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Abstract
The Transactional Memory (TM) paradigm promises to
greatly simplify the development of concurrent applications.
This led, over the years, to the creation of a plethora of
TM implementations delivering wide ranges of performance
across workloads. Yet, no universal implementation fits each
and every workload. In fact, the best TM in a given work-
load can reveal to be disastrous for another one. This forces
developers to face the complex task of tuning TM implemen-
tations, which significantly hampers their wide adoption.

In this paper, we address the challenge of automatically
identifying the best TM implementation for a given work-
load. Our proposed system, ProteusTM, hides behind the
TM interface a large library of implementations. Under-
neath, it leverages a novel multi-dimensional online op-
timization scheme, combining two popular learning tech-
niques: Collaborative Filtering and Bayesian Optimization.

We integrated ProteusTM in GCC and demonstrate its
ability to switch between TMs and adapt several configu-
ration parameters (e.g., number of threads). We extensively
evaluated ProteusTM, obtaining average performance < 3%
from optimal, and gains up to 100× over static alternatives.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Transactional Memory, Recommender Systems,
Performance Tuning, Adaptive System
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1. Introduction
The advent of multi-cores has brought parallel computing to
the fore-front of software development, fostering research on
paradigms to simplify the development of concurrent appli-
cations. The Transactional Memory (TM) [35] abstraction is
a prominent approach that promotes a simple idiom for syn-
chronizing code: programmers specify only what should be
done atomically (via serializable transactions), leaving to the
TM the responsibility of implementing how to achieve it.

Over time, several works have provided evidence [46, 52,
57] on the effectiveness of TM to simplify the development
and verification of concurrent programs, enhancing code
reliability and productivity. Recently, the relevance of TM
was amplified by the standardization of constructs in popular
languages (such as C/C++ [49]), and by the integration of
hardware support in processors by Intel and IBM [39, 67].
The abstraction vs performance dilemma. Unfortunately,
TM performance remains a controversial matter [11]: de-
spite the large body of work in the area, the search for a
“universal” TM with optimal performance across all work-
loads has been unsuccessful. Fig. 1 conveys experimental ev-
idence of the strong sensitivity of TM to the workload char-
acteristics. We report on the energy efficiency (in Fig. 1a)
and throughput (in Fig. 1b) of various TMs in different ar-
chitectures and benchmarks. We normalized the data with
respect to the best performing configuration for the consid-
ered workload. Fig. 1 shows that, in two different architec-
tures and metrics, the optimal TM configuration differs sig-
nificantly for each workload. Furthermore, choosing wrong
configurations can cripple performance by several orders of
magnitude. Interestingly, some TMs used in these experi-
ments were designed to tackle various workloads [27, 29],
but configuring them is non-trivial and they still cannot per-
form well for all workloads.
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(a) Throughput/Joule on a single-chip
8-core CPU (Machine A in Table 2).
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Figure 1: Performance heterogeneity in TM applications.

The problem is that the efficiency of existing TM imple-
mentations is strongly dependent on the workloads they face.
Performance can be affected by a number of factors, includ-
ing program inputs [26], phases of program execution [24],
tuning of internal parameters [25], as well as architectural
aspects of the underlying hardware [12].

Given the vast TM design space, manually identifying op-
timal configurations, using trial and error on each workload,
is a daunting task. Overall, the complexity associated with
tuning TM contradicts the motivation at its basis, i.e., to sim-
plify the life of programmers, and represents a roadblock to
the adoption of TM as a mainstream paradigm [42].
Contributions. We propose a new system, ProteusTM1,
which allows developers to enjoy the simplicity and ease
of usage of the TM abstraction, while sparing them from the
burden of tuning TM implementations to specific workloads.

Under the simple and elegant interface of TM, ProteusTM
hides a large library of TM implementations. At run-time,
ProteusTM relies on an combination of learning techniques
to pursue optimal efficiency via multi-dimensional adapta-
tion of the TM implementation and its parameters.

At the heart of ProteusTM lie two key components:
• PolyTM is a polymorphic TM library that encapsulates
state-of-the-art results from research in TM, and has the
unique ability to transparently and dynamically adapt multi-
ple dimensions: (i) switch between different TM algorithms;
(ii) reconfigure the internal parameters of a TM; (iii) adapt
the number of threads concurrently generating transactions.
• RecTM is in charge of determining the optimal TM con-
figuration for an application. Its basic idea is to cast the
problem of identifying such best configuration as a recom-
mendation problem [54]. This allows RecTM to inherit two
highly desirable properties of state of the art Recommender
System (RS) algorithms: the ability to operate with very
sparse training data, and to require only the monitoring of
the Key Performance Indicator (KPI) to be optimized. This
avoids intrusive instrumentation [59] and (possibly inaccu-
rate) static code analysis [65] employed by other machine
learning-based solutions.

While building ProteusTM, we solved several challenges:
I Minimizing the cost of adaptivity. Supporting reconfigura-
tions across multiple dimensions requires introducing some

1 Proteus is a Greek god who can foretell the future and adapt his shape.

synchronization, in order to ensure correctness during run-
time adaptations. The challenge here is to ensure that the
overheads to support adaptivity are kept small enough not to
compromise the gains achievable via our self-tuning.

We addressed this challenge by designing lightweight
synchronization schemes that exploit compiler-aided, asym-
metric code instrumentation. The combination of these tech-
niques allows PolyTM to achieve average and maximum
overhead of 1% and 5%, even when considering the most
performance sensitive TM implementations.
I Transparency and portability: PolyTM encapsulates a
wide variety of TM implementations, along with their cor-
responding tuning procedures. The key challenge here is to
conceal these mechanisms without breaking the simple ab-
straction of TM. Furthermore, one of the key design goals
of ProteusTM is to seamlessly integrate with existing TM
applications, and to support different machine architectures.

We tackled this issue by integrating PolyTM in GCC, via
the standard TM ABI [49], and by exposing to programmers
standard C++ TM constructs. Not only this preserves the
simplicity of TM, but it also maximizes portability due to
the widespread availability of GCC across architectures.
I Applying Recommender Systems to the TM domain:
Decades of research have established RS as a powerful tool
to perform prediction in various domains (e.g., music and
news) [16, 19, 45]. The application of RS techniques to
performance prediction of TM applications, however, raises
unique challenges, which were not addressed by previous
RS-based approaches to the optimization of systems’ per-
formance [20, 21]. One key issue is that, in conventional RS
domains (e.g., recommendations of movies), users express
their preferences on a homogeneous scale (e.g., 0 to 5 stars).
On the contrary, the KPIs of TM applications can span very
heterogeneous scales. As we shall see, this can severely hin-
der the accuracy of existing RS techniques.

We cope with this issue by introducing a novel normal-
ization technique, called rating distillation, which maps het-
erogeneous KPI values to scale-homogeneous ratings. This
allows ProteusTM to leverage state-of-the-art RS algorithms
even in the presence of TM applications whose KPIs’ scales
span across different orders of magnitude.
I Large search space: Although RS algorithms are designed
to work with very sparse information, their accuracy can be
strongly affected by the choice of the configurations [61] that
are initially sampled to characterize a TM application. De-
ciding which and how many TM configurations to sample is
a challenging task, as ProteusTM supports reconfigurations
across multiple dimensions, resulting in a vast search space.

RecTM addresses this issue by relying on Bayesian Opti-
mization techniques [8] to steer the selection of the configu-
rations included in the characterization of a TM application.
This reduces by up to 4× the duration of the learning process
of the RS using Collaborative Filtering (CF) [61].



We conducted an extensive evaluation of ProteusTM us-
ing 15 TM applications, a parameter space of up to 130 con-
figurations, and optimizing 2 metrics: performance and en-
ergy efficiency. Our results highlight that ProteusTM obtains
quasi-optimal performance (on average< 3% from optimal)
and gains up to 2 orders of magnitude over static alternatives.

While ProteusTM does not solve all challenges of TM
(e.g., coping with side-effects of transactions), it drastically
improves performance while preserving its simplicity.

The rest of the paper is structured as follows. In §2 we
provide background on TM and CF. Then, §3 overviews
ProteusTM, which we detail in §4-5. The evaluation follows
in §6, with the related work in §7 and conclusions in §8.

2. Background
Next, we provide background on TM and overview Collab-
orative Filtering techniques for Recommender Systems.

2.1 Transactional Memory
The TM programming model relies on the abstraction of
atomic blocks to demarcate which portions of code of a con-
current application must execute as atomic transactions. The
TM implementation guarantees serializable transactions, by
aborting transactions that perform unsafe operations and au-
tomatically re-executing them until completion.

Many design and configuration choices have high impact
on performance. Next, we discuss their associated trade-offs
that are self-tuned by ProteusTM.
TM implementations. The TM abstraction has been im-
plemented in software (STM), hardware (HTM), or com-
binations thereof (Hybrid TM). A wide variety of STMs
have been proposed [34]. STMs pose no restrictions on the
number of memory accesses of a transaction, but they re-
quire costly code instrumentation to track transactional op-
erations. HTMs do not need instrumentation, but they are
best-effort [23, 67]: only transactions whose memory foot-
print fits in the processor’s cache can be executed; otherwise
they incur a capacity abort and resort to a fall-back synchro-
nization. This is typically a global lock [67], or an STM [14].

Degree of parallelism. The number of concurrently active
threads is another parameter with a potentially strong impact
on TM performance: a low thread count may lead to sub-
utilizing available processing power; a high one, conversely,
may induce excessive contention and lead to thrashing [24].
Contention management. A TM contention manager [30]
is in charge of arbitrating conflicts (e.g., by backing off trans-
actions). In HTM, contention management is also responsi-
ble for dealing with problematic transactions that might suf-
fer from best-effort caused aborts. Typical approaches allo-
cate a budget of retries to hardware transactions, upon whose
exhaustion they resort to the fall-back scheme. Tuning the
initial budget, and the retry policy, has significant impact on
performance and is strongly workload dependent [25].

2.2 Collaborative Filtering in Recommender Systems
A Recommender System (RS) seeks to predict the rating
that a user would give to an item. These ratings can be ex-
ploited to recommend items of interest to users [45]. We fo-
cus on Collaborative Filtering (CF) [61], a prominent pre-
diction technique used in a RS. To infer the rating of a 〈user,
item〉 pair, CF techniques exploit the preferences expressed
by other users, and ratings by the user on different items.
Ratings are stored in a Utility Matrix (UM): rows represent
users and columns represent items. Typically, a UM is very
sparse, as a user rates a small subset of the items. A CF al-
gorithm reconstructs the full UM, from its sparse represen-
tation, by filling empty cells with ratings close to the ones
that the users would give.

K-Nearest Neighbors (KNN) and Matrix Factorization
(MF) are popular CF techniques [54]. KNN uses a similarity
function to express the affinity of two rows or columns: a
recommendation for a pair 〈u,i〉 is computed with a weighted
average of the ratings of the most similar users to u (and/or
on the most similar items to i) [54]. MF, instead, maps
users and items to a latent factors space of dimensionality
d. Each dimension represents a hidden similarity concept: in
the movies’ domain, a similarity concept may be how much
a user likes drama movies, or how much a movie belongs
to the drama category. To compute recommendations, MF
infers two matrices P and Q, which represent, respectively,
users and items in the aforementioned d-dimensional space.
The product of P and Q is a matrix R that is similar to
a given UM A, i.e., QTP = R ∼ A, containing also
predictions for the missing ratings in A [54].

3. ProteusTM in a Nutshell
In essence, ProteusTM applies Collaborative Filtering (CF)
to the problem of identifying the best TM configuration that
maximizes a user-defined Key Performance Indicator (KPI):
e.g., throughput or consumed energy. ProteusTM aims to
maximize the efficiency of TM applications by orchestrating
various TM algorithms and their dynamic reconfiguration.
We now overview the architecture of ProteusTM, depicted
in Fig. 2, which enables its self-tuning capabilities. More
details shall be provided in the corresponding sections.
• PolyTM §4: consists of a Polymorphic TM library com-
prising various TM implementations. It allows for switching
among TMs and reconfigure several of their internal param-
eters. It exposes transactional operators via an implementa-
tion of the standard TM ABI [49] (supported by GCC [38]).
• RecTM §5: is responsible for identifying the best config-
uration for PolyTM depending on the current workload. It is
composed, on its turn, by the following sub-modules:
1. Recommender §5.1: a RS that acts as a performance
predictor and supports different CF algorithms. It receives
the KPIs of explored configurations from the Controller, and
returns ratings (i.e., predicted KPIs) for unexplored ones.
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Figure 2: Architecture of the ProteusTM system.

2. Controller §5.2: selects the configurations to be used and
triggers their adaptation in PolyTM. It queries the Recom-
mender with the KPI values from the Monitor, obtaining es-
timates for the ratings of unexplored TM configurations.
3. Monitor §5.3: this module collects the target KPI to (i)
give feedback to the Controller about the quality of the cur-
rent configuration and (ii) detect changes in the workload,
so as to trigger a new optimization phase in the Controller.

4. PolyTM: a Polymorphic TM Library
The PolyTM library encompasses a wide variety of TM
implementations. It interacts with compilers, like GCC, via
the standard TM ABI [38]. Each atomic block, written by
the programmer using standard C/C++ constructs [49], is
compiled into calls to the various modules of ProteusTM.

For every atomic block, GCC inserts a call to tm begin
and tm end, which we direct to PolyTM. Also, two code
paths are generated: a non-instrumented path, and a second
one in which reads and writes are instrumented with calls
to PolyTM. The latter allows our code to arbitrate reads and
writes, besides the begin and commit of transactions.

Our system is able to integrate with any new TM backend,
as long as this backend maintains its metadata (such as locks,
ownership records, etc.) in separate memory regions, i.e., it
does not interfere with the original memory layout of the
application. This is the case for most TMs we are aware of.

Behind the TM ABI interface, we implemented in
PolyTM several TM algorithms2, and run-time support to
switch among them: 4 STMs [15, 22, 27, 29], 2 Hy-
bridTMs [14, 47], and 2 HTMs [1, 67]. We take advantage of
the dual compilation paths and use the instrumented one for
the STMs. In contrast, HTMs — which automatically trans-
actionalize reads and writes — execute the non-instrumented
one. As shown in §6.2, the dual path optimization is crucial
to minimize overhead.

The compiled code is also instrumented to profile perfor-
mance metrics in a lightweight and transparent manner. In

2 We used open-source TMs by mapping ProteusTM’s implementation of
the TM ABI to the API of each TM with a thin software layer.
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Figure 3: Switching TM algorithm safely in PolyTM.

particular, PolyTM collects the commits and aborts at each
thread, and the energy consumed by the system. It also uses
a dedicated adapter thread to change the TM configuration.

In the following, we describe the mechanisms used by
PolyTM to support run-time configuration changes.

4.1 Switching Between TM Algorithms
Since our library must interact with the compiler via a single
ABI, we hide different TM implementations under a com-
mon interface defined in PolyTM. Then, each thread uses a
set of function pointers to this interface to process transac-
tion operations. To switch between TMs, a thread switches
the function pointers to a different implementation.

Running concurrent transactions with different TMs is
not safe in general [44, 65]. So, PolyTM enforces an invari-
ant: a thread may run a transaction in mode TMA only if no
other thread is executing a transaction in mode TMB . We il-
lustrate the problem in Fig. 3: at time e1 the adapter thread
tries to change the TM mode; if thread 2 immediately ap-
plied the change, it could run mode TMB concurrently with
thread 1 in TMA. The above invariant guarantees correctness
by forcing thread 2 to wait until e2 to change to TMB .

The invariant is enforced via an implementation using the
following steps: (i) adapt parallelism degree (i.e., number of
threads) from the current value, say P , to 0; (ii) change TM
back-end; (iii) adapt parallelism degree back to P .

4.2 Adapting the Parallelism Degree
To adapt the maximum number of active threads we use the
synchronization scheme described in Algorithm 1.

Each application thread synchronizes with the adapter
thread via a (padded) state variable. When executing a trans-
action for the first time, a thread is registered in PolyTM. We
simplify this in the algorithm by using a maximum number
of threads, although PolyTM supports an arbitrary number.

Upon starting a transaction, a thread t sets the lowest bit
in its state variable (line 10), whereas the adapter thread sets
the highest bit of t’s state variable when it wants to disable
t (line 4). These writes are performed atomically together
with returning the state of t. Then, both adapter thread and
t can reason on who wins (a potential race): if t sees only
the lowest bit set, it is allowed to proceed and executes the
transaction; otherwise, it must wait for the adapter to change



Algorithm 1 Changing the parallelism degree in PolyTM.
1: const int RUN← 1 , BLOCK← 1� 32
2: padded var int threadState[MAX THREADS]← { 0 }
3: function disable-thread(int t) . adapter thread
4: int val← fetch-and-add(threadState[t], BLOCK)
5: while (val & RUN) val← threadState[t]

6: function enable-thread(int t) . adapter thread
7: threadState[t]← RUN
8: signal(t) . wakes up thread t (locking omitted)

9: function tm-start(int t) . application thread
10: int val← fetch-and-add(threadState[t], RUN)
11: if (val & BLOCK)
12: fetch-and-sub(threadState[t], RUN)
13: cond-wait(t) . checks it is still blocked after locking
14: . ...omitting logic for tm-start...

15: function tm-end(int t) . application thread
16: . ...omitting logic for tm-end...
17: fetch-and-sub(threadState[t], RUN)

the mode (line 13). The adapter inversely checks that only
the highest bit is set, or else waits for t to unset the lowest
bit (line 5) — because twas already executing a transaction.

We implement these atomic operations with the primi-
tives fetch-and-op (e.g., op = add would be XADD in x86).
These primitives always succeed, and are cheaper than the
traditional compare-and-swap loop [18, 48]. Furthermore,
in the common case of our algorithm — a thread starting a
transaction is not concurrently disabled — each thread per-
forms the atomic operation on a variable residing (with high
probability) in its cache and without contention. In this case,
the latencies (in processor cycles), in our Machine A are 17
cycles for a fetch-and-add and 32 for a compare-and-swap.
As such, the cost for managing the number of active threads
is quite limited, for instance when compared to the begin and
commit of a hardware transaction (>120 cycles [56]).

We also use a conditional variable, associated with each
thread t, for t to wait on, in the case it is disabled. We omit
the details of its management, for simplicity of presentation.

PolyTM guarantees that a reconfiguration always termi-
nates: a thread eventually commits a pending transaction, or
else aborts and checks whether it was disabled — assuming
finite atomic blocks. Hence, the duration of a reconfigura-
tion depends on the longest running transaction. This, how-
ever, does not impair the efficiency of PolyTM’s reconfigu-
ration: in-memory transactions are generally very fast (given
that they do not entail I/O) [43, 64].

In addition, the success of a reconfiguration does not rely
on threads to eventually call into ProteusTM. This is crucial
to cope with applications whose threads may wait for events
(e.g., client requests) and do not run atomic blocks often.

We note that, depending on the application, it may not be
safe for PolyTM to permanently disable an arbitrary thread:
for instance, a web server may have a single thread accepting
requests. To account for such cases, in which it is impossible
to know the application’s semantics, we provide a library
call for the programmer to forbid PolyTM from disabling a

specific thread (e.g., to tune the parallelism degree). Such a
thread may still be disabled temporarily to allow switching
the TM algorithm, which is a brief procedure as noted above.

4.3 Adapting the Contention Management
PolyTM’s optimization encompasses other configuration pa-
rameters related to contention management [31]. Specifi-
cally, PolyTM integrates a scheme for HTM [25] that consid-
ers two parameters: (i) the budget of retries using HTM for
a transaction, (ii) whether, upon a capacity abort, the budget
should be decreased by one, halved, or fully consumed.

In fact, different contention management policies can co-
exist without affecting correctness [31]. Hence, both param-
eters can be changed at any point without synchronization.

5. RecTM: a Recommender System for TM
RecTM optimizes PolyTM by relying on a novel combina-
tion of off-line and on-line learning. In short, it operates ac-
cording to the work-flow of Algorithm 2:
(i) build a training set by profiling the KPI of a base set of
applications in the encompassed TM configurations (line 1);
(ii) instantiate a CF-based performance predictor based on
the training set obtained off-line in (i) (lines 2 and 3);
(iii) upon deploying a new application or detecting a change
of the workload, profile on-line the application over a small
set of explored configurations (lines 4 and 5);
iv) recommend a configuration for the workload (line 6).

In the following, we detail the building blocks of RecTM.

5.1 Recommender: Using Collaborative Filtering
RecTM casts the identification of the optimal TM configura-
tion for a workload into a recommendation problem, which
it tackles using Collaborative Filtering (CF), an efficient and
simple technique for rating prediction [61].

A key challenge to successfully apply CF in predicting
the performance of TM applications, is that CF assumes the
ratings in a predetermined scale (e.g., a rating of 0 to 10).
The absolute KPI values produced by different TM applica-
tions, instead, can span orders of magnitude (e.g., from mil-
lions [9] to few txs/sec [32]). Further, KPIs of specific con-
figurations provide no indication on the max/min KPI that
the application can obtain, impairing their normalization.

Our Recommender tackles this issue with an innovative
technique, which we call rating distillation. This function
maps KPI values of diverse TM applications to a scale that
can be fruitfully exploited by CF to identify correlations
among trends of heterogeneous applications.
The Rating Heterogeneity Problem. Ratings are stored in
a Utility Matrix (UM) A, of which each row u represents
a workload and each column i is a TM configuration: Au,i
is the rating of configuration i for workload u (i.e., in our
domain, it expresses the performance of i in u for a given
KPI metric). To illustrate the problem, let us populate the
UM directly with sampled KPI values (e.g., throughput):



Algorithm 2 RecTM work-flow
1: Off-line performance profiling of an initial training set of applications.
2: Rating distillation and construction of the Utility Matrix (§ 5.1).
3: Selection of CF algorithm and setting of its hyper-parameters (§ 5.1).
4: Upon the arrival of a new workload (§ 5.3):
5: Sample the workload on a small set of initial configurations (§ 5.2).
6: Recommend the optimal configuration (§ 5.1).

( 1 2 3
30 20 10
100 200 ?

)
, which contains information on applicationsA1

and A2 profiled with configurations C1, C2 and C3 and A3

profiled only at C1 and C2. Let us assume that Ci is an
application running with a given TM and i threads. From the
matrix, we can infer that A1 can scale, as its performance
increases linearly with the number of threads; A2 does not,
since its performance, though higher in absolute value than
A1’s, decreases as the number of threads grows. We want
to predict the rating for A3,3. Note that A3 exhibits the
same linear trends of A1: for this reason, a likely value for
A3,3 would be 300. Next, we show why well-known CF
techniques can be misled because of the heterogeneity of the
ratings’ scales in the UM.
The Need for Normalization. The most used similarity
functions in KNN CF are the Euclidean, Cosine and Pear-
son [54]. The first cannot be applied to heterogeneous rat-
ings, because it is based on the scale-sensitive Euclidean dis-
tance: in the example above, it would incorrectly regard C2

as more similar to C3 than C1. The other two are scale-
insensitive, so they identify C1 as similar to C3. However,
they would yield an incorrect prediction in absolute value,
as it will lie on C1’s scale, which is different from C3’s3.

A similar shortcoming applies to MF CF. The P and Q
matrices — recall §2.2 — are typically obtained via Stochas-
tic Gradient Descent [54]: starting from random matrices,
this technique iteratively tries to minimize the fitting error
of PTQ over A. Thus, it is prone to over-fitting around the
highest absolute value ratings, yielding poor accuracy.

A solution to these problems is to normalize the entries
in the UM. An effective normalization function should: (i)
transform entries in the UM so that similarities among het-
erogeneous applications can be mined and (ii) enable the
application of conventional CF techniques.

Note that feature normalization is often performed in Ma-
chine Learning (ML): the most notable example is in Artifi-
cial Neural Networks, which normalize input features in the
range [0,1] [5]. In ML, however, normalization is performed
on the input features, whose values are fully known for sam-
ples in the training set and for queries. In contrast, in Pro-
teusTM, the normalization has to be performed on the UM,
which contains values of the output feature KPI, and whose
entries are not all known. Next, we describe how ProteusTM

3 This reasoning applies for user-based KNN. Item-based KNN is not suit-
able for our domain, as it expresses any unknown rating for a 〈u,i〉 pair as
a weighted average of the ratings already provided by u itself. Hence, it
cannot predict any value outside the range already witnessed by u itself.

Algorithm 3 Rating Distillation function in ProteusTM.
1: for Ci ∈ C1 . . . CK do
2: Normalize Matrix KPI w.r.t. Ci

3: Collect the vector Mw with the max values per row
4: Compute meani(Mw) and vari(Mw)
5: end for
6: Return C∗ = argmini∈1...M vari(Mw)/meani(Mw)

normalizes ratings to meet the two aforementioned require-
ments and, thus, enables CF to optimize TM applications.
Normalization in the Recommender. If the minimum and
maximum KPIs of an application were known a priori, they
could be mapped to a homogeneous scale with a simple,
per workload, normalization. Since KPIs of applications can
take arbitrary values, then this ideal solution cannot be used.

The rating distillation used by the Recommender approx-
imates the ideal approach with a mapping function that, for
any workload w in the UM, ensures: (i) the ratio between
the performance of two configurations ci, cj is preserved in
the rating space, i.e., kpiw,ci

kpiw,cj
=

rw,ci

rw,cj
; and (ii) the ratings of

the corresponding configurations, rw,c, are distributed (as-
suming a maximization problem) in the range [0,Mw], so
as to minimize the index of dispersion of Mw: D(Mw) =
var(Mw)/mean(Mw) (where Mw is defined below).

Property (i) ensures that the information about the rela-
tive distances of two configurations is correctly encoded in
the rating spaces. Property (ii) aligns the scales that express
the ratings of each workload w to use similar upper bounds
Mw, which are tightly distributed around their mean value.

We define this function in Algorithm 3. The rating of
each row is obtained by normalizing its KPI with respect
to a column C*∈ {C1...CK} (assuming there are K config-
urations), so to minimize the index of dispersion among the
resulting maximum ratings in the normalized domain.

Note that not only does this function reduce the numerical
heterogeneity of ratings; it also projects all the elements of
the matrix to a semantically common domain: now, a rating
k for configuration i can be seen as “configuration i delivers
performance that are k times the reference one”. While an
absolute throughput of 5K txs/sec may correspond to either a
good or a bad performance depending on the application, our
rating function gives ratings a “more universal” meaning.
Also, minimizing the dispersion of the maximum values
allows to align the upper extreme of the rating distributions
of each application (i.e., matrix row) to a common value:
the tighter the distribution around a common value Mw, the
closer it approximates an ideal “omniscient” normalization.
Tuning the Recommender. We used Mahout [51], a ML
framework containing several CF algorithms. This design
choice allows the Recommender to seamlessly leverage a
vast library of techniques, rather than binding to a single one.

The Recommender uses the training UM to choose one of
the available CF algorithms, to adopt at run-time, and prop-
erly tunes its parameters (e.g., similarity function). Deter-



mining the best algorithm and its hyper-parameters, given a
training set, is a challenge that falls beyond the domain of
CF [3]. In our Recommender, we use an approach based on
random-search [4] and n-fold cross-validation [6, 37, 62].

5.2 Controller: Bayesian Workload Exploration
The Controller uses Sequential Model-based Bayesian Op-
timization (SMBO) [37] to drive the profiling of incoming
workloads, to quickly identify optimal TM configurations.

SMBO is a strategy for optimizing an unknown function
f : D → R, whose estimation can only be obtained through
(possibly noisy) observation of sampled values. It operates
as follows: (i) evaluate the target function f at n initial
points x1 . . . xn and create a training set S with the resulting
〈xi, f(xi)〉 pairs; (ii) fit a probabilistic model M over S;
(iii) use an acquisition function a(M,S)→ D to determine
the next point xm; iv) evaluate the function at xm and
accordingly update M ; v) repeat steps (ii) to iv) until a
stopping criterion is satisfied.
Acquisition function. Our Controller uses as acquisition
function the criterion of Expected Improvement (EI) [40],
which selects the next point to sample based on the gain that
is expected with respect to the currently known optimal con-
figuration. More formally, considering without loss of gen-
erality a minimization problem, let De be the set of evalua-
tion points collected so far, Du the set of possible points to
evaluate inD and xmin = arg minx∈Du

f(x). Then the pos-
itive improvement function I over f(xmin) associated with
sampling a point x is Ixmin

(x) = max{f(xmin − f(x), 0}.
Since f has not been evaluated on x, I(x) is not known a
priori; however, thanks to the predictive modelM fitted over
past observations, it is possible to obtain the expected value
for the positive improvement:
EIy(xmin)(x) = E[Iy(xmin)(x)] =

∫ y(xmin)
−∞ (fxmin−c)pM (c|x)dc.

Here, pM (c|x) is the probability density function that the
model M associates to possible outcomes of the evaluation
of f at point x [40]. High EI values are associated either
with points that are regarded by the model as likely to be the
minimum (high predicted mean), or with points whose corre-
sponding value of the target function the model is uncertain
about (high predicted variance). By selecting as next point
for evaluation the one that maximizes the EI, SMBO nat-
urally balances exploitation and exploration: on one side it
exploits model’s confidence to sample the function at points
that are supposedly good candidates to be the minimum; on
the other, it explores zones of the search space for which the
model is uncertain, to increase its predictive power by itera-
tively narrowing uncertainty zones.
Computing pM (c|x). The Controller computes pM (c|x)
with an ensemble of CF predictors, and obtains predic-
tive mean µx and variance σ2

x of p(c|x) as frequentist es-
timates over the output of its individual predictors evalu-
ated at x. It then models pM (c|x) as a Gaussian distri-
bution ∼ N(µx, σ

2
x). Assuming a Normal distribution for

Machine ID Processor / Number of cores / RAM HTM RAPL
Machine A 1 Intel Haswell Xeon E3-1275 3.5GHz /

4 (8 hyper-threads) / 32 GB
Yes Yes

Machine B 4 AMD Opteron 6172 2.1 Ghz / 48 / 32 GB No No

Table 2: Machines used in our experimental test-bed.

p(c|x) is frequently done in SMBO [37] and other optimiza-
tion techniques [50] to ensure tractability. Given a Gaus-
sian distribution for pM (c|x), EIy(xmin)(x) can be com-
puted in closed form as EIy(xmin)(x) = σx[uΦ(u) + φ(u)],
where u = y(xmin)−µx

σx
and Φ and φ represent, respectively,

the probability density function and cumulative distribution
function of a standard Normal distribution [40].

More in detail, the Controller builds a bagging ensem-
ble [7] of k CF learners, each trained on a random subset of
the training set. Then, it computes µx as the average of the
values output by the single predictors, and σ2

x as their vari-
ance. In ProteusTM, we use 10 bagged models; the cost of
employing them instead of a single one is negligible, mainly
because they are only queried during profiling phases.
Stopping Criterion. As discussed, SMBO requires the def-
inition of a predicate to stop exploring new configurations.

Our Controller uses a stopping criterion that seeks a bal-
ance between exploration and exploitation by relying on the
notion of EI: it uses the estimated likelihood that additional
explorations may lead to better configurations. More pre-
cisely, the exploration is terminated after k steps when: (i)
the EI decreased in the last 2 iterations; (ii) the EI for the k-
th exploration was marginal, i.e., lower than εwith respect to
the current best sampled KPI; (iii) the relative performance
improvement achieved in the k − 1-th iteration did not ex-
ceed ε. In §6.3, we evaluate the effectiveness of this policy.

5.3 Monitor: Lightweight Behavior Change Detection
The Monitor periodically gathers KPIs from PolyTM. These
are used for two tasks: (i) while profiling a new workload,
they are fed to the Controller, providing feedback about
the quality of the current configuration; (ii) at steady-state,
they are used to detect a workload change. The Monitor
implements the Adaptive CUSUM algorithm to detect, in
a lightweight and robust way, deviations of the KPI from
the mean value observed in recent time windows [2]. This
allows the Monitor to detect both abrupt and smooth changes
and to trigger a new profiling phase in our Controller. Note
that environmental changes (e.g., inter-process contention or
VM migration) are indistinguishable from workload changes
from the perspective of our behavior change detection.

6. Evaluation
This section provides an extensive validation of our con-
tributions. We introduce, in §6.1 the test-bed, applications,
and accuracy metrics used. In §6.2 we assess the overhead
incurred by PolyTM to provide self-tuning capabilities. In



Benchmark Lines of Code Atomic Blocks Description
STAMP [9] 28803 35 Suite of 8 heterogeneous benchmarks with a variety of workloads (genomics, graphs, databases).
Data Structures 3702 12 Concurrent Red-Black Tree, Skip-List, Linked-List and Hash-Map with workloads varying contention and update ratio.
STMBench7 [32] 8623 45 Based on OO7 [10] with many heterogeneous transactions over a large and complex graph of objects.
TPC-C [63] 6690 5 OLTP workload with in-memory storage adapted to use one atomic block encompassing each transaction.
Memcached [58] 12693 120 Caching service with many short transactions that are used to read and update the cache coherently.

Table 1: TM applications used in our evaluation. These 15 benchmarks span a wide variety of workloads and characteristics.

Machine
ID

TM Backend # threads HTM Abort
Budget

HTM Capacity
Abort Policy

Machine A STMs and
TSX [67]

1,2,3,4,
5,6,7,8

1,2,4,
8,16,20

Set budget to 0;
decrease budget
by 1; halve budget

Machine B STMs 1,2,4,6,
8,16,32,48

N/A N/A

Table 3: Parameters tuned by ProteusTM. STMs are
TinySTM [29], SwissTM [27], NORec [15] and TL2 [22].

§6.3, we evaluate the effectiveness of RecTM’s components
separately. Finally, in §6.4 we evaluate the ability of Pro-
teusTM to perform optimization of dynamic workloads.

6.1 Experimental Test-Bed
We deployed ProteusTM in two machines with different
characteristics (described in Table 2) and used a wide vari-
ety of TM applications (summarized in Table 1). We consid-
ered over 300 workloads, which are representative of hetero-
geneous applications, from highly to poorly scalable, from
HTM to STM friendly [26]. Moreover, we tested three KPIs:
execution time, throughput and EDP (Energy Delay Product,
a popular energy efficiency metric [36]). We measure energy
consumption via RAPL [17] (available on Machine A).

Our system optimizes the KPI by tuning the four dimen-
sions listed in Table 34. Overall, we consider a total of 130
TM configurations for Machine A and 32 for Machine B.
Evaluation metrics. We evaluate the performance of Pro-
teusTM along 2 accuracy metrics: Mean Average Percentage
Error (MAPE) and Mean Distance From Optimum (MDFO).

Noting ru,i the real KPI for workload u when running
with i as configuration, r̂u,i the corresponding prediction
of the Recommender, and S the set of testing 〈u, i〉 pairs,
MAPE is defined as:

∑
〈u,i〉∈S |ru,i − r̂u,i|/ru,i.

Noting with i∗u the optimal configuration for workload u
and with î∗u the best configuration identified by the Recom-
mender, the MDFO is:

∑
〈u,·〉∈S |ru,i∗u − ru,î∗u |/ru,i∗u .

MAPE reflects how well the CF learner predicts perfor-
mance for an application. MDFO captures the quality of final
recommendations output by the Recommender.

6.2 Overhead Analysis and Reconfiguration Latency
We now assess the overhead of PolyTM, i.e., the inher-
ent steady-state cost of supporting adaptation. We compare

4 ProteusTM also includes HybridTMs: we omit them as HybridTMs never
outperformed STMs/HTMs (similarly to recent work [26]).

#threads TL2 NOrec Swiss Tiny HTM-opt HTM-naive
1 3 3 2 3 3 14
4 < 1 1 < 1 3 3 14
8 < 1 < 1 < 1 4 5 24

Table 4: Overhead (%) incurred by ProteusTM for different
TM and # threads. Results are an average across ten runs.

Benchmark (Machine) # Threads
1 2 4 8 16 32

TPC-C (Machine A) 21 91 213 3419 N/A N/A
Memcached (Machine B) 2 8 28 145 1103 1849

Table 5: Reconfiguration (TM and #threads) latency (µsec).

the performance of a bare TM implementation T with that
achieved by PolyTM using T without triggering adaptation.

Table 4 summarizes the results averaged across all bench-
marks. The contention management for HTM is set to de-
crease linearly the retries starting from 5 (a common set-
ting [41, 67]). We also show the overhead of the optimized
code path, employed for HTM, and the one resulting from
the default GCC instrumentation (fully instrumented path).

These experiments reveal overheads consistently < 5%
across the TM backends. The lower STM overhead is justifi-
able considering that STMs natively suffer from instrumen-
tation costs that end up amortizing most of the additional
overhead introduced by PolyTM.

We also assess the average latency of a typical reconfig-
uration in PolyTM to switch TM algorithms (which also en-
tails changing the number of threads). The results, shown
in Table 5, encompass two heterogeneous workloads: Mem-
cached uses 100× shorter transactions than TPC-C. The re-
sults highlight the practicality of our reconfiguration. Even
in the worst case of large transactions in TPC-C, the latency
is small. In fact, this is only incurred during the exploration
phase, which, as we shall see, is very short with ProteusTM.

6.3 Quality of the Prediction and Learning Processes
We now evaluate each of RecTM’s components by means
of a trace-driven simulation. We collected traces of real
executions of a subset of the test cases (namely, STAMP and
Data Structures), averaging the results over 5 runs.

The data-set was split into a training set (30%) and a test
set (70%). The training set is used to choose and tune the CF
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Figure 4: Rating distillation for Exec. Time on Machine A.

algorithm (§5.1) and to instantiate the predictive model. We
used 10 learners for the bagging ensemble, as this is a typical
value [37, 62]. To simulate sampling the performance of the
application in a given configuration, the corresponding value
from the test set is inserted in the UM of the Recommender.
Rating distillation. We assess the effectiveness of the distil-
lation function versus several UM preprocessing techniques:
(i) No normalization: CF is applied on the UM containing
raw KPI samples. This is equivalent to Quasar [21] (see §7);
(ii) Normalization w.r.t. max.: entries in the UM are relative
to the highest value, supposed to be known a priori. It resem-
bles Paragon’s approach [20] (see §7), where the machine’s
peak instructions/sec rate is used as normalizing constant;
(iii) Ideal normalization: the scheme described in §5.1;
(iv) Row-column subtraction: noted RC, is typically em-
ployed in CF to cope with biases in ratings [54]. It consists
in removing from each known rating the average value of
the corresponding row; then, the average value per column
— computed after the first subtraction — is subtracted;
(v) Rating distillation: used in ProteusTM (Algorithm 3).

For space constraint we show only a subset of results,
focusing on execution time on Machine A with KNN and
cosine similarity. We vary the number of randomly chosen
known ratings per row and compute MAPE and MDFO.

Figure 4 shows that using no normalization, or normal-
ization w.r.t. the maximum performs very poorly, both in
terms of MAPE (Figure 4a) and MDFO (Figure 4b). That
is because they are both performing a normalization with
respect to some constant that has no meaning in the scope
of the applications used. RC achieves lower MAPE than
the two aforementioned normalizations, yet its accuracy is
significantly worse than that of rating distillation, both in
terms of MAPE and MDFO. Also, the approach of Pro-
teusTM closely follows the ideal normalization. To ensure
a fair comparison, we used the same training set, without
forcing the presence of the column used for normalization
among the profiled configurations for ProteusTM.

We have obtained other similar results, omitted due to
space constraints, with other distance functions in KNN and
MF (which is used by other proposals that rely on a RS for
performance prediction, see §7) . Our results confirm the

key role of rating distillation to enable the use of CF in the
domain of performance prediction for TM applications.
Controller. We evaluate the effectiveness of our SMBO
approach to the sampling of new workloads. We compare
our solution (called EI) with a randomized sampling ap-
proach, used in Quasar and Paragon [20, 21] (see §7),
and two other SMBO approaches using acquisition func-
tions different from ours: Variance explores configurations
with high uncertainty for the underlying model (i.e., high
variance/mean ratio); Greedy explores the configuration
with highest predictive mean.

Our simulation proceeds in rounds: each one profiles the
target workload on the reference configuration chosen by the
rating distillation function; then the sampling phase begins.
Afterwards, the Recommender produces a recommendation
for the optimal configuration, noted ĉ∗. If such a configu-
ration is explored, then the optimization is concluded; other-
wise, a final exploration of ĉ∗ is performed. The final recom-
mendation c∗ is the one which, among those explored, yields
the best performance. The MDFO is computed with c∗ and
the MAPE is an average of MAPEs computed per workload.

Due to space constraints we show only a subset of results.
In Fig. 5a, we report the MDFO for EDP (on Machine
A). The EI exploration policy is able to identify a high
quality solution requiring, on average, less explorations than
any competitor. Fig. 5b shows that the 80-th percentile of
the DFO obtained by EI — after 5 explorations — is less
than 10%. We highlight that the EDP KPI was the most
challenging to optimize: hence, the latter result represents
a lower bound on our accuracy.

In Fig. 5d, we show the MDFO when optimizing execu-
tion time (on Machine B): once again, our EI-based Con-
troller’s exploration performs best. Fig. 5c shows the MAPE
per explorations. Interestingly, the Variance policy has the
best mean prediction accuracy. However, as it does not aim
at sampling potential optimal solutions, but only at reducing
uncertainty, it does not learn the behavior of the target func-
tion for potentially good configurations. Thus, the quality of
the recommended configurations is significantly worse than
EI’s (see Fig. 5d).

Finally, we compare our EI policy with random sampling
in Figs. 5a and 5d: taking 5% distance as reference, EI
achieves a number of explorations vs MDFO trade-off that
is up to 4× better than its competitor. This highlights the
effectiveness of our SMBO-based approach over simpler
sampling techniques used in recent systems [20, 21] (see §7).
Stopping criterion. We now evaluate our stopping heuristic
(§5.2), called Cautious (C in the plots). We compare it with
a Naive stopping rule N that blindly trusts the model, by
stopping explorations when the expected improvement over
the best known configuration falls< ε. The results are shown
in Fig. 6, portraying the sensitivity of both heuristics to ε.

For any fixed ε, we observe that the Naive predicate con-
sistently chooses a worse configuration than the one of our
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Figure 5: Controller’s exploration policies for EDP on Machine A (left figures) and Exec. Time on Machine B (right figures).

Cautious heuristic: blindly trusting the predictive model re-
sults in an excessively eager policy, which does not provide
the model with enough training data.

As expected, the plots also show that the lower ε, the
lower the obtained MDFO. Notably, for ε = 0.01, the Con-
troller achieves, in 90% of the cases, MDFO of only 5%
when considering execution time on and 12% when opti-
mizing EDP. This comes at the price of a higher number of
explorations. Although not shown for space constraints, we
report that the Controller is able to keep this price very low,
by requiring, on average, a similar number of explorations of
a policy that performs a fixed amount of explorations and is
tuned to deliver the same mean performance. This confirms
the effectiveness of the Controller in determining the dura-
tion of the profiling, by striking a balanced trade-off between
the extent of online exploration and final performance.
Comparison with ML approaches. We now compare Pro-
teusTM with an approach based on the same technique pro-
posed by Wang et. al [65] to automate the choice of the
TM algorithm for a given workload. This approach relies
on workload characterization data to train a ML-based clas-
sifier that is used to predict the best TM configuration for
a given workload. The workload characterization uses 17
features: duration of transactions, data access patterns, data
contention, etc. Wang et al. also uses static analysis to for
other features, e.g., the number of atomic blocks. We did not
perform this step but complemented it with contention man-
agement features. These are not considered by the authors,
but we found them to be highly correlated with performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.05 0.10 0.15

M
D

FO

Early stop threshold ε

Mean-N
Median-N

90th perc-N

(a) MDFO for EDP, Machine A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.01 0.05 0.10 0.15

M
D

FO

Early stop threshold ε

ProteusTM
Mean-C

Median-C
 90th perc-C

(b) MDFO for Exec time, Machine B

Figure 6: Comparing early-stop exploration predicates.

The simulation for ProteusTM evolves as explained
above. For the ML competitor, instead, a workload is first
profiled over a reference configuration (TinySTM, 4 threads)
and then the ML is invoked to predict the best configuration.
We then compute the MDFO for this chosen configuration.

We used 300 STAMP and Data Structures workloads, on
Machine A, and split them randomly into training and test
sets: 30-70 and 70-30 train-test splits. For ProteusTM, the
training set is the UM of the selected workloads; for ML
approaches, the training set is composed, for each workload,
by the aforementioned features and the identifier of the best
configuration as target class. The target KPI is throughput.

We consider 3 ML algorithms, implemented in
Weka [33]: Decision Trees (CART), Support Vector Ma-
chines (SMO), and Artificial Neural Networks (MLP) [5].
Their parameters were chosen via random search opti-
mization [4], which evaluated 100 combinations with
cross-validation on the training set.

Fig. 7 reports the CDF of the DFO of each technique over
10 runs. The data shows the superiority of ProteusTM rela-
tively to pure ML approaches. In particular, with 30% train-
ing set, ProteusTM already delivers a DFO of 1.6% against
the 10% of the ML competitors, and a 90-th percentile of
3.5% against 25% of CART (the best alternative). Also, by
increasing the training set to 70%, ProteusTM delivers a
DFO of 1.3% and a 90-th percentile of 3%, against 6.8%
DFO and 21% 90-th percentile of the best alternative (SMO).

We note that the DFO of ProteusTM is similar (both
in mean and 90th percentile) in both cases, whereas ML
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Figure 7: Comparison of ProteusTM vs various Machine
Learning based techniques.
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Figure 8: Performance of four applications when their workload changes three times. We show the performance obtained with
ProteusTM, and three additional fixed configurations, each one corresponding to an optimum in each workload.

greatly benefits from more training data. This difference is
explained by the number of explorations used by ProteusTM
in its profiling phase (with threshold ε = 0.01): at 30%
training, the 90th percentile number of explorations is 7,
but this lowers to 6 with 70% training set. This means that
ProteusTM delivers high accuracy also in presence of scarce
training data, by autonomously exploring more.

Our evaluation suggests that detecting similarities on the
KPI is more effective than statistically inferring relationships
from training data. We argue that this depends on two, tightly
intertwined, causes: (i) thanks to our novel normalization,
using CF is more robust than ML, as it is based on direct KPI
observations, rather than on learning the mapping of input to
output features; (ii) the adaptive profiling phase proved to be
more effective than a one-shot classification-based solution.

6.4 Online Optimization of Dynamic Workloads
In Fig. 8, we evaluate the ProteusTM system as a whole5:
2 TM benchmarks (Red-Black Tree and STMB7 [32]) and
2 TM ports of TPC-C [63] Memcached [58]. For each, we
trigger 3 workloads chosen to exemplify contrasting perfor-
mances. In each case, ProteusTM is totally oblivious of the
target application: no workloads of the application are in its
training set. This highlights the Recommender’s ability to
detect similarity patterns between the target workloads and
the set of disjoint workloads used as training set. We set the
Monitor period to 1 sec and the SMBO ε to 0.01. In each
run, we measure the performance of (i) ProteusTM, (ii) the
3 configurations that perform best in each workload, (iii) the
Best Fixed configuration on Average (BFA) across the work-
loads, and (iv) a Sequential non-instrumented execution.

We draw three conclusions: (i) ProteusTM is able to
quickly identify, at runtime, configurations that are optimal
or very close. Remarkably, ProteusTM delivers performance
that is, on average, only 1% lower than the optimal; (ii) em-
ploying any of the baseline alternatives yields up to 2 or-
ders of magnitude worse performance; (iii) thanks to our
SMBO approach, the performance degradation when explor-

5 The source materials can be found in https://github.com/
nmldiegues/proteustm.

Mean Distance from Optimum (MDFO %)
Benchmark Optimal in Workload i ProteusTM

Name Workload (Opt Conf) Opt 1 Opt 2 Opt 3 (explorations)
RBT 1 (NOrec: 7t) 0 137 93 < 1 (4 expl)
Machine 2 F (HTM:8t Half-20) 33 0 71 2 (4 expl)
A 3 (HTM: 4t GiveUp-4) 154 37 0 < 1 (7 expl)
STMB7 1 (HTM: 4t Linear-2) 0 20 210 2 (6 expl)
Machine 2 (Swiss: 4t) 135 0 28 < 1 (4 expl)
A 3 F (TL2: 8t) 390 29 0 < 1 (3 expl)
TPC-C 1 F (Tiny: 4t) 0 273 47 < 1 (3 expl)
Machine 2(HTM:3t GiveUp-16) 68 0 152 3 (4 expl)
A 3 (Tiny: 8t) 22 370 0 < 1 (3 expl)
Memchd 1 F (Swiss: 32t) 0 50 26 4 (3 expl)
Machine 2 (Tiny: 32t) 19 0 258 < 1 (4 expl)
B 3 (Tiny: 4t) 18 66 0 < 1 (3 expl)

Table 6: For each benchmark in Fig. 8, we show the MDFO
of ProteusTM, each Optimal and BFA (F) configurations.
Each workload is labeled with its optimal configuration.

ing is minimal (at most 7 explorations in these use cases).
Such cost is usually amortized in long-running services (e.g.,
databases), in which workload shifts are infrequent [13].

A summary is provided in Table 6 where we list the opti-
mal configurations in each workload. We also show the BFA
(with F) which is always also an optimal configuration in
some workload. This data highlights the robustness of Pro-
teusTM to optimize applications with diverse optimal con-
figurations, in terms of TM algorithm (STMB7), parallelism
degree (TPC-C) and HTM tuning (RBT and Memchd).

Finally, in Fig. 9, we confirm our claims of §5.3 by using
a static TPC-C workload and varying external factors to the
application to trigger behavior changes. To simulate these
external changes we used the stress Unix tool with different
configurations over periods of 30 seconds: it either created
high CPU, memory or IO usage in each workload. The
results are once again positive, in that ProteusTM performs
close to the optimal configuration across all workloads.

7. Related work
Our work lies at the intersection of 3 major research fields:
optimization of TM systems, performance prediction via RS,
and experiment-driven optimization of computer systems.
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Figure 9: Similar to Fig. 8c, but with a static workload,
varying instead the availability of machine resources.

Optimization of TM applications. The most researched
problem in TM self-tuning is choosing the number of active
threads. Proposed solutions rely on analytical modeling [60],
off-line machine learning [59], or exploration-based strate-
gies [24]. Wang et al. [65] use Artificial Neural Networks
and programmer heuristics to determine the best TM for
an application (excluding HTM). Workload characterization
uses static analysis and runtime detailed profiling. Tuner [25]
exploits hill climbing and reinforcement learning to adap-
tively determine the retry-on-abort policy for HTM.

These solutions optimize a single aspect of TM. More-
over, purely exploration-based solutions [24, 25] are imprac-
tical in high dimensional spaces, as the number of configu-
rations to explore rapidly grows with the parameters to op-
timize. ProteusTM, instead, is effective in optimizing in a
large space (we considered 130 configurations over 4 pa-
rameters). Thanks to the capability of CF techniques to deal
with sparse information and to our model to steer online ex-
plorations, ProteusTM operates in even higher dimensional
problems by simply including more configurations as extra
columns of the UM.

In addition, all surveyed solutions need either prelimi-
nary code analysis or intrusive instrumentation for workload
characterization. These add complexity to the code of TM
algorithms and overhead to the application. ProteusTM, con-
versely, relies solely on profiling high-level KPIs, which in-
curs minimal overhead and maximizes portability. We stress
that ProteusTM’s work-flow is fully automated, avoiding the
need for programmer heuristics [65]. Finally, ProteusTM
avoids off-line training on the target application, unlike other
ML approaches [59].
Performance prediction via Recommenders. To the best
of our knowledge, Paragon [20], Quasar [21] and U-
CHAMPION [53] are the only systems relying on RS for
performance prediction, job scheduling and resource provi-
sioning. In common, they characterize an incoming job via
random sampling of a fixed number of configurations and
then apply MF-based CF.

ProteusTM differs from these works in three key aspects:
(i) it relies on a novel rating distillation function that iden-
tifies similarity patterns among the performances of hetero-
geneous applications (one noteworthy finding of our work is
that this pre-processing step, not used in previous works, is

of paramount importance to achieve high accuracy in the TM
domain); (ii) ProteusTM leverages model-based techniques
to determine which and how many configurations to exper-
iment with during the sampling phase of a new workload
(we showed that it outperforms random sampling), yielding
lower sampling time and higher accuracy; (iii) it integrates
both MF- and KNN-based CF, being able to determine the
best one to employ, depending on the training data.
Experiment-driven optimization. The classic approach in
this field is dynamic sampling: a performance model of the
system is initialized, by evaluating its performance corre-
sponding to some randomly chosen configurations; then, the
next experiment to run is chosen according to the observa-
tions progressively collected [28, 50, 66, 68]. The proposal
that is closest to ours is iTuned [28], which optimizes con-
figuration parameters of a database for a target application.
It exploits Gaussian processes [55] to build a performance
model of the application and uses the EI acquisition func-
tion to choose the next experiment to run. However, iTuned
does not use knowledge of previous the workloads: by lever-
aging CF, ProteusTM alleviates the need for the initial static
sampling phase, and is able to perform accurate recommen-
dations after a short online adaptive sampling phase.

8. Conclusions
We proposed ProteusTM, the first TM system with multi-
dimensional self-tuning capabilities. ProteusTM has been in-
tegrated in GCC to expose a standard TM interface, which
ensures full transparency, ease of use and portability. To-
gether with this simple abstraction, we provide high perfor-
mance by relying on a novel technique that leverages Col-
laborative Filtering and Bayesian Optimization.

Via an extensive evaluation based on a real-word appli-
cation and well-known benchmarks, we demonstrated the
ability ProteusTM to optimize heterogeneous applications in
high-dimensional configuration spaces: ProteusTM achieves
performance that are, on average, < 3% from optimum and
gains up to 100× relatively to static configurations.

As a final remark, we believe that the methodologies un-
derlying the RecTMdesign could be applicable to optimize
the self-tuning of broader and more generic classes of sys-
tems than just TM. In particular, its novel ability to normal-
ize the data for the RS, together with the Bayesian-driven
exploration of workloads to sample.

As a final remark, we believe that the methodologies un-
derlying RecTM— namely, the techniques of rating distilla-
tion and the Bayesian approach to drive the workloads’ sam-
pling — can be used to optimize the self-tuning of a broader,
more generic class of systems, than just TM.
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