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ABSTRACT
Hyperspace hashing is a recent multi-dimensional indexing
technique for distributed key-value stores that aims at sup-
porting efficient queries using multiple objects’ attributes.
However, the advantage of supporting complex queries comes
at the cost of a complex configuration. In this paper we ad-
dress the problem of automating the configuration of this
innovative distributed indexing mechanism. We first show
that a misconfiguration may significantly affect the perfor-
mance of the system. We then derive a performance model
that provides key insights on the behaviour of hyperspace
hashing. Based on this model, we derive a technique to au-
tomatically and dynamically select the best configuration.1

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management; Sys-
tems; Distributed Databases

General Terms
Algorithms, Performance, Experimentation

Keywords
Autonomic Configuration; Key-Value Store; Analytical Mod-
elling; HyperDex; Multi-dimensional

1. INTRODUCTION
Key-value data stores, often so called NoSQL storage sys-

tems (in opposition to classic databases), are widely used
as a fundamental building block for large scale distributed
systems. For scalability and performance reasons, most key-
value stores adopt simplified interfaces, in which objects
are only accessible through a single key. BigTable [5], Dy-
namo [10], and Cassandra [19] are examples of such systems.

Yet, querying/accessing objects solely by their primary
key is rather restrictive. Consider a website for booking
hotel rooms: it is easy to conceive that the system must
support searches for hotels in a given location and price.
It is therefore imperative to support the search for the ob-
jects, which represent the hotels, by other attributes rather

1Copyright is held by the authors. This work is
based on an earlier work: SAC’14 Proceedings of
the 2014 ACM Symposium on Applied Comput-
ing, Copyright 2014 ACM 978-1-4503-2469-4/14/03.
http://dx.doi.org/10.1145/2554850.2554876.

than their primary keys. Recently, several proposals have
used mappings to multi-dimensional spaces both in key-
value stores and peer-to-peer systems[15, 16]. Among these,
HyperDex [15] owns a unique set of characteristics that makes
it a very appealing solution to the problem. The main idea
of HyperDex is to use hyperspace hashing, an extension of
consistent hashing [17]. Briefly, an object with a set of at-
tributes A is mapped to an Euclidean space with |A| di-
mensions (i.e., its cardinality) by hashing the values of its
attributes, and interpreting it as a vector of coordinates.

HyperDex provides a rich API with support for searches
on any object’s attributes, also called partial searches. By
leveraging on hyperspace hashing, HyperDex can handle
partial searches very efficiently. On the other hand, main-
taining indexes does introduce additional costs on the exe-
cution of inserts and updates; hence, they should be used
wisely. HyperDex allows the programmer to configure the
Euclidean space according to the requirements of the target
application. Unfortunately, it is far from obvious to deter-
mine which configurations provide the best results. As we
shall see, misconfigurations that are likely to occur with non-
expert users may affect drastically the performance of the
system, with differences in performance up to 47× (mea-
sured in our experiments). One of the key challenges is that
the number of possible configurations grows exponentially
with the number of attributes considered, making exhaus-
tive testing a tedious or even impossible task. On top of
this, the underlying mechanisms and implementation of Hy-
perDex are complex, which makes any attempt to identify
the best configuration for each workload a daunting task.
This motivates the main goal of this paper, which is to de-
velop techniques that support the auto-configuration of Hy-
perDex.

In this paper we study hyperspace hashing in detail, and
in particular the inner-workings of HyperDex, both from an
analytical as well as experimental perspectives. We present
two contributions with the objective of autonomically max-
imizing HyperDex’s performance for a given workload and
deployment setting: 1) a predictive model of HyperDex’s
performance that obtains an average accuracy of 92%; and 2)
an architecture that takes advantage of the previous contri-
bution and allows HyperDex to adapt to the current system
workload and self-configure to maximize its performance.

Section 2 presents an in-depth description of HyperDex.
Using this knowledge, in Section 3 we derive an analytical
model of HyperDex, which is then validated in Section 4. In
Section 5, we present the architecture of a system for auto-



matically configuring HyperDex and we evaluate the accu-
racy of the implemented algorithms against a set of heuris-
tics. In Section 6, we overview the related work. Finally,
Section 7 concludes the paper.

2. OVERVIEW OF HYPERDEX
One of the main goals of HyperDex is to support efficient

partial searches by secondary attributes, mainly by reducing
substantially the number of servers involved in each query.
The main idea is to use hyperspace hashing, in which the
system can deterministically calculate the smallest set of
servers that may contain data matching a given query.

2.1 Hyperspace Hashing in HyperDex
Consider that the objects to be stored have N distinct at-

tributes. A hyperspace in HyperDex is an Euclidean space
with N dimensions, such that each dimension i is associated
with an attribute Ai ∈ {A1, ...,AN }. Hyperspace hashing
maps an object in the hyperspace by applying a hashing
function to the value of each attribute Ai of the object.
In this way, we obtain a vector of N coordinates that cor-
respond to the point in the hyperspace where the object
is located. The hyperspace is partitioned in multiple dis-
joint regions that are assigned to servers. A directory keeps
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Figure 1. Three different configurations and
corresponding visualization of a search specifying
values for all attributes indexed by the subspace.

the mapping among regions and servers, such that the right
nodes can be contacted when a query or update is executed.

In the description above, we assumed that the key-value
store uses a single hyperspace, with as many dimensions
as the attributes of the objects. Unfortunately, the vol-
ume of an hyperspace grows exponentially with each addi-
tional attribute. As a result of this growth, partial searches
are increasingly likely to contact regions (and correspond-
ing servers) that contain no relevant data for the search.
To address this problem, HyperDex allows the system to
be configured using multiple hyperspaces, called subspaces,
each with a number of dimensions smaller than N .

The possibility of using multiple subspaces increases the
complexity of configuring HyperDex: the programmer has
to define the set of subspaces (denoted by S), and for each
subspace Si ∈ S, which attributes 〈A1, ...,Ak〉 to be used.
This can be illustrated resorting to hotel database example
briefly introduced before. Each hotel is an object with var-
ious attributes, such as the primary key (name), category,
price, address, among others. In Fig. 1 we show three pos-
sible subspaces with the corresponding regions (distributed
to servers) and some points representing hotels. Consider-
ing a query for hotels in Paris: using the subspace of Fig. 1a
it is necessary to contact only 1 region, whereas in Fig. 1b
it is necessary to contact 3. If the query also specifies an
additional requirement of price 120, only one region is con-
tacted in both cases. Furthermore if we consider a three
dimensional subspace (see Fig. 1c), we need to specify three
attributes in the query to have an efficient operation that
contacts only one server. Note that, independently of the
number of dimensions of a subspace, the strategy adopted
in HyperDex is to divide each dimension of a subspace such
that the total number of regions per subspace is close to a
predefined value R.

In Fig. 2 we present a particularly interesting experiment,
illustrating the impact of the configuration of hyperspace
hashing on performance: by configuring it to use a single
hyperspace, or with the best (albeit complex) combination
of subspaces, the performance may be improved from 8× to
47× depending on the ratio of queries and updates. We dis-
cuss the reasons underlying this difference in performance
when presenting our analytical model in Section 3. Unfor-
tunately, as we shall see, it is not trivial to manually decide
on the best configuration, for which reason we argue that
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Figure 2. Performance of HyperDex with a single
hyperspace against a configuration with subspaces.



this process should be automatized. In order to understand
how hyperspace hashing can be configured, we need to first
provide additional background on its functioning.

2.2 Search Operation
We first describe how queries are processed using hyper-

space hashing. We define a search query Q as the set of at-
tributes that the query accesses (and respective values). In
the general case, to execute a query it is necessary to send a
message to the servers responsible for the regions touched by
the query. The number of servers contacted varies accord-
ing to the subspace chosen and the specification (partial, or
complete) of the query with regard to the dimensions of the
subspace; for instance, in the example of Fig. 1b, a search
Q = 〈city = Paris, price = 120〉 results in contacting only
one region, but in a query forQ = 〈city = Paris〉 in the sub-
space 〈city, price〉 all three regions are contacted. In order
to obtain the best throughput possible, HyperDex always
executes a query on the subspace Si ∈ S which yields the
minimum number of regions. Note that HyperDex maintains
a full copy of each object in each configured subspace.

2.3 Update Operation
Updating an object using hyperspace hashing implies mod-

ifying all the defined subspaces, as well as an additional sub-
space that has the primary key as the single dimension (this
subspace must exist in every hyperspace hashing configura-
tion). Note that, since a full copy of the object is stored
in each sub-space, all copies need to be updated. For fault-
tolerance, K = f+1 copies are maintained in each subspace.

To coordinate the update, HyperDex uses chain replica-
tion [27]. HyperDex organizes the replication chains using
a technique called “value-dependent chaining”, in which the
chain of an object depends on the values of its attributes.
Whenever an attribute contained by some subspace is up-
dated, the position of the object in that subspace may change,
which causes additional servers to participate in the chain.
Fig. 3 shows two examples of replication chains for different
updates. Consider the update U = 〈tel〉, meaning that it
changes the telephone of a given hotel, shown in Fig. 3a. In
this case 3 replicas have to be updated for each subspace
(as each subspace maintains a full copy of each object). In
Fig. 3b, the update U = 〈stars, tel〉 additionally changes the
stars of the given hotel. This results in a more complex
chain because the attribute stars is present in one subspace.
By changing its value, the hotel changes its position in the
subspace 〈city, stars〉, which may cause it to move from one
region (old) to another (new): the old server deletes it from
its storage while the new one has to insert it (hence, in
subsequent operations the replication chain will no longer
involve the servers of the old sub-chain).

3. MODELLING HYPERSPACE HASHING
Based on the insights provided in the previous section on

the inner workings of hyperspace hashing, we now derive an
analytical model that captures its performance. In the fol-
lowing we assume scenarios with peak throughput, in which
the servers’ processors are fully utilized and the network re-
sources are not restraining the performance.
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Figure 3. The chain of servers resulting from two
different update operations in the same

configuration of HyperDex.

3.1 Modelling Searches
Under the above assumptions, the cost of searching using

hyperspace hashing is proportional to the number of regions
contacted. Consider a generic search query Qi.

Observation 1. The worst possible performance for a search
Qi happens whenever @Si∈S : Qi ∩ Si 6= ∅.

Rationale. Since no subspace contains (at least) one at-
tribute being searched, then the query must contact R re-
gions (i.e., all) in some subspace. The subspace chosen is
irrelevant, because all regions should be evenly split among
servers in all subspaces. Hence, Qi will be received and pro-
cessed by all nodes, over all data stored locally, leading to
the worst possible performance.

Observation 2. Every configuration where ∃Si∈S : Si ⊆ Qi

leads to the optimal performance when searching for Qi.

Rationale. Since there are O objects scattered uniformly
amongR regions, then each region contains O

R objects. Each
attribute in Si is also contained in Qi, meaning that the
search defines values for all coordinates of Si. Consequently,
the set of coordinates results in a point in the subspace,
which is contained in a single region. Thus the search only
contacts one region, whose server processes O

R objects.

Observation 3. For any subspace Si ∈ S and search query
Qi, the expected number of contacted regions by Qi is:

CRexp(Qi) =
|Si|
√
R

|E|
such that: E = Si \ Qi (1)

Rationale. The set E represents all attributes present in
subspace Si but not defined by the partial search Qi. For
each of those undefined attributes, all the regions along that
dimension will be contacted. Generally, to ensure a total
number of regions R, each subspace dimension is split in



|Si|
√
R partitions. As a result, the number of regions con-

tacted is the product of this number of partitions |E| times,
as that is the number of dimensions not defined by the query
— they can be seen as extra, or unnecessary for the query.

We can now estimate the cost of a given search. This is
proportional to the product of the number of regions con-
tacted (given by Equation (1)) by the number of objects in
each region. To obtain an absolute estimation of throughput
we consider a factor β, which is a constant cost associated
with processing a single item and dependant on the hardware
configuration of the evaluated system. Then, the expected
throughput of a search query Qi that uses some subspace Si
is obtained by:

T exp(Qi) =
1

cost(Qi)
, cost(Qi) =

|Si|
√
R

|E|
× OR × β (2)

We finally consider workloads where there may exist sev-
eral search queries Q, and each query Qi occurs with some
likelihood pi. Naturally, the sum of all probabilities adds to
1. We can then define the query set QS as composed by all
Qi. This way we can predict the throughput of the system
through the weighted combination of costs (Equation (2)):

T exp(Qs) =
1

|QS |∑
i=0

(cost(Qi)× pi)

(3)

3.2 Modelling Updates
From the description of updates provided in Section 2.3 we

predict a cost proportional to the length of the replication
chain involved in the operation.

Observation 4. The cost of an update is proportional to
the length of the chain replication involved in the operation,
i.e., length(Qi) = K(1 + |N |+ 2|M|).

Rationale. There is always a part of the chain proportional
to the product of the number of subspaces (|S|) and the
replication degree (K). It is also necessary to account for the
primary key subspace (not included in S). For instance, the
length of chain in Fig. 3a is (1 + |S|)×K = (1 + 2)× 3 = 9.
In the general case, we have to admit that attributes of
subspaces are modified, as shown in Fig. 3b. In this case
there are additional servers in the chain — the subspaces
that are modified lead to two sub-chains instead of just one.
Thus, we define S = N ∪M, where N = {∀Si∈S : Qi ∩Si =
∅} and M = {∀Si∈S : Qi ∩ Si 6= ∅}.

Yet, this approach considers that every server performs
a similar effort. To obtain a precise estimation, we must
carefully assess the amount of processing associated with
the update.

Observation 5. The cost of an update has to be weighted
by a corrective factor α.

Rationale. Indeed, there are differences in the processing
of an update Qi, according to whether it changes an at-
tribute mapped to a subspace, or not. Using the example in
Fig. 3b, a subspace that is not modified merely needs to up-
date the local copy of the object, using a local overwrite

operation. Conversely, a subspace that is modified creates
two sub-chains, where the old servers must locally invoke a
delete operation and the new servers must invoke a write
operation. In fact, we assessed that the overwrite opera-
tion is less expensive as this operation never causes the local
index to be re-balanced. Consequently, we introduce a cor-
rective factor α to account for this difference. This factor is
proportional to the number of subspaces that are modified,
i.e., |M|. Similarly to β, this factor α is dependant on the
hardware configuration and HyperDex implementation, and
must be estimated from a running system.

Our model considers a typical programming pattern ac-
cording to which an update is always preceded by a fetch op-
eration to obtain the object (by its primary key). This fetch
operation implies contacting an additional server. Finally,
we also consider a parameter Tmax to capture the maxi-
mum throughput achievable by the hardware deployment in
study. This parameter can be easily obtained with a sce-
nario where length(Qi) = 1, e.g. by modifying an object in
a simple hyperspace containing only the key subspace:

T exp(Qi) =
Tmax

1 +K(1 + |N |+ 2α|M|) (4)

3.3 Modelling Hybrid Workloads
When the workload contains diverse types of operations,

the achievable performance can be estimated with a linear
combination of the costs of each operation, weighted by its
likelihood probability (analogously to Equation (3)).

3.4 Discussion
The important aspects to retain about these models are

that the cost of the search operation is proportional to the
number of regions matched by the query, whereas the cost
of an update increases with the length of the chain involved
in the operation. This creates two conflicting forces: on one
hand, the number of different regions (and hence of different
servers) to query can be decreased by including additional
subspaces; conversely, the throughput of updates decreases
with an increase on the number of subspaces.

4. ASSESSING THE MODEL ACCURACY
In this section we assess the accuracy of our model to

predict the performance a given configuration and for a cer-
tain workload. We are interested in understanding: 1) the
accuracy of the model in correctly predicting the absolute
throughput of the system for each configuration; and 2) the
ability of the model to correctly rank the performance ob-
tained for each configuration. We note that our intent is to
maximize the performance, whichever it is, and hence the
most important ability is to correctly rank the configura-
tions so the system may use the best one. Predicting the
actual performance is not our focus, although we can also
do it as a side-effect of our analytical model.

To assess the previous questions about our model we used
a real data set about 140 thousand hotels in the USA. We
present the data set and our various workloads to exercise
HyperDex in Section 4.1. In Section 4.2 we describe our
deployment environment, and in Section 4.3 we discuss how



to estimate the parameters to feed to our model, and the
impact of this estimation. Finally, in Section 4.4 we evaluate
the accuracy of our model.

4.1 Workload Characterization
Our data set contains information about 140 thousand

hotels in the USA. Each one is identified uniquely by an 8
byte key. However, as motivated earlier in the paper, most
users of such a data set will search for other, more mean-
ingful, attributes such as the location or the price range of
the hotel. For each hotel we have 44 such attributes: 11
strings, 15 booleans, 8 numbers and 10 enumerates. Exam-
ples of these range from data about the location and name
of the hotel, their characteristics (accepting pets, swimming
pools, etc.), to their price and reviews’ ratings. This data
set suits naturally our problem as typical booking websites
allow users to perform queries by numerous attributes such
as those presented. It is highly desirable to have a system
such as HyperDex that allows efficient indexing and search
along attributes other than the primary key of the storage.

To simulate an application using this data set, we devised
a series of workloads. On one hand we seek to exercise con-
trasting scenarios, those that favour the indexing abilities
of hyperspace hashing, as well as those that stress its chain
replication and duplication of data due to many subspaces.
On the other hand, we also desire to perform these queries
close to what would be deemed as a realistic workload.

As such, we created workloads A and B, which are quite
constrained and allow us to reason more carefully as to what
mechanisms of hyperspace hashing will be exercised more
thoroughly with each workload. These workloads are con-
trasting in the sense that they perform either very specific
searches, or very broad ones; as explained in Section 3.1, this
difference has a dramatic impact on the resulting configura-
tions. On top of this, we devised workload C with a large
mix of operations that resemble those typically performed
on hotel booking websites.

The detailed profile of our workloads is shown in Table 1.
We further describe these workloads in the following:

Updates: The update operations are common to all work-
loads. The two attributes that are most likely to be updated
more often (namely price and ratings), which are neither the
most frequent nor the least frequently searched for, may be
written with equal probability by an update operation. This
simplifies the understanding of the workloads and allows us
to create more complex scenarios on the searches, which are
the main driving force of the complexities underlying the
challenges addressed in this paper.

Workload A: This workload simulates scenarios where
users frequently perform very specific searches. The searches
are composed by 4 different classes of searches, with increas-
ing probability of having an added number of attributes
specified. As such, the most popular search queries are those
with numerous attributes, which allow to specify subspaces
with a low dimensionality and have most searches fully spec-
ified.

Workload B: Simulates situations where users most fre-
quently perform very broad searches. As such, the search
operations are composed by the same 4 classes of workload
A, but with the inverse order of likelihoods, such that the
query with a single attribute is the most common one.

Table 1. Profile of operations according to the
workload. Note that the update operations are

common to all workloads. The frequency of each
operation is calculated among the operations of

each type, i.e., all searches amount to 100% within
the workload.

Operation Details
Workload Freq(%) Type Attributes

All
50 U 〈 price 〉
50 U 〈 ratings 〉

A

6 S 〈 locality 〉
13 S 〈 region, price 〉
26 S 〈 locality, ratings, price 〉
55 S 〈 locality, price, pets, pool 〉

B

55 S 〈 locality 〉
26 S 〈 region, price 〉
13 S 〈 locality, ratings, price 〉
6 S 〈 locality, price, pets, pool 〉

C

20 S 〈 locality, price 〉
20 S 〈 locality, ratings 〉
20 S 〈 locality, price, ratings 〉
10 S 〈 postcode, price 〉
10 S 〈 postcode, ratings 〉
10 S 〈 postcode, price, ratings 〉
2 S 〈 locality, stars, ratings 〉
2 S 〈 locality, stars, price 〉
1 S 〈 locality, price, category 〉
1 S 〈 locality, ratings, category〉
1 S 〈 postcode, stars, ratings 〉
1 S 〈 postcode, stars, price 〉
1 S 〈 region, price 〉
1 S 〈 region, ratings 〉

Workload C: In this workload we seek to build a more
challenging pattern of utilization. This is obtained by craft-
ing a larger set of search operations with a reasonable com-
bination of attributes commonly used to search for hotels
in booking websites. Naturally, the large combination of
attributes and their heterogeneous frequency makes it ex-
tremely hard to even predict coarsely what kind of strategy
is most adequate for this workload. Therefore its purpose
is to complement workloads A and B, which were devised
purposely to exercise contrasting driving forces, and which
in this workload are mixed in a non-trivial way.

Finally, we consider 3 patterns of utilization of each work-
load, that lead to variants of each one: read-heavy (RH),
with 90% searches and 10% updates; a balanced configura-
tion (BAL) with 50% updates and other 50% searches; and
a write-heavy (WH) variant with 90% updates and the rest
for searches.

4.2 Experimental Setup
For all our hardware deployments we used 9 virtual ma-

chines running on top of OpenStack, a widely used open-
source virtualization infrastructure that relies on the Xen
hypervisor. Each actual underlying machine is equipped
with two 2.13 GHz Quad-Core Intel(R) Xeon(R) E5506 pro-
cessors and 40GB RAM, running Linux 2.6.32-33-server and
interconnected via a private Gigabit ethernet. Each virtual



machine was mapped to a different machine in the same
cluster and used all 8 cores and up to 16GB of RAM.

HyperDex requires a coordinator service that is responsi-
ble for providing a centralized consistent view of the cluster
members at any time. For that, we used one dedicated ma-
chine, whereas the other 8 servers executed the HyperDex
daemon that serves requests. We followed the same testing
environment of the authors of HyperDex [15] by deploying
1 client process in each of the 8 servers, with each client ex-
ecuting 32 threads issuing requests without think time (but
blocking until the full answer was received from the server).

4.3 Parameter Estimation
Recall that our model includes three parameters that de-

pend on the hardware configuration. Once estimated, these
can be used in our model, independently of the workload to
be assessed.

We now assess the impact of possible errors in estimat-
ing these parameters on the final accuracy of our predictive
model. For this, we describe our approach by using the
example of the α parameter required for estimating the per-
formance of update operations; analogously conclusions can
be similarly derived using an equivalent procedure for the
other parameters.

We propose to use simple scenarios to experimentally as-
sess these hardware-dependent parameters. For α, this can
be assessed with a micro-application configured with differ-
ent (yet simple) subspaces, and a workload that repeatedly
invokes updates. These workloads can be synthetically cre-
ated in development time and executed on the target hard-
ware deployment. Then, this data can be used to estimate
α via a re-organization of Equation (4) as follows:

α =
Tmax − Treal − |N |KTmax

2|M|KTreal
(5)

As an example, we used 24 such simple executions to de-
rive α in our environment. These ran for 2 minutes each,
and represent 8 simple cases varying 3 different replication
degrees (the value of K).
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Naturally, this simplicity has an effect on the final er-
ror when applying our predictive model to complex work-
loads. Among our micro-benchmarks the value of α that
minimized the error in those tests was 2.3. However, this
value may not be optimal and lead to error in predicting
real workloads. We looked into this by running our predic-
tion against the variants for workloads A and B with varying
values for α. In Fig. 4 we show the final error from our pre-
diction to the actual measured throughput according to the
α used, and highlight the value we estimated from the micro-
benchmarks, as well as the optimal value that would have
been ideal to these actual workloads. In fact, our estimation
for α is not the best one, but the impact is only of 6.5% in
the error. As we shall also see in our evaluation, our gross
(and easy to deploy) technique for estimating the hardware-
dependent parameters of the model have a reduced impact
in the final goal of our work.

4.4 Accuracy of the Model
To assess the accuracy of the proposed model, we shall

first run a series of simple workloads that request either
search or updates alone while using different configurations.
We then assess further our accuracy by considering more
realistic workloads such as those presented in Section 4.1
where many different operations are issued concurrently and
with different probabilities.

In Fig. 5 we show the comparison of the model’s esti-
mated throughput against actual measurements. For com-
pleteness, we refer to a longer report [20] that includes the
extensive details of combinations of subspace configurations
and query-sets that were tested; the idea was to try to iso-
late different parts of our model, and hence we strived for
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Figure 6. Accuracy of our predictive model for workloads A, B and C (and their variants).

simplicity in the creation of these scenarios — we opted for
creating many of them instead, and delegating the assess-
ment of complex/more realistic scenarios to the experimen-
tal evaluation presented next.

In this case, we independently assessed the accuracy of
our search and updates modelling respectively in Fig. 5b
and Fig. 5a. For the updates, we additionally varied the
replication degree for fault tolerance (K) because this has an
impact in the performance of the system even when noth-
ing else changes — this is visible in Fig. 5a as performance
gradually decreases as K increases. This, however, has no
impact in search operations, for which reason we omit eval-
uating the impact of variations of this parameter, and show
instead a broader range of scenarios in Fig. 5b.

Overall, we can see that our model is able to correctly esti-
mate the throughput for all scenarios, and independently of
the operation type. In particular, for search operations, we
obtain an average absolute estimation error of 5.28% and a
standard deviation for the error of 3%. These results attest
the accuracy of the linear combination of costs for the search
queries employed in Equation (3), as well as the modelling
of searches alone. Furthermore, performance of updates op-
erations was modelled with an average error of 4.9% and a
standard deviation of 2.9%.

Finally, we also tested with workloads A, B and C, which
are representative of more complex scenarios. For this, we
used a sample of all possible configurations given the at-
tributes that are queried and modified. This sample was
obtained by ordering all possible configurations according to
throughput estimation of our model, selecting the 5 top con-
figurations, and selecting 5 other configurations randomly
from the remaining ones. This gives us 10 possible configu-
rations for each workload and respective variant. As we have
9 workloads/variants, we are testing a total of 90 scenarios.

In Fig. 6a, we show the estimated throughput against the
measured throughput for the sampled configurations and for
workloads A and B. Ideally, if the throughputs were all es-
timated perfectly, all points in the graph would be placed
on the diagonal line. Therefore, these results show that our
system predicts the performance quite accurately, given that
the average error is only 9% with a standard deviation of 7%.

In Fig. 6b we show instead the accuracy of our model
for the more complex workload C. Given the higher unpre-
dictability of this workload, our predictive model is expected
to be slightly more challenged than for workloads A and
B. In fact, the overall average error for all variants of this
workload is 17% with a standard deviation of 12%, less than
double than that of the simpler workloads. This is an inter-
estingly low error given the high complexity of the workload.
We may also observe in 6b that most of this error takes place
in the read-heavy variant, which is the most unpredictable
variant given that it contains the most diverse set of queries.

5. AUTO-CONFIGURING HYPERDEX
In this section we use the predictive model to estimate

the best configuration for the given workload. The objec-
tive is to obtain the best performing configuration of hy-
perspace hashing according to the current workload and to
self-configure without the intervention of the programmer
or the application administrator. Not only is this a cumber-
some task; with complex/realistic workloads such as those
evaluated here, the spectrum of possible configurations can
grow so large that it is simply infeasible to reason on or
empirically test the whole set of alternative configurations.

We begin by presenting, in Section 5.1, a self-tuning archi-
tecture that takes advantage of our predictive model, previ-
ously presented and assessed in this paper. We then describe
different oracles, in Section 5.2 that we compare in our eval-
uation in Section 5.3.

5.1 Architecture of the system
Our architecture for automatic configuration is illustrated

in Fig. 7. We begin by intercepting the requests, which
clients perform to HyperDex, in order to log them in our
Profiler. The objective of this module is to collect enough
statistics over time to generate workload profiles representa-
tive of the current usage of the HyperDex deployment. The
Profiler runs on each server and monitors the system to gen-
erate a profile of operations Qi and their frequency pi. The
several individual profiles are then aggregated to build the
global profile of the workload.
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Figure 7. Architecture of the system to automatically configure HyperDex based on our predictive model.

We then have three main components, whose interactions
we describe below:

• The Query Analyser receives the workload profiles that
were logged by the Profiler and computes a set of at-
tributes for the underlying data set. With that infor-
mation, it generates their power set, and then performs
combinations of these to obtain all possible sets of con-
figurations of subspaces for HyperDex. To allow the
system to adapt to changes in the workload profile,
the Query Analyser runs periodically, building a new
profile for every period.

• The Predictive Model consists of our equations that es-
timate the throughput of the system. For this, we need
to feed the equations with some parameters that were
previously estimated for the hardware deployment in
particular. As a result, we can query the model for
each possible configuration and obtain its estimation.
Therefore this produces a ranking for the configura-
tions according to their estimation.

• Finally, the Configurator is in charge of applying the
changes to HyperDex. This involves changing the hy-
perspace configuration according to the best configu-
ration derived by the ranking.

In short, our algorithm works in three phases, which are
described in the following. The first phase generates all pos-
sible combinations of subspaces based on the set of attributes
that was provided by the profiler. In the second phase the
throughput of each of the considered configurations is esti-
mated using the model we provided in this paper. Finally,
in the last phase all the configurations performing similarly
(within a user tunable threshold) are clustered, and ordered
in decreasing order of performance. Finally, the most effi-
cient configuration is picked and deployed into the system.

5.2 Oracles
Oracle Based on Heuristics: We consider the following

heuristics:

• no-subspace is similar to a common key-value store,
and provides just a baseline configuration, used for
comparison. As such search operations are very in-
efficient because they need to span all machines of the
cluster (if we exclude the replication degree for fault
tolerance).

• hyperspace heuristic parses the workload profile and
collects all attributes that are currently accessed; it
then proposes a configuration that uses all those at-
tributes.

• subspaces-all in which a subspace is configured with
one dimension for each attribute found in the searches
of the workload.

• dominant heuristic parses the workload profile and
picks the most commonly searched attribute; it then
proposes a single subspace with that attribute.

Oracle Based on the Analytical Model: This Or-
acle uses the predictive analytical model described in Sec-
tion 3 to determine the best configuration for the workload.
For that, it generates all possible configurations, queries the
model for each of them, and ranks them according to the es-
timated performance. It then selects the configuration which
is ranked highest for that workload. This oracle is labelled
as “automatic” in the plots.

5.3 Evaluation
We now first compare, in Section 5.4, the performance

of HyperDex when configured via the different Oracles pre-
sented. Then, in Section 5.5, we evaluate how often our au-
tomatic approach actually finds the optimal configuration.

5.4 Comparison between Oracles
We first compare the performance of the different Oracles

in Fig. 8. There, we show the three different workloads
presented in Section 4.1, and the corresponding performance
when using each oracle for all the variants of the workloads.

In every case we highlight that our automatic configu-
ration results in the best performance. The difference in
performance, when comparing with the heuristics, is up to
one to two orders of magnitude. Nevertheless, the heuris-
tic oracles should not be neglected: even the approach with
dominant, for instance, is on average 5× better than no-
subspace. Still, there is a large room for improvement to
explore, as our approach unveils.

If we look at the hyperspace heuristic, instead, it explores
the fact that the workloads are highly varied and achieve
2.4× higher throughput than dominant. However, we can
see that it is subspaces-all that fares best among the heuris-
tics. This happens because it creates many subspaces, which
increases the likelihood that every search operation will have
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Figure 8. Performance of the different oracles in
various workloads.
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Figure 9. Performance of the oracles in a very
write-intensive workload.

Table 2. Difference between estimated and real
ranking.

workload τ coef avg τ dist max τ dist

A-RH 0.83 0.012 0.112
A-BAL 0.94 0.002 0.017
A-WH 0.88 0.017 0.139
B-RH 0.72 0.016 0.105

B-BAL 0.94 0.001 0.012
B-WH 0.88 0.008 0.049
C-RH 0.37 0.226 0.460

C-BAL 0.91 0.012 0.115
C-WH 0.75 0.001 0.012

a very efficient way to be performed. Still, we can see that
our system can achieve gains up to 31% over that heuristic.

The main disadvantage of subspaces-all is that it also du-
plicates a lot of data, which may be infeasible to have, de-
pending on our hardware deployment. Still, even if we can
allow that, this has a downside for the performance of up-
dates. To highlight this, we show in Fig. 9 a workload with
99% update operations. In that case, we can see that our
approach is 40% better than subspaces-all, which is even sur-
passed by the hyperspace approach because the latter cre-
ates only one subspace, which favors updates as these need
to possibly change every subspace that exists.

Overall we believe that identifying and quantifying the
performance of the oracles is in itself a relevant contribution.
Still, if one wants to predict performance in absolute terms,
for instance to calculate whether service level agreements
will be fulfilled, our system can provide that information
quite accurately as shown previously.

5.5 Finding the Optimal Configuration
Finally, we have conducted further benchmarking to as-

sess the ranking function implemented by the oracle based
on the analytical model. This is important to understand
whether our algorithm is actually trying to estimate the per-
formance of the best configurations. In other words, is our
automatic approach considering and correctly predicting the
performance for the optimal configuration?

To answer this question, we present Table 2 where we
capture the difference between the ranking of configurations
estimated by our model and the ranking that results from
executing each configurations in a real system. To measure
this difference we use a standard metric relying on Kendall’s
τ coefficient [18], which expresses the agreement between
two rankings. This coefficient varies in the interval [0, 1]
where the accuracy is better when closer to 1. The results
in Table 2 indicate that there is a high correlation between
the rankings predicted by our system and the real rankings,
since most results are above 0.70.

Kendall’s τ coefficient is not expressive enough to capture
a subtlety of the rankings produced by our system. In fact,
while our system may render a ranking different from that
of the real measurements, this is typically caused by the
predicted values being close to each other. This means that
in practice, the effect of choosing one option over the other is
very limited. To better express this measurement, we have
also counted the number of pairs of elements which have



a different relative ordering in the two rankings, and then
multiply Kendall’s τ coefficient by the relative difference in
throughput between the two elements. We represent this
adjusted distance by τ , where it is better to be close to 0
(i.e., the ranking was correctly predicted, or if not, the errors
do not affect the throughput).

As we can see in Table 2, most ranks have a distance
of 0; among the 60 classified configurations for workloads
A and B, only 4 have τ over 2%; and none is above 14%.
Thus, although our model is not perfect in estimating ab-
solute throughputs, the errors do not significantly affect the
accuracy of the system.

As mentioned in Section 4, for the read-heavy variant of
workload C, our model cannot accurately predict the through-
put of some configurations, which explains the poor ordering
reflected in Table 2. Finally, we highlight that the automatic
oracle was able to correctly identify the optimal configura-
tion in 8 of the 9 workloads in Fig. 8 — to assess this, we
had to manually analyze the possible configurations for each
workload. In fact, for workload B, the case where the auto-
matic choice was suboptimal (B-RH), the selected configu-
ration was the second best, and it only yielded a loss of 6%
when compared with a perfect prediction.

6. RELATED WORK
Key-Value stores [5, 10, 19] provide highly scalable and

performing alternatives to classic relational DBMS [5]. To
achieve this, they are typically based on consistent hash-
ing [17]. To provide richer semantics than simple operations
based on the key of the object, traditional approaches either
flood the network with queries [6], or insert the object multi-
ple times in the system, one for each attribute (or keyword)
of the object [22, 4]. Both strategies are particularly ineffi-
cient due to the redundancy involved. To reduce the num-
ber of servers contacted, other approaches make use of space
filling curves [23]. Unlike hyperspace hashing,[15], these ap-
proaches do not scale with the number of dimensions: the
curve becomes increasingly meaningless (hence preserving
less and less locality), the more attributes the space has.
Hyperspace hashing, on the other hand, avoids this problem
by creating multiple subspaces, which, as we argue on this
paper, must be configured correctly to be taken advantage
of.

Other related approaches [9, 21, 30] aim at maximizing
efficiency of distributed data stores by relying on autonomic
techniques to enhance data locality and load balancing. To
this end, these approaches transparently perform a detailed
characterization of the data access patterns generated by ap-
plications, and accordingly derive optimized data placement
strategies in an automatic fashion. These techniques assume
that the underlying data store adopts a mono-dimensional
hash-based data distribution function [17], and therefore
cannot be straightforwardly applied to hyperspace hashing.
On the other hand, since hyperspace hashing, just like con-
sistent hashing, distributes data across nodes in a random
way, the resulting placement may be suboptimal given the
locality patterns exhibited by applications. We argue that
extending these techniques to operate in synergy with hy-
perspace hashing would be an interesting research avenue,
which might lead to further improve efficiency of hyperspace
hashing.

Alternative approaches to support efficient queries over
secondary attributes in distributed key-value stores rely on
scalable solutions to build and update indexes that are dis-
tributed over a large set of machines. Unlike hyperspace
hashing, these techniques do not determine the placement
of replicas of data using multidimensional hashing schemes.
Conversely, these solutions assume that the placement of
data is governed by an orthogonal placement policy (e.g.,
consistent hashing) and build indexes over secondary at-
tributes using distributed tree-like data structures [2, 28, 25,
14]. Despite being designed to maximize efficiency and scal-
ability, also these approaches clearly incur costs to maintain
and query distributed indexes, which vary also depending
on the consistency semantics that they ensure (ranging from
eventual consistency [10] to classic 1-copy serializability [3]
and including intermediate consistency semantics [1]). Prob-
ably due to the recency of these mechanisms, to the best of
our knowledge, no performance models for these distributed
indexing solutions have appeared in the literature, yet.

On the other hand, the idea of generating a predictive
model of the performance a key-value store in order to decide
on its best configuration is not a new one. Works such as [26,
8, 13] apply this concept to control elastic scaling to adapt
to dynamic workloads while avoiding manual configuration.
In fact, similarly to our solution, the work by Cruz et al. [8]
also considers how the data partitioning by nodes affects
the throughput of the system. All these works are however
directed at auto-configuring elastic scaling on “traditional”
key-value stores, whereas ours is aimed at configuring the
dimensions on a multi-dimensional one.

Finally, our work is also related to the vast literature in
the area of performance modelling of (distributed) database
systems, which include a large number of approaches based
on queuing theory [31, 7, 11], and, more recently, on black-
box machine learning methodologies [24, 29, 12].

7. CONCLUSIONS AND FUTURE WORK
In this work we address the problem of how to effectively

configuring a recently proposed technique for indexing data
in distributed NoSQL data stores, namely hyperspace hash-
ing. Subtle changes in the configuration process were shown
to lead to drastic performance losses, motivating the need
to automate the process. For that, we claim that using a
predictive model provides accurate enough results to allow
us to obtain the optimal configuration for a given workload.
We have shown that this approach can predict the system
throughput with an average accuracy of 92%. In addition to
that, we compared it with several (mostly static) heuristics.
Our solution yielded improvements of up to two orders of
magnitude in the throughput of the system, without requir-
ing any administrator intervention.

Since our model for search queries relies only on the num-
ber of regions matched, it is applicable to all multi-dimen-
sional key-value stores based on partitioning spaces com-
posed by several attributes, in particular those based on
space-filling curves [23]. On the other hand, predicting the
throughput of update operations is tied with the existence of
value-dependent chaining and subspaces, concepts that are
currently only used on HyperDex, but that we expect to see
in many future multi-dimensional key-value stores.

As future work, we intend to improve the accuracy of our



throughput estimations by employing more complex tech-
niques such as queue theory to model the effect of concurrent
operations in the servers. In order to improve the run-time
costs of our system, we also intend to include mechanisms to
select configurations based on the cost-benefit ratio between
predicted performance and the cost of reconfiguration.
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