
Decomposing operations into generator and shadow

components requires us to revisit the foundations of Red-
Blue consistency. In particular, only shadow operations
are included in a RedBlue order while the causal serial-
ization for site i additionally includes the generator oper-
ations initially executed at site i. The causal serialization
must ensure that generator operations see the same state
that is associated with the generated shadow operation
and that shadow operations appropriately inherit all de-
pendencies from their generator operation.

We capture these subtleties in the following revised
definition of causal serializations. Let U be the set of
shadow operations executed by the system and Vi be the
generator operations executed at site i.

Definition 6 (Causal serialization–revised). Given a site
i, Oi = (U∪Vi,<) is an i-causal serialization of RedBlue
order O = (U,≺) if
• Oi is a total order;
• (U,<) is a linear extension of O;
• For any hv(S) ∈U generated by gv ∈ Vi, S is the state

obtained after applying the sequence of shadow oper-
ations preceding gv in Oi;

• For any gv ∈ Vi and hu(S) ∈ U, hu(S) < gv in Oi iff
hu(S)≺ hv(S′) in O.

Note that shadow operations appear in every causal
serialization, while generator operations appear only in
the causal serialization of the initially executing site.
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1 func deposit’ ( float money ):
2 balance = balance + money;
3 func withdrawAck’ ( float money ):
4 balance = balance - money;
5 func withdrawFail’ ():
6 /* no-op */
7 func accrueinterest’ ( float delta ):
8 balance = balance + delta;

Figure 4: Pseudocode for shadow bank operations.
Alice in EU Bob in US

 accrueinterest’(5)

withdrawAck’(60)

 deposit’(20) 

 withdrawAck’(70) 

(a) RedBlue order O of banking shadow operations

withdrawAck’(60)

withdrawAck’(60)

withdrawAck’(70)

withdrawAck’(70)

balance:125

Alice in EU Bob in US

balance:125

balance:55 balance:65

balance:-5 balance:-5

withdraw(70) withdraw(60)

(b) Invalid but convergent causal serializations of O

Figure 5: A RedBlue consistent bank with only blue op-
erations. The starting balance of $125 is the result of
applying shadow operations above the solid line to an
initial balance of $100. Loops indicate generator opera-
tions.
5.3 Shadow banking and invariants

Figure 4 shows the shadow operations for the bank-
ing example. Note that the withdraw operation maps to
two distinct shadow operations that may be labeled as
blue or red independently—withdrawAck’ and with-
drawFail’.

Figure 5 illustrates that shadow operations make it
possible for all operations to commute, provided that we
can identify the underlying abelian group. This does not
mean, however, that it is safe to label all operations blue.

In this example, such a labeling would allow Alice
and Bob to successfully withdraw $70 and $60 at their
local branches, thus ending up with a final balance of
$-5. This violates the fundamental invariant that a bank
balance should never be negative.

To determine which operations can be safely labeled
blue, we begin by defining that a shadow operation is
invariant safe if, when applied to a valid state, it always
transitions the system into another valid state.

Definition 7 (Invariant safe). Shadow operation hu(S) is
invariant safe if for all valid states S and S′, the state
S′+hu(S) is also valid.

The following theorem states that in a RedBlue con-
sistent system with appropriate labeling, each replica
transitions only through valid states.

Theorem 2. If all shadow operations are correct and all
blue shadow operations are invariant safe and globally

Alice in EU Bob in US

despoit’(10)

 accrueinterest’(5)

withdrawAck’(60)

 withdrawAck’(40) 

 deposit’(20) 

withdrawAck’(30) 

withdrawFail’()

(a) RedBlue order O of banking shadow operations

withdrawAck’(30)

withdrawAck’(40)

deposit’(10)

withdrawFail’()

withdrawAck’(60)

accrueinterest’(5)

deposit’(20)

balance:100

Alice in EU

balance:125

withdrawAck’(30)

withdrawAck’(40)

withdrawFail’()

deposit’(10)

withdrawAck’(60)

deposit’(20)

accrueinterest’(5)

Bob in US

balance:100

balance:125

balance:120 balance:105

balance:65 balance:65

balance:65 balance:75

balance:75 balance:75

balance:35 balance:35

balance:5 balance:5

deposit(20)

withdraw(70)

withdraw(30)

deposit(10)

accrueinterest()

withdraw(40)

withdraw(60)

(b) Convergent and invariant preserving causal serializations of O

Figure 6: A RedBlue consistent bank with correctly la-
beled shadow operations and initial balance of $100.

commutative, then for any execution of that system that
is RedBlue consistent, no site is ever in an invalid state.

What can be blue? What must be red? The combina-
tion of Theorems 1 and 2 leads to the following proce-
dure for deciding which shadow operations can be blue
or must be red if a RedBlue consistent system is to pro-
vide both state convergence and invariant preservation:
1. For any pair of non-commutative shadow operations u

and v, label both u and v red.
2. For any shadow operation u that may result in an in-

variant being violated, label u red.
3. Label all non-red shadow operations blue.

Applying this decision process to the bank example
leads to a labeling where withdrawAck’ is red and the
remaining shadow operations are blue. Figure 6 shows a
RedBlue order with appropriately labeled shadow opera-
tions and causal serializations for the two sites.

5.4 Discussion
Shadow operations introduce some surprising

anomalies to a user experience. Notably, while the effect
of every user action is applied at every site, the final
system state is not guaranteed to match the state resulting
from a serial ordering of the original operations. The
important thing to keep in mind is that the decisions
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made always make sense in the context of the local view
of the system: when Alice accrues interest in the EU,
the amount of interest accrued is based on the balance
that Alice observes at that moment. If Bob concurrently
makes a deposit in the US and subsequently observes
that interest has been accrued, the amount of interest will
not match the amount that Bob would accrue based on
the balance as he currently observes it.

Shadow operations always provide for a coherent se-
quence of state transitions that reflects the effects de-
manded by user activity; while this sequence of state
transitions is coherent (and convergent), the state tran-
sitions are chosen based on the locally observable state
when/where the user activity initiated and not the system
state when they are applied.

6 Gemini design & implementation
We implemented the Gemini storage system to pro-

vide RedBlue consistency. The prototype consists of 10K
lines of java code and uses MySQL as its storage back-
end. Each Gemini site consists of four components: a
storage engine, a proxy server, a concurrency coordina-
tor, and a data writer. A multi-site deployment is con-
structed by replicating the single site components across
multiple sites.

The basic flow of user requests through the system
is straightforward. A user issues requests to a proxy
server located at the closest site. The proxy server pro-
cesses a request by executing an appropriate application
transaction, which is implemented as a single Gemini
operation, comprising multiple data accesses; individ-
ual data accesses within a generator operation execute in
a temporary private scratchpad, providing a virtual pri-
vate copy of the service state. The original data lies in
a storage engine, which provides a standard storage in-
terface. In our implementation, the storage engine is a
relational database, and scratchpad operations are exe-
cuted against a temporary table. Upon completion of the
generator operation, the proxy server sends the produced
shadow operation on to the concurrency coordinator to
admit or reject this operation according to RedBlue con-
sistency. The concurrency coordinator notifies the proxy
server if the operation is accepted or rejected. Addition-
ally, accepted shadow operations are appended to the end
of the local causal serialization and propagated to remote
sites and to the local data writer for execution against
the storage engine. When a shadow operation is rejected,
the proxy server re-executes the generator operation and
restarts the process.

6.1 Optimistic concurrency control
Gemini relies on optimistic concurrency control

(OCC) [5] to run generator operations without blocking.
Gemini uses timestamps to determine if opera-

tions can complete successfully. Timestamps are logical

clocks [20] of the form 〈〈b0,b1, . . . ,bk−1〉,r〉, where bi
is the local count of shadow operations initially executed
by site i and r is the global count of red shadow oper-
ations. To ensure that different sites do not choose the
same red sequence number (i.e., all red operations are
totally-ordered) we use a simple token passing scheme:
only the coordinator in possession of a unique red token
is allowed to increase the counter r and approve red oper-
ations. In the current prototype, a coordinator holds onto
the red token for up to 1 second before passing it along.

When a generator operation completes, the coordina-
tor must determine if the operation (a) reads a coherent
system snapshot and (b) obeys the ordering constraints
of a causal serialization, as described in §5. To do this,
the coordinator checks the timestamps of the data items
readd and written by the completing operation, and com-
pares them to the timestamps associated with operations
completing concurrently and the remote shadow opera-
tions that were being applied simultaneously at that site.

Upon successful completion of a generator operation
the coordinator assigns the corresponding shadow oper-
ation a timestamp that is component-wise equal to the
latest operation that was incorporated at its site, and in-
crements its blue and, if this shadow operations is red,
the red component of the logical timestamp. This times-
tamp determines the position of the shadow operation in
the RedBlue order, with the normal rules that determine
that two operations are partially ordered if one is equal
to or dominates the other in all components. It also al-
lows sites to know when it is safe to incorporate remote
shadow operations: they must wait until all shadow op-
erations with smaller timestamps have already been in-
corporated in the local state of the site. When a remote
shadow operation is applied at a site, it is assigned a new
timestamp that is the entry-wise max of the timestamp
assigned to the shadow operation in the initial site and
the local timestamps of accessed data objects. This cap-
tures dependencies that span local and remote operations.

Read-only shadow operations. As a performance op-
timization, a subset of blue shadow operations can be
marked read-only. Read-only shadow operations receive
special treatment from the coordinator: once the genera-
tor operation passes the coherence and causality checks,
the proxy is notified that the shadow operation has been
accepted but the shadow operation is not incorporated
into the local serialization or global RedBlue order.

6.2 Failure handling
The current Gemini prototype is designed to demon-

strate the performance potential of RedBlue consistency
in geo-replicated environments and as such is not imple-
mented to tolerate faults of either a local (i.e., within a
site) or catastrophic (i.e., of an entire site) nature. Ad-
dressing these concerns is orthogonal to the primary con-
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tributions of this paper, nonetheless we briefly sketch
mechanisms that could be employed to handle faults.
Isolated component failure. The Gemini architecture
consists of four main components at each site, each rep-
resenting a single point of failure. Standard state machine
replication techniques [20, 31] can be employed to make
each component robust to failures.
Site failure. Our Gemini prototype relies on a simple to-
ken exchange for coordinating red epochs. To avoid halt-
ing the system upon a site failure, a fault tolerant con-
sensus protocol like Paxos [21] can regulate red tokens.

Operation propagation. Gemini relies on each site to
propagate its own local operations to all remote sites. A
pair-wise network outage or failure of a site following the
replication of a operation to some but not all of the sites
could prevent sites from exchanging operations that de-
pend on the partially replicated operation. This can be ad-
dressed using standard techniques for exchanging causal
logs [26, 2, 38, 28] or reliable multicast [13].

Cross-session monotonicity. The proxy that each user
connects to enforces the monotonicity of user requests
within a session [37]. However, a failure of that proxy,
or the user connecting to a different site may result in a
subset of that user’s operations not carrying over. This
can be addressed by allowing the user to specify a “last-
read” version when starting a new session or requiring
the user to cache all relevant requests [26] in order to
replay them when connecting to a new site.

7 Case studies
In this section we report on our experience in modi-

fying three existing applications—the TPC-W shopping
cart benchmark [7], the RUBiS auction benchmark [11],
and the Quoddy social networking application [14]—to
work with RedBlue consistency. The two main tasks to
fulfill this goal are (1) decomposing the application into
generator and shadow operations and (2) labeling the
shadow operations appropriately.

Writing generator and shadow operations. Each of
the three case study applications executes MySQL data-
base transactions as part of processing user requests, gen-
erally one transaction per request. We map these applica-
tion level transactions to the original operations and they
also serve as a starting point for the generator operations.
For shadow operations, we turn each execution path in
the original operation into a distinct shadow operation;
an execution path that does not modify system state is ex-
plicitly encoded as a no-op shadow operation.When the
shadow operations are in place, the generator operation
is augmented to invoke the appropriate shadow operation
at each path.

Labeling shadow operations. Table 2 reports the num-
ber of transactions in the TPC-W, RUBiS, and Quoddy,

the number of blue and red shadow operations we iden-
tified using the labeling rules in §5.3, and the application
changes measured in lines of code. Note that read-only
transactions always map to blue no-op shadow opera-
tions. In the rest of this section we expand on the lessons
learned from making applicaations RedBlue consistent.

7.1 TPC-W
TPC-W [7] models an online bookstore. The appli-

cation server handles 14 different user requests such as
browsing, searching, adding products to a shopping cart,
or placing an order. Each user request generates between
one and four transactions that access state stored across
eight different tables. We extend an open source imple-
mentation of the benchmark [29] to allow a shopping cart
to be shared by multiple users across multiple sessions.
Writing TPC-W generator and shadow operations.
Of the twenty TPC-W transactions, thirteen are read-
only and admit no-op shadow operations. The remain-
ing seven update transactions translate to one or more
shadow operations according to the number of distinct
execution paths in the original operation .

We now give an example transaction, doBuyConf-
irm, which completes a user purchase. The pseudocode
for the original transaction is shown in Figure 7(a).

The doBuyConfirm transaction removes all items
from a shopping cart, computes the total cost of the
purchase, and updates the stock value for the purchased
items. If the stock would drop below a minimum thresh-
old, then the transaction also replenishes the stock. The
key challenge in implementing shadow operations for
doBuyConfirm is that the original transaction does not
commute with itself or any transaction that modifies the
contents of a shopping cart. Naively treating the origi-
nal transaction as a shadow operation would force every
shadow operation to be red.

Figure 7(b) shows the generator operation of doBuy-
Confirm, and Figures 7(c) and 7(d) depict the corre-
sponding pair of shadow operations: doBuyConfirmI-
ncre’ and doBuyConfirmDecre’. The former shadow
operation is generated when the stock falls below the
minimum threshold and must be replenished; the latter
is generated when the purchase does not drive the stock
below the minimum threshold and consequently does not
trigger the replenishment path. In both cases, the gener-
ator operation is used to determine the number of items
purchased and total cost as well the shadow operation
that corresponds to the initial execution. At the end of
the execution of the generator operation these param-
eters and the chosen shadow operation are then propa-
gated to other replicas.
Labeling TPC-W shadow operations. For 29 shadow
operations in TPC-W, we find that 27 can be blue and
only two must be red. To label shadow operations, we
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Application
Original RedBlue consistent extension

user
requests

transactions
LOC

shadow operations LOC
changedtotal read-only update blue no-op blue update red LOC

TPC-W 14 20 13 7 9k 13 14 2 2.8k 429
RUBiS 26 16 11 5 9.4k 11 7 2 1k 180
Quoddy 13 15 11 4 15.5k 11 4 0 495 251

Table 2: Original applications and the changes needed to make them RedBlue consistent.

1 doBuyConfirm(cartId){
2 beginTxn();
3 cart = exec(SELECT * FROM cartTb WHERE cId=cartId);
4 cost = computeCost(cart);
5 orderId = getUniqueId();
6 exec(INSERT INTO orderTb VALUES(orderId,cart.item.id,cart.item.qty

,cost));
7 item =exec(SELECT * FROM itemTb WHERE id=cart.item.id);
8 if item.stock− cart.item.qty < 10 then:
9 delta = item.stock− cart.item.qty+21;

10 if delta > 0 then:
11 exec(UPDATE itemTb SET item.stock+ = delta);
12 else rollback();
13 else exec(UPDATE itemTb SET item.stock−= cart.item.qty);
14 exec(DELETE FROM cartContentTb WHERE cId=cartId AND id=

cart.item.id);
15 commit();}

(a) Original transaction that commits changes to database.

1 doBuyConfirmGenerator(cartId){
2 sp = getScratchpad();
3 sp.beginT xn();
4 cart = sp.exec(SELECT * FROM cartTb WHERE cId=cartId);
5 cost = computeCost(cart);
6 orderId = getUniqueId();
7 sp.exec(INSERT INTO orderTb VALUES (orderId,cart.item.id,

cart.item.qty,cost));
8 item = sp.exec(SELECT * FROM itemTb WHERE id=cart.item.id);
9 if item.stock− cart.item.qty < 10 then:

10 delta = item.stock− cart.item.qty+21;
11 if delta > 0 sp.exec(UPDATE itemTb SET item.stock+ = delta);
12 else sp.discard(); return;
13 else sp.exec(UPDATE itemTb SET item.stock−= cart.item.qty);
14 sp.exec(DELETE FROM cartTb WHERE cId=cartId AND id=cart.item.id);
15 L T S = getCommitOrder();
16 sp.discard();
17 if replenished return (doBuyConfirmIncre’(orderId,cartId,

cart.item.id,cart.item.qty,cost,delta,L T S));
18 else return (doBuyConfirmDecre’(orderId,cartId,cart.item.Id,

cart.item.qty,cost,L T S));}

(b) Generator operation that manipulates data via a private scratchpad.

1 doBuyConfirmIncre’(orderId,cartId,itId,qty,cost,delta,L T S){
2 exec(INSERT INTO orderTb VALUES(orderId,itId,qty,cost,L T S));
3 exec(UPDATE itemTb SET item.stock+ = delta);
4 exec(UPDATE itemTb SET item.l ts = L T S WHERE item.l ts < L T S);
5 exec(UPDATE cartContentTb SET f lag = T RUE WHERE id = itId AND

cid = cartId AND l ts <= L T S);}

(c) Shadow doBuyConfirmIncre’ (Blue) that replenishes the stock value.

1 doBuyConfirmDecre’(orderId,cartId,itId,qty,cost,L T S){
2 exec(INSERT INTO orderTb VALUES(orderId,itId,qty,cost,L T S));
3 exec(UPDATE itemTb SET item.stock−= qty);
4 exec(UPDATE itemTb SET item.l ts = L T S WHERE item.l ts < L T S);
5 exec(UPDATE cartContentTb SET f lag = T RUE WHERE id = itId AND

cid = cartId AND l ts <= L T S);}

(d) Shadow doBuyConfirmDecre’ (Red) that decrements the stock value.

Figure 7: Pseudocode for the product purchase transaction in TPC-W. For simplicity the pseudocode assumes that the
corresponding shopping cart only contains a single type of item.

identified two key invariants that the system must main-
tain. First, the number of in-stock items can never fall
below zero. Second, the identifiers generated by the sys-
tem (e.g., for items or shopping carts) must be unique.

The first invariant is easy to maintain by labeling
doBuyConfirmDecre’ (Figure 7(d)) and its close variant
doBuyConfirmAddrDecre’ red. We observe that they
are the only shadow operations in the system that de-
crease the stock value, and as such are the only shadow
operations that can possibly invalidate the first invariant.
Note that the companion shadow operation doBuyCon-
firmIncre’ (Figure 7(c)) increases the stock level, and
can never drive the stock count below zero, so it can be
blue.

The second invariant is more subtle. TPC-W gener-
ates IDs for objects (e.g., shopping carts, items, etc.)
as they are created by the system. These IDs are used
as keys for item lookups and consequently must them-
selves be unique. To preserve this invariant, we have to
label many shadow operations red. This problem is well-
known in database replication [6] and was circumvented
by modifying the ID generation code, so that IDs become
a pair

〈
appproxy id , seqnumber

〉
, which makes these

operations trivially blue.

7.2 RUBiS
RUBiS [11] emulates an online auction website mod-

eled after eBay [1]. RUBiS defines a set of 26 requests
that users can issue ranging from selling, browsing for,
bidding on, or buying items directly, to consulting a
personal profile that lists outstanding auctions and bids.
These 26 user requests are backed by a set of 16 transac-
tions that access the storage backend.

Of these 16 transactions, 11 are read-only, and there-
fore trivially commutative. For the remaining 5 update
transactions, we construct shadow operations to make
them commute, similarly to TPC-W. Each of these trans-
actions leads to between 1 and 3 shadow operations.

Through an analysis of the application logic, we de-
termined three invariants. First, that identifiers assigned
by the system are unique. Second, that nicknames chosen
by users are unique. Third, that item stock cannot fall be-
low zero. Again, we preserve the first invariant using the
global id generation strategy described in §7.1. The sec-
ond and third invariants require both RegisterUser’,
checking if a name submitted by a user was already cho-
sen, and storeBuyNow’, which decreases stock, to be
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labeled as red.

7.3 Quoddy
Quoddy [14] is an open source Facebook-like so-

cial networking site. Despite being under development,
Quoddy already implements the most important features
of a social networking site, such as searching for a user,
browsing user profiles, adding friends, posting a mes-
sage, etc. These main features define 13 user requests
corresponding to 15 different transactions. Of these 15
transactions, 11 are read-only transactions, thus requir-
ing trivial no-op shadow operations.

Writing and labeling shadow operations for the 4
remaining transactions in Quoddy was straightforward.
Besides reusing the recipe for unique identifiers, we only
had to handle an automatic conversion of dates to the lo-
cal timezone (performed by default by the database) by
storing dates in UTC in all sites. In the social network we
did not find system invariants to speak of; we found that
all shadow operations could be labeled blue.

7.4 Experience and discussion
Our experience showed that writing shadow opera-

tions is easy; it took us about one week to understand the
code, and implement and label shadow operations for all
applications. We also found that the strategy of generat-
ing a different shadow operation for each distinct execu-
tion path is beneficial for two reasons. First, it leads to
a simple logic for shadow operations that can be based
on operations that are intrinsically commutative, e.g., in-
crement/decrement, insertion/removal. Second, it leads
to a fine-grained classification of operations, with more
execution paths leading to blue operations. Finally, we
found that it was useful in more than one application to
make use of a standard last-writer-wins strategy to make
operations that overwrite part of the state commute.

8 Evaluation
We evaluate Gemini and RedBlue consistency using

microbenchmarks and our three case study applications.
The primary goal of our evaluation is to determine if
RedBlue consistency can improve latency and through-
put in geo-replicated systems.

8.1 Experimental setup
We run experiments on Amazon EC2 using extra

large virtual machine instances located in five sites: US
east (UE), US west (UW), Ireland (IE), Brazil (BR),
and Singapore (SG). Table 3 shows the average round
trip latency and observed bandwidth between every pair
of sites. For experiments with fewer than 5 sites, new
sites are added in the following order: UE, UW, IE, BR,
SG. Unless otherwise noted, users are evenly distributed
across all sites. Each VM has 8 virtual cores and 15GB
of RAM. VMs run Debian 6 (Squeeze) 64 bit, MySQL

UE UW IE BR SG

UE 0.4 ms 85 ms 92 ms 150 ms 252 ms
994 Mbps 164 Mbps 242 Mbps 53 Mbps 86 Mbps

UW 0.3 ms 155 ms 207 ms 181 ms
975 Mbps 84 Mbps 35 Mbps 126 Mbps

IE 0.4 ms 235 ms 350 ms
996 Mbps 54 Mbps 52 Mbps

BR 0.3 ms 380 ms
993 Mbps 65 Mbps

SG 0.3 ms
993 Mbps

Table 3: Average round trip latency and bandwidth be-
tween Amazon sites.
5.5.18, Tomcat 6.0.35, and Sun Java SDK 1.6. Each ex-
perimental run lasts for 10 minutes.

8.2 Microbenchmark
We begin the evaluation with a simple microbench-

mark designed to stress the costs and benefits of parti-
tioning operations into red and blue sets. Each user is-
sues requests accessing a random record from a MySQL
database. Each request maps to a single shadow opera-
tion; we say a request is blue if it maps to a blue shadow
operation and red otherwise. The offered workload is var-
ied by adjusting the number of outstanding requests per
user and the ratio of red and blue requests.

We run the microbenchmark experiments with a
dataset consisting of 10 tables, each initialized with
1,000,000 records; each record has 1 text and 4 integer
attributes. The total size of the dataset is 1.0 GB.
8.2.1 User observed latency

The primary benefit of using Gemini across multiple
sites is the decrease in latency from avoiding the inter-
continental round-trips as much as possible. As a result,
we first explore the impact of RedBlue consistency on
user experienced latency. In the following experiments
each user issues a single outstanding request at a time.

Figure 8(a) shows that the average latency for blue re-
quests is dominated by the latency between the user and
the closest site; as expected, average latency decreases
as additional sites appear close to the user. Figure 8(b)
shows that this trend also holds for red requests. The av-
erage latency and standard deviation, however, are higher
for red requests than for blue requests. To understand this
effect, we plot in Figures 8(c) and 8(d) the CDFs of ob-
served latencies for blue and red requests, respectively,
from the perspective of users located in Singapore. The
observed latency for blue requests tracks closely with the
round-trip latency to the closest site. For red requests, in
the k = 2 through k = 4 site configurations, four requests
from a user in Singapore are processed at the closest site
during the one second in which the closest site holds the
red token; every fifth request must wait k− 1 seconds
for the token to return. In the 5 site configuration, the
local site also becomes a replica of the service and there-
fore a much larger number of requests (more than 300)
can be processed while the local site holds the red token.
This changes the format of the curve, since there is now
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 0

 1000

 2000

2-site 3-site 4-site 5-site

L
at

en
cy

 (
m

s)

US-East
US-West

Ireland
Brazil

Singapore

(b) Red request latency for all users as number of sites increases
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(c) Blue latency CDF for Singapore users as number of sites increases
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(d) Red latency CDF for Singapore users as number of sites increases

Figure 8: (a) and (b) show the average latency and standard deviation for blue and red requests issued by users in
different locales as the number of sites is increased, respectively. (c) and (d) show the CDF of latencies for blue and
red requests issued by users in Singapore as the number of sites is increased, respectively.

a much smaller fraction of requests that need to wait four
seconds for the token to return.

8.2.2 Peak throughput

We now shift our attention to the throughput im-
plications of RedBlue consistency. Figure 9 shows a
throughput-latency graph for a 2 site configuration and
three workloads: 100% blue, 100% red, and a 70%
blue/30% red mix. The different points in each curve
are obtained by increasing the offered workload, which
is achieved by increasing the number of outstanding re-
quests per user. For the mixed workload, users are par-
titioned into blue and red sets responsible for issuing re-
quests of the specified color and the ratio is a result of
this configuration.

The results in Figure 9 show that increasing the ratio
of red requests degrades both latency and throughput. In
particular, the two-fold increase in throughput for the all
blue workload in comparison to the all red workload is a
direct consequence of the coordination (not) required to
process red (blue) requests: while red requests can only
be executed by the site holding the red token to process,
every site may independently process blue requests. The
peak throughput of the mixed workload is proportionally
situated between the two pure workloads.

8.3 Case studies: TPC-W and RUBiS
Our microbenchmark experiments indicate that Red-

Blue consistency instantiated with Gemini offers latency
and throughput benefits in geo-replicated systems with
sufficient blue shadow operations. Next, we evaluate
Gemini using TPC-W and RUBiS.
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Figure 9: Throughput versus latency graph for a 2 site
configuration with varying red-blue workload mixes.

8.3.1 Configuration and workloads

In all case studies experiments a single site configu-
ration corresponds to the original unmodified code with
users distributed amongst all five sites. Two through five
site configurations correspond to the modified RedBlue
consistent systems running on top of Gemini. When nec-
essary, we modified the provided user emulators so that
each user maintains k outstanding requests and issues the
next request as soon as a response is received.

TPC-W. TPC-W [7] defines three workload mixes dif-
ferentiated by the percentage of client requests related to
making purchases: browsing (5%), shopping (20%), or-
dering (50%). The dataset is generated with the following
TPC-W parameters: 50 EBS and 10,000 items.

RUBiS. RUBiS defines two workload mixes: browsing,
exclusively comprised of read-only interactions, and bid-
ding, where 15% of user interactions are updates. We
evaluate only the bidding mix. The RUBiS database con-
tains 33,000 items for sale, 1 million users, 500,000 old
items and is 2.1 GB in total.
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(a) TPC-W doCart
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(b) TPC-W doBuyConfirm
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(c) RUBiS StoreBid
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(d) RUBiS StoreBuyNow

Figure 10: Average latency for selected TPC-W and RUBiS user interactions. Shadow operations for doCart and
StoreBid are always blue; for doBuyConfirm and StoreBuyNow they are red 98% and 99% of the time respectively.

Blue Red read-only update

TPC-W shop 99.2 0.8 85 15
TPC-W browse 99.5 0.5 96 4
TPC-W order 93.6 6.4 63 37
RUBiS bid 97.4 2.6 85 15

Table 4: Proportion of blue and red shadow operations
and read-only and update requests in TPC-W and RUBiS
workloads at runtime.

8.3.2 Prevalence of blue and red shadow operations
Table 4 shows the distribution of blue and red shadow

operations during execution of the TPC-W and RUBiS
workloads. The results show that TPC-W and RUBiS ex-
hibit sufficient blue shadow operations for it to be likely
that we can exploit the potential of RedBlue consistency.

8.3.3 User observed latency
We first explore the per request latency for a set of

exemplar red and blue requests from TPC-W and RUBiS.
For this round of experiments, each site hosts a single
user issuing one outstanding request to the closest site.

From TPC-W we select doBuyConfirm (discussed in
detail in §7.1) as an exemplar for red requests and doCart
(responsible for adding/removing items to/from a shop-
ping cart) as an exemplar for blue requests; from RUBiS
we identify StoreBuyNow (responsible for purchasing an
item at the buyout price) as an exemplar for red requests
and StoreBid (responsible for placing a bid on an item)
as an exemplar for blue requests. Note that doBuyCon-
firm and StoreBid can produce either red or blue shadow
operations; in our experience they produce red shadow
operations 98% and 99% of the time respectively.

Figures 10(a) and 10(c) show that the latency trends
for blue shadow operations are consistent with the results
from the microbenchmark—observed latency is directly

proportional to the latency to the closest site. The raw la-
tency values are higher than the round-trip time from the
user to the nearest site because processing each request
involves sending one or more images to the user.

For red requests, Figures 10(b) and 10(d) show that
llatency and standard deviation both increase with the
number of sites. The increase in standard deviation is an
expected side effect of the simple scheme that Gemini
uses to exchange the red token and is consistent with the
microbenchmark results. Similarly, the increase in aver-
age latency is due to the fact that the time for a token ro-
tation increases, together with the fact that red requests
are not frequent enough that several cannot be slipped
in during the same token holding interval. We note that
the token passing scheme used by Gemini is simple and
additional work is needed to identify an optimal strategy
for regulating red shadow operations.
8.3.4 Peak throughput

We now shift our attention to the throughput afforded
by our RedBlue consistent versions of TPC-W and RU-
BiS, and how it scales with the number of sites. For
these experiments we vary the workload by increasing
the number of outstanding requests maintained by each
user. Throughput is measured according to interactions
per second, a metric defined by TPC-W to correspond to
user requests per second.

Figure 11 shows throughput and latency for the TPC-
W shopping mix and RUBiS bidding mix as we vary the
number of sites. In both systems, increasing the number
of sites increases peak throughput and decreases aver-
age latency. The decreased latency results from situating
users closer to the site processing their requests. The in-
crease in throughput is due to processing blue and read-
only operations at multiple sites, given that processing
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(a) TPC-W shopping mix
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Figure 11: Throughput versus latency for the TPC-W shopping mix and RUBiS bidding mix. The 1-site line corre-
sponds to the original code; the 2/3/4/5-site lines correspond to the RedBlue consistent system variants.
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Figure 12: TPC-W: Throughput vs. latency graph for
TPC-W with Gemini spanning two sites when running
the three workload mixes.
their side effects is relatively inexpensive. The speedup
for a 5 site Gemini deployment of TPC-W is 3.7x against
the original code for the shopping mix; the 5 site Gemini
deployment of RUBiS shows a speedup of 2.3x.

Figure 12 shows the throughput and latency graph for
a two site configuration running the TPC-W browsing,
shopping, and ordering mixes. As expected, the browsing
mix, which has the highest percentage of blue and read-
only requests, exhibits the highest peak throughput, and
the ordering mix, with the lowest percentage of blue and
read-only requests, exhibits the lowest peak throughput.

8.4 Case study: Quoddy
Quoddy differs from TPC-W and RUBiS in one cru-

cial way: it has no red shadow operations. We use Quod-
dy to show the full power of RedBlue geo-replication.

Quoddy does not define a benchmark workload for
testing purposes. Thus we design a social networking
workload generator based on the measurement study of
Benevenuto et al. [4]. In this workload, 85% of the in-
teractions are read-only page loads and 15% of the inter-
actions include updates, e.g., request friendship, confirm
friendship, or update status. Our test database contains
200,000 users and is 2.6 GB in total size.

In a departure from previous experiments, we run
only two configurations. The first is the original Quoddy
code in a single site. The second is our Gemini based
RedBlue consistent version replicated across 5 sites. In
both configurations, users are distributed in all 5 regions.

Figure 13 shows the CDF of user experienced laten-
cies for the addFriend operation. All Gemini users expe-
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Figure 13: User latencies CDF for the addFriend request
in single site Quoddy and 5-site Gemini deployments.

TPC-W shopping RUBiS biding
Original Gemini Original Gemini

Thput. (inter/s) 409 386 450 370
Avg. latency 14 ms 15 ms 6 ms 7 ms

Table 5: Performance comparison between the original
code and the Gemini version for both TPC-W and RUBiS
within a single site.

rience latency comparable to the local users in the orig-
inal Quoddy deployment; a dramatic improvement for
users not based in the US East region. The significantly
higher latencies for remote regions are associated with
the images and javascripts that Quoddy distributes as part
of processing the addFriend request.

8.5 Gemini overheads
Gemini is a middleware layer that interposes between

the applications that leverage RedBlue consistency and a
set of database systems where data is stored. We evaluate
the performance overhead imposed by our prototype by
comparing the performance of a single site Gemini de-
ployment with the unmodified TPC-W and RUBiS sys-
tems directly accessing a database. For this experiment
we locate all users in the same site as the service.

Table 5 presents the peak throughput and average
latency for the TPC-W shopping and RUBiS bidding
mixes. The peak throughput of a single site Gemini de-
ployment is between 82% and 94% of the original and
Gemini increases latency by 1ms per request.

9 Conclusion
In this paper, we presented a principled approach to

building geo-replicated systems that are fast as possible
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and consistent when needed. Our approach is based on
our novel notion of RedBlue consistency allowing both
strongly consistent (red) operations and eventually con-
sistent (blue) operations to coexist, a concept of shadow
operation enabling the maximum usage of blue opera-
tions, and a labeling methodology for precisely deter-
mining which operations to be assigned which consis-
tency level. Experimental results from running bench-
marks with our system Gemini show that RedBlue con-
sistency significantly improves the performance of geo-
replicated systems.
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