
Ensuring Irrevocability in Wait-free Transactional Memory

Jan Kończak
Institute of Computing Science,

Poznań University of Technology
Poznań, Poland

jan.konczak@cs.put.edu.pl

Paweł T. Wojciechowski
Institute of Computing Science,

Poznań University of Technology
Poznań, Poland

pawel.t.wojciechowski@cs.put.edu.pl

Rachid Guerraoui
EPFL

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Abstract
Transactional Memory (TM) aims to be a general purpose concur-
rency control mechanism. But some operations are forbidden in-
side transactions, as they cause effects that the TM system cannot
manage. Networking, I/O and some system calls cannot be exe-
cuted in a transaction that may abort and restart. Thus, many TM
systems let transactions become irrevocable, that is guaranteed to
commit. Although support for irrevocability is a challenge, there
exist TM systems that are fast, highly parallel and support irrevo-
cability. However, no such system so far provides guarantees that
all transactional operations finish in a finite time. In this paper, we
show that support for irrevocability does not entail inherent wait-
ing. We present an algorithm that guarantees wait-freedom for each
transactional operation. The TM algorithm is based on the weak-
est synchronization primitive possible (test-and-set), and guaran-
tees opacity and strong progressiveness. We develop upon it a TM
system, and use it to experimentally evaluate our algorithm with
the STMBench7 benchmark.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Software transactional memory, irrevocable operations
support, operation-level wait-freedom

1. Introduction
Transactional memory (TM) [10, 14] is a concurrency control
mechanism that has been proposed to simplify concurrent pro-
gramming by allowing a sequence of read and write instructions,
a transaction, to execute atomically. There has been a lot of in-
terest in TM recently, and now TM is slowly entering the indus-
try. For example, modern CPUs are equipped with instructions
for executing short transactions (hardware TM). There also ex-
ist industry-strength implementations of software TM for popular
programming languages, and standardizing committees work on
appropriate standards. However, a lot more has to be done before
TM becomes a versatile tool for programmers.

The advocated advantages of TM over explicit usage of locks in-
clude good support for multicore processors, since transactions can

TRANSACT ’16, March 12, 2016, Barcelona, Spain.

freely execute in parallel, and, in case of any conflicts, the conflict-
ing transaction is simply rolled back and its code is executed again.
But this behavior is also one of the weaknesses, since transactions
that may potentially abort cannot contain arbitrary code. Thus, the
designers of TM systems must take care of irrevocable operations,
that is operations which cannot be undone, such as system calls,
I/O actions, and networking operations.

Initially, the developers of TM systems simply forbid the use of
irrevocable operations in transactional code at all. With rising need
for a practical TM the irrevocability support began to emerge. Now,
there exists a wide range of mechanisms to support irrevocable
operations: from the ability to switch to sequential execution to
sophisticated algorithms allowing transactions to run and commit
alongside the irrevocable one. However, all of these approaches
have a common disadvantage – in some cases one transaction, to
complete its operation, must wait for another transaction to finish.

In this paper, we investigate the possibility of supporting irre-
vocable operations within transactions in operation-level wait-free
transactional memory [5, 6] – a system in which no transaction
should ever wait for another transaction. Implementation of a TM
that supports irrevocability and requires no waiting is considered
typically as not very realistic. We disprove the myth and show that
a system like this in fact can be built with little cost. And, since no
thread blocks other threads, by analogy to locks, an operation-level
wait-free TM can be used instead of a traditional TM in similar
cases when the trylock primitive is preferred over lock.

We focus on software TM since hardware TM alone typically
does not offer any guarantees for programmers. Actually, we pro-
pose a wait-free TM algorithm, which is a rework of well-known
ideas extended with routines providing seamless support for irre-
vocability. Then, we analyze the progress of our algorithm – the
property that makes TM algorithms useful in practice. In general,
a progress property asserts that it is always the case that some trans-
action eventually commits. In particular, we show that our TM sys-
tem is strongly progressive [5], which means that two conditions
hold: 1) a transaction that encounters no conflict must be able to
commit, and 2) if a number of transactions conflict only on a sin-
gle transactional variable, then at least one of them must be able
to commit. Next, we present the results of experimental evaluation
of a prototype wait-free TM system that we developed using the
algorithm. To our best knowledge this is the first operation-level
wait-free TM system that supports irrevocability.

1.1 Blocking transactions in TM
For a TM system to run fast, transactions should execute in par-
allel. But for correctness and simplicity, many TM algorithms in-
volve periods when a transaction has exclusive access to particu-
lar data (e.g., during transaction commit) and other transactions are
forced to wait until it completes. As this limits parallelism, some re-
searchers investigated obstruction-free TM [11] – a class of TM that

1

guarantees completion of a transaction in a finite number of steps
whenever no other transaction makes progress concurrently. While
the idea is promising, when facing real-world problems a practical
TM ensuring obstruction freedom is impossible. Programmers re-
quire the possibility to put arbitrary code within transactions, that
is to support irrevocable transactions. However, irrevocability is in-
compatible with obstruction-freedom. A transaction running in iso-
lation must commit, regardless if it conflicts with another transac-
tion that temporarily stalled. If the latter is irrevocable, then neither
of the conflicting transactions can abort.

Thus we focus on another property, which also introduces time
constraints – wait-freedom [9]. It is stronger in terms of liveness
than obstruction-freedom, since the latter leaves aside any guaran-
tees for transactions that do not execute in isolation. According to
the original definition, a method is wait-free if it guarantees that ev-
ery call finishes in a finite number of steps. In the area of TM, wait-
freedom is understood twofold: by some, as an impossible prop-
erty that guarantees committing transactions in a finite time [13],
by others as a property which guarantees finishing transactions in
a finite time [5, 6]. We accept the latter, and to prevent confusion,
call it operation-level wait-freedom [5]. The idea of operation-level
wait-freedom is to limit the number of steps in which any transac-
tional operation finishes. Thus a finite transaction finishes, either by
aborting or by committing, in a finite number of its steps. Note that
ensuring this alone is trivial – a TM system that aborts all trans-
actions is operation-level wait-free. Therefore, for a practical TM,
appropriate progress property must also hold.

1.2 Contribution
In the paper, we show that operation-level wait-freedom is achiev-
able in a strongly progressive TM system with support for irre-
vocable transactions. To show this, we propose an operation-level
wait-free TM algorithm that requires no extra assumptions and adds
little overhead to support irrevocable transactions. Our algorithm
uses only registers and trylocks (a test-and-set equivalent), which
are known to be the weakest primitives that suffice for building
opaque and strongly progressive TMs [5].

Next, we point out that common progress properties are infeasi-
ble in any system that both supports irrevocability and is operation-
level wait-free. This is because the progress properties do not take
into account irrevocability, which may introduce a conflict between
transactions that share no data. Therefore, we propose a method of
adapting progress properties to TM systems that support irrevoca-
bility and are operation-level wait-free. Once adapted, strong pro-
gressiveness is ensured by our algorithm.

To examine the usefulness of our approach, we developed an
implementation of proposed algorithm, which we used to evaluated
the behavior and performance of our algorithm. For this, we used
the STMBench7 benchmark [7].

1.3 Paper structure
We discuss related work in Section 2. Then, we explain how to
extend TM model to support irrevocable operations in Section 3.
Next, we describe the design of our algorithm in Section 4. Then,
we discuss the correctness and progress properties of the algorithm.
Finally, we describe the implementation of our wait-free TM sys-
tem and present the results of experimental evaluation in Section 6,
followed by conclusions.

2. Related work
Baugh and Zilles [1] analyzed the use of irrevocable operations in
critical sections of real-world applications (Firefox and MySQL).
In particular, they took into account a subset of possibly irrevocable
actions – I/O and system calls. They classified some of these oper-
ations as revocable, since they produce compensable side effects,

and investigated the possibility of moving others outside transac-
tions. For file system operations, the authors proposed extending
operating systems by transactional I/O semantics. Nevertheless,
they stated that these workarounds do not cover all irrevocable op-
erations, and there still remains a significant number of truly irre-
vocable actions within the critical regions. This result is of a major
importance for TM system designers. Since programmers do use ir-
revocable operations within critical regions, a versatile TM system
must support them as well.

Zyulkyarov et al. [18] reimplemented Quake game server using
TM as the main synchronization primitive. They stated that sup-
porting irrevocable operations was necessary. Their TM of choice
was Intel C++ STM Compiler [12], which allows for irrevocability
by entering a serial mode – safe but inefficient idea.

Of course, there are more efficient solutions for supporting ir-
revocability. For example, all state-of-the-art TM systems that sup-
port irrevocably allow read-only transactions to run in parallel with
an irrevocable transaction, as it is easy to ensure that they cause no
harm. As for update transactions, less permissive approaches let the
update transactions perform reads and writes, but disallow commit
as long as any irrevocable transaction is running. Most advanced
solutions allow all parallel transactions to progress and commit,
thereby guaranteeing no aborts of the transaction running in the ir-
revocable mode. Below we discuss example approaches and TM
systems of this sort. However, all of them have one disadvantage:
in certain conditions, some transaction must wait for other transac-
tions to progress. So, a slow transaction can postpone completion
of other ones.

Single-Owner Read Locks (SORL) [17] is a highly-efficient op-
timized locking approach, in which each data item is guarded by
a lock. While ordinary locks are designed to represent two states
(locked and unlocked), SORLs let the transaction lock the data in
one of three modes: normal, irrevocable read, and irrevocable write.
This allows for both high level of parallelism and the support for
irrevocability, but as in the traditional locking approach, to access
any data item a transaction must wait for the item to become un-
locked.

Inevitable Read Locks (IRL) [15, 16] exploit the same idea as
SORL. In this approach, when irrevocable transaction Ti detects
that its next operation would conflict with Tk, then Ti can cause
Tk to eventually abort (while in SORL Ti waits until Tk finishes).
Spear et al. did not specify whether such operation is blocking.
Since making it non-blocking is a challenging problem not refer-
ences in the papers, we assume that waiting is a must in IRL.
Spear et al. proposed also Inevitable Read Filter [15, 16], which
aims for increasing parallelism. In this approach, a single global
bloom filter is used to store read locks. This improves over IRL by
alleviating any read-read concurrency problems, which may arise
in the latter. However, accesses to the filter itself must be sequen-
tial, so when a single transaction updates or lookups the filter, other
transactions must wait.

The work on hardware transactional memory is also relevant, as
dealing with I/O operations is obviously an issue for hardware as
well. As in software TM, hardware TM systems must abort transac-
tions if a conflict is detected. Most of these systems simply disallow
irrevocable operations. In state-of-the-art hardware TMs each invo-
cation of an irrevocable operation within a transaction ends up with
a forceful abort, just to prevent any upcoming problems. Blundell et
al. [2] made an attempt to alleviate any limits on the operations used
within a hardware transaction. To this end, they introduced a new
mode for running transactions in hardware (called the unrestricted
mode) that guarantees no aborts. This allows using unsafe opera-
tions within transactions, making the unrestricted mode analogue
to irrevocable transactions in software TM. As for wait-freedom,
there is no way to observe any hardware waiting from a program-

2

read(x) → 1 becomeIrrevoc write(y, 2) commit

read(y) → 1 becomeIrrevoc write(x, 2) ???

T₁

T₂

Figure 1. Two irrevocable trans. result in an unsolvable conflict

mers point of view. However, the implementation of a hardware
TM, as described in [2], forces threads to stall upon concurrent ac-
cess to common locations.

3. Irrevocability in TM
A typical transactional memory system defines the following oper-
ations: begin transaction, read, write, abort and commit. All these
operations can succeed or fail by aborting the transaction. To sup-
port irrevocability, this set of operations must be extended. One of
the ideas introducing support for irrevocable operations is to tag
transactions using them (irrevocable transactions) upon start, thus
extending the begin transaction operation by a parameter. We find
this approach not flexible enough. While it allows for creating sim-
pler TM algorithms, it requires from programmers to explicitly start
an irrevocable transaction. Also, prior to the first irrevocable op-
eration, the transaction is idly considered as irrevocable. Thus, we
adapt a more popular idea on how to introduce support for irrevoca-
bility in TM, and let the transaction decide at any point of its execu-
tion that it wants to transit to an irrevocable state. For this purpose
a new operation is defined: become irrevocable. The transition from
revocable to irrevocable state can fail, that is a transaction can be
forcibly aborted while executing the become irrevocable operation.
However, if the operation succeeds, then no subsequent operation
can end up with an abort.

In general, there can be at most one irrevocable transaction
at a time. Otherwise, conflicts are unavoidable. As depicted in
Figure 1, if any algorithm would let two arbitrary transactions
transit to the irrevocable mode, and would let each of them read a
(separate) variable, each transaction could request an update to the
variable read by the other one, resulting in an unsolvable conflict.
It is theoretically possible to let a transaction become irrevocable
and stall it before its first read, but this effectively still lets only one
irrevocable transactions progress.

Supporting irrevocability to some extent restricts the design of
a TM system. Without irrevocability, read operations can be either
visible or invisible – that is, transactions either can or cannot tell
which transactions read a certain variable. When supporting irre-
vocability, no transaction must update a variable read by the irre-
vocable transaction until the latter finishes. Thus, either irrevocable
transactions use visible reads, or extra synchronization is required.

4. Algorithm
To show that a TM supporting irrevocable operations can be
operation-level wait-free, we propose an algorithm satisfying the
following properties:

• operation-level wait-freedom
• support for irrevocability
• opacity (a safety property)
• strong progressiveness (a progress property)

The algorithm uses only registers and trylocks. A trylock is an ob-
ject having two methods: unlock and trylock, with the usual locking
semantics. The trylock can be trivially implemented using a test-
and-set instruction, and there exists no weaker synchronization
primitive that can be used to develop an opaque and strongly pro-

Algorithm 1: Data structures
Global data

maxThreadNum;
irrTransactionLock← unlocked;

Thread local data
ct←⊥ ; // current transaction
threadId;

class Transaction:
rsetBuffs← ø;
wsetBuffs← ø;
hijackedBuffs← ø ; // used by irrevoc. to take over var.
locksHeld← ø ; // list of acquired locks
cleanRsetL← unlocked ; // lets other trans. abort this one
commitL← unlocked ; // lets irrevoc. trans. abort this one
aborted← false ; // tells if trans. has been aborted
amIIrrevocable← false;

class Variable:
valuePtr ; // points to the global copy of the variable
usedByIrr← false ; // prevents revocable trans. from writes
dirty← false ; // if set, a revoc. trans. updates the var.
dirtyIrr← false ; // if set, an irrevoc. trans. updates the var.
readers← [⊥,⊥,. . . ,⊥] ; // trans. that read the variable
lock← unlocked ;
mostRecentLockOwner←⊥; //written to just after locking lock

gressive TM system [5, 9]. We chose object-based approach (used
e.g., in [8]).

The algorithm is presented in Algorithm 1, 2, 3 and 4. Since
it relies upon indirection level, we use the following notation to
express clearly the intended operations:

CLONE(ptr) makes a copy of an object pointed by ptr
ptrA← ptrB sets the value of pointer ptrA
∗objptr accesses the pointed object

For brevity of the algorithms, we use the following notation:

c ∪← o adds o to the set/map c (i.e., c← c ∪ {o})
c \← o removes o from the set/map c (i.e., c← c \ {o})
ø is an empty set/map
⊥ is a null (empty) value
c[k] accesses object at given index/key k of array/map c

Without irrevocable transactions, our algorithm is a simple lock-
based algorithm. It locks a variable upon write (line 22) and re-
leases it at commit or abort (line 94 or 69). If, during write, try-
locking the variable fails, the transaction aborts (line 22). Trans-
actions work on local copies of the shared variables (line 10 and
34), and overwrite the global copy on commit (line 90). We assume
that one thread can execute one transaction at a time, and there is
a well-known upper bound on the number of threads. Under these
assumptions visible reads are implemented in a lightweight fash-
ion, by keeping a list of readers in a constant-sized array. Whenever
a transaction is going to update the global copy on commit, it marks
the variable as dirty (line 73). Then it prevents all transactions in
the readers list from completing any subsequent read or commit
(line 74-77). To enable the latter, on commit each transaction must
lock one additional lock, which guarantees a consistent read set
(line 79). Such algorithm is operation-level wait free, opaque and
strongly progressive. It is not especially permissive (i.e., it aborts
some transactions with read-write conflicts that potentially could
commit), albeit is easily extensible for irrevocability support.

To support irrevocability, it must be ensured that a) no transac-
tion can abort the irrevocable transaction, b) the irrevocable trans-
action must always successfully execute any TM operation.

3

Algorithm 2: Transactional read and write
read(var)

1 if var ∈ (ct.rsetBuffs ∪ ct.wsetBuffs) then
2 return *(ct.rsetBuffs ∪ ct.wsetBuffs)[var];
3 if ct.amIIrrevocable then
4 irrAcquire(var, true);
5 return *(ct.rsetBuffs ∪ ct.wsetBuffs)[var];
6 var.readers[threadId]← ct;
7 if var.dirty ∨ var.dirtyIrr then Abort;
8 ct.rsetBuffs ∪← (var, CLONE(var.valuePtr));
9 if ct.aborted then Abort;

10 return *ct.rsetBuffs[var];
write(var, value)

11 if var ∈ ct.wsetBuffs then
12 *ct.wsetBuffs[var]← value;
13 return *ct.wsetBuffs[var];
14 if ct.amIIrrevocable then
15 if var ∈ ct.rsetBuffs then
16 ct.wsetBuffs ∪← (var, ct.rsetBuffs[var]);
17 ct.rsetBuffs \← var;
18 else irrAcquire(var, false);
19 *ct.wsetBuffs[var]← value;
20 return *ct.wsetBuffs[var];
21 if var.usedByIrr then Abort;
22 if ¬ var.lock.trylock() then Abort;
23 var.mostRecentLockOwner← ct;
24 if var.usedByIrr then
25 var.lock.unlock();
26 Abort;
27 local buffer← CLONE(var.valuePtr);
28 if ct.aborted then
29 var.lock.unlock();
30 Abort;
31 ct.wsetBuffs ∪← (var, buffer);
32 ct.rsetBuffs \← var;
33 ct.locksHeld ∪← var.lock;
34 *ct.wsetBuffs[buffer]← value;
35 return *ct.wsetBuffs[buffer];

irrAcquire(var, ro)
36 var.usedByIrr← true;
37 if var.lock.trylock() then ct.locksHeld ∪← var.lock;
38 else
39 local lo← var.mostRecentLockOwner;
40 if lo.commitL.trylock() then lo.aborted← true;
41 else if ¬ lo.aborted then
42 ct.wsetBuffs ∪← (var, CLONE(lo.wsetBuffs[var]));
43 ct.hijackedBuffs ∪← (var, lo.wsetBuffs[var]);
44 return;
45 if ro then ct.rsetBuffs ∪← (var, CLONE(var.valuePtr));
46 else ct.wsetBuffs ∪← (var, CLONE(var.valuePtr));

To guarantee no aborts, the irrevocable transaction must never
abort itself, as well as must never be aborted by others. For the lat-
ter, notice that revocable transactions can abort others only on com-
mit (line 76). So, while transiting to the irrevocable state, a trans-
action must acquire the lock used to abort other transactions (line
51). However, extra care is required here: since the lock guaranteed
consistent reads, just acquiring it would break consistency. Thus,
on becoming irrevocable, the transaction locks variables it read be-
fore (line 59). Later on, upon any read, the variables are also locked
to prevent concurrent writes (line 37). Once the variables accessed
by the irrevocable transaction are locked, no concurrent writes may
happen. Of course, locking the variable can fail. If the transaction
is already irrevocable, we need to take over the variable. By tak-

Algorithm 3: Transiting to irrevocable state
become irrevocable()

47 if ¬ irrTransactionLock.trylock() then Abort;
48 if ¬ acquireReadset() then
49 irrTransactionLock.unlock();
50 Abort;
51 if ¬ (ct.cleanRsetL.trylock() ∧ ct.commitL.trylock()) then
52 foreach v ∈ ct.rsetBuffs do v.usedByIrr← false;
53 irrTransactionLock.unlock();
54 Abort;
55 ct.amIIrrevocable← true;

acquireReadset()
56 local acquired;
57 foreach v ∈ ct.rsetBuffs do
58 v.usedByIrr← true;
59 if v.lock.trylock() then acquired ∪← v;
60 else
61 foreach v′ ∈ acquired do
62 v′.usedByIrr← false;
63 v′.lock.unlock();
64 return False;
65 ct.locksHeld ∪← acquired;
66 return true;

ing over we understand either aborting the lock’s owner or – if the
lock’s owner is commit-pending1 – using the value it produced.

Taking over a variable by the irrevocable transaction regard-
less of the current system state is a challenge in an operation-level
wait-free TM. If the variable is not currently locked, the irrevoca-
ble transaction simply locks it, regardless of the intended operation
(read or write). It is worth pointing out that in our system reading
a variable by a revocable transaction does not require it to be un-
locked. Since the global copy is updated at commit, one transaction
can perform a read between write (or read) and commit operation
of an other transaction. Thus, locking the variable upon read by the
irrevocable transaction introduces no read-read conflicts.

Regardless if the variable x is locked, as the first step of ac-
cessing it the irrevocable transaction Ti marks x as in use by the
irrevocable transaction (line 36). This causes any new transaction
to abort upon a write to x (lines 21, 24). This limits the number
of transaction competing on x to at most two – Ti and Tk. It is
easy to guarantee that either Ti correctly identifies Tk as the lock’s
owner (line 39), or Tk aborts (lines 23, 24)2. Then, Ti tries to force
the supposed lock’s owner to abort on any subsequent transactional
operation. If either Ti successfully forces the abort or notices that
Tk already aborted (line 40, 41), then Ti knows that it has exclusive
access to x and that the global copy has the correct value.

There is, however, one case when Ti and Tk compete on the
variable x and Ti is unable to abort Tk and Tk did not abort.
This can happen iff Tk already started its commit and acquired all
needed locks (that is, passed line 79). In such case Tk is commit-
pending, and Ti can use values produced by it. For read operations,
it is sufficient to return the value from buffer of Tk. As for writes,
the solution is not so simple: Tk can at any time write to the
global copy of x, as part of the commit procedure (line 83). Due
to indirection level used by us, Ti can precisely tell what address
Ti will write to the global copy – the address of its buffer (line 83).
This makes it possible for Ti to use the buffer of Tk as its own
(hijack it, lines 42, 43). Now, Ti at the end of its commit updates

1 A transaction Tk is called commit-pending if Tk invoked commit and in
all possible continuations of the current history Tk eventually commits.
2 Or Tk stalls until Ti finishes, what is indistinguishable from a case when
Tk issues the write after commit of Ti.

4

Algorithm 4: Start, abort and commit procedures
begin transaction()

67 ct← new Transaction
abort()

68 ct.aborted← true;
69 foreach lock ∈ ct.locksHeld do lock.unlock();

commit()
70 if ct.aborted then Abort;
71 foreach v ∈ ct.wsetBuffs do
72 if ct.amIIrrevocable then v.dirtyIrr← true;
73 else v.dirty← true;
74 foreach v ∈ ct.wsetBuffs do
75 foreach i ∈ [1,2,3,. . . ,maxThreadNum] \threadId do
76 if v.readers[i].cleanRsetL.trylock() then
77 v.readers[i].aborted← true;
78 if ¬ ct.amIIrrevocable then
79 if ¬ (ct.cleanRsetL.trylock() ∧ ct.commitL.trylock()) then
80 foreach v ∈ ct.wsetBuffs do v.dirty← false;
81 Abort;
82 foreach v ∈ ct.wsetBuffs do
83 v.valuePtr← ct.wsetBuffs[v];
84 v.dirty← false;
85 else
86 foreach v ∈ ct.wsetBuffs do
87 if v ∈ ct.hijackedBuffs then
88 *ct.hijackedBuffs[v]← *ct.wsetBuffs[v];
89 v.valuePtr← ct.hijackedBuffs[v];
90 else v.valuePtr← ct.wsetBuffs[v];
91 v.dirtyIrr← false;
92 foreach v ∈ (ct.rsetBuffs ∪ ct.wsetBuffs) do
93 v.usedByIrr← false;
94 foreach m ∈ ct.locksHeld do m.unlock();
95 if ct.amIIrrevocable then irrTransactionLock.unlock();

the buffer of Tk to the value produced by Ti, and writes the buffer
address to the global copy. Tk, on the other hand, writes the same
buffer address to the global copy. Since both Ti and Tk want to
perform the same write, no conflict can occur. If Tk finishes before
Ti starts its commit, read operations on x can succeed, yielding the
value produced by Tk. Once Ti finishes, it overwrites the buffer of
Tk with the new value (line 88) and points the global copy to it (line
89). From that moment on, all reads will return the value of x as
produced by Ti.

Since at most one transaction at a time can be irrevocable,
we use a lock – irrTransactionLock – to limit the number of
irrevocable transactions (lines 47, 95).

5. Properties
5.1 Correctness
The algorithm we present is opaque [4]. In brief, the opacity is
achieved by careful maintenance of the reader list and proper com-
mit procedure. At commit of a transaction Tk the TM system aborts
all revocable transactions that read variables updated by Tk. No re-
vocable transaction is allowed to read a variable x while another
transaction that wrote to x is in progress of commit. These rules
guarantee that all reads of revocable transactions are consistent. As
all reads are performed on the global copy and all updates are writ-
ten to the global copy, real-time order is preserved. The irrevocable
transactions protect themselves form inconsistent reads by locking
all read variables, just as described in the previous section.

read(x) → 1 becomeIrrevoc commit

read(y) → 1 becomeIrrevoc commit

T₁

T₂

Figure 2. Disallowed execution of disjoint transactions

5.2 Progress
5.2.1 Existing properties versus irrevocability
It is easy to show that in an operation-level wait-free TM system
with support for irrevocability some properties are impossible to
achieve. Interestingly, in such a TM system no reasonable progress
properties can hold. The definitions of the properties are not taking
into account irrevocability, what renders applying them impossible.
For example, it is not possible to guarantee that a transaction with
no conflicts will always commit. Consider two concurrent transac-
tions that do not share any variables, and they both try to become
irrevocable (see Figure 2). While one of them can safely become
irrevocable, the other one cannot finish the transition to irrevoca-
ble state in a wait-free manner, as at most one transaction can be
irrevocable at the same time (see Section 3).

Intuitively, in the scenario above aborting one of the transactions
should be allowed by progress properties. Thus, to be able to dis-
cuss the progress properties in presence of irrevocable transactions,
we propose to alter some definitions. In particular, the definition of
conflict must be extended. Traditionally, conflicts are defined only
with regard to operations on shared variables. However, when sup-
porting irrevocability in a TM system, the transitions to the irrevo-
cable state can also be a legitimate reason of conflict. To minimize
changes to the traditional definitions, we propose to model the con-
flicts on irrevocability by introducing a virtual transactional vari-
able xirr shared by all transactions. A transaction that intends to
become irrevocable should execute a read operation immediately
followed by a write operation on xirr . This introduces a conflict
between transactions that try to become irrevocable.

With the conflicts introduced by variable xirr , the properties
like strong progressiveness are achievable. However, this also
makes properties like disjoint-access parallelism achievable – a
property that intuitively should not apply to TM systems with irre-
vocability support. Thus, we should question ourselves whether the
progress properties retain their intended meaning. In our opinion,
after adding virtual variable xirr , strong progressiveness remains
the same for both TM users and developers. Moreover it is applica-
ble to a wait-free TM with irrevocable transactions.

5.2.2 Progress of the algorithm
The property guaranteed by our algorithm is strong progressiveness
(as defined in [5]) modified to take into account conflicts among the
transactions that attempt to become irrevocable (as proposed in pre-
vious Section). Strong progressiveness is, despite its name, not very
strong, but still practical property. It guarantees that a transaction
without conflicts succeeds, and that whenever a group of transac-
tions conflict on at most one variable, then at least one of them will
succeed. It leaves out conflicts on multiple variables.

If in a group of conflicting transactions there is an irrevocable
transaction, then strong progressiveness holds trivially – the irre-
vocable transaction is guaranteed to commit. So, we need to take
into consideration only revocable transactions and transactions that
fail to become irrevocable. In our algorithm, due to lack of global
metadata, transactions learn about variables and peer transactions
only upon read and write operations. Thus, without competing on
a common variable transactions cannot impact each other. More-
over, despite we use visible reads, no read-read conflicts occur. So,
a transaction with no read-write or write-write conflict (including

5

Co
mm

its
 [t

x/
s]

0

50

100

150

200

250

300

Threads
1 2 3 4 5 6 7 8

Figure 3. Invisible reads anomaly – STMBench7, readWrite, with
traversals, 4 cores

conflicts on xirr) trivially commits. Whenever there is a single con-
flict, on variable x, there must exist a transaction Tk that success-
fully locked x as part of its write operation. Now, for Tk to abort,
either one of its reads has to be invalidated, or Tk must encounter
another locked variable, or Tk must try to become irrevocable and
fail. For any of these cases to occur, conflict on a second variable is
required (in the latter case, conflict occurs on xirr). Since we care
for groups of transactions that conflict on a single variable only,
none of these can happen. So, strong progressiveness holds.

5.2.3 Guarantees of becoming irrevocable
Progress properties hold regardless whether the transactions are re-
vocable or not. Therefore, well-known progress properties provide
also some guarantees on successful transiting to the irrevocable
state. Strong progressiveness, the property which holds for our al-
gorithm, guarantees that a transaction without conflicts must not be
forcibly aborted. Thus, if no irrevocable transaction is live, and a
single transaction Tk tries to become irrevocable, then Tk must be-
come irrevocable if Tk has no conflicts. Moreover, in a system with
no running irrevocable transaction, if multiple transactions with no
conflicts so far try to become irrevocable, then one of them must
succeed.

6. Experimental evaluation
6.1 Implementation
To evaluate our algorithm, we implemented it as a C++ library suit-
able for use both in real applications and object-based TM bench-
marks. We are restricted to object-based TM benchmarks, since the
algorithm relies on indirection level and operates on local buffers,
thus there is no constant address of the transactional variables re-
quired by word-based TM benchmarks. We use plain C++11, which
has the classes necessary to implement registers (atomic<bool>
and atomic<void*> classes, featuring store and load methods)
and trylocks (atomic flag class with test and set and clear
methods).

6.2 Injecting irrevocability into benchmarks
Currently none of the existing benchmarks uses irrevocable trans-
actions. Thus, to evaluate the behavior of our algorithm, we needed
to inject artificially transitions to the irrevocable state. While the
irrevocable transactions are more expensive, they can reduce the
number of restarts. Welc et al. suggest that the irrevocable transac-
tions should be considered not only for supporting the irrevocable
operations, but also for helping transactions that are likely to be
aborted and repeated multiple times [17]. In order to test how the

Throughput with traversals disabled

Co
mm

its
 [t

x/
s]

0

2k

4k

6k

8k

10k

Threads
1 2 3 4 5 6

 Workload:
read-dominated
read-write

Throughput with traversals enabled

Co
mm

its
 [t

x/
s]

0

100

200

300

400

500

600

Threads
1 2 3 4 5 6

 Workload:
read-dominated
read-write

Figure 4. STMBench7 – commit rate / threads

irrevocable transactions perform in ordinary benchmarks, we intro-
duced them as a fallback. We decided that any transaction force-
fully aborted, except from waiting for a short time period (back-
off), will try with some probability to become irrevocable on restart.
This way we both introduce the irrevocable transactions and apply
them to potentially problematic transactions in a generic way.

6.3 Invisible reads
The algorithm described in this paper uses visible reads. However,
in the initial phase of the development we planned to use invisible
reads instead. While invisible reads for ordinary transactions are
allowed, the irrevocable ones must use visible reads (or a block-
ing synchronisation) as long as revocable update transactions are
allowed to commit in parallel with a live irrevocable transaction.
Otherwise, a revocable transaction cannot tell whether it may com-
mit without overwriting the read set of an irrevocable transaction.

The preliminary results of the version using invisible reads are
presented in Figure 3. While the shape of the curves may seem cor-
rect at first glance, it displays a severe anomaly: our system scales
super-linearly. That is, a run with three threads has been over three
times faster than a run with one thread. After investigating the issue
it turned out that the design decision of using invisible reads was
to blame. As mentioned before, aborted transactions were restarted
in the irrevocable mode. Transactions in this mode never need to
check their read sets, while revocable transactions (using invisi-
ble reads) must do so. With opacity as the correctness property, on
every read of a previously unseen variable the read set has to be
checked. So, the revocable transactions spent a lot of time validat-
ing reads, while the irrevocable transactions simply skipped that
step. As a result, the irrevocable transactions performed better than
normal. Because of that, with more threads (thus more conflicts)
more “fast” irrevocable transactions appeared and boosted the per-

6

trylocks, readDominated, no traversals trylocks, readDominated, with traversals
Co

mm
its

 [t
x/

s]

3k
4k
5k
6k
7k
8k
9k

10k

Threads
1 2 3 4 5 6

with irrevocable
only revocable Co

mm
its

 [t
x/

s]

300

350

400

450

500

550

Threads
1 2 3 4 5 6

with irrevocable
only revocable

trylocks, readWrite, no traversals trylocks, readWrite, with traversals

Co
mm

its
 [t

x/
s]

4k

5k

6k

7k

8k

Threads
1 2 3 4 5 6

with irrevocable
only revocable Co

mm
its

 [t
x/

s]
160

180

200

220

240

Threads
1 2 3 4 5 6

with irrevocable
only revocable

Figure 5. STMBench7 – impact of enabling irrevocability

formance beyond scale. This result clearly shows that extending
any existing TM which uses invisible reads by support for the irre-
vocable operations can introduce a similar anomaly.

6.4 Irrevocable transaction overhead
With visible reads, regular and irrevocable transactions are on par
in regard to speed. To calculate what is the exact impact of irrevo-
cability on performance, we measured the time it takes to execute
a certain sequence of transactions in a single thread, first as regular
transactions, next, forcing each transaction to become irrevocable.
As the transactions executed sequentially, we could calculate the
average execution time of a revocable transaction and the average
execution time of an irrevocable transaction. It turns out that typi-
cally irrevocable transactions take 16.23% more time than revoca-
ble when tested on machines with Intel R© Xeon R© X3230, 8MB L2
cache. Surprisingly, results of the same binary on identical OS, but
on different CPU (Intel R© Xeon R© L3360, 12MB L2 cache) show
that the irrevocable transactions run by 14.16% slower. Since the
measured standard error was respectively 0.14% and 0.31%, we
conclude that the slowdown rate noticeably depends on hardware.

The results obtained this way give a good estimate; however,
they do not apply directly to normal operation. With contention
the irrevocable transactions must take over data items accessed
by concurrent transactions, and this may require extra actions, for
instance repeating (finitely) certain operations. In general, it is
not possible to measure the exact duration of single transactions
without impacting the TM system too much to get reliable results.
We expect that in normal runs the irrevocable transactions are,
compared to normal, about 20% slower.

6.5 STMBench7
For evaluating the algorithms we chose the STMBench7 bench-
mark [7], that aims at providing workloads which are both real-

istic and non-trivial to implement in a scalable way. STMBench7
has a word-based API, however internally it uses object-based ap-
proach. Thus, it was possible to modify the STMBench7 API to suit
our object-based API.

The main aim of evaluating our algorithms with STMBench7
was to see how it behaves in various workloads and how it scales
with increasing number of threads. While comparing absolute per-
formance with other TM systems is possible, it is important to no-
tice that our implementation has not been throughly optimized.

For the benchmarks we used 4-core Intel R© Xeon R© L3360 pro-
cessor (4 threads, 12 MB L2, 2.83 GHz), with sufficient physical
memory, and compiled the programs using gcc 4.8.4, all under
openSUSE 13.1.

6.5.1 Scaling trends
In Figure 4 we present the scaling and performance results of our al-
gorithm. The scaling factor from one to four threads varies depend-
ing on the workload, from 2.8 in read-dominated scenario without
traversals to 1.4 in write-intensive scenario with traversals. While
low-contention workloads scale up to the number of cores, some
high-contention workloads get better performance with the number
of threads higher than the number of cores. This is a result of using
a backoff contention manager, which, upon a forceful abort, waits a
short time before restarting the transaction. On one hand, the back-
off time reduces the likelihood that a transaction will run into the
same conflict again. On the other, it also introduces pauses in CPU
usage. Thus, extra threads can improve the overall performance, as
long as they introduce more commits than conflicts. Results of the
benchmark follow the common pattern for all transactional memory
systems: read-dominated workloads scale fast and smoothly, intro-
ducing more writes reduces scalability. Also, enabling long traver-
sals introduces large number of conflicts and thus hinders scaling.

7

readDominated, no traversals readWrite, no traversals
Co

mm
its

 [t
x/

s]

0
5k

10k
15k
20k
25k
30k
35k
40k

Threads
1 2 3 4 5 6

tryLocks2
SwissTM

Co
mm

its
 [t

x/
s]

0
5k

10k
15k
20k
25k
30k
35k
40k

Threads
1 2 3 4 5 6

tryLocks2
SwissTM

readDominated, with traversals readWrite, with traversals

Co
mm

its
 [t

x/
s]

0
250
500
750

1000
1250
1500
1750
2000

Threads
1 2 3 4 5 6

tryLocks2
SwissTM

Co
mm

its
 [t

x/
s]

0
250
500
750

1000
1250
1500
1750
2000

Threads
1 2 3 4 5 6

tryLocks2
SwissTM

Figure 6. STMBench7 – commit rate / threads

6.5.2 Impact of irrevocability
An important question regarding irrevocability support is its im-
pact on overall performance. Adding support for irrevocability re-
quires revocable transactions to do some extra work – like, in our
algorithm, checking for dirtyIrr and irrUsing as well as locking
commitL (see Section 4 for details). Removing these operations is
possible, but the resulting code would still bear all design require-
ments needed for irrevocability. We could use another TM system
to compare performance, but we fear that influence of the coding
style and optimizations level would have higher impact on the per-
formance than sole support for irrevocability. Thus, the overhead
is hard to measure. To give an insight into the irrevocability over-
head, we turned off the use of irrevocable transactions. To achieve
this, we slightly altered the contention manager: while still using
the same backoff time, we no longer switch the transactions to the
irrevocable state. The results of this test are presented in Figure 5,
where we compare runs with and without irrevocable transactions.

The results show that our algorithm generally performs slightly
faster without the irrevocable transactions. The slowdown intro-
duced by adding irrevocable transactions in most sample points did
not exceed 2%. To remind, the irrevocable transactions are by one
fifth slower than the revocable. Impact on the overall performance
is lower, since the irrevocable transactions always succeed. It is
worth noticing that in the read-dominated workload with traversal
transactions present, irrevocability noticeably improved the scal-
ing trend. When using revocable transactions only, the performance
dropped as the number of threads rose, since traversal transactions
introduced lots of conflicts. With irrevocable transactions enabled,
traversal transactions became irrevocable after few restarts and thus
finished sooner. This confirms the observation that irrevocability
can help in executing problematic transactions.

6.5.3 Comparison with SwissTM
We also compared the results with SwissTM [3] – see Figure 6.
SwissTM, being fully optimized, is clearly better in speed and
permissiveness. Our main aim was to compare the scaling trends
to see if supporting irrevocability causes any anomalies, rather than
comparing raw throughput. For runs with no traversals, up to four
threads the trends are identical. For runs with traversals, our TM
scales worse. Beyond four threads, that is when the number of
threads is higher than the number of cores, SwissTM performance
drops more rapidly. These results display no anomalies, thus we
draw a conclusion that combining operation-level wait-freedom
and support for irrevocability brought no unexpected behavior.

7. Conclusions
We showed that a TM system can support irrevocability and be
strongly progressive, while at the same time guarantee that each
transactional operation finishes in a finite number of steps. To show
this, we proposed an algorithm built upon the weakest synchroniza-
tion primitives that suffice to build a reasonable TM. To discuss
properties such as strong progressiveness in presence of irrevocable
transactions, we proposed a simple method for representing con-
flicts among transactions that try to become irrevocable. While ir-
revocable transactions are considered a necessity by TM users, their
support is often associated with a performance penalty. Our results
show that the performance overhead is low, and confirm that with
increasing contention, the use of irrevocability can help with exe-
cuting transactions that frequently conflict.

Acknowledgments
The project was funded from National Science Centre funds
granted by decision No. DEC-2012/06/M/ST6/00463.

8

References
[1] L. Baugh and C. Zilles. An analysis of I/O and syscalls in critical

sections and their implications for transactional memory. In IEEE
International Symposium on Performance Analysis of Systems and
Software, 2008.

[2] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted transac-
tional memory: Supporting I/O and system calls within transactions.
Technical Report CIS-06-09, Department of Computer and Informa-
tion Science, University of Pennsylvania, 2006.

[3] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why STM
can be more than a Research Toy. Communications of the ACM, 2011.

[4] R. Guerraoui and M. Kapałka. On the Correctness of Transactional
Memory. In Proceedings of PPoPP’08: the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2008.

[5] R. Guerraoui and M. Kapałka. The semantics of progress in lock-
based transactional memory. ACM SIGPLAN Notices, 2009.

[6] R. Guerraoui and Michał Kapałka. Principles of Transactional Mem-
ory. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2010.

[7] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: A Benchmark
for Software Transactional Memory. ACM SIGOPS Operating Sys-
tems Review, 2007.

[8] T. Harris and K. Fraser. Language support for lightweight transactions.
ACM SIGPLAN Notices, 2003.

[9] M. Herlihy. Wait-free synchronization. ACM Transactions on Pro-
gramming Languages and Systems, 1991.

[10] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-free Data Structures. In Proceedings of ISCA’93:
the 20th International Symposium on Computer Architecture, 1993.

[11] M. Herlihy, V. Luchangco, M. Moir, and I. W. N. Scherer. Software
Transactional Memory for Dynamic-sized Data Structures. In Pro-
ceedings of PODC’03: the 22nd ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, 2003.

[12] Intel R© Corporation. Intel R© Transactional Memory Compiler and
Runtime Application Binary Interface. https://software.intel.com/en-
us/articles/intel-c-stm-compiler-prototype-edition, 2008.

[13] P. Kuznetsov and S. Ravi. On partial wait-freedom in transactional
memory. In Proceedings of the 2015 International Conference on
Distributed Computing and Networking, 2015.

[14] N. Shavit and D. Touitou. Software Transactional Memory. In Pro-
ceedings of PODC’95: the 14th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, 1995.

[15] M. Spear, M. Michael, and M. Scott. Inevitability mechanisms for
software transactional memory. In 3rd ACM SIGPLAN Workshop on
Transactional Computing, 2008.

[16] M. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and M. L.
Scott. Implementing and exploiting inevitability in software transac-
tional memory. In 37th International Conference on Parallel Process-
ing, 2008.

[17] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions
and their applications. In Proceedings of the twentieth annual Sympo-
sium on Parallelism in Algorithms and Architectures. ACM, 2008.

[18] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Har-
ris, and M. Valero. Atomic Quake: Using Transactional Memory in an
Interactive Multiplayer Game Server. In ACM Sigplan Notices, 2009.

9

