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The era of free performance gains is over

Intel CPU Trends "L
(sources: Intel, Wikipedia, K. Olukotun) y
* Over the last 30 years:
* new CPU generation = free speed-up

* Since 2003:

* CPU clock speed plateaued...

e but Moore’s law chase continues: 100
* Multi-cores, Hyperthreading...
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Multicore Software Scaling

8X
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Hardly ever the case in practice...
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Programs are not entirely parallel

* |tis hard or impossible to structure a program
in a set of parallel independent tasks

* Part of the program may need to be
performed in a serial manner

* Parallel parts may need to share data

— Access to shared data needs to be synchronized
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Real-World Multicore Scaling

Speedup
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Parallelization and synchronization
can have a dominant effect
on performance!
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Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

SequentialPart = 25%

4 cores -> speedup = 2.3!
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Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

SequentialPart = 25%

8 cores -> speedup = 2.9!
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Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

SequentialPart = 25%

32 cores -> speedup = 3.7!
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Coarse grained parallelism?
simple but does not scale

Amdahl’s Law:
Speedup = 1/(ParallelPart/N + SequentialPart)

SequentialPart = 25%

128 cores -> speedup = 3.9 ®
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Explicit synchronization

* One of the most fundamental and simple
synchronization primitive is the lock

non-synchronized code;

lock ();

do stuff on shared data;
unlock ();

more non-synchronized code;



Explicit synchronization

* One of the most fundamental and simple
synchronization primitive is the lock

non synchronized code;

lock (); € may be forced to block until released!
do stuff on shared data;

unlock ();

more non synchronized code;
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Locks in action

P1 - lock() -unlock()———’

2 e e
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Locks are broken

Deadlock: locks acquired in “wrong” order.
Races: due to forgotten locks

Error recovery tricky: need to restore invariants
and release locks in exception handlers

Simplicity vs scalability?



Deadlocks in action

o

2 -
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Locks do not compose

* You cannot build a big working program from small working pieces

Class Account {
Euros amount;
public deposit(Euros d) {
amount = amount+d;
}
public withdraw(Euros w) {
if (@amount>w) amount = amount—w;
}
public Euros read () {
return amount;

}



Locks do not compose

Class Account {

Euros amount;

Lock mutex;

public deposit(Euros d) {
mutex.lock();
amount = amount+d;
mutex.unlock();

}

public withdraw(Euros w) {
mutex.lock();
if (amount>w) amount = amount—w;
mutex.unlock ();
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Locks do not compose

void transfer (Account from, Account to, Euros value){
from.withdraw (value);
to.deposit(value);

Euros sum (Account al, Account a2) {
return al.read() + a2.read();



Locks in action

transfer

100 0

0 0 100
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Fine grained parallelism?
easier to say than to do

* Simple grained locking is a very complex:

— need to reason about deadlocks, livelocks, priority inversions:
* complex/undocumented lock acquistion protocols
* scarce composability of existing software modules

... and a verification nightmare:
* subtle bugs that are extremely hard to reproduce

* Make parallel programming accessible to the masses!
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Concurrent programming
without locks?

* Lock-free algorithms.

* These algorithms exist but are very hard to
design and to prove correct.

* Only for very specialized applications.

* Designed and implemented by top experts.
— See conferences such as PODC, DISC or SPAA.



How to make
parallel programming
accessible to the masses?

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010



Abstractions for simplifying
concurrent programming...

WE WANT YOU!
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Atomic Transactions
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Atomic Transactions

access object 1;

access object 2;



Atomic Transactions

atomic {
access object 1;

access object 2;



Atomic Transactions

atomic {
access object 1;
access object 2;
/
atomic {
access object 3;
access object 4;



Atomic Transactions

atomic {
atomic {
access object 1;
access object 2;

}
atomic {
access object 3;
access object 4;
}



Transactional memories

* Key idea:

— hide away synchronization issues from the
programmer

— replace locks with atomic transactions.
* Advantages:

— avoid deadlocks, priority inversions, convoying
— simpler to reason about, verify, compose



Historical Perspective

Early work in the context of database systems
(76)

Formalization of properties (79)

Integration in languages for distributed
computing (82)

Suggested integration in hardware (93)
Software implementations (95)

More flexible software implementations (03)



Historical Perspective

Today among the most relevant research topics
in the areas of:

=

» Computer architecture
* Programming Languages STRONG
Operating Systems INTERDISCIPLINARITY

Distributed Computing _—
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TMs: where we are, challenges, trends

* Theoretical Aspects
— formalization of adequate consistency guarantees,
performance bounds

 Hardware support

— very promising simulation-based results, but no support in
commercial processors



TMs: where we are, challenges, trends

e Software-based implementations (STM)

— performance/scalability improving, but overhead
still unsatisfaction

* Language integration
— advanced supports (parallel nesting, conditional
synchronization) are appearing...

— ...but lack of standard APIs & tools hampers industrial
penetration



TMs: where we are, challenges, trends

* Operating system support

— still in its infancy, but badly needed (conflict aware
scheduling, transactional |/0O)

e Recent trends:

— shift towards distributed environments to enhance
scalability & dependability



How does it work?

* The run time implements concurrency control
in an automated manner.
 Two main approaches:

— Pessimistic concurrency control (locking)
— Optimistic concurrency control



Example of pessimistic concurrency
control (strict two phase locking)

Each item has a read/write lock
When an object is read, get the read lock

— Block if write lock is taken

When an object is written, get the write lock
— Block if read or write lock is taken

Upon commit/abort:

— Release all locks



Example of optimistic concurrency
control

Each item has a version number
Read items and store read version
Write local copy of items

Upon commit do atomically:

— If all read items still have the read version (no
other concurrent transaction updated the items)
then apply all writes (increasing the version
number of written items).

— Else, abort.



Many, many, variants exist

* For instance, assume that two phase locking is
used and a deadlock is detected. It is possible:
— Abort both transactions
— Abort the oldest transaction
— Abort the newest transaction

— Abort the transaction that did less work



Many, many, variants exist

* Forinstance, assume that two phase locking is
used and a deadlock is detected. It is possible:

— Abort both transactions

— Abort the oldest transaction

— Abort the newest transaction

— Abort the transaction that did less work

Each alternative offers different performance
with different workloads!!
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How to choose?

 What is a correct behavior?
* Which safety properties should be preserved?

* Which liveness properties should be
preserved?



How to choose?

 What is a correct behavior?
* Which safety properties should be preserved?

* Which liveness properties should be
preserved?

To answer these questions we need a bit of
theory.
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Theoretical Foundations

e Safety:
— What schedules are acceptable by an STM?
— Is classic atomicity property appropriate?

e Liveness:

— What progress guarantees can we expect from an
STM?



Theoretical Foundations

e Safety:
— What schedules are acceptable by an STM?

— Is classic atomicity property appropriate?

e Liveness:

— What progress guarantees can we expect from an
STM?
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Classic atomicity property

* A transaction is a sequence of read/write
operations on variables:

— sequence unknown a priori (otherwise called static
transactions)

— asynchronous (we do not know a priori how long it
takes to execute each operation)

* Every operation is expected to complete

* Every transaction is expected to abort or commit



Histories

e The execution of a set of transactions on a set
of objects is modeled by a history

* A history is a total order of operation, commit
and abort events

{orl{opf{c|-{op|{opic
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Histories

* Two transactions are sequential (in a history)
if one invokes its first operation after the other

one commits or aborts; they are concurrent
otherwise
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Histories

* Two transactions are sequential (in a history)
if one invokes its first operation after the other

one commits or aborts; they are concurrent
otherwise

* Non-sequential:

{orl{opf{c|-{op|{opic
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Histories

* Two transactions are sequential (in a history)
if one invokes its first operation after the other

one commits or aborts; they are concurrent
otherwise

e Sequential:

{opjici-{opj{opjjopfic—
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Histories

* A history is sequential if it has only sequential
transactions; it is concurrent otherwise



Histories

* A history is sequential if it has only sequential
transactions; it is concurrent otherwise.

e Sequential:

{opcHopHoplicl op c—
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Histories

* A history is sequential if it has only sequential
transactions; it is concurrent otherwise.

* Non-sequential:
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Histories

* Two histories are equivalent if they have the
same transactions
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Histories

* Two histories are equivalent if they have the
same transactions

* Equivalent:

opjici{opf{opiciopic
{orl{c}opfior{orHctc)-
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Histories

* Two histories are equivalent if they have the
same transactions

* Non-equivalent:

opjici{opf{opiciopic
{orl{c}opfior{orHctc -
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What the programmer wants?

* Programmer does not want to be concerned
about concurrency issues.

e Execute transactions “as if” they are serial

* No need to be “in serial” as long as results are
the same

{op|{coploprlicl op c
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Serializability’s definition
(Papa79 - View Serializability)

* A history H of committed transactions is
serializable if there is a history S(H) that is:

—equivalent to H
—sequential
—every read returns the last value written
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Serializability

e Serializable?
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Serializability

e Serializable:
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Serializability

* Non-serializable:
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Serializability

* Non-serializable (blue before red):

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010



Serializability

* Non-serializable (red before blue):
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Serializability

* Serializable (blue aborts)?
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Serializability’s definition
(Papa79 - View Serializability)

* A history H of committed transactions is
serializable if there is a history S(H) that is:

—equivalent to H
—sequential
—every read returns the last value written



Serializability

e Serializable: only committed tx matter!

»
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Serializability:
enough for STMs?

* In a database environment, transactions run
SQL: no harm if inconsistent values are read as

long as the transaction aborts.

* This is not the same in a general programming
language:
observing inconsistent values may crash or
hang an otherwise correct program!
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Example

Initially: x:=1; y:=2
-Tl: x:=x+1; y :=y+1
-T2:2:=1/ (y-x);

If T1 and T2 are atomic, program is correct.



Example

Initially: x:=1; y:=2
-Tl: x:=x+1; y :=y+1
-T2:2:=1/ (y-x);

Otherwise....



Example

Initially: x:=1; y:=2
-Tl: x :=x+1; y :=y+1
-T2:2:=1/ (y-x);

Otherwise....



Example

Initially: x:=2; y:=2
-Tl: x :=x+1; y :=y+1
-T2:2:=1/ (y-x);

Otherwise....



Example

Initially: x:=2; y:=2
-Tl: x :=x+1; y :=y+1
- T2:

Otherwise....
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Example

Initially: x:=2; y:=2
-Tl: x :=x+1; y :=y+1
- T2:

Otherwise....divide by zero!
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Opacity
|GKO08]
* Intuitive definition:

— every operation sees a consistent state
(even if the transaction ends up aborting)



Opacity
|GKO08]
* Intuitive definition:

— every operation sees a consistent state
(even if the transaction ends up aborting)

* Following history is serializable but violates
opacity!

— WO02(1) RO1(0) 11 C
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Does classic optimistic concurrency
control guarantee opacity?

* Writes are buffered to private workspace and
applied atomically at commit time

* Reads are optimistic and transaction is
validated at commit time.

e Opacity is not guaranteed!

— WO02(1) RO1(0) H C
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Theoretical Foundations

e Safety:
— What schedules are acceptable by an STM?
— Is classic atomicity property appropriate?

e Liveness:

— What progress guarantees can we expect from an
STM?
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Progress

e STMs can abort transactions or block
operations...

 But we want to avoid implementations that
abort all transactions!

* We want operations to return and
transactions to commit!



Requirements

e Correct transactions:

— commit is invoked after a finite number of
operations

— either commit or perform an infinite number of
(low-level) steps

e Well-formed histories:

— every transaction that aborts is immediately
repeated until it commits



Desirable: wait-freedom

* Every correct transaction eventually commits

* A transaction may abort a finite number of
times as long as it eventually commits

IMPOSSIBLE IN AN ASYNCHRONOUS SYSTEM
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Aborting is unavoidable [Gu09]

— RO1(0)
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Aborting is unavoidable [Gu09]
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Aborting is unavoidable [Gu09]
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Aborting is unavoidable [Gu09]
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Aborting is unavoidable [Gu09]

— RO1(0)
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Aborting is unavoidable [Gu09]

RO1(0) RO2(0)



Aborting is unavoidable [Gu09]

RO1(0) - RO2(0) - WO1(1)



Aborting is unavoidable [Gu09]

RO1(0) - RO2(0) - WO1(1)

And so on....



Conditional progress:
obstruction freedom

* A correct transaction that eventually does not
encounter contention eventually commits

* Obstruction-freedom is possible...
(examples later)
e ..but what to do upon contention?



Contention-managers

e Abort is unavoidable
e But want to maximize the number of commits
 Which strategy to use?

Contention-managers encapsulate policies for
dealing with contention scenarios.
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CM: aggressive

Let TA be executing and TB a new transaction
that arrives and creates a conflict with TA.
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CM: aggressive

Let TA be executing and TB a new transaction
that arrives and creates a conflict with TA.

* Aggressive contention manager:
— always aborts TA



CM: backoff

Let TA be executing and TB a new transaction
that arrives and creates a conflict with TA.
* Backoff contention manager:

— TB waits an exponential backoff time
— If conflict persists, abort TA



CM: karma

Let TA be executing and TB a new transaction
that arrives and creates a conflict with TA.

* Karma contention manager:
— Assign priority to TA and TB
* Priority proportional to work already performed

— Let Ba be how many times TB has been aborted
— Abort TA if Ba > (TA-TB)



CM: greedy

Let TA be executing and TB a new transaction
that arrives and creates a conflict with TA.

* Greedy contention manager:
— Assign priority to TA and TB based on start time
— |If TB<TA and TA not blocked then wait
— Otherwise abort TA

* Greedy is O(s)-competitive with off-line
clairvoyant scheduler [GHPO5, AGHKO6]



ToC

PART |

e Non-distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)

(break)

PART I

e Distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)
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Road map

* Non distributed transactional memory systems
— DSTM [HLMSO03]
— JVSTM [CSO5]
— TL2 [DSS06]

 Benchmarks
— micro-benchmarks
— STMBench?7
— lee-TM
— Stamp



DSTM [HLMSO3]



DSTM

* First STM supporting transactions performing
an “unbounded” number of operations (2003)

* Non-blocking algorithm

* Obstruction freedom progress guarantee +
out-of-band contention manager



DSTM’s algorithm in a nutshell

* Killer write (ownership)

* Careful read (validation)



DSTM’s algorithm in a slide

 To write O, T requires a write-lock on O; T aborts
T’ if some T’ acquired a write-lock on O:

— locks implemented via Compare & Swap
— contention manager can be used to reduce aborts

 Toread O, T checks if all objects read remain
valid — else abort T

 Before committing, T checks if all objects read
remain valid and releases all its locks



DSTM implementation

* Transactional object structure:

’rr'ansac’rion
@/ new object
old object \{ Data

TMObject

Locator

Data




DSTM Interface

A thread that executes transactions must be
inherited from TMThread:

— Each thread can run a single transaction at a time

class TMThread : Thread {
void beginTransaction();

bool commitTransaction();
void abortTransaction();
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DSTM Interface

All shared memory objects must implement the
TMCloneable interface:

inteface TMCloneable {

Object clone();

}

» This method clones the object...

e programmers don’t need to handle
synchronization issues
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DSTM Interface

* |[n order to make an object transactional, need
to wrap it

TMObject
[ Object ]

* TMObject is a container for regular Java
objects




DSTM Interface

* Before using a TMObject in a transaction, it
must be opened

class TMObject {
TMObject(Object obj);

enum Mode {READ, WRITE};
Object open(Mode mode);

* An object can either be opened for READ or
WRITE (and read)
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Current object version

* The current object version is determined by
the status of the transaction that most
recently opened the object in WRITE mode:

— committed: the new object is the current
— aborted: the old object is the current

— active: the old object is the current, and the new
IS tentative

* The actual version only changes when a
commit is successful



Opening an object

* Lets assume transaction A opens object o in
WRITE mode.

e Let transaction B be the transaction that most
recently opened o in WRITE mode.

* We need to distinguish between the following
cases:

— B is committed
— B is aborted
— B is active



Opening an object — B committed

/GmmittD

4 a

2 Data

Bs Locator

transaction
@/ new object
old object \

transaction

clone
T

hew object

old object

A's Locator

@ A creates a new Locator

A clones the previous new
object, and sets new



Opening an object — B committed

/GmmittD
transaction \
@/ new object Data
old object
0 Data
. B's Locator )
@ Use CAS in Ty ) L clone
order to transaction \achve>
replace locator hew object
old object Data
A's Locator

@ A sets old object to the
previous hew



Opening an object — B committed

\

Data

J

\

transaction
@/ new object

If CAS fails, restarts from the beginning
clone

hew object
old object

Data

A's Locator



Opening an object — B active

What if A tries to open an object that is being
updated? (B’ locator is active)

A and B are two concurrent, conflicting
transactions

Use Contention Manager to decide which
should continue and which should abort

If B needs to abort, try to change its status to
aborted (using CAS)



Opening an object - READ

* Lets assume transaction A opens object o in
READ mode (i.e. first read operation)

— validate the whole transaction’s readset
— fetch the current version just as before
— Add the pair (o, v) to the transaction’s readset

 What if the tx had already opened the obj?
— already read: return the previously read value
— already written: return the prev. written value



Committing a transaction

* The commit needs to do the following:
1. Validate the transaction

2. Change the transaction’s status from active to
committed (using CAS)



Validating transactions

* What?
— Validate the objects read by the transaction
e Why?

— To make sure that the transaction observes a
consistent state

e How?

1.For each pair (o, v) in the readset, verify that v is
still the most recently committed version of o

2.Check that status is still active



Validating transactions

 What?
— Validate the objects read by the transaction
e Why?

—To If the validation fails, throw an
C exception so the user will restart the
transaction from the beginning

€S d

1.For each pair (0, V adset, verify that v is
still the most recently committed version of o

2.Check that status is still active

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010



Why is careful read needed?

* No lock is acquired upon a read:
— invisible reads
— visible read invalidate cache lines

— bad performance with read-dominate workloads
due to high bus contention

 What if we validated only at commit time?
Serializability? Opacity?



Why is careful read needed?

* No lock is acquired upon a read:
— invisible reads
— visible read invalidate cache lines

— bad performance with read-dominate workloads
due to high bus contention

 What if we validated only at commit time?
Serializability? Opacity? [\



Java Versioned Software
Transactional Memory (JVSTM)



JVSTM - overview

* Optimized for read-only transactions:
— never aborted or blocked
— no overhead associated with readset tracking

* How?
— Multi-version concurrency control
— Local writes (no locking, optimistic approach)

— Commit phase in global mutual exclusion
* recently introduced a parallel commit version [FCO9]

— Global version number (GVN)



Java Versioned Software
Transactional Memory

public class VBox<E> {
public VBox(E iritial);
public E get();

) public void put(E cewE);

public class Tramsactiom {
public static void start();
public static void abort();
public static void commit();

)

public class Counter {

private VBox<Long> count = cew VBox<Long>(0L);

public long getCoumt() {
return count.get();

)

public @Atomic void imc() {
count .put (getCount() + 1);
)
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Versioned Boxes

Each transactional location uses a
versioned box to hold the history of
values for that location.



Versioned Boxes

body:
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body: \
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Versioned Boxes

revious:

previous:

previous:

null

value: 2

value: 1

value: 0

version:

87

version:

23

version:




Versioned Boxes

B
body: \
revious: — previous: ———+—>previous: null
value: 2 value: 1 value: 0
version: 87 version: 23 version: 5
VBox<T>
+ T get()
+ put (T value)

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010




JVSTM algorithm

* upon begin tx, read GVN and assigned it to tx’s
snapshot ID (sID)

* upon read on object o:

— if ois in tx’s writeset, return last value written

— else return the version of the data item whose sID
IS:

“the largest sID to be smaller than the tx’ sID”
 if txis not read-only, add o to readset



JVSTM algorithm

* upon write, just add to the writeset
— no early conflict detection
— optimistic approach

* upon commit

— validate readset:

e abort if any object changed
— acquire new sID (atomic increase of GVN)
— apply writeset:

* add new version in each written VBox



Commit Phase

commit () {
GLOBAL LOCK.lock();

try {
} finally {

GLOBAL LOCK.unlock();
}
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Commit Phase

commit () {
GLOBAL LOCK.lock();

try {
if (validate()) {

}
} finally {
GLOBAL LOCK.unlock();
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Commit Phase

commit () {
GLOBAL LOCK.lock();
try {

if (validate()) {
int newTxNumber = globalCounter + 1;
writeBack (newTxNumber) ;
globalCounter = newTxNumber;

}
} finally {
GLOBAL LOCK.unlock();

}



Transactions

Time

w
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Transactions

T1 2
T2 |2

T3 |2

Time

w
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Transactions
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Transactions

T1 2
T2 |2
T3 2
T4 3
Time

w
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Transactions
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Transactions
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Transactions
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Transactional Locking Il
(TL)



TL2 - Overview

* Single-versioned, word-based STM

e Commit time locking strategy:
— versioned write locks

* Achieve opacity without re-validating readset at
each read:

* use centralized global version number to define memory
snapshots

— allow to efficiently detect non-opague schedules
* several optimizations to reduce contention on GVN



TL2 - Interface

elem_t* elemPtr;

TM_BEGIN();

long pop = (long)TM_READ(queuePtr->pop);
long push = (long)TM_READ(queuePtr->push);
long capacity = (long)TM_READ(queuePtr->capacity);

long newPop = (pop + 1) % capacity;
if (newPop == push) {
elemPtr = NULL;
}else {
void** elements = (void**)TM_READ_P(queuePtr-> elements);
elemPtr = (pair_t*) TM_READ_P(elements[newPop]);
TM_WRITE(queuePtr->pop, newPop);

}

TM_END();
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Locking Design Choices for
Word Based STMs

Array of Versioned-
Write-Locks
Application
Memory @

PS = Lock per Stripe (separate array PO = Lock per Object
of locks) (embedded in object)




TL2 - Algorithm

* begin:
— sample GVC and assign it to the tx’s read version
number (vn)

* read:
— check if data is in writeset (Bloom Filter)
— load corresponding versioned write lock (vwl)
— if busy or vwl version > rv abort
— load data
— check if vwl has changed : abort
— store address of data in read-set (list)



TL2 - Algorithm

* write:
— just add (address,value) to write-set

e commit:

— acquire write locks
e unordered = deadlock chance = chance tx aborts

— increment gvc (via CAS)

— validate readset, abort upon:
* new value present (wvl’s version > rv)
* busy wvl

— writeback data + wvl,
— release all locks



TL2 — Read-only transactions

* |n case transactions are pre-declared as read-
only it can be avoided to build a readset

* upon read:
— load corresponding versioned write lock (vw/)
— if busy or vwl version > rv abort
— load data
— check if vwl has changed => abort



Benchmarks
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Benchmarks

* First generation:
— micro-benchmarks

— simple data structures:
* |ist, skiplist, RBTree

— trivial business logic:
* serie of put, get, delete

e DSTM2 Microbenchmark’s suite



Benchmarks

Il generation:
— complex, realistic applications

— heterogeneous workloads

STMBench?
Lee Benchmark
Stamp



STMBench7 [JKVO7]

* Inherits most of application logic from OO7:
— complex benchmark for OO databases

— CAD/CAM/CASE applications



STMBench7 [JKVO7]

* Very large, complex data structures
— Large tree with graph in each leaf
— 6 indexes
— Can be traversed in any direction
— highly dynamic data strucutre

— mix of short and long transactions:
* long and short traversals
* short operations
e structural modifications



STMBench7 [JKVO7]

* Baseline comparison with different grains of
locking:
— Coarse:
* single RW lock

— Medium:
* one RW lock per level
» global RW lock for structure modifications



Lee-TM [AKWKLJOS]

* Based on the Lee’s algorithm for circuit routing

* Concurrent laying routes between two end-
points on a grid:
1. Expansion phase
2. Backtracking phase



The Lee algorithm

Expansion Phase Backtracking Phase
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Lee-TM

* Heterogeneous workload:

— distance between end-points affects transaction
length

* Complex application logic:
— hard to define fine-grained locking schemes

— baseline comparison is with coarse/medium
strategies for the locking of the grid



Stamp [MCKOO08]

e Suite of eight multi-threaded applications:
— bayes: Bayesian network learning
— genome: gene sequencing
— intruder: network intrusion detection
— kmeans: K-means clustering
— labyrinth: maze routing
— ssca2: graph kernels
— vacation: client/server travel reservation system

— yada: Delaunay mesh refinement (Ruppert's
algorithm)



Part I

Distributed
Transactional Memories
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ToC

PART |

* Non-Distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)

(break)

PART I

e Distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)
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An obvious evolution

e Real, complex STM based applications are
starting to appear:

— Apache Web Server
— FenixEDU
— Circuit Routing

e ...and are being faced with classic production
environment’s challenges:

— scalability
— high-availability IDIRErilbnntead QIR

— fault-tolerance
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Distributed STMs

* At the convergence of two main areas:

Distributed Shared Memory Distributed Databases
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Distributed STMs

* At the convergence of two main areas:

Distributed Shared Memory

= Similar goals & abstraction:
= Hide distribution via single system image
# Explicit lock based synchronization

e Strongly consistent DSMs:
N Very easy to program

J' Bad performance due to too frequent remote
synchronizations

e Relaxed consistency DSMs:

™ Reduced # sync. = better performance
J Complex to program and reason about

Transactions allow to:
1. Transparently deal with remote critical races

2. Boost performance by batching any remote
synchronization during the commit phase

Distributed Databases



Distributed STMs

* At the convergence of two main areas:

Distributed Shared Memory Distributed Databases

= Similar goals & abstraction: = Relied on ACID transactions for decades
= Hide distribution via single system image # Durability regarded as optional in STMs
# Explicit lock based synchronization

e Strongly consistent DSMs: # Much heavier programming interface
™ Very easy to program # SQL vs direct access to in-memory variables

J' Bad performance due to too frequent remote
synchronizations

* Relaxed consistency DSMs:

™ Reduced # sync. = better performance
J Complex to program and reason about

Transactions allow to:
1. Transparently deal with remote critical races

2. Boost performance by batching any remote
synchronization during the commit phase




Distributed STMs

* At the convergence of two main areas:

Y
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Distributed STMs

* At the convergence of two main areas:

Distributed Shared Memory

= Similar goals & abstraction:
= Hide distribution via single system image
# Explicit lock based synchronization
e Strongly consistent DSMs:
N Very easy to program
J' Bad performance due to too frequent remote
synchronizations
e Relaxed consistency DSMs:

™ Reduced # sync. = better performance
J Complex to program and reason about

Transactions allow to:
1. Transparently deal with remote critical races
2. Boost performance by batching any remote

Distributed Databases

=~ Relied on ACID transactions for decades
# Durability regarded as optional in STMs

# Much heavier programming interface
# SQL vs direct access to in-memory variables

# DBs are “sandboxed” environments:

# Inconsistent DB transactions return stale data

# Inconsistent STM transactions can be way more
harmful (memory wipe-out, infinite cycles...)

Natural source of inspiration for DSTMs...

though DSTMs have
unique, challenging requirements!

synchronization during the commit phase



Existing Distributed STMs

* \Very recent research area....

* Only a handful of existing prototypes, e.g.:
— DMV [MMAO06]
— DiSTM [KAJLKWO0S]
— ClusterSTM [BACOS]
— D?STM [CRRCO09]
— ALC [CRR10]



Programming models for DSTMs



What APl should a DSTM expose?

Single System Image

VS

Partitionable Global Address Space



Single System Image

* Data distribution totally hidden to the
programmer

APl identical to non-distributed STMs



Single System Image

* Pros:
— simple programming model

— easy to port existing applications

* Cons:
— no control over data/code locality
— may lead to poor performance
— existing SSI systems target small scale clusters



Partitionable Global Address Space

e Explicit distinction
between local and remote
data partitions:

— private variables

— shared variables residing on
some node

— shared data structures
distributed across multiple
nodes

* Allow controlling the node
on which code must
execute

Local Address Space
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Partitionable Global Address Space

Pros:

- allow distributed/parallel Local Address Space

computing specialists to
carefully optimize for
data/execution locality:

- model born in HPC
community

- simpler than MPI, more
efficient than DSMs
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Partitionable Global Address Space

Cons:

- more complex Local Address Space

programming model than
SSI

- contradicts one of the
key motivations of STMs:

- simplifying parallel
programming
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Programming models for DTMs

Control Flow
VS
Data Flow



Control flow model

data is statically assigned to a home node and
does not change over time
C

ata manipulation is either carried out:
e at the node where data resides (RPC style) or

e acopy of the data is:

1. fetched on the node where the transaction is
originated

2. written back at the home node

Distributed update must be atomic!
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Data Flow model

 transactional code is immobile

* objects move from node to node depending
on data access patterns:
— upon write on object o by processor p, p must:

* locate the current position of o
e acquire ownership of o

— upon read on object o by processor p, p must:

* |locate the current position of o
e acquire a read-only copy of o
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Data Flow model

* Conflicting accesses detected locally during
transaction execution:

— conflict handling delegated to local contention
manager

e Avoids distributed coordination

* Locating objects can be very expensive:

— how to efficiently track dynamic position of
objects?



Control Flow vs Data Flow

Pros Pros

« rely on fast (typically O * Maximizes benefits
(1)) data location from data locality in
mechanism large scale systems:

— allows moving data close

* allow easy integration OV
to sharing clients

of caching schemes:

— reduce further misses
costs

— autonomic data
relocation based on
access pattern



Control Flow

Cons

e static data placement
may lead to poor data
locality, e.g.:

— changing data access
patterns

VS

Data Flow

Cons

locating data owner is
costly

performance is highly
sensitive to application
locality:

— hard to integrate caching
schemes to reduce
misses

— distributed coordination

— no existing prototype,
only theoretical papers...
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Distributed coordination
(required in control flow)

* Ensure atomicity of distributed transaction
— either all nodes commit the transactions

— or none of them does

 Two Phase Commit protocol:

— Prepare phase
* coordinator gathers participants’ votes

— Decision phase

 commit decision only if all participants voted
affirmatively



2PC

coordinator participant participant
prepare msg
—
validate/ validate/
acquire locks acquire locks
vote msg (Yes or No)
e
47
decision msg
(Commit or Abort)
\ —)
apply apply
decision decision
e
<7
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coordinator

2PC: blocking

prepare msg

participant

vote msg (Yes or No)

e

validate/
acquire locks

e—

decision msg
(Commit or Abort)

N

participant

validate/
acquire locks

N
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3PC

coordinator participant participant
prepare msg
—>
validate/ validate/
vote msg (Yes) acquire locks acquire locks

Pre-decision msg E:

(Pre-Commit)
t log pre-commit——

Decision msg apply
(Commit) decision

apply
decision
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Distributed coordination
(required in control flow)

 Three Phase Commit protocol:
— Non-blocking
— Much slower



Transactional Data Replication



Data replication

e Can be useful for:
— Performance

— Fault-tolerance

* Performance
— Read operations on local data

 Fault-tolerance

— Even if one node crashes data continues available



Challenge

Distributed coordination when:

— The transaction commits (all-or-none the copies
must be updated)

— But also for ensuring same serialization order
across all replicas!



Replicated transaction:
single lock!

In absence of replication, there’s no chance to fall
into deadlocks with a single lock...
what if we add replication?
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Replicated transaction:
single lock!

@

T1 - lock()

Waiting for R2

N

[

T1

T2
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lock() ~

Update R2

Waiting for R1 p

v




Challenge

* Even with a single lock we can get deadlocks
by introducing replication.

* This can be avoided if both replicas receive the
lock requests in the same order.

e How can this be achieved?

Total order broadcast!
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Total Order Broadcast

* Communication primitive that offers
Important properties.
* Reliable delivery:

— If one replica R1 receives a message m, all correct
replicas receive m.

 Total order:

— If replica R1 receives m1 before m2, any other
replica Ri also receives m1 before m2



Replicated transaction -
single lock: total order!

a

T1 - lock()

T2
-
p-

T1

-

lock()

Update R2

- unlock()
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Drawback of previous approach

* Coordination among replicas needs to be
executed at every lock operation.

* Total order is an expensive primitive.
* The system becomes too slow.

Solution: limit the coordination among replicas
to a single phase, at init or commit time.
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Single coordination phase schemes

e State machine replication
* Single master (primary-backup)
* Multiple master (certification)



Single coordination phase schemes

e State machine replication
* Single master (primary-backup)
* Multiple master (certification)
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State machine replication

All replicas execute the same set of
transactions, in the same order.

Transactions are shipped to all replicas using
total order broadcast.

Replicas receive transactions in the same
order.

Replicas execute transaction by that order.
Transactions need to be deterministic!

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010



State Machine replication

TOB of T1's
input T1 pre-
para acquires
its locks T1 execs T1 commits
i | | | l | ]
T2 is blocked due to T1 T2 execs T2 commits
T1 pre-
acquires
its locks T1 execs T1 commits
R2 | |
I | [ |
T2 is blocked due to T1 T2 execs T2 commits
TOB of T2's
input
params

+ avoids transmitting readset& writeset

+ transactions never abort, good at high conflict rate

- requires deterministic execution of transactions

- all replicas process the whole transaction

- requires a priori knowledge of tx’ read-sets and writeset
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Single coordination phase schemes

e State machine replication
* Single master (primary-backup)
* Multiple master (certification)
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Primary-backup

* Write transactions are executed entirely in a
single replica (the primary)

e |f the transaction aborts, no coordination is
required.

* |f the transaction is ready to commit,
coordination is required to update all the
other replicas (backups).

— Reliable broadcast primitive.
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Primary-backup

* Read transactions may be executed on backup
replicas.

* Works fine for workloads with very few update
transactions.
— Otherwise the primary becomes a bottleneck.



Single master: synchronous

* Updates are propagated during the commit
phase:
— Data is replicated immediately
— Read transactions observe up-to-date data

— Commit must wait for reliable broadcast to
terminate



Single master: asynchronous

* The propagation of updates happens in
background:
— Multiple updates may be batched
— Commit is faster

— There is a window where a single failure may
cause data to be lost

— Read transactions may read stale data



Single coordination phase schemes

e State machine replication
* Single master (primary-backup)
 Multiple master (certification)
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Multi-master

* A transaction is executed entirely in a single
replica.

— Different transactions may be executed on
different replicas.

e If the transaction aborts, no coordination is
required.

* |f the transaction is ready to commit,
coordination is required:
— To ensure serializability
— To propagate the updates



Multi-master

* Two transactions may update concurrently the
same data in different replicas.

e Coordination must detect this situation and
abort at least one of the transactions.

* Two main alternatives:
— Non-voting algorithm
— Voting algorithm



Non-voting algorithm

The transaction executes locally.

When the transaction is ready to commit, the
read and write set are sent to all replicas using
total order broadcast.

Transactions are applied in total order.

A transaction may commit if its read set is still
valid (i.e., no other transaction has updated
the read set).



A Conventional TOB-based Replication Scheme
“Non-voting Certification Protocol”

TOB of T1's TOB of T2’s

read & writeset read & writeset

Execution
Transaction T1
R1 |
Execution Validation&Commit Validation&Abort
Transaction T2 T1 T2
R2 | | -
Validation& Commit Validation&Abort
T1 T2
R3 | | [ [ ]

* No communication overhead during transaction execution:
» one TOB per transaction

* No distributed deadlocks
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Voting algorithm

* The transaction executes locally at replica R

* When the transaction is ready to commit, only

the write set is sent to all replicas using total
order broadcast

e Transactions’ commit requests are processed
in total order
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Voting algorithm

e A transaction may commit if its read set is still
valid (i.e., no other transaction has updated
the read set):

— Only R can certify the transaction!

e R send the outcome of the transaction to all
replicas:

— Reliable broadcast
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Voting Certification scheme

T1’s TOB — | RB = Uniform Reliable Broadcast
T1’s RB - only ensures reliable dissemination
(ws) (vote) - no guarantee on message ordering
Execution T1's - typically 30% faster than TOB
Transaction T1 validation
R1 | ]
wait for
R2 R1’s vote ]
+ avoids transmitting readset

incurs in an additional broadcast

RB is in the critical path:
- no new transactions are processed as long as the vote is not delivered

- 1/Turb is an upper bound on the commit rate, i.e. on throughput
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Summary of algorithms

e State-machine replication.
* Primary-backup:

— Synchronous

— Asynchronous
* Multi-master:

— Non-voting certification

— Voting certification



Communication and
coordination primitives

* Previous protocols rely heavily on several
communication and coordination primitives:

— Total order reliable broadcast
— Reliable broadcast
— Atomic commit

 What is the cost of these primitives?
* Where can | get implementations?

Group communication systems



Group Communication System

* Combines, in a integrated form, two
fundamental services:

— Membership service

— Multicast service with different flavors:
* Reliable multicast
* Total order multicast (atomic multicast)
* Optimistic delivery



Group Communication System

* Membership service

— Provides information about which members are
active and which members have failed.

* Multicast service

— Provides support for reliable multicast (informally,

all group members receive a given multicast
message or none does).



Why it is useful
for transactional replication

* Provides information about active replicas:
— The set of replicas is dynamic

— Replicas may fail: the membership detects the
failure and notifies the remaining replicas

— New replicas may join: old replicas are notified
that new replicas exist



Why it is useful
for transactional replication

e Support the communication among replicas
— Disseminate updates

— State-transfer to new replicas

* Support the coordination among replicas
— Order conflicting concurrent transactions

— Consistent decision on the transactions outcome
(commit/abort)



Total Order Broadcast — how

expensive?
- # forced
protocol resilience )
writes
TOB (i) Blocking 2 n+1 n
Two Phase Commit Blocking 3 3n n
Uniform TOB(ii) Non-blocking  3/4 4n n

Three phase commit Non-blocking  4/5 5n n



Sequencer based total order

Assigns SN Commit order
|

R1: sequencer

Sends messa Commit order

Receive in order
[ |

R2

Commit order
Receive in order,

R3 |
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Can we make it faster?

* Total order with optimistic delivery.

* Unless the sequencer node crashes, final
uniform total order is the same as regular total
order.

* Application may start certificating the
transaction locally based on optimistic total
order delivery.



Sequencer based total order

Assigns SN Commit order
|

R1: sequencer

Sends messa Commit order

Receive in order
[ |

R2

Commit order
Receive in order,

R3 |

Optimistic delivery Final delivery
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Uniform vs optimistic delivery

* (Can save one communication step.

Commits/
1 Abots
H Local execution | o S ‘

@ | r1 @ | r2 R3

@)
® ® @
4[ Final Delivery }

[ Total Order J/M \ote
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Uniform vs optimistic delivery

* (Can save one communication step.

Optimistic
Delivery

j,—[ Local execution } j, ‘

@®
@ r1 @ @ r @
) 5

[Total Order starts FM Vote ]M
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Uniform vs optimistic delivery

* (Can save one communication step.

.

R1

Commits/
] Abots

Local execution | o S ‘

R2 ‘:RB‘
@

M Vote Final Delivery }
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ToC

PART |

e Non-distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)

(break)

PART I

e Distributed Transactional Memories
— Concepts (45 min)
— Systems (45 min)
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Roadmap

 DTMs: Algorithms, platforms
— Sinfonia
— Cluster-STM
— D’°STM
— ALC
— Speculative Replication of STMs



Sinfonia [AMSVKOQ09]
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Sinfonia

 Word-based, PGAS
— linear address space

* Mini-transactions:
— static: a-priori known data to be accessed
— allows optimizing communication pattern
* Fault-tolerance via:
— in-memory replication
— sync/async persistency



Sinfonia architecture

* Two logical components: g #5gen »wago wige

— application node | L b )=
g ::‘:W mintransactions
— memory node =3 1
(7 r—rrwrrr, r?wm:r} ' ;ﬂﬂtd ‘
‘ rode 00 noce

e Memory nodes configurable to achieve:
— synchronous redo logging to disk

— asynchronous backup image to disk
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minitransaction

[ compare items

Minitransactions

mem-id

addr

len

data )

mem-id

len

data )

read ifems

addr

mem-id

addr

len

mem-id

len

write items

acddr

mem-id

addr

len

data})

mem-id

len

data )

addr

semantics

* if all compare items match:
— retrieve read items
— modify write items

example

t=new Minitransaction();
t->cmp(hostX, addrX, len, 1);
t->write(hostY,addrY,len,2);
status=t->exec_and_commit();
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Sinfonia’s execution

 The assumption of static transactions allows
piggybacking execution onto 2PC

coordinator coordinator

execute
execute
7
7
7

”\*
\
”\*
\
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Caching & Replication

* No support for caching:

— delegated to application level
— same applies for load balancing

* Replication:
— aimed at fault-tolerance, not enhancing performance
— fixed number of replicas per memory node
— primary-backup scheme ran within first phase of 2PC



Evaluation — synth. benchmark

sinfonia service: scalability
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Cluster-STM [BACOS8]



Cluster-STM

word based, PGAS

— language support for remote code execution
no persistency, no replication, no caching
supports only single thread per node
unconstrained transactions

various lock acquisition schemes + 2PC



Cluster-STM Interface

 Block data movement

All ops occur on p1

stm_get(work_proc=p2, 5
src=A, dest=B, size=n, ...)

stm_put(work_proc=p2,
src=B, dest=A, size=n, ...)

non-tx

stm_read(src=C, dest=B,
size=n, ...)

stm_write(src=B, dest=C, p1 p2
size=n, ...)



Cluster-STM Interface

* Exploiting data locality via remote execution:
— transactions inside remote work

on p2 { atomic { f(...); } }

local

ops
stm_on(src_proc=p1, /

WOrk_proc=p2, —t——'f-freee

function=f, ...)

— stm_start(src_proc=p1)
— stm_read(src_proc=p1)
stm_write(src_proc=p1)
................ stm_commit(src_proc=p1)




Cluster-STM Interface

* Exploiting data locality via remote execution:

— remote work invoked from within a transaction

atomic {on p2 { (...); } }

stm_start(src_proc=p1)

stm_on(src_proc=p1,
work_proc=p2,
function=f, ...)

stm_commit(src_proc=1)

local

/ ops

stm_read(src_proc=p1)

stm_write(src_proc=p1)

single commit
message



Cluster-STM Algorithm

* No caching, no replication

* Evaluated 4 design choices
— Conflict Detection Unit (CDU) size
— Read locks (RL) vs. read validation (RV)
— Undo log (UL) vs write buffer (WB)
— Early acquire (EA) vs late acquire (LA)



CDU size

* Granularity of conflict detection affects:
— possibility of false sharing
e abort rate increase

— size of metadata:

* memory footprint



Read locks (RL) vs. read validation (RV)

* RL:
— immediately acquire a lock as a read (local or remote) is issued

— abort upon contention (avoid deadlock)
— as coordinator ends transaction, it can be committed w/o 2PC

* RV:
— commit time validation (not opaque)
— validity check requires 2PC

* Note: distributed model w/o caching:

— each access to non local data implies remote access:
» eager locking is for free

— with caching only RV could be employable



Undo Log vs Write Buffer

* Undo log:

— updates are applied in-place during xact’s execution
* reduces the commit cost
* require write lock acquisition

e Write Buffer

— updates applied to private copy, written back during
commit phase

* reduces the abort cost

* Choice has a reduced impact in DSTM, where
communication costs are largely predominant



Early Acquire vs Lazy Acquire

* |n case Write Buffering is used, write locks can:

— be acquired at commit time:
* may allow for more concurrency
* avoid communications for writes during exec phase
* requires additional communication at commit time

— as the write is issued:
* may avoid wasted work by doomed transactions
* forced sync upon each write



Evaluation

(micro-benchmark)
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Evaluation
(micro-benchmark)
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Time (seconds, log scale)

Evaluation

(micro-benchmark)
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Evaluation
Graph Analysis Benchmark (SSCA?2)
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Dependable Distributed STM -
D?STM [CRRCO09]



D2STM - overview

* object oriented

* layered upon a non-distributed STM, JVSTM:
— single system image
— full, strongly consistent replication
— unaltered programming model

e Atomic Broadcast based replication scheme:
— Bloom-filter Based Certification



A Conventional AB-based Replication Scheme
“Non-voting Certification Protocol”

AB of T1's

read & writeset
Execution

Transaction T1
R1 |

Validation&Commit

T1
R2 [
Validation&Commit
T1
R3 [ |

* No communication overhead during xact execution:
» one AB per xact

* No distributed deadlocks
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How it actually looks like in a STM context

AB of both T1’s Problem:
readset & writeset (very) big message size

Validation &
Execution Commit

R1

Validation &
Commit

R2 1

* Certification schemes requiring a single AB need to broadcast tx’s readset:
— required by remote nodes to validate the transaction

* In STMs, transaction’s exec time is often 10-100 times short than in DBs:

— the cost of AB is correspondingly amplified

* Bloom Filter Certification:
— space-efficient encoding (via Bloom Filter) to reduce message size
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Software Architecture

[ Application ]
n
D2STM API

& J
4 N
L JVSTM )
4 I
Replication Manager |

Generic Group Commmunication Service J

[ Network J
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Bloom Filters

ofololololololololololo]| * Asetofnitemsisencoded
through a vector of m bits

i  Each item is associated with k
bits through k hash functions
having as image {1..m}:

.yl yz
N 2 \- — insert: set k bitsto 1

— query: check if all k bits setto 1

Figure: Bloom filter

Problem:

e False Positives: an item is wrongly identified as belonging to a given set

* Depend on the number of bits used per item (m/n) and the number of hash
functions (k)
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Bloom Filter Certification

 Read-only transactions: local execution and commit

e Write transaction T:

1. Local validation (read set)

2. If the transaction is not locally aborted, the read set is
encoded in a Bloom filter

3. Atomic broadcast of a message containing:
1. the Bloom filter enconding of tx readset
2. the tx write set
3. the snapshotID of the tx

4. Upon message delivery: validate tx using Bloom filter’s
information



Bloom Filter Certification

for each committed T’ s.t. T.snapshotID > T.snapshotID
for each data item d in the writeset of T’
if dis in Bloom filter associated with T’s readset

abort T
// otherwise...
commit T



BFC — two key problems

1. BFC requires information on the writeset of
committed transactions.

How to garbage collect them?

2. A false positive in the BF generate an abort.

How to tune the BF’s size to bound
the additional abort rate?



Garbage Collection of Tx’s writesets

each process maintains an array A storing in pos. i
the snapshotID of the oldest tx running on node |

committing tx piggybacks on its AB the snapshotID
of the oldest locally running tx

let minSnap be the minimum snapshotID in A

the writesets of any Tx with snapshotID < minSnap
can be safely garbage collected



False Positives

False positives do not lead to inconsistencies in the replicas
state, but to an increase in the transactions abort rate

Computing the size of a Bloom filter:

(ogz(1 — (1 — maxAbortRate ) ¥ |

LA

e g: number of BF queries, estimated via moving average over
recently committed transactions

 n: Number of items in the read set (known)
e maxAbortRate: User-defined false positive rate (user param)



STMBench7: Results

STMBench7 - Throughput (ops/sec)

maxAbortRate=1%

250
200
150
100

3
Threads

Replicas

Figure: Throughput
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STMBench7: Results

STMBench7 - % Execution Time Reduction of Write Transactions

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

3
2 Threads

Replicas

Figure: Execution time reduction (%)
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Asynchronous Lease
Certification (ALC)
[CRR10]



Key intuition Q'

e Exploit data access locality by letting replicas
dynamically establish ownership of memory regions:

— replace AB with faster coordination primitives:

* no need to establish serialization order among non-conflicting
transactions

— shelter transactions from remote conflicts

* Data ownership established by acquiring an
Asynchronous Lease

— mutual exclusion abstraction, as in classic leases...

— ...but detached from the notion of time:
* implementable in a partially synchronous system



Protocol’s overview

* Transactions are locally processed

* At commit, replicas checks if a lease on the accessed
data is already owned:

— NO
1. an Asynchronous Lease is established
2. the transaction is locally validated

3. if validation succeeds, its writeset is propagated using Uniform
Reliable Broadcast (URB):

— no ordering guarantee, 30-60% faster than AB

4. if validation fails, upon re-execution the node holds the lease:
— xact cannot be aborted due to a remote conflict!

— YES

e as above, but from point 2.



Asynchronous Lease Establishment
Basic Protocol

4 N\ (- ™) 4 )
Lease Request Lease Ensured Apply
(AB) (URB) (URB)
P1 ¥ \
-1 4 44 7 S K B
/ \ 1 /
/ ‘\ I ! \\\\,l /
/ W\ ! ! W\ !
/ I\ ] AN
/ )\ h / AN
/I 'I ! ’I \‘ II :I \I.I \‘ >
‘ P2 ‘ \\ '\‘ I( /‘ I, ﬂ \\ ’/ \‘
\ WAY ;7 v, 2
\ vy r ! A S\
\ ] 1, N
\ w )7 AN
\ 1 \ 1/ i Yo
] Iy /
P3 ‘ '] *‘ L Y/ ‘ ‘ >
Certification
Simple but sloppy:

If a node doesn’t own a lease, it incurs in the latency of 1 AB + 2 URB to commit a xact
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Asynchronous Lease Establishment
Optimized Protocol

—>» AB

s N s
LeaseRequest LeaseFreed ApplyWS
(AB) (URB) (URB)
b1 > ----% URB
— o 44 4 AT » ABG&URB
N ! / e/ in parallel
iy Y
AN ' AV Optimistic
A | / L1 4 0 ;
P2 r :‘\ 2 I B \;‘ > delivery
\\Il \‘/ ] ) \1< K
\ 1A iy SR [l Certification
\ i v AN
CEA | AVAR R |
P3 — A L ~ i — L . > Certification
Y & Commit/
. Abort
(Basic)
e ~ . . N
| LeaseRequest (AB) | [ ApplyWS (URB) | [ LeaseRequest+WS+RS (AB) |
| LeaseFreed (URB) | | LeaseFreed (URB) |
1
— T ad I ¥ A A A4
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Benefits of ALC

* |f applications exhibit some access locality:
— avoid, or reduce frequency of, AB
— locality enhanceable via conflict-aware load balancing

e Ensure transactions are aborted at most once due
to remote conflicts:

— essential to ensure liveness of long running
transactions

— benefic at high contention rate even with small
running transactions



Performance evaluation

* Based on fully fledged

p rOtOtype l Application l

e Relies on JVSTM ( v )

( Distributed STM API Wrapper
* Permits transparent , ; o ;
. JVSTM <t+—>
execution of legacy ~ J Replication
. . . . p N Manager
(distribution agnostic) Lease Manager [<—o>

STM applications —i_i—

| Group Communication Service |
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Synthetic “Best case” scenario

Replicas accessing distinct memory regions
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Throughput (commits/sec)

Synthetic “Worst case” scenario

* All replicas accessing the same memory region

100 %

ALC - % abort |
CERT - % abort

1600 ALC - throughput
CERT - throughput
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Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories — Middleware 2010



Speed-up (ALC vs CERT)

Lee Benchmark

* Complex application with diverse workload:
— both long and short running transactions
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* long running transactions subject to livelock:

— aborted up to 10 times




Speculative
Transactional Replication
[RPQCR10]



Beyond certification mechanisms

* Certification schemes achieve no overlapping
between transaction processing and replica
coordination:

— AB is started only after transaction ends!

 Can’t we do any better to minimize the
coordination costs?



YES WE CAN!

\\I/

* Using optimistic deliveries + state machine: Q

— messages are received from the network long before their
final order is established by the AB

1. ABincoming transactions and execute on all nodes:
* RPC-like execution fashion of the xacts

2. start processing as soon as a xact is opt-delivered

+ overlapping between processing & communication

Certification Scheme Speculative Scheme

Processing
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Easier to say than to do....

1. This only works if transactions execute
deterministically at all replicas

. classic concurrency controls (e.g. 2PL) are not deterministic

. existing solutions have several key limitations:
— a-priori knowledge of readsets/writesets:

. may force to large conflict over-estimation VERY POOR
— acquire ALL locks as xact begins _ CONCURRENCY!
. way more pessimistic than classic 2PL
time

-

T,

blocked on T locks l
Tg: H holds locks till final order
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Easier to say than to do....

2. Vulnerable to mismatches between final and
optimistic delivery orders!

Opt-del(Ty Opt-del(Ty) FinaI-deI(TA)¢l ‘LFinaI-deI(TB)
I

N sar

Ty

v

I

[

[

[ blocked on T, locks M
i

[ } *
Tg! h xe J holds locks till final order

~+=00 0

o
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\‘I/

@" Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
opt-de|(TB)l lFinaI-deI(TB)
v v time :

Ty :

abort(T’,)
: : abort(Tp)
commit(T,)

T
1

Speculatively explore multiple Serialization Orders (SO)

+ take maximum benefit from modern multi-core architectures

+ shelter from network reordering

+ avoid lock convoying
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\/,

@ Don’t be pessimistic...be speculative!

Opt-del(T,) Final-del(T,)
opt-de|(TB)l lFinaI-deI(TB)
y v time

i abort(T’,)
T.: : abort(Tg)
A : commit(T,)

1
|

Speculatively explore multiple Serialization Orders (SO)

— #S0s can grow factorially with #msgs not yet finally delivered
* true in worst case: every xact conflicts with every other, hardly the case in practice
+ #SOs in which a xact observes distinct snapshots depends on actual conflict graph
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Problem formalization:
Optimal STR protocol

2={T,,...,T,}: set of Opt-delivered, but not yet TO-delivered, transactions
¥={T4,..., T,5...,T.L...,T.™}: set of fully executed speculative transactions

An optimal STR protocol must guarantee:
Consistency: each speculative xact is view-serializable
Non-redundancy: no two speculative xacts observe the same snapshot

Completeness: if system is quiescent (stops Opt- and TO-delivering messages)
then, for every permutation ri(2) of Z and for every T, in %, eventually there
is a T)in m(Z) that has observed the same snaphot generated by
sequentially executing all the transactions preceding T;

Filters out trivial solutions that blindly enumerate all permutations of 2

Shelters from any mismatch between optimistic and final delivery order



An Optimal STR Protocol
Core Technical Challenge

* Design a provably optimal speculative
concurrency control:

* online algorithm driving the dynamic
generation of speculative transactions based
on actual tx’s conflict patterns



An Optimal STR Protocol
Core Technical Challenge

* Key ldea:
* each speculative xact maintains a Speculative Polygraph
(SP)

* Speculative polygraphs:
* keeps track of conflicts developed with other xacts
* embeds a family of direct graphs:

 each digraph is associated with an equivalent
serialization order for the transaction

* unlike classic polygraphs accommodate for the coexistence
of non-conciliable speculative transactions
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What about complexity?

* Ensuring completeness in STR can be very
expensive:
— NP complete problem [Papadimitrou79]

* To what extent can speculation enhance
performance if completeness is not ensured?

....up to 1 order of magnitude when
spontaneous ordering holds (AGGRO)...



AGGRO
[PQR10]
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AGGRessively Optimistic
Transactional Replication - Overview

e STR protocol which sacrifices completeness:

— speculative processing only according to optimistic
delivery order

* Innovative concurrency control mechanism:

— no a-priori knowledge of tx’s read&write sets

— attempts to serialize transactions according to opt-
delivery order:
* failure can cause abort, but opacity is guaranteed

— multi-version, lock-based, visible reads



AGGRO — Algorithm

upon opt-Deliver(Tx Ti)
append Ti to OAB order
start transaction Ti in a speculative fashion



AGGRO — Algorithm

upon write(Tx Ti, Data X, Value v)

if (X not already in Ti.WS)

add X to Ti.WS

mark X as WIP // C&S

for each Tj that follows Ti in OAB order:

if (Tj read X from a xact Tk preceding Ti) abort Tj

else

update X in Ti.WS



AGGRO — Algorithm

upon read(Tx Ti, Data X)
if (Xin Ti.WS) return X.value from Ti.WS
if (X in Ti.RS) return X.value from Ti.RS

wait until (X is markedAsWip from a Tx
that precedes Ti in OAB order)

let Tj be tx preceding Ti in OAB order that wrote X
Ti.readFrom.add(Tj)



AGGRO — Algorithm

upon completed_exec(Tx Ti)

atomically {
for each X in Ti.WS: unmark X as WIP by Ti

}

upon commit(Tx Ti)
atomically {

for each X in Ti.WS: mark X as committed

}



AGGRO — Algorithm

upon abort(Tx Ti)
abort any transaction that read from Ti
restart Ti

upon TO-Deliver(Tx Ti)
append Ti to TO-order
wait until all xacts preceding Ti in TO-order committed
if (validation of Ti’s readset fails) abort (Ti)
else commit(Ti)



AGGRO - evaluation

Trace driven simulation:

— data access pattern trace of STM micro-
benchmarks running on JVSTM:
* List & RBTree

— Atomic Broadcast:
* optimistic delivery: 500 psec
* final (total ordered) delivery: 2 msec

 various levels of message batching:
— common optimization to enhance AB throughput



Performance speed-up
(20% reordering, only one SO explored)
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Performance speed-up
(20% reordering, only one SO explored)

no speculation List speculation
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Future Research Directions



DTMs: a programming paradigm
for the Cloud ?

* TMs emerged as a powerful abstraction to
simplify programming of multi-core systems

* Will DTMs make their way into Cloud platforms?
[RRCC10]

— more powerful alternative to paradigms such as
MapReduce

— several in memory transactional data grids are starting
to appear:

* Oracle Coherence, JBoss Infinispan



DTMs: a programming paradigm
for the Cloud ?

* Challenge: how to deal with Cloud’s elasticity?
— system scale fluctuates depending on workload

* what-you-use-is-what-you-pay pricing model



DTMs: a programming paradigm
for the Cloud ?

* Challenge: how to deal with Cloud’s elasticity?
— system scale fluctuates depending on workload

* what-you-use-is-what-you-pay pricing model

Question 1:

How to reduce data relocation overhead?
— highly dynamic system
— much to borrow from P2P literature:

» consistent hashing
» DHTs....



DTMs: a programming paradigm
for the Cloud ?

* Challenge: how to deal with Cloud’s elasticity?
— system scale fluctuates depending on workload

* what-you-use-is-what-you-pay pricing model

Question 2:

How to ensure optimal performance when:
— scales varies from few to hundreds of nodes
— workload characteristics change

No One-Size-Fits-All solutions



DTMs: a programming paradigm
for the Cloud ?

* Challenge: how to deal with Cloud’s elasticity?
— system scale fluctuates depending on workload

* what-you-use-is-what-you-pay pricing model

Question 3:
How to integrate DTM & Cloud storage solutions?



DTMs: a programming paradigm
for the Cloud ?

e Stay tuned on www.cloudtm.eu...

SEVENTH FRAMEWORK
l l T M PROGRAMME
ou S * *

A novel programming *: :*
paradigm for the Cloud * ok k
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GOST

Euro-TM Cost Action

» Research network
bringing together leading
European experts in the
area of TMs

* Participation can be
extended also to non-
European countries!

» Kick-off: 1 April 2011
» Contact us if you are

interested in joining it:
romano@inesc-id.pt

ler@inesc-id.pt
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