
Scalable Testing of File System Checkers

João Carreira†§, Rodrigo Rodrigues†, George Candea‡, Rupak Majumdar†

†Max Planck Institute for Software Systems (MPI-SWS),
§Instituto Superior Técnico, and‡École Polytechnique Fédérale de Lausanne (EPFL)

Abstract
File system checkers (like e2fsck) are critical, complex, and
hard to develop, and developers today rely on hand-written
tests to exercise this intricate code. Test suites for file system
checkers take a lot of effort to develop and require careful
reasoning to cover a sufficiently comprehensive set of inputs
and recovery mechanisms. We present a tool and methodol-
ogy for testing file system checkers that reduces the need for
a specification of the recovery process and the development
of a test suite. Our methodology splits the correctness of
the checker into two objectives: consistency and complete-
ness of recovery. For each objective, we leverage either the
file system checker code itself or a comparison among the
outputs of multiple checkers to extract an implicit specifi-
cation of correct behavior. Our methodology is embodied in
a testing tool called SWIFT, which uses a mix of symbolic
and concrete execution; it introduces two new techniques: a
specific concretization strategy and a corruption model that
leverages test suites of file system checkers. We used SWIFT
to test the file system checkers of ext2, ext3, ext4, ReiserFS,
and Minix; we found bugs in all checkers, including cases
leading to data loss. Additionally, we automatically gener-
ated test suites achieving code coverage on par with manu-
ally constructed test suites shipped with the checkers.

Categories and Subject DescriptorsD.2.4 [Software Engi-
neering]: Software/Program Verification —reliability, vali-
dation; D.4.5 [Operating Systems]: Reliability — verifica-
tion

Keywords testing, file system checker, symbolic execution

1. Introduction
Modern storage systems are complex and diverse, and can
fail in multiple ways, such as physical failures or software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ACM EuroSys Conference on Computer Systems,April 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

or firmware bugs [10, 12, 13, 15, 16]. For example, Bairava-
sundaram et al. have observed400, 000 instances of check-
sum mismatches (i.e., instances when reads returned incor-
rect data) in a period of 41 months, in a set of1.53 million
disks [2]. While many failures manifest as system crashes,
the more pernicious bugs in the storage stack can lead to
the corruption of file system structures, where there is no
immediate observable “crash,” but key system invariants are
violated, leading to an eventual crash or data loss many op-
erations later.

Owing to the reality of storage failures, developers of file
systems ship a recovery tool, known as a file system checker,
with each file system. The file system checker is responsible
for checking the integrity and consistency of the on-disk
data structures of a specific file system and, in case of data
corruption, for recovering the disk data to a “consistent”
state usable by the file system code.

Although file system checkers are an essential tool, their
recovery behaviors are complex, hard to get correct, and hard
to test [8, 9]. Developers have to consider potentially every
possible corruption, every disk state, and low-level language
subtleties. Moreover, the correct behavior of a file system
checker is usually poorly specified. While, in principle, one
can formulate the file system invariants in a declarative lan-
guage [9], in practice, the correctness of file system checkers
is checked with respect to a test suite provided by the devel-
oper, which checks for specific violations of the intended be-
havior. Developing good test suites requires significant man-
ual effort, yet may still end up testing only a small fraction
of the possible behaviors. In particular, there may be bugs in
the recovery code for corruption and recovery scenarios that
are not tested (and perhaps not envisioned when designing
the test suite).

We present an automatic tool-supported methodology for
the systematic testing of file system checkers without man-
ual specifications or system invariants or test suites. Our
methodology checks for two properties of the checker:con-
sistencyandcompleteness. Consistency is the property that
the output of the checker and the final disk state are coher-
ent, i.e., an indication of success or failure to recover a disk
should leave the disk respectively in a consistent or irrecov-
erable state. Completeness is the property that the checker

1



recovers a maximal amount of information. The key techni-
cal problem is that determining the notion of consistent state
and complete recovery without explicit specifications of the
behavior of the file system and the file system checker is
hard. Our methodology addresses this problem based on two
insights.

First, even though we do not have explicit invariants,
we can use the checking logic in the file system checker
as a proxy for correctness. This is because the logic that
verifies whether a disk is consistent is simpler and more
mature than the recovery logic, and therefore we can use
this verification logic to determine whether the outcome of a
recovery matches the actions and the degree of success that
the recovery reported. To give a simple example, when a first
run of the checker returns that the disk has been recovered to
a consistent state, we can then use the file system checker’s
own consistency verification logic to test whether this state is
indeed consistent. Thus, we avoid the problem of inferring
a specification of consistency by focusing on theinternal
consistency of the checker.

Second, in order to assess the completeness of a checker,
we run checkers for different file systems on semantically
equivalent file system images and compare results for the
same corruption of this state. Different checkers share a
common specification for the recovery of file systems. Even
though specific on-disk representations of the file system
can vary, checkers operate on semantically equivalent data
structures and have access to the same information, and so
they should be able to perform the same recoveries. Conse-
quently, differences in the recoveries performed by different
file system checkers on the same semantic file system under
the same corruption scenario are likely due to incomplete-
ness in one of the checkers. Thus, we avoid the problem of
inferring a specification of completeness by focusing onrel-
ativecompleteness between different checkers.

In summary, both parts of our methodology reduce the
problems of checker consistency and checker completeness
to the problem of state space exploration of checkercompo-
sitions. In the first case, we compose the same checker se-
quentially and compare results; in the second case, we com-
pose two or more different checker implementations in par-
allel and compare results.

We developed SWIFT (Scalable and Wide Fsck Testing),
a system that implements the aforementioned methodology
and allows developers to test file system checkers. SWIFT
uses S2E [6], a full-system symbolic execution engine for
binaries, as a basic path exploration tool to explore the ex-
ecution of file system checkers under different data corrup-
tion instances. SWIFT is able to systematically explore the
recovery code of file system checkers and find bugs that are
hard to detect with classic testing methodologies.

We used SWIFT to test e2fsck (ext2–4), reiserfsck (Reis-
erFS) and fsck.minix (Minix). SWIFT found bugs in all three
checkers, including cases that lead to loss of data and incor-

rect recoveries. Additionally, SWIFT achieves code cover-
age on par with manual tests, but with much less effort.

The rest of the paper is structured as follows:§2 surveys
the related work,§3 provides background on symbolic ex-
ecution and S2E, §4 presents our methodology for testing
file system checkers,§5 describes SWIFT, the system that
instantiates this methodology,§6 presents our evaluation of
SWIFT, and§7 concludes.

2. Related Work

File System Testers. Model checking and symbolic exe-
cution have already been used in the past to systematically
test file systems. EXPLODE [17] is a tool for end-to-end
testing of real storage stack systems based on enumerative
model checking. EXPLODE exhaustively explores all states
of a storage system by systematically invoking file system
operations, injecting crashes in the system, exploring all
choices of a program at specific points, and checking each
state against specific properties of the correctness of the sys-
tem. The developer provides acheckerprogram, which is re-
sponsible for systematically invoking system specific opera-
tions, injecting crashes and checking assertions on the sys-
tem state. FiSC [19] applies this idea to file systems, and
checks disk data against a model describing the data that is
expected to be stored. In contrast to SWIFT, these tools are
not symbolic, do not explore the recovery behavior of file
system checkers, and require a human-provided specifica-
tion to check the correctness of the code.

Yang et al. proposed a system for testing disk mount
mechanisms [18]. During the mount of a disk, file system
code must check if the disk data is consistent and if all the
invariants of the file system hold. Since these invariants can
be complex and depend on a high number of values, mount
code is hard to test and exercise. In order to test this code,
the authors proposed using symbolic execution to systemati-
cally explore the code of themountfunction of different file
systems. As multiple paths are explored, pluggable pieces
of code (property checkers) check for specific bugs, such as
null pointer accesses. However, bugs that lead to latent file
system data or metadata errors may not be caught.

In contrast to all of the above, we focus on testing file sys-
tem checkers, and we look for problems that manifest in sub-
tle ways, such as latent bugs, without requiring hand-written
specifications of correctness properties. This is achievedby
looking for inconsistencies that are internal to the checker or
incompleteness relative to other checkers.

Leveraging code diversity. The idea of using different im-
plementations of similar systems has been proposed in the
context of replicated file systems for tolerating correlated
faults [1, 14], and also for verifying the equivalence of core-
utils tools [4]. In our work, we leverage this idea to test one
aspect of the specification of file system checkers, namely
the completeness property.

2



Corruption model Bairavasundaram et al. proposedtype
aware pointer corruption(TAPC) to explore how file sys-
tems react to corrupt block pointers [3]. The proposed
methodology consists of creating different instances of block
pointer corruptions and observing how the file system be-
haves in those cases. The systematic introduction of data
corruption faces an explosion problem: it is not possible to
explore all possible cases of corruption. TAPC addresses this
problem by assuming that the behavior of the system being
tested only depends on the type of the pointer that has been
corrupted and on the type of the block where the pointer
points to after corruption. SWIFT makes use of a corruption
model, and TAPC could have been used for this purpose.
However, we decided to use different models that enable a
larger corruption space. Some of the bugs that SWIFT un-
covered cannot be found using TAPC.

Declarative Specifications Gunawi et al. have proposed
SQCK [9], a file system checker based on a declarative query
language. The reason for using a declarative language is that
declarative queries are a good match for file system cross-
checks and repairs. While this is a promising approach to
improve the reliability of file system checkers, it requires
rewriting the checker code itself (and moves inconsistency
and incompleteness issues to the declarative specification).
In contrast, we aim to improve the reliability of the large
code base of existing file system checkers.

3. Symbolic Execution andS2E

SWIFT relies on symbolic execution to systematically ex-
plore the recovery behavior of file system checkers. Sym-
bolic execution [7, 11] is a technique that allows the explo-
ration of non-redundant paths of code. To achieve this, in-
put data is initially marked as “symbolic,” that is, insteadof
assigning concrete values to inputs, the symbolic execution
engine represents each input with a symbolic constant that
represents all possible values allowed for that input.

The symbolic execution engine executes the program on
the symbolic input, and maintains a symbolic store that maps
program variables to symbolic expressions defined over the
symbolic inputs. The symbolic store is updated on each
assignment statement. For example, if the program has an
input x that is represented using the symbolic constantαx,
and the program performs the assignmenty = x + 5, the
symbolic store maintains the mapping[x 7→ αx, y 7→ αx +
5].

In addition to the symbolic store, the symbolic execution
engine maintains a path constraint that represents constraints
on the inputs in order for the current path to be executed.
Initially, the path constraint istrue, indicating that there are
no constraints on the inputs. When a conditional instruction
that depends on symbolic data is executed, the system ex-
ecution may be forked in two feasible paths. In the then-
branch, the condition is marked as true (by conjoining the
conditional with the current path constraint), and in the else-

branch, it is marked as false (by conjoining the negation of
the conditional with the current path constraint). For exam-
ple, if the conditional isy > 0 and the symbolic store is
as above, the then-branch of the conditional adds the con-
straintαx +5 > 0 to the path constraint and the else-branch
adds the constraintαx + 5 ≤ 0. This constrains the input
values that can cause execution to go down the then- or else-
branch. As the code in each path is explored and execution
is forked, input data is progressively constrained along each
individual path and paths through the system are explored.
When a path is fully executed, a constraint solver is used to
find concrete inputs that satisfy the path constraints that were
collected along that path. Any concrete input satisfying the
path constraint is guaranteed to execute the program along
that path. Symbolic execution continues until all paths of the
program are covered (or some user-provided coverage goal
or resource bound is met).

SWIFT usesS2E [6], an in-vivo symbolic execution en-
gine. Testing using in-vivo symbolic execution enables us to
use a real software stack, without having to model the envi-
ronment in which the target code runs. For improved scala-
bility, S2E combines symbolic execution with the concrete
execution of certain sections of the code, by converting sym-
bolic data into concrete data upon entering those sections,
and judiciously converting back to symbolic upon leaving, in
such a way that execution consistency is preserved.S2E op-
erates directly on binaries, and therefore it does not require
access to the source code of the software being analyzed.

4. Methodology

4.1 Overview

Our methodology checks for two aspects of the specification
of a file system checker. The first aspect, which we call
consistency, is the property that the output of the checker
and the final disk state are coherent, namely that a successful
recovery should not lead to a corrupt disk, and a run of the
checker that ends with an error code should produce a disk
that is consistent with the error code. The second part, which
we call completeness, is the property that a checker should
recover as much information as reasonably possible from a
corrupt disk.

If there was a full specification of the layout of a file sys-
tem, one could check consistency by exploring the set of
possible behaviors of the checker and verify that, when run
from an arbitrary disk state, the checker either returns suc-
cess and a disk state satisfying the specification, or returns
an error code with the disk state satisfying the conditions
implied by the error code. Similarly, if there was a full spec-
ification of recovery behavior, one could check complete-
ness by verifying that the checker conforms to the recovery
specification. In practice, file system layouts and file sys-
tem checkers do not come with full specifications, therefore
the developers of the file system checker construct a partial
specification in the form of a test suite.

3



Healthy Disk

Corruption
  Injection Recovered

    Disks

...

Fsck Return

    Values

Recovered

Unrecovered

  Errors Left

...

Figure 1. Finding fsck recovery inconsistencies.

Our goal is to provide a methodology and a tool tosys-
tematically test the implementations of file system check-
ers,withoutmanually provided behavioral specifications and
with minimal manual effort. Our methodology has three
parts.

First, we expect acorruption model that systemati-
cally injects data corruption to disks. Our methodology is
parametrized by a user-provided corruption model, and the
depth and complexity of the corruption model influences the
coverage of recovery behaviors. This is, in essence, a speci-
fication of what failures are of interest. In§ 5 we present two
methods for the systematic and symbolic injection of data
corruption.

Second, we perform the systematic exploration of checker
code (for each given corruption scenario) using symbolic
execution [4–7]. This enables us to systematically explorea
large number of paths through the checker code, and, when
problems are found, to generate an input disk image that
triggers the problematic path.

Third, we check the consistency and completeness of
checkers using acompositionof checkers, that is, by using
the file system checker code itself as a specification, as
follows.

We check consistency using sequential self-composition.
This means that we take a corrupt disk and perform two
consecutive runs of a checker on this disk. If the outcomes
of the two runs are not coherent with each other, then we
can be sure that some erroneous behavior occurred. This
happens, for instance, if the second run needs to recover a
disk that was successfully recovered in the first run. Thus, we
can check for inconsistent behaviors by running the checker
twice in succession and comparing the two results.

We check completeness using parallel composition of
multiple file system checkers. That is, we run different im-
plementations of file system checkers (possibly for different
file systems) and compare their results when started with the
same semantic state (i.e., a logical representation of the file
system state that abstracts away the differences in the data
and metadata physical layout) and the same data corruption.
While different file systems may be represented differently
on-disk, we use the fact that one can relatively simply spec-
ify the common data structures used in a file system (inodes,
data blocks, etc.) and describe a corruption purely as muta-

First Execution Result Second Execution Result

Disk is consistent Disk is consistent
Uncorrected errors left Uncorrected errors left
Recovered but uncorrected errors leftUncorrected errors left
All errors corrected Disk is consistent
Operational Error Operational Error

Table 1. List of correct results fsck should output when run
consecutively on the same disk.

tions on these data structures. Assuming that correlated bugs
are less likely, this detects sources of incompleteness where
one checker cannot recover some information but the other
can.

4.2 Checking Consistency

Our approach to check consistency, depicted in Figure 1,
works as follows.

A healthy disk is fed to our testing system. Using a cor-
ruption model, we systematically introduce corruption (in
the form of unconstrained symbolic values) in this disk. We
call this a symbolic corrupt disk, i.e., a disk that contains
symbolic values, thus encoding any possible values for the
bytes that are marked as symbolic.

Next, we symbolically execute the checker under test
to recover from this corruption, if possible. This leads to
multiple recovered disks and, for each recovery, the checker
returns a numeric value indicating whether it was able to
recover the disk and, if so, whether the recovery was partial
or complete. Afterwards, we run the checker a second time
on the recovered disk to determine whether the consistency
property is met.

To exemplify how the second run checks the correctness
of the first one, if the first checker execution completely re-
covers the disk data, the second run must indicate a fully
consistent disk. If not, then it is likely that the recovery per-
formed in the first execution is not correct, e.g., a set of re-
coveries performed in the second execution were missed by
the first one, or the first recovery has introduced inconsis-
tencies. A complete list of the expected outcomes of the se-
quential composition of checker executions is shown in Ta-
ble 1. A deviation from these outcomes signals the existence
of a bug in the checker; this process does not generate any
false positives. Once a positive is flagged, the developer ob-
tains a bug-triggering input that (s)he can use to manually
inspect the cause of the bug. Note that we cannot exclude
that the bug can be in the checking logic to verify if recov-
ery is needed (that implies the specification we use).

The effectiveness of this phase in terms of not having any
false negatives, relies on two assumptions: first, that the code
for checking whether recovery is needed is correct, and, sec-
ond, that an execution that outputs that the disk is initially
consistent does not modify the file system state. We ex-
pect these assumptions to be commonly met in practice be-
cause of the following intuition: Since the code that checks

4



Recovered Disks

...

Type Name Content

FILE
... ... ...

...

...

...

Testing

System

Fsck1
+

Semantic State

compare
Type Name Content

... ... ...

Type Name Content

FILE
... ... ...

Figure 2. Assessing the completeness of recoveries.

whether on-disk file system data structures need recovery is
frequently executed, and also given its relative simplicity,
we expect this checking logic to be mature and to be a good
specification of a consistent disk. In contrast, recovery code
often depends on intricate failure conditions and complex
correction decisions, and thus this code is more likely to be
fragile.

4.3 Checking Completeness

Even though the disk recovered by a file system checker may
be consistent, a checker may not have done as good a job
as it could have, i.e., may not have recovered the disk to a
state that is as close to the pre-corruption state as possible.
For instance, data or metadata may have been lost in the
process, files or directories may have been relocated, or the
checker may have not used all the available data redundancy
during the recovery process and thus missed opportunities
for recovery.

In order to assess the completeness of file system checker
recoveries, we compare the contents from different disks re-
sulting from the execution of different file system checkers.
The idea is that file system checkers should be able to arrive
at the same logical contents for the file system after recover-
ing from corruption in equivalent fields. Note that it is only
possible to use this strategy if file systems have common data
structures that can be used to produce equivalent corruption
scenarios. In practice, we expect this to be feasible for a large
class of file systems that have similar organization strategies
and use similar data structures, e.g., inode-based designs.

The second part of the methodology is depicted in more
detail in Figure 2. We start with two or more healthy disks,
formatted with different file systems and containing the same
logical data (i.e., having identical file system entries). We
use the corruption model to introduce semantically equiv-
alent corruptions in each disk image. To ensure seman-
tically equivalent corruptions, the corruption model intro-
duces symbolic values in fields which are common to both
disk data structures (see Table 2).

For each corrupted disk, we execute the corresponding
file system checker symbolically to recover from the injected

Field Description

Number of blocks Number of used blocks
Number of free blocks Number of unused blocks

Block size
Size of the block used by the file
system

State of the file system
Value indicating if the file system is
valid or not

Magic file system value
Value indicating which file system
and version are being used

Symbolic link data
Path to the file that the symbolic
link points to

Directory entries < Name, Inode number> pairs

Data block pointers
Pointers stored in data blocks and
inodes

VFS file attributes
File attributes exposed by the VFS
layer (see Table 3)

Table 2. List of fields shared by modern file systems. The
term “symbolic” is used above in the sense of symbolic (soft)
links in file systems, which differs somewhat from the use of
this term in the rest of the paper.

corruption. Then, for each recovery path and the correspond-
ing recovered disk, we assemble a logical representation of
the data stored in the disk (i.e., the set of file system entries
it contains) using file system operations. Finally, we perform
an all-to-all comparison among the logical representations of
the recovered data in the various file systems and various re-
covery paths (but for the same corruption). Mismatches in
the logical data contained in different recovered disks indi-
cate that the different file system checkers performed differ-
ent recoveries, and might be caused by a bug.

Unlike checking consistency, this approach is subject to
false positives. Since different file systems may have differ-
ent levels of on-disk redundancy, some file system checkers
may be able to recover more information than others. Thus,
the developer needs to manually inspect the bugs found by
this part of our methodology in order to separate mismatches
caused by a bug in the checker from those resulting from the
file system’s design.

Moreover, our approach does not pinpoint which of the
file system checkers whose recoveries are being compared
has a bug. However, we have found it easy to discover
through manual inspection which of the file system check-
ers has performed an incorrect recovery. It is possible that
a majority voting mechanism could be used to isolate the
buggy file system checker from a set of three or more file
system checkers being compared (akin to BASE [14] and
EnvyFS [1]), but we did not explore this approach.

5. SWIFT
We now describe SWIFT (Scalable and Wide Fsck Testing),
a testing tool that implements our methodology. As illus-
trated in Figure 3, SWIFT has three phases: processing a de-
scription of which fields are considered to be sources of cor-
ruption, systematically exploring paths in the checker code,
and using these path traces to find inconsistent recoveries
and instances of data loss or missed recovery opportunities.

5



      FS 1

description Fsck

abstract

dir file

/

dir file

Testing

  disk

compare

dir file

/

dir file

check

checkrecover

Fsck

check

recover

Testing

  disk

     FS 2

description

recover

Figure 3. Overview of SWIFT’s testing process.

5.1 System Overview

Checking consistency. For this phase, the input to SWIFT
is a file system and file system checker under test, an initial
healthy disk, and a description of the corruption model. An
example of a corruption model is a list of file system fields
that can be mutated. SWIFT introduces a symbolic input
according to each entry in the corruption model (e.g., in
one file system field at a time), and runs S2E to explore
file system checker executions for each symbolic input. The
symbolic execution of these paths will lead to checking and
possibly recovering from the corruption that was injected.
Moreover, each of these paths leads to S2E generating a disk
trace — a concrete corrupt disk that can be used as an input
to exercise that path in the checker code. Once corruption
in all fields has been explored, the disk traces generated by
the path exploration phase are used to test the consistency
of the checker. To this end, SWIFT uses the file system
checker to recover each concrete disk in the set of disk traces
two consecutive times. On each recovery, SWIFT records
the value returned by the fsck. At the end, SWIFT checks
these values, looking for incorrect recoveries. Sequences
of executions whose return values deviate from the set of
“good” cases that are listed in Table 1 are marked as buggy
cases.

Checking completeness.For checking completeness, the
input to SWIFT is two or more file systems and their corre-
sponding checkers, a semantic description of the initial file
system data, and a description of the corruption model. The
corruption model marks fields shared by the file systems
as symbolic. For each symbolic input, SWIFT runs S2E to
generate disk traces for each file system checker. For each
field that is analyzed (as described in Section 4.3), SWIFT
runs the recovery code on each disk in the set of disk traces
(corresponding to the various recovery paths) and builds a
logical representation of the data contained in it using the
data and metadata accessible through VFS operations (see

Field Description

Path name Path to the file
Type Type of the file (e.g., directory)
Permissions Read, write and execute permissions of the file
Number of hard links Number of links to this file
User ID of owner Identification number for the file’s user owner
Group ID of owner Identification number for the file’s group owner
Total size Size of the file
File content Content of the file (in case of regular files)

Table 3. List of files attributes accessible with VFS.

Table 3). Then, SWIFT compares all the logical disk con-
tents across all the file system checkers being compared and
all recovery paths, but for the same corrupted field. Finally,
mismatches between these representations are flagged. In or-
der to make the logical comparison agnostic to the order in
which these entries were returned by the VFS calls, SWIFT
sorts the directory entries that are read.

Output. Since SWIFT starts from a real disk to exercise
recovery code, and the output of S2E is a set of concrete
disks that lead to different execution paths, SWIFT can out-
put, upon finding a potential bug, the corresponding concrete
disk that triggers the identified problem. Developers can then
use this disk image to replay the bug and manually find its
root cause.

5.2 Initial Disk

To explore diverse recovery behaviors, we have to create
an initial disk that uses many features of the file system.
Otherwise, the execution of the checker under test will be
confined to a small subset of recoveries. We developed a
generic file system content for the testing disk, taking into
account the data structures that specific file systems use to
organize their data and metadata. This disk not only contains
all types of entries, but also exercises specific layouts that
stem from certain file system design features. For instance,
our testing disk contains 100 small files in a directory to
force specific file systems (e.g., ReiserFS) to use a multi-
level tree with internal and leaf nodes. The resulting testing
disk layout is depicted in Figure 4 and described in Table 4.

5.3 Corruption Model

The set of possible disk corruptions, file system structures,
and file system fields is prohibitively large. Fortunately,
many of the possible corruptions exercise the same fsck
recovery code mechanisms (e.g., the same corrupt field in
inodes of the same type is recovered in the same way).

To systematically explore corruption instances, and given
that we are not aware of any existing studies for real disk
corruption, we experimented with two simple methods for
injecting data corruption in a disk. In the first method, the
corruption that is injected in the disk is based on the fields
of the data structures used by file systems. In the second
method, the injection of corruption is guided by existing file
system checker test suites. While we believe that more so-

6



/

fd cdev fdevbdev

slink hlinkd2

/

f1 f100...

Figure 4. Semantic representation of the data stored in
SWIFT’s generic test disk. The meaning of the nodes is ex-
plained in Table 4.

Item Type Description

/ Directory
/bdev Block device
/d Directory
/cdev Char device
/fdev FIFO Device
/f Regular File File with 278 1Kb blocks
/d/slink Symbolic link Link to root directory
/d/hlink Hard link Link to /f
/d/d2 Directory
/d/f1...f100 Regular file 100 empty files

Table 4. Description of the contents of the test disk.

phisticated models could help the productivity of our test-
ing tool, we leave the task of finding such models to future
work. We also note that even with these simple models our
methodology is effective.

5.3.1 Corruption of Fields

Most file system checker recovery mechanisms target spe-
cific file system fields and data structures. Thus, we have de-
veloped and implemented a corruption model that is aware
of the position of file system fields in the disk and that can se-
lectively corrupt them. While developing this model we tried
to exhaustively consider the different types of structuresused
by modern file systems. Moreover, we analyzed the list of re-
coveries performed by different file system checkers, namely
e2fsck and xfsfsck, whose description is provided by devel-
opers along with the source code, and asked the question “Is
our corruption model able to exercise these recovery mecha-
nisms?” We eventually converged onto a model that encom-
passes a wide set of corruption cases.

Table 5 shows the fields our model considers as possible
sources of corruption. The first column describes the on-disk

Disk Data Structure Fields

Superblock All fields
Group Descriptor All fields
Inode Bitmap All bits of used blocks and one bit of an unused block
Block Bitmap All bits of used blocks and one bit of an unused block

Metadata

For each inode type:

1. all non-pointer fields
2. one direct block pointer
3. one indirect block pointer
4. one double indirect block pointer

All fields of reserved inodes

Data

Directory entries (root and one other directory):

1. Directory entry (e.g., inode number, file name) to itself
2. Directory entry to parent
3. Directory entry to another

Data pointers:

1. One direct pointer stored in an indirect block
2. One indirect pointer stored in a double indirect block

Symbolic links:

1. One symbolic link path name

Journal Superblock All fields
Journal Commit Record All fields
Journal Revoke Record All fields

Table 5. Corruption model. This table shows the fields and
respective data structures considered to be possible sources
of corruption.

file system data structure, while the second column identifies
the specific field(s) in that structure. This corruption model
targets inode-based file systems. Thus, this model considers
the most common structures in this family of file systems,
such as superblock, inode bitmap, block bitmap, metadata
(inodes) and data (data blocks). We additionally considered
some more modern features (e.g., related to journaling).

We consider all the fields in each one of these struc-
tures as possible sources of corruption. However, in order
to achieve scalability, we apply some simplifications. In the
case of bitmaps, our model only considers one bit from the
set of bits indicating unused blocks or inodes. Our model
considers only one pointer of each type (direct, indirect, and
double indirect), and inode fields are considered once for
each type of inode. Finally, we only consider corruption in
one field at a time, similar to single-event upset models in
VLSI-CAD. While silent data corruption may affect several
fields of the file system disk data structures, we believe that
considering only one field at a time is a good compromise
between the large number of possible corruptions and the
efficiency of our testing methodology. Additionally, in this
way, the developer is able to direct the execution of the file
system checker towards specific recovery mechanisms.

Since our corruption model targets inode-based file sys-
tems, it can be used to test most of the currently used file
system checkers. However, some file system checkers may
not implement some of the structures outlined, or may use
additional structures not captured by it. In particular, many
modern file systems provide more advanced features, such
as indexed directory entries. To allow for capturing these

7



<F i l e Sys te m name=” Ext4”>
<AddSt ruc tu re name=” Supe rb loc k”>

<F i e l d name=” s i n o d e s c o u n t ” p o s i t i o n =”0h ”
s i z e =”4”/>

<F i e l d name=” s b l o c k s c o u n t l o ” p o s i t i o n =”4h”
s i z e =”4”/>

<F i e l d name=” s r b l o c k s c o u n t l o ” p o s i t i o n =”8h”
s i z e =”4”/>

<F i e l d name=” s f r e e b l o c k s c o u n t l o ” p o s i t i o n =”Ch”
s i z e =”4”/>

</AddS t ruc tu re>
<AddSt ruc tu re name=” Inode”>

<F i e l d name=” i mode ” p o s i t i o n =”0h ” s i z e =”2”/>
<F i e l d name=” i u i d ” p o s i t i o n =”2h ” s i z e =”2”/>
<F i e l d name=” i s i z e ” p o s i t i o n =”4h ” s i z e =”4”/>
<F i e l d name=” i a t i m e ” p o s i t i o n =”8h ” s i z e =”4”/>
<F i e l d name=” i c t i m e ” p o s i t i o n =”Ch” s i z e =”4”/>

</AddS t ruc tu re>
<AddSt ruc tu re name=” D i rE n t r y ”>

<F i e l d name=” i n o d en r ” p o s i t i o n =”0” s i z e =”4”/>
<F i e l d name=” r e c l e n ” p o s i t i o n =”4” s i z e =”2”/>
<F i e l d name=” namelen ” p o s i t i o n =”6” s i z e =”2”/>
<F i e l d name=” ent ry name ” p o s i t i o n =”8” s i z e =”1”/>

</AddS t ruc tu re>
<AddTest>

<T e s t S t r u c t u r e name=” Supe rb loc k ”
s t a r t P o s i t i o n =”1024”/>

<T e s t S t r u c t u r e name=” Inode ” s t a r t P o s i t i o n =”49300h ”
d e s c r i p t i o n =” j o u r n a l i node ”/>

</AddTest>
</ F i leSys tem>

Figure 5. Test description for an ext4 disk. Some structures
and fields are omitted for clarity.

features, developers can easily extend the model by edit-
ing the corresponding XML-based description of the pos-
sible sources of corruption and their respective positions
on the disk. An example of such a description is depicted
in Figure 5. In this description, the developer defines disk
data structures (e.g., an inode), usingAddStructure. These
structures contain file systems fields, their names, relative
positions and sizes.

5.3.2 Corruption Using Fsck Test Suites

One limitation of the above corruption model is that it con-
siders that corruptions do not span more than one file system
field, which is important to keep the number of scenarios be-
ing tested within a reasonable bound. Ideally, we would like
to additionally test more intricate cases of corruption that ex-
ercise more complex recovery mechanisms, but doing so in
a scalable way is challenging.

To address this, we use the file system checker test suites
to drive the exploration of recovery paths towards recoveries
that are harder to exercise, while maintaining the scalability
of our methodology. When available, test suites can be a
good vehicle for exercising recoveries, because they make
use of the knowledge of the developers about the file system,
the checker and real data corruptions. In addition, test suites
tend to be developed over a long period of time and, as they
mature, they explore more intricate cases of data corruption.

In this work we focus on the test suite of e2fsck, since
it was the only system we tested that provided a test suite
along with the checker. In this suite, each test consists of one

c ha r∗ d i s k d a t a ; / / d i s k d a t a
c ha r∗ t e s t d i s k ; / / d i s k f i l e pa th
i n t symb pos ; / / p o s i t i o n of t he symbol ic f i e l d
i n t s ymb s i z e ; / / s i z e of t he f i e l d
c ha r b u f f e r [ 4 0 9 6 ] ;

i n t open ( c o n s t c ha r∗ pathname , i n t f l a g s , modet mode ) {
i n t fd = open ( pathname , f l a g s , mode ) ;

/ / no t open ing the t e s t d i s k
i f ( s t rcmp ( pathname , t e s td i s k ) != 0)

r e t u r n fd ;

i s T e s t D i s k [ fd ] = 1 ;
s2e make symbol ic ( d i s k d a t a + symbpos ,

symb s ize , ” d i s k ” ) ;
r e t u r n fd ;

}

s s i z e t re a d ( i n t fd , vo id ∗buf , s i z e t c oun t ) {
/ / check i f we a re r e a d i n g our t e s t d i s k
i f ( i s T e s t D i s k [ fd ] == 1) {

/ / ge t seek p o s i t i o n
o f f 6 4 t seek = l s e e k 6 4 ( fd , 0 , SEEKCUR ) ;
/ / ge t number o f b y t e s re a d
i n t re a dR e t = r e a d ( fd , bu f fe r , c oun t ) ;
memcpy ( buf , d i s k d a t a + seek , re a dR e t ) ;
r e t u r n re a dR e t ;

} e l s e {
/ / d e l e g a t e o p e r a t i o n to the ’ r e a l ’ f i l e sys tem
r e t u r n r e a d ( fd , buf , c oun t ) ;

}
}

Figure 6. Simplified interception layer for theopen and
read file system operations.

corrupt disk and the expected output from recovering it. Our
corruption model uses the test suite in the following way. For
each test, we run e2fsck on the test disk and record which
bytes of the disk are changed during the recovery. Then, we
run SWIFT, considering these bytes as possible sources of
corruption, thus exploring multiple fault scenarios for the
same set of bytes. As our results will highlight, this latter
corruption model proved more effective than the individual
field model in uncovering incorrect recoveries.

5.4 Generating Symbolic Input

To explore recoveries of on-disk data corruption, we invoke
the file system checker inside S2E on the testing disk. How-
ever, this execution must differ from a normal fsck execu-
tion, because the data that is read from the testing disk must
be in memory and must contain a mix of concrete and sym-
bolic values, the latter being marked through an invocation
of S2E’s s2e make symbolic function.

To feed symbolic disk data to a file system checker in a
transparent way, we have developed an interception layer, as
depicted in Figure 6. This layer is compiled in Linux as a
shared library and is used to intercept functions that handle
file system operations provided by thelibc library. The role
of the layer is to load the test disk contents into memory and
replace portions of the data read from disk with symbolic
values by calling thes2e make symbolic function. Then,
when the checker invokes aread()call, instead of accessing

8



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.00010.001 0.01 0.1 1 10 100 1000

C
D

F

Time (seconds)

Figure 7. CDF of the solving time for a sample set of
constraint expressions generated during our tests.

the disk contents, the mix of concrete and symbolic data is
read from memory. The behavior of thewrite() method is not
changed, since code running onS2E can handle symbolic
values transparently.

5.5 Improving Scalability: A Concretization Strategy

S2E relies indirectly on a constraint solver to solve constraint
expressions during the exploration of paths. Most of the
constraint solver queries are issued in two situations: when
a path is forked and when a symbolic value is concretized in
order to simplify a symbolic memory address access.

Figure 7 shows the distribution of constraint solving
times. While most of the queries can be solved by the con-
straint solver in less than 1 second, a small fraction of the
queries takes a considerable amount of time. These queries
can hurt the performance of the path exploration and slow
down the rate of explored paths. In order to solve this prob-
lem, symbolic execution systems allow developers to set a
timeout on the constraint solving process. This way, when-
ever a constraint solving query takes more than a specified
amount of time, the constraint solving process is canceled
and the respective path is discarded. This approach is far
from ideal: discarding a path wastes the time that was spent
executing the code that led to that path and solving previous
constraint queries. Moreover, constraints that may be hardto
solve by the constraint solver may also be harder to reason
about by the developer, and thus can arguably be more likely
to exercise corner cases of the file system checker.

In order to decrease the number of paths that are dis-
carded this way, we introduce the following optimization:
Whenever a constraint query times out during a path fork, we
partially concretize the constraint expression of the path, i.e.,
find a set of values for a subset of the variables in the con-
straint expression of the path that satisfy these constraints.

The idea is that, by concretizing a subset of the symbolic
bytes of the path’s constraint expression, we can simplify the
constraint expression, thus transforming it into an expression
that can be solved more efficiently.

The subset of bytes concretized can be chosen according
to different strategies. One possibility is to choose the bytes
according to the order in which they appear in the constraint
expression. Another possibility is to concretize the symbolic
bytes that occur more often in a constraint expression. Fi-
nally, a third strategy can pick the symbolic bytes to con-
cretize that appear in arithmetic expressions.

In this work we only evaluate the first strategy. Our strat-
egy allows the developer to decide the fraction of the bytes
that is concretized, i.e., the developer has, at compile time,
the ability to decide if the constraint expression should be
fully or only partially concretized. We leave the evaluation
of the remaining strategies to future work.

6. Evaluation
We used SWIFT to check the consistency and complete-
ness of three file system checkers: e2fsck 1.41.14, reiserf-
sck 3.6.21 and fsck.minix 2.17.2. These file system checkers
are used to check the integrity of ext2 through ext4, Reis-
erFS and the MINIX file system, respectively. Both e2fsck
and reiserfsck are modern and reasonably sized file sys-
tem checkers:18, 046 and8, 125 lines of code, respectively.
Fsck.minix is a small but mature file system checker with
1, 156 lines of code.

To implement our first corruption model that tests the cor-
ruption of individual fields, we developed a test description
for each one of these file system checkers, as described in
Section 5.3.1. Table 6 summarizes the complexity of these
three descriptions. For the second corruption model, SWIFT
collects the bytes changed during the recovery of the disk
that is provided by each test, as described in Section 5.3.2.

Fsck # Data Structures # Fields LoC

e2fsck 13 233 323
reiserfsck 10 63 128
fsck.minix (V1) 4 28 63
fsck.minix (V2) 4 31 72

Table 6. Size of the test descriptions developed for each file
system checker.

In order to execute the file system checkers being tested,
we had to provide command-line arguments they support (as
summarized in Table 7). An interesting case was reiserfsck,
which provides one argument to check the consistency and
three other arguments that enable different recovery mecha-
nisms. As a result, to test the reiserfsck file system checker,
we invoke it three times in the first execution, one for each
command-line argument, to test all recovery mechanisms.

When testing individual field corruption, we let SWIFT
perform the code exploration for 1,000 seconds for each field

9



Fsck Bug Type Description

e2fsck Wrong return type e2fsck incorrectly flags a disk as recovered in the first execution
e2fsck Unrecoverable field is recoveredCorrupts wtimefield is recovered despite being considered unrecoverable
e2fsck Cloning of blocks Wrong recovery leads to unnecessary cloning of blocks
e2fsck Recovery fails to recover Recovery of inconsistent resize inode leaves inode in an inconsistent state
e2fsck Journal backup mismatch Recovery may create mismatches between the journal inode and its backups

reiserfsck Infinite Loop Corruption in entry key leads to an infinite loop
reiserfsck Segmentation fault Corruption in the size field of a child pointer leads to a segmentation fault
fsck.minix Data Loss Wrong inode number in . entry of root inode makes all data unreachable
fsck.minix Segmentation fault Bug detecting double indirect pointer leads to segmentation fault
fsck.minix Segmentation fault Loop in the file system leads to an infinite loop and segmentation fault

Table 8. List of bugs found when testing the consistency of recoveries.

Command-Line Invocation Description

e2fsck -fy testdisk Performs all the possible recoveries

reiserfsck -fy –rebuild-sb testdisk Recovers the superblock
reiserfsck -fy –fix-fixable testdisk Recovers cases of corruption which

do not involve the file system tree
reiserfsck -f –rebuild-tree testdisk Recovers the file system tree
reiserfsck –check testdisk Checks the consistency of the file

system
fsck.minix -fa testdisk Performs all automatic repairs
fsck.minix -f testdisk Checks the consistency of the file

system

Table 7. List of command-line arguments used while testing
e2fsck, reiserfsck and fsck.minix.

indicated in the test description. When using the test suite,
we configure SWIFT to use 1,000 seconds for each test. All
the experiments run on an Intel 2.66GHz Xeon CPU using
48GB of RAM, and we run S2E with 8 threads.

To understand what was the cause for incorrect recov-
eries, we manually analyzed as many buggy paths as time
permitted.

6.1 Checking the Consistency of Recoveries

We start by reporting several bugs we found using each of the
corruption models. Our findings are summarized in Table 8.

6.1.1 Corruption of individual fields

Overall, using the individual field corruption model, our
tests found buggy paths in all three file system checkers.
We manually analyzed a subset of the paths that SWIFT
flagged as buggy. This analysis revealed 5, 2 and 3 bugs
in e2fsck, reiserfsck and fsck.minix, respectively. Thesein-
clude instances of infinite loops and segmentation faults,
even though SWIFT does not directly target this type of
bugs.

To give an example of an inconsistent recovery that our
methodology detected, in one case, when the disk contains
two duplicate files, e2fsck outputs a message indicating that
this error was found and fixed. However, e2fsck fails to
rename one of the duplicate files in the first execution of
e2fsck. Only a second execution fixes this problem. The rea-

Bug Description

Deleted inode is
treated as an or-
phan inode

e2fsck usess wtimeands mtimeto determine if an orphan inode
release has been missed. Corruption in these fields can make
e2fsck consider an inode as regular in the first execution and
as an orphan inode in the second execution.

salvagedirectory
recovers file

e2fsck is unable to detect corruption in ext4’s imode field. When
recovering a file as if it was a directory, the recovery is unable to
leave the disk in a consistent state.

Table 9. Some of the bugs found by SWIFT using the cor-
ruption model based on e2fsck’s test suite.

son for this bug is that the check that detects this inconsis-
tency and the code that recovers it have different assump-
tions about the order of files in the same directory. While the
former is always able to detect the duplicate files by using a
hash of file names in a dictionary, the latter assumes that the
files are ordered alphabetically in a directory, and thus fails
to detect some instances of duplicate files.

Another interesting finding is that e2fsck does not check
the values stored in the main superblock against the values
stored in the backup superblocks before using them. This
makes e2fsck blindly trust corrupt values, which leads to
incorrect recoveries.

6.1.2 Corruption Using Test Suites

Using SWIFT along with the test suite of e2fsck, we found
more than 6,000 paths that lead to incorrect recoveries, com-
pared to less than 200 with the previous corruption model
(though this model leads to about twice the exploration
time). While this is an encouragingly positive result, es-
pecially since this part of the methodology does not lead to
false positives, the same bug may trigger incorrect recover-
ies in tens or hundreds of paths. We were unable to manually
analyzeall these recoveries to understand the bugs that lead
to them, and so we show in Table 9 only a partial list of bugs
that we found during our tests.

The first bug was found while exploring e2fsck recover-
ies on a disk containing orphan inodes. Orphan inodes are
inodes that are deleted while the corresponding file is still
open. In order to delete the file once it is closed, ext4 stores
the inode in a special linked list, the orphan inode list. When

10



e2fsck is invoked, it checks for the presence of inodes in
this list. In order to identify inodes in the orphan inode list,
e2fsck relies on thes wtimeands mtimefields. When one
of these fields is corrupt, e2fsck may wrongly identify a nor-
mal inode as orphan. When e2fsck is invoked the first time,
e2fsck recovers a disk containing a list of orphan inodes suc-
cessfully. When e2fsck recovers the disk, it overwrites the
previously mentioned time fields. As a result, when e2fsck
is invoked again, an inode is identified as being orphan and
the execution of e2fsck aborts.

Finally, the second bug is an example of a recovery that
fails to leave the file system in a consistent state. When a
file is mistakenly identified as being a directory, its con-
tents are blindly considered by e2fsck to be directory en-
tries. In one of the cases found by SWIFT, e2fsck invokes
the salvage directory function in order to recover the
contents of the directory. When this function finds a direc-
tory entry with a size of 8 bytes, the entry is considered to
be a ‘hole’ in the directory data and the remaining contents
are moved 8 bytes to the left, thus overwriting this space.
However, e2fsck does not realize that the data moved to this
space does not contain valid directory entries. Thus, repeated
executions of e2fsck lead to multiple recoveries of this data.

Both bugs presented above support our idea that the test
suites of file system checkers allow us to perform more com-
plex tests that would not be possible with the corruption
model presented in Section 5.3.1. For instance, test suites
provided by e2fsck exercise specific features of the file sys-
tem, such as orphan inodes, that require an advanced knowl-
edge of the file system being tested.

6.2 Checking the Completeness of Recoveries

In order to check the completeness of the recoveries per-
formed by e2fsck and reiserfsck, we first identified the fields
that are used by both ext4 and ReiserFS (shown in Table 10).
Next, we used the disk traces produced during the explo-
ration of corruption of those fields in both file systems to
compare the logical representations of the data after recov-
ery, as described in Section 4.3.

SWIFT was able to reveal a situation in which a wrong
file type (symbolic link type) makes e2fsck erase a regular
file, thus losing data, whereas reiserfsck was able to restore
the type of the file to the correct value. In this case, the e2fsck
recovery works as follows: e2fsck looks at the size of the
file data, wrongly considered as being a symbolic link, and
is able to detect an inconsistency, since in this specific case
the file data occupies more than one file system block and
symbolic links can only use one block of data. Once the file
system checker detects this inconsistency, it clears the inode
and the pointers to the data of the file. In this situation, e2fsck
ignores the file type value that is stored in the directory entry
that leads to this file. Therefore, this is a case where e2fsck
does not use all the information available in the disk.

ext4 field
ReiserFS
field

Description

s blockscount lo s block count Number of blocks
free blockscount lo s free blocks Number of free blocks
s log block size s blocksize Size of the block

s state s umountstate
State indicating whether the
disk needs to be checked/recov-
ered

magicstring s magic
Magic value identifying the file
system

Block bitmap Block bitmap Block bitmap

i mode sd mode Type and permissions of a file

i links count sd nlink
Number of hard links pointing
to file

i uid sd uid User ID
i gid sd gid Group ID
i size sd size Size of file
i atime sd atime Access time
i mtime sd mtime Modification time
i ctime sd ctime Creation time
i dtime sd dtime Deletion time
i blocks lo sd blocks Number of blocks of the file
direct data pointer
(i block)

direct data
pointer

Pointer to data

indirect data pointer
(i block)

indirect data
pointer

Pointer pointing to data pointers

double indirect data
pointer (i block)

double in-
direct data
pointer

Pointer pointing to pointers to
data pointers

Table 10. Fields in common between Ext4 and ReiserFS.

6.3 Efficiency and Scalability

In this section we evaluate the efficiency and scalability
of SWIFT. Efficiency refers to the execution time of the
tests performed by the system, and scalability refers to the
number and diversity of recovery behaviors of the file system
checkers that are tested.

In Table 11 we show the execution time, number of paths,
and paths flagged as executing inconsistent recoveries for
the tests of the three file system checkers considered in this
work. This table shows that SWIFT is able to find numerous
instances of wrong recoveries. Even though the testing pro-
cess can take up to several hours, we consider this a small
price to pay given the significantly lower effort required of
the tester, when compared to traditional approaches.

In order to evaluate the ability of SWIFT to explore a
comprehensive set of recovery behaviors of a file system
checker, we measured the statement coverage obtained dur-
ing the path exploration phase of the tests we performed. In
Figure 8 we show how the statement coverage of e2fsck and
fsck.minix, using corruption on individual fields, varies over
the course of the testing process. Moreover, in Figure 9 we
show the statement coverage of reiserfsck, for the three dif-
ferent command-line arguments.

In the first graph, we can observe that applying SWIFT
to the e2fsck file system checker led to a lower code cov-
erage than that obtained with the e2fsck test suite. This has

11



Fsck
Exploration
Time (hours)

# Paths
Explored

# Paths with
Bugs

e2fsck (indi-
vidual field
corruption
model)

9.5 50064 193

e2fsck (test
suite corrup-
tion model)

21 163288 6305

reiserfsck 37 27636 3

fsck.minix 11.5 22488 229

Table 11. Summary of the exploration phase of the different
file system checkers.

0

20

40

60

80

100

0.01 0.1 1 10 100 1000

C
ov

er
ag

e
(%

)

Time (minutes)

e2fsck test suite
fsck.minix

e2fsck

Figure 8. Comparison between the statement coverage of
SWIFT applied to e2fsck and fsck.minix, and the coverage
achieved by the original test suite of e2fsck.

to do with the fact that the test suite of e2fsck makes use
of different disks, which have diverse configurations of the
file system being used and make use of specific file sys-
tems data structures that go beyond the simple corruption
model used by SWIFT. For instance, one of the tests con-
tains a separate file with journal data in order to exercise the
file system checker code that replays the journal. These re-
sults are nonetheless positive for SWIFT, given the relatively
short testing period, and the fact that, unlike the test suite of
e2fsck, our tests require little advanced knowledge about file
system checkers and file systems.

Figure 9 shows three lines, one for each command-line
argument used in each test of reiserfsck. The three ar-
guments exercise considerably different amounts of code,
which translates into different values for the statement cov-
erage. In total, our tests of the reiserfsck file system checker
exercised 62.3% of the code.

In both graphs we can observe long periods of time during
which the statement coverage does not change. These peri-
ods of time exist because some of the corruptions injected

0
5

10
15
20
25
30
35
40
45
50

0 100 200 300 400 500 600 700

C
ov

er
ag

e
(%

)

Time (minutes)

–rebuild-tree
–fix-fixable
–rebuild-sb

Figure 9. Statement coverage of the three tests of reiserfsck.
In total, SWIFT achieved 62.3% code coverage.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90

#
C

o
n

cr
et

iz
ed

p
at

h
s

# Test case

Concretized paths

Figure 10. Number of paths concretized during the SWIFT
tests using the e2fsck suite. SWIFT explored a total of
163288 paths.

by SWIFT are not checked and recovered by the file system
checker, and thus do not lead to the exploration of new code.
One can also observe moments during which the coverage of
the file system checker abruptly increases. This usually oc-
curs when SWIFT starts exploring corruption on a new field
that is checked and recovered by the file system checker.

To conclude, it is worth noting that not only SWIFT does
not require deep knowledge of the file system code, but
once disk traces have been generated by SWIFT, they can
be subsequently reused as regression tests.

6.4 Optimizations - Concretization Strategy

Next, we evaluate the concretization strategy described in
Section 5.5, aimed at making SWIFT discard a smaller num-
ber of paths than using the original timeout-based strategy.

In Figure 10 we show the evolution of the cumulative
number of paths that were not discarded due to the con-
cretization of path constraints, and would have been dis-

12



carded otherwise. During the execution of SWIFT using the
test suite of e2fsck, SWIFT was able to continue the execu-
tion of around 4,000 paths that would have been discarded if
we had not used our strategy. From this set, SWIFT com-
pletely explored 283 paths during the symbolic execution
phase. From these, SWIFT marked 3 paths as buggy.

7. Conclusion
In this paper we presented a methodology for testing file
system checkers. Our methodology builds upon two insights.
First, we can use the file system checker itself to check the
consistency of its recoveries. Second, we can use different
file system checkers to check the completeness of recoveries.
Based on these two ideas, we provide a testing methodology
that requires minimal effort from the tester and no formally
written specification of the file system checker.

We implemented SWIFT, a system that implements
our methodology. Our experimental evaluation shows that
SWIFT can find bugs in real, widely used, file system check-
ers. SWIFT found cases of bugs in which the file system
checker fails to use all available redundancy to perform re-
covery, as well as cases that lead to the loss of data. SWIFT
is able to achieve code coverage levels comparable to that
obtained with manual tests.

Acknowledgements

We thank the anonymous reviewers, the members of the
sysnets group at MPI-SWS, and our shepherd, Leendert van
Doorn, for valuable feedback. We are indebted to Vitaly
Chipounov for tirelessly helping us with our use ofS2E.

References
[1] BAIRAVASUNDARAM , L., SUNDARARAMAN , S., ARPACI-

DUSSEAU, A., AND ARPACI-DUSSEAU, R. Tolerating File-
System Mistakes with EnvyFS. InUSENIX Annual Technical
Conference ’09(2009), USENIX.

[2] BAIRAVASUNDARAM , L. N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., GOODSON, G. R., AND

SCHROEDER, B. An analysis of data corruption in the storage
stack.ACM Transactions on Storage 4(November 2008).

[3] BAIRAVASUNDARAM , L. N., RUNGTA, M., AGRAWA, N.,
ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND

SWIFT, M. M. Analyzing the effects of disk-pointer corrup-
tion. In DSN ’08: Dependable Systems and Networks(2008),
IEEE Press.

[4] CADAR , C., DUNBAR, D., AND ENGLER, D. KLEE : Unas-
sisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. InOSDI ’08: Operating systems
design and implementation(2008), USENIX.

[5] CADAR , C., AND ENGLER, D. Execution Generated Test
Cases: How to Make Systems Code Crash Itself. InSPIN ’05:
Model Checking Software(2005), vol. 3639 ofLecture Notes
in Computer Science, Springer.

[6] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA , G. S2E:
A platform for in-vivo multi-path analysis of software sys-

tems. InASPLOS ’11: Architectural Support for Program-
ming Languages and Operating Systems(2011), ACM.

[7] GODEFROID, P., KLARLUND , N., AND SEN, K. DART: di-
rected automated random testing. InPLDI ’05: Programming
language design and implementation(2005), ACM.

[8] GUNAWI , H., DO, T., JOSHI, P., ALVARO , P., HELLER-
STEIN, J., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R.,
SEN, K., AND BORTHAKUR, D. FATE and DESTINI:
A framework for cloud recovery testing. InNSDI ’11:
Networked Systems Design and Implementation(2011),
USENIX.

[9] GUNAWI , H. S., RAJIMWALE , A., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. SQCK: a declarative
file system checker. InOSDI ’08: Operating Systems Design
and Implementation(2008), USENIX.

[10] JIANG , W., HU, C., ZHOU, Y., AND KANEVSKY, A. Are
disks the dominant contributor for storage failures?: a com-
prehensive study of storage subsystem failure characteristics.
In FAST ’08: File and Storage Technologies(2008), USENIX.

[11] K ING, J. Symbolic execution and program testing.Commun.
ACM 19(July 1976).

[12] PANZER-STEINDEL, B. Data integrity. http://

indico.cern.ch/getFile.py/access?contribId=3&

sessionId=0&resId=1&materialId=paper&

confId=13797, 2007.

[13] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A. Fail-
ure trends in a large disk drive population. InFAST ’07: File
and Storage Technologies(2007), USENIX.

[14] RODRIGUES, R., CASTRO, M., AND L ISKOV, B. BASE:
Using abstraction to improve fault tolerance. InSOSP ’01:
Symposium on Operating Systems Principles(2001), ACM.

[15] SCHROEDER, B., DAMOURAS, S., AND GILL , P. Under-
standing latent sector errors and how to protect against them.
ACM Transactions on Storage 6(2010).

[16] TALAGALA , N., AND PATTERSON, D. An analysis of error
behavior in a large storage system. Tech. Rep. UCB/CSD-99-
1042, EECS Department, University of California, Berkeley,
Feb 1999.

[17] YANG, J., SAR, C., AND ENGLER, D. EXPLODE: a
lightweight, general system for finding serious storage system
errors. InOSDI ’06: Operating systems design and implemen-
tation (2006), USENIX Association.

[18] YANG, J., SAR, C., TWOHEY, P., CADAR , C., AND EN-
GLER, D. Automatically generating malicious disks using
symbolic execution. InS&P ’06: IEEE Symposium on Se-
curity and Privacy(2006).

[19] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI , M.
Using model checking to find serious file system errors.ACM
Transactions on Computer Systems 24, 4 (2006).

13

http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797
http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797
http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797
http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=0&resId=1&materialId=paper&confId=13797

	Introduction
	Related Work
	Symbolic Execution and S2E
	Methodology
	Overview
	Checking Consistency
	Checking Completeness

	SWIFT
	System Overview
	Initial Disk
	Corruption Model
	Corruption of Fields
	Corruption Using Fsck Test Suites

	Generating Symbolic Input
	Improving Scalability: A Concretization Strategy

	Evaluation
	Checking the Consistency of Recoveries
	Corruption of individual fields
	Corruption Using Test Suites

	Checking the Completeness of Recoveries
	Efficiency and Scalability
	Optimizations - Concretization Strategy

	Conclusion

