
Enhancing locality via caching in the GMU protocol

Hugo Pimentel
IST/INESC-ID

hugo.pimentel@ist.utl.pt

Paolo Romano
IST/INESC-ID

romano@inesc-id.pt

Sebastiano Peluso
Sapienza University of Rome/INESC-ID

peluso@gsd.inesc-id.pt

Pedro Ruivo
Red Hat, Inc.

pruivo@redhat.com

Abstract—GMU is a recently proposed genuine partial
replication protocol for transactional systems that relies on
an innovative, fully-decentralized multiversioning scheme to
maximize efficiency and scalability. In this paper we tackle
one of the key issues that affect the efficiency of GMU-based
applications: enhancing their data locality, i.e. the ability to
serve transactional reads locally, avoiding remote inter-node
communication. To this end we introduce a lightweight caching
mechanism that allows for safely accessing asynchronously
replicated copies of remote data items while preserving GMU’s
original consistency criterion and its scalability.

We assess the efficiency and effectiveness of the presented
solution by means of an extensive experimental analysis,
evaluating deployments on large scale public and private
cloud infrastructures, and using well known benchmarks for
transactional platforms. The results show striking speedups of
up to 14 times in read dominated workloads, and a reduction
of the network bandwidth by up to one order of magnitude.

Keywords-Distributed Transactional Platforms, Key-Value
Stores, Partial Replication, Caching

I. INTRODUCTION

Context. The advent of the cloud computing paradigm has
empowered programmers with the ability to scale out their
applications easily to hundreds of nodes, fostering research
in the area of highly scalable, elastic distributed data plat-
forms (DTP). The first generation of cloud DTPs [8], [5]
opted for maximizing scalability by embracing very weak
consistency models, such as eventual consistency. However,
by relaxing consistency, these systems shift a heavy burden
from the platform architects to the application developers,
who are required to cope with complex issues associated
with concurrency and failures. Indeed, the inherent com-
plexity of building applications on top of weakly consistent
systems has been recently recognized by some of the pi-
oneers of eventual consistency [5], and motivated several
works aimed to guarantee strong consistency semantics in
large scale cloud platforms [7], [20], [21].

By relying on multi-version concurrency control algo-
rithms, these solutions [20], [21], [7] allow for a very
efficient management of read-only transactions, sparing them
from the possibility of aborting as well as from the costs

This work was supported by national funds through FCT — Fundação
para a Ciência e Tecnologia — under project PEst-OE/EEI/LA0021/2013,
by specSTM project (PTDC/EIA-EIA/122785/2010), and by National Sci-
ence Foundation under Grant No. 0910812.

of any validations. Another key property of these systems,
aimed precisely to maximize their scalability is the, so
called, genuine partial replication property, according to
which the execution of a transaction can only involve nodes
that replicate data items it accessed [24]. This property is
of the utmost importance to enable high scalability, as it
rules out non-scalable solutions based either on centralized
components (which may turn into bottlenecks/single point of
failures) or on full-replication (which induces unacceptable
overheads in large scale platforms due to the need of
propagating updates across the entire set of nodes of the
system).

Motivation. While partial replication protocols possess high
potential for scalability, the actual efficiency of these systems
can be seriously hindered if the underlying data store does
not achieve a good degree of locality when serving applica-
tions’ data access patterns. In fact, as in these systems data
is distributed across the entire set of nodes in the platform
and replicated only on relatively small number of them, it
follows that, in order to process a transaction’s read request,
it may be necessary to fetch data remotely. This problem is
particularly exacerbated since many popular key-value stores
(transactional or not), such as Dynamo [8] or Infinispan [15],
use random placement based on consistent hashing. By
relying on random hash functions to determine the location
of data across nodes, these solutions allow lookups to be
performed locally, in an very efficient manner [8]. Further-
more, consistent hashing guarantees that the join/leave of a
node incurs in a limited change in the mapping of keys
to buckets. However, due to the random nature of data
placement (oblivious to the access frequencies of nodes
to data), solutions based on consistent hashing may result
in sub-optimal data placements. Indeed, assuming random
placement of data, it is easy to see that the probability of
finding a requested data item locally is inversely proportional
to the number of nodes in the system. In other words, unless
appropriate techniques are employed to enhance locality
in the access to data, as the scale of the system grows,
the number of remote read operations is destined to grow
linearly, eventually saturating the network’s capacity and
hindering scalability.

A possible approach to maximize the efficiency of these
protocols is to rely on caching techniques, which repli-

cate remote data items that are frequently accessed in an
asynchronous (and hence lightweight) fashion, in order to
minimize the frequency of inter-node communication. How-
ever, integrating a caching mechanism in strongly consistent
genuine partial replication protocols is far from being an
obvious task, as it requires designing highly scalable cache
consistency protocols capable of preserving transactional
consistency while allowing read operations targeting data
items not owned by the current node to be performed locally
(based on cached data), i.e. without contacting the actual
data owner.

Contributions. In this paper we introduce GMU-C, a dis-
tributed caching scheme for GMU [20], a recent, genuine
partial replication protocol that employs a fully distributed
multi-versioning scheme based on vector clocks. GMU has
several noteworthy properties: i) it spares read-only trans-
actions from the risk of aborts, as well as from the cost
of expensive remote validations, ii) it ensures that every
transaction (including update transactions that have to be
aborted eventually) always observes a consistent snapshot
of data, that is a snapshot producible by some linearization
of a prefix of the history of committed transactions, a
property called Extended Update Serializability [1] (EUS).
Developed in the context of the EU project Cloud-TM 1,
GMU is planned to be integrated in the official version
of Infinispan [15], a mainstream open-source distributed
transactional platform developed by Red Hat that is at the
basis of a number of highly visible open-source projects (like
Hibernate and JBoss Application Server). The integration of
the GMU protocol in a highly popular product like Infinispan
amplifies significantly its practical relevance, and that of the
current work.

The presented protocol consists of two main innovative
building blocks:
• a novel cache consistency algorithm, which allows

transactions to read asynchronously replicated copies
of data items, without compromising the consistency
criterion abided by GMU and preserving its genuine-
ness property;

• a lightweight cache invalidation mechanism aimed
at maximizing the freshness of the data maintained
in cache (and hence the profitability of the caching
scheme), and designed to support pluggable dissemi-
nation and eviction strategies.

We integrated the proposed distributed caching scheme
into Infinispan, and assessed the efficiency and effectiveness
of the presented solution by means of an extensive exper-
imental analysis, based on both synthetic and well known
benchmarks for transactional platforms and on large scale
deployments on public and private cloud infrastructures. The
experimental data show striking speedups of up to 14 times

1http://www.cloudtm.eu

in read dominated workloads, and a reduction of the network
bandwidth by up to one order of magnitude.

Structure of the document. The rest of this document is
organized as follows. Section II discusses related work.
GMU and the proposed caching protocol are presented
in Sections III and IV, respectively. The results of the
experimental evaluation study are presented in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORK

The problem of how to replicate transactional systems has
been long investigated in the literature. Most of the existing
proposals [6], [19], [18], [4] have been targeted at the case
of full replication, in which every node maintains a copy
of each data in the system. Full replication techniques have
the key attractive characteristic of ensuring that any data
access can be locally served, which allows for avoiding any
inter-node communication till the commit phase. On the
other hand, the need to involve all nodes in the system
whenever a transaction updates any data item limits the
inherent scalability of these protocols, making them suitable
for relatively small-scale systems (on the order of a few tens
of nodes).

When considering partial replication schemes, literature
proposals can be grouped depending on (i) whether they can
be considered genuine, and on (ii) the consistency guarantees
that they provide. The works in [25], [26] introduce non-
genuine protocols. in which the commitment of a transaction
requires interactions with all the sites within the replicated
system. Compared to these approaches, genuine partial
replication schemes have been shown to achieve signifi-
cantly higher scalability levels [20], [21], [24]. The P-Store
protocol [24] provides a genuine solution that supports 1-
copy serializability (1CS) [2]. However, P-Store imposes that
read-only transactions undergo a distributed validation phase
(taking place at commit time) and that are potentially subject
to rollback/retry. Conversely, GMU, the target protocol of
this work, never aborts read-only transactions, since it guar-
antees that transactions always observe a consistent snapshot
of data, and consequently spare them from expensive remote
validations. Unlike P-Store, GMU does not ensure 1CS, but a
consistency criterion called Extended Update Serializability
(EUS). EUS is incomparable with 1CS as it ensures that
read-only transactions can observe the commit event of two
non-conflicting update transactions in different order (which
is prohibited by 1CS. On the other hand, EUS ensures that
even transactions that abort must observe a state of the sys-
tem that could be producible by a serial transaction execution
history — whereas 1CS allows transactions that abort to
observe arbitrary snapshots. Another recent and well-known
transactional replication protocol is Spanner [7] by Google.
Analogously to GMU, Spanner implements a distributed
multi-versioned concurrency control algorithm that allows

to execute read-only transactions in a lock-free way and
on consistent snapshots. The essential difference between
GMU and Spanner is in that the latter relies on specialized
hardware (atomic clocks) to serialize transactions, whereas
GMU uses a distributed multi-versioning scheme based on
the usage of vector-clocks. Additional details on GMU’s
functioning will be provided in Section III.

As already mentioned, in these platforms the issue of
how to partition data across the nodes of the system is of
paramount importance. Solutions in this area can be coarsely
classified in two groups: solutions based on consistent
hashing [8], [15], [13], and directory-based approaches [5].
Solution based on consistent hashing disseminate data in
random fashion, and have the key advantage of allowing
for very efficient lookups and of minimizing the amount
of data transferred upon the join/leave of nodes from the
system. On the down side, the random nature of the hashing
functions used to determine data ownership can lead to sub-
optimal data placements and poor data locality. Directory-
based schemes, as used for instance in BigTable [5] and
Spanner [7], provide programmers with fine-grained control
on the mapping of data to nodes in the system, but incur the
additional costs of i) contacting remote directory services to
lookup data, and ii) ensuring the high availability of the
directory service. Caching of frequently accessed remote
data is an orthogonal approach that could be adopted to
maximize the efficiency of both consistent hashing-based
and directory-based systems. The key challenge to im-
plement a caching scheme for a distributed transactional
platform is how to preserve ACID consistency when reading
cached data that is only asynchronously replicated. The
cache consistency protocol presented in this paper tackles
precisely this issue.

Finally, this work is related to techniques, such as
Tashkent [9] or AutoPlacer [17], that aim at dynamically
tuning the mapping of data to the nodes in the system
to minimize the frequency of remote data accesses. These
approaches are orthogonal to and can be used in conjunction
with caching.

III. SYSTEM MODEL AND OVERVIEW OF GMU

We consider a classic asynchronous distributed system
model composed of Π = {p1, . . . , pn} nodes (also called
processes). Nodes communicate through message passing
and do not have access to a shared memory nor a global
clock. Messages may experience arbitrarily long (but finite)
delays and we assume no bound on relative site speeds
or clock skews. We consider the classic crash-stop failure
model: sites may fail by crashing, but do not behave mali-
ciously.

Each node pi stores a partial copy of data, for which
we assume a simple key-value model. Each data item d is a
triple (k, val, ver), where k is a key, val its value and ver is
a scalar, monotonically increasing timestamp that identifies

(and totally orders) the versions of a data item d. For the
sake of brevity, we will use the notation (kver) to denote the
ver-th version of the value associated with key k.

We abstract over the data placement policy by assuming
that data is subdivided across m partitions, and that each
partition is replicated across r processes (in other words,
r represents the replication degree for each data item). We
denote with Γ = {g1, . . . , gm} the set of groups of processes
gj that replicate the j-th data partition. We also say that
a group of process gj owns the j-th data partition, and
assume that for each partition there exists a single process
called primary owner. Each group is composed of exactly r
processes (to ensure the target replication degree), of which
at least one is assumed to be correct. In order to maximize
flexibility of the data placement strategy, we do not require
groups to be disjoint (they can have nodes in common), and
assume that a process may participate to multiple groups, as
long as

⋃
j=1...m gj = Π. Note that this model allows us to

capture a wide range of data distribution algorithms, such
as schemes, currently very popular in NoSQL transactional
data stores, which rely on consistent hashing [8], [15],
[13] based distribution policies to: i) minimize data transfer
upon joining/leaving of nodes; ii) ensure the achievement
of predetermined replication degree; iii) avoid distributed
lookups to retrieve the identities of the group of processes
storing replicas of the requested data items.

We model transactions as a sequence of read and write
operations on data items, preceded by a begin, and followed
by a commit or abort operation. Transactions originate on a
process pi ∈ Π, and can read/write data stored belonging
to any partition. Also, we do not assume any a-priori
knowledge on the set of data items read or written by
transactions. Given a data item d, we denote as Replicas(d)
the set of processes that maintain a replica of d (namely
the nodes of the group gj that replicate the data partition
containing d).

A. GMU Overview

Before presenting GMU-C, we provide a brief overview
of the base protocol that it extends, namely GMU. We
remind to [20] for an extensive discussion of the GMU pro-
tocol, and provide, in the following, a succinct description
aimed at providing sufficient information to understand the
functioning of GMU-C.

As classical multi-version concurrency control schemes
GMU maintains a chain of totally ordered committed ver-
sions for each data item on every node. The version order is
determined by the scalar timestamps that follow the order of
commits on a given node, hence determining a relationship
between the event of a commit of a transaction T on a node
pi and the versions of all the data items updated by T .
As transactions can, in general, read/write data maintained
by different nodes, GMU associates with the commit event
of a transaction T a vector clock (with size equals to the

cardinality of Π) that univocally determines the versions
produced by T , and that keeps track of the dependencies
with the other commits on the involved nodes. In addition
each node pi maintains track of vector clocks associated
with all update transactions that committed involving node
pi into a list named CLog that is ordered in accordance with
the order of commits on pi.

During its execution, a transaction T maintains:
• A reading vector clock, noted T.V C, used as a visibility

reference during read operations, that keeps track of the
causal and data dependencies created by T during its
execution.

• A vector of boolean values, noted T.hasRead, that
maintains, in its i-th entry, the information on whether
the current transaction has already read on node pi or
not.

Read operations require the determination of which version
among the versions maintained by the data platform should
be visible to the transaction. This is achieved using the
following three rules:
R1 (Snapshot lower bound). On the first read operation
on a node Ni, GMU verifies that Ni is sufficiently up to
date to serve the transaction, i.e. whether it has already
committed all the transactions that have been serialized
before T according to T ’s current reading VC. This is
achieved by blocking T until the i-th entry of T.V C is
strictly larger than the i-th entry of the most recent vector
clock in Ni’s CLog.
R2 (Snapshot upper bound). On the first read operation
on a node Ni, GMU determines which is the most recent
snapshot committed on Ni that T can observe, taking into
account the set of read operations already issued by the
transaction. Such snapshot, which is uniquely identified by
an entry of Ni’s CLog, and denoted as MaxV C, is the most
recent entry in Ni’s CLog such that all MaxV C’s entries
associated with nodes from which T has already read are not
higher that T.V C. This rule allows for ensuring that T never
observes “too fresh” data snaphots, i.e., the commit events
of transactions T ′ that committed on a node from which
T has already read, and whose updates T has “missed”
(having T been serialized before T ′). The reading vector
clock of T is then updated by computing the max between
it and MaxV C, hence reflecting the fact that the transaction
has established a new upper bound on the freshness of the
snapshot that it can observe.
R3 (Version selection). Once the lower bound on data fresh-
ness has been guaranteed, and that T.V C has been updated
to reflect the upper bound on the snapshot observable by T ,
the version of the requested key is determined by extracting
the local version number identifier v from T.V C and getting
the most recent version among the ones committed in the
snapshots observable by the transaction.

We omit a detailed description of GMU’s commit phase,

as this is irrelevant for understanding the functioning of
GMU-C. It suffices to say that it is based on a variant
of the Two-Phase Commit protocol during which i) the
transaction’s readset is validated, and, ii) in case this is found
to be up to date, a new commit VC for the transaction is
established (using a voting mechanism inspired to the Skeen
total order multicast scheme [28]) and inserted in the CLog
of the participating nodes.
Consistency criterion. As already mentioned in Section I,
the target consistency criterion of GMU is Extended Update
Serializability (EUS) [1], whose specification we report in
the following.

Like 1CS, EUS requires that the conflict graph including
all committed update transactions is acyclic. Differently
from 1CS, however, EUS allows two read-only transactions
to observe the commit events of two non-conflicting update
transactions in different orders. Further, EUS imposes addi-
tional guarantees on the snapshots observed by transactions
that abort, mandating that these must be equivalent to those
producible by some serial execution of the set of committed
update transactions (and not arbitrary, as with 1CS). This sort
of guarantees may be necessary to ensure that the application
does not behave in an unexpected manner (e.g., crashing, or
being trapped in infinite loops) due to the observation of
non-serializable snapshots, which would be detectable only
at commit time using 1CS.

IV. CACHING IN THE GMU PROTOCOL

GMU-C is composed of two main sub-components:
1) A cache consistency algorithm, which allows transac-

tions to determine whether it is safe to read locally
cached copies of remote data items.

2) A cache invalidation mechanism, which aims at max-
imizing the freshness of the data maintained in cache
(and hence the profitability of the caching scheme),
and was designed to support arbitray dissemination
and eviction strategies.

In the following we discuss these two components indi-
vidually.

A. Ensuring data consistency

Cached data is maintained in a multi-versioned data
container. Each version of a cached data item is a tuple
〈k, val, creationV C, validityV C〉, where k and val are its
key and value, creationV C is the VC of the transaction
that committed this version, and validityV C is a VC that
represents a lower bound on the most recent snapshot in
which this version represented the freshest value of this key.

The pseudo code describing the behavior of a read from
the cached data container is reported in Algorithm 1. When
a transaction T needs to read a data item d that is not local,
it triggers the readCache function to determine whether
it is possible to serve the read from the cache. To this
end, it first determined whether any version of d is present

Algorithm 1: Read operations on local node (pi)
1 [Key, V er, V C] readCache(Key k, V C xactV C, bool[] hasRead)

2 V ersions vers ← getAllVersions(k);
3 if vers = null then
4 return null;

5 V er v ← precVer(vers, xactV C, hasRead);
6 if v 6= null then
7 V C validityV C ← v.validityV C;
8 if validityV C[owner(k)] ≥ xactV C[owner(k)] then
9 V C updatedV C ←xactVc;

10 if ¬hasRead[pi]) then
11 if checkMaxVC(validityV C, xactV C, hasRead) then
12 updatedV C ←

mergeAndMax(validityV C, xactV C);

13 else
14 updatedV C ←

mergeAndMax(v.creationV C, xactV C);

15 return [key, v, updatedV C];

16 V er precVer(V ersions vers, V C xactV C, bool[] hasRead)

17 V er v ← vers.mostRecent;
18 if 6 ∃j s.t. hasRead[j] = true then
19 return v; // 1st read by the transaction

20 while v 6= null do
21 if ∀j s.t. hasRead[j] = true : v.creationV C[j] ≤ xactV C[j]

then
22 return v;
23 else
24 v ← v.prev;

25 return null;

26 bool checkMaxVC(V C validityV C, V C xactV C, bool[] hasRead)

27 if 6 ∃j s.t. hasRead[j] = true then
28 return true;

29 // In this case it is not safe to mergeAndMax(validityVC[j],xactVC[j])
30 if ∃j s.t. validityV C[j] > xactV C[j] ∧ hasRead[j] = true then
31 return false;

32 return true;

in cache (lines 2-3). If at least some version exists, it is
first determined the most recent one (if any) to have been
committed by a transaction T ′ that is serialized before T . To
this end (see precVer function), the creationV C of the
versions and the vector clock of T , xactV C are compared.
T ′ is considered serialized before T if creationV C does
not follow xactV C in all the entries associated with nodes
from which T has already read. These are nodes for which,
according to rule R2 of GMU (see Section III), the reading
VC of T can no longer be advanced. Hence, this rule
guarantees that the transaction can never observe versions
created by transactions that have been serialized after T .
As a consequence, if T has not read from any node yet,
it can simply return the freshest cache version of v (lines
17-18). On the other hand, if no such version exists (e.g,
because it has been purged from cache by the cache eviction
mechanism), a null value is returned, notifying a cache miss.

In order to determine whether the version v returned by
the precVer function is actually visible by a transaction
T , it is necessary to further verify whether v is sufficiently

fresh based on T ’s reading VC. This is true if it can be safely
excluded that some transaction committed a (fresher) version
of d, being serialized before T and after the transaction
that committed v, say Tv . As the commit events on a
node are totally ordered in GMU, this can be guaranteed
by simply comparing if the validityV C of v stores, in
the entry associated with the owner of d, a value larger
than the corresponding entry in xactV C. The reason why
this condition suffices will become clearer shortly, after
having described the logic used to compute and update the
validityV Cs of cached data items.

Finally, in case transaction T is being served a cached
item, from whose owner T had not read yet, as in rule R2
of GMU, also in GMU-C, T ’s VC is updated in order to a)
capture the fact that, if T could observe version v, then T
has to be serialized after Tv; and to b) possibly allow T to
observe snapshots created by transactions serialized after Tv ,
hence maximizing data freshness. In order to ensure that the
reading VC of T , xactV C, correctly embeds the causality
relationship Tv → T it is sufficient to update xactV C
with the maximum between itself and creationV C. On
the other hand, the logic used in GMU to determine the
upper bound the visible snapshot of a transaction (see rule
R2 in Setion III) requires iterating over the CLog of the
node responsible for maintaining the requested data item.
This is clearly not feasible in case we are serving the read
operation from the cache, or one should fully replicate the
CLog of every node, compromising the genuine partial
replication property of the GMU protocol and mining its
scalability. We note however that we can still exploit the
validityV C and check whether it does not include the
commit events of transactions that were serialized after T
in any node from which it has already read (lines 29-30). If
this is not the case, xactV C can be safely mergeAndMaxed
with validityV C, as the same would have happened if
the read request had been served remotely, by the node
nd owning d, at a time in which the latest entry in nd’s
CLog was validityV C. The mergeAndMax primitive is the
classic update rule for two vector clocks, according to which
the resulting vector contains, in each entry, the maximum
between the corresponding entries of the two vector clocks
passed as input parameters.

Algorithm 2 describes the remote operations introduced,
during the processing of a remote read request from node
pi on node pj , in order to compute the additional meta-
data required by the cache consistency protocol, namely
creationV C and validityV C. First, the data item version
to be returned to pi is retrieved using the classical GMU
reading logic. This logic is encapsulated by the GMURead
primitive, which returns, in addition to the version v, also
the new transaction VC, updated to reflect the read of v
according to GMU’s rule R2.

Next the creationV C is determined by looking up in
the cLog for the transaction that committed v (lines 15-

Algorithm 2: Read operations on remote node (node pj)
1 on receive READREQ[Key k, V C T.V C, bool[] T.hasRead] from pi

2 [V er v, V C newXactV C] ← GMURead(k, T.V C, T.hasRead);
3 V C creationV C ← getCreationVC(v);
4 V C validityV C]← getValidityVC(v, v.getNextV ers());
5 send [readV, newXactV C, validityV C, creationV C] to pi

6 V C getValidityVC(V er readV , V er nextV)

7 if nextV = null then
8 return CLog.mostRecentV C;

9 else
10 foreach vc ∈ CLog do
11 if vc[j] < nextV.value then
12 return vc;

13 return null;

14 V C getCreationVC(V er readV)

15 foreach vc ∈ CLog do
16 if vc[j] = readV.value then
17 return vc;

18 return null;

17). The validityV C is calculated by using the most recent
entry in CLog, in case v is the freshest version of that data
item (lines 7-8). Otherwise, the validityV C is set to the
vector clock of the last transaction to have committed on
node pj before the transaction that overwrote v (lines 9-
12). In other words, validityV C is set to the most recent
committed snapshot on pj in which v was still the most up
to date version of k.

B. Maximizing cache effectiveness

According to Algorithm 1, a transaction T can safely
access a cached version v only if the validityV C of v
ensures that this version is sufficiently fresh given T ’s
reading VC, i.e. if v’s validityV C is larger or equal than
T ’s reading VC in the entry associated with the node that
owns the corresponding data item. In the negative case, a
cache miss has to be forced in order to ensure that no fresher
version of v has been committed by some transaction that
should be serialized before T , and whose updates T should
observe.

On the other hand, in order to ensure that transactions
have a chance to observe the latest versions of data, the
reading VC of executing transactions is advanced in two oc-
casions: i) upon activation of a new transaction, its xactV C
is set equal to the most recent entry in the local CLog
— this ensures that any freshly started transaction T will
necessarily observe the updates produced by any transaction
that committed involving T ’s originating node; ii) upon
every first read of the transaction on a data item owned by
a node n, as specified by GMU’s rule R.2, in case the read
is not served from the cache, or according to the behavior
formalized by the pseudo-code of Algorithm 1, if the read
returns cached data.

Since the reading VCs of transactions are constantly ad-
vanced in order to maximize the freshness of data observed
by transactions, the validityV C of cached data versions
need to be refreshed if one wants to maximize the chances of
being able to serve transaction’s read requests using cached
data. This is precisely the purpose of the cache invalidation
mechanism described in Algorithms 3 and 4.

Let us start by analyzing the pseudo-code of
getInvalidationSet (see Algorithm 3), which
describes the actions performed by node pi to build a, so
called, iSet, destined to a node pj . Node pi maintains
for each other node pj in the system, an index (noted
CLog.lastSentV alue) that points to the last position of
its own CLog for which pi sent information to pj . An
iSet contains the identifiers of all the keys of which pi is
primary owner and that were updated since the last time
that an iSet was built for pj . The iSet for node pj is built
by iterating of the local CLog starting from the most recent
entry to the entry following CLog.lastSentV alue[j], and
merging the writesets of all the corresponding committed
transactions.

Algorithm 3: Invalidation operations on sender
node(node pi)

1 [long, Set, V C] getInvalidationSet(nodeID j)

2 V C mostRecentV C ← CLog.mostRecentV C;
3 long lastSentV alue← CLog.lastSentV alues[j];
4 long mostRecentV alue← mostRecentV C[i];
5 Set iSet← ∅;
6 atomically do
7 if mostRecentV alue > lastSentV alue then
8 foreach vc ∈ CLog do
9 if vc[i] > lastSentV alue then

10 foreach w ∈ vc.keysCommitted do
11 if isPrimaryOwner(i, w) then
12 iSet.add(w);

13 return [lastSentV alue, iSet, mostRecentV C];

14 return null;

iSets can be disseminated asynchronously across the
nodes in the system, using alternative data propagation
strategies, such as pull vs push based [3], gossip-based [27]
vs piggyback-based. The only requirement for the com-
munication layer used to disseminate the iSets is FIFO
ordering guarantee (e.g., as provided by TCP channels).
We integrated in GMU-C’s prototype the following three
different dissemination strategies, which will be evaluated
in Section V:
• EAGER: an iSet is broadcast whenever time a trans-

action commits at some node;
• BATCH: each node broadcasts an iSet with a fixed,

configurable frequency (in case the iSet is non-empty);
• LAZY: an iSet is only disseminated when a node

receives a remote request, by piggybacking it in the
remote request response.

Algorithm 4: Invalidation operations on receiver
node(node pj)

1 V alidity[] mostRecentValidities=new V alidity[|Π|];
2 upon receive Invalidate[iSet, mostRecentV C] from pi

3 foreach invalidKey ∈ iSet do
4 V ersion v ← getMostRecentCachedVersion(invalidKey);
5 if v 6= null ∧ v.validity = mostRecentV alidities[i] then
6 // Detach v.validity from mostRecentValidities[i]
7 v.validity ← mostRecentV alidities[i].clone();

8 mostRecentV alidities[i].set(mostRecentV C);

Finally, let us present the invalidation logic executed upon
reception of an Invalidate message from node pi, described
by the pseudo-code of Algorithm 4. An Invalidate message
carries an iSet, and the VC of the most recent committed
transaction at the time in which the iSet was built, denoted
as mostRecentV C. Applying an Invalidate message from
node pi implies logically extending the validityV Cs of all
(the most recent) cached data item versions owned by pi that
are not included in the iSet, i.e. that have not been updated
since the last iSet message.

In order to implement such operation efficiently, i.e. while
avoiding to iterate over the entire cache data container to
identify the keys whose validityV C should be updated, the
invalidation logic performs the dual operation. It associates a
single, shared VC, denoted as mostRecentV alidities[i], to
all the keys of node pi whose cached version are known
as to be up to date at the time in which an iSet was
generated. Whenever a new Invalidate message is received
from node pi, two operations are performed: i) all keys
contained in the iSet are detached from the shared VC,
mostRecentV alidities[i], by cloning its value in a private
validityV C; ii) next, the value mostRecentV alidities[i]
is updated to the value of mostRecentV C specified in the
message.

V. EVALUATION

In this section, we present the results of an experimental
study of the proposed caching scheme for GMU integrated
in Infinispan that aims (i) to assess its effectiveness by eval-
uating which speed-ups can be achieved thanks to its usage,
(ii) to compare the performance of the three invalidation
dissemination mechanisms described in Section IV, and (iii)
to evaluate the overhead introduced by the caching protocol
in unfavourable, update intensive workloads.

The experimental study has been performed on two differ-
ent testbeds: the CloudTM and FutureGrid infrastructures.

CloudTM is a private OpenStack-based cloud computing
infrastructure, deployed in a dedicated cluster. Each machine
is equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)
E5506 processors, 40 GB of RAM and interconnected via a
private Gigabit Ethernet. The VMs are instantiated with one
processing core and 4 GB of RAM and the virtualization

took advantage of the hardware support provided by the
Intel(R) processors.

FutureGrid [10], [14] is a public cloud infrastructure,
typically characterized by more competitive resource shar-
ing, ample usage of virtualization technology, and equipped
with a high-performance communication infrastructure. In
the evaluation we used from 16 to 80 virtual machines,
equipped with 4GB RAM and one 2.93GHz core Intel Xeon
CPU X5570, and running CentOS 5.5 x86 64. All the VMs
were deployed in the same physical data-center and intercon-
nected via InfiniBand, a switched fabric computer network
communications link used in high-performance computing
and enterprise datacenters.

The benchmark applications adopted for the assessment
of the work are (a porting of) TPC-C [23], Vacation and a
synthetic transactional benchmark.

TPC-C is an On-Line Transaction Processing (OLTP)
benchmark that simulates the activities of a wholesale sup-
plier that operates out of a set of sales districts clustered in
a certain configurable number of warehouses. The TPC-C
benchmark requires to scale out the amount of data stored
(proportional to the number of warehouses) in the system
as its scale grows. The TPC-C version used in this exper-
imental study was adapted to run on top of transactional
key-value stores (and used, in previous works to evaluate
the performance of strongly consistent partial replication
protocols [20], [21]).

Vacation is a benchmark from the STAMP [16] suite that
simulates an online travel agency in which several types of
resources can be manipulated by customers or by the agency.
There are three distinct types of sessions: reservations,
cancellations, and updates. As in TPC-C, we used a port of
this benchmark (which was originally conceived to evaluate
Transactional Memory systems [12]) for distributed key-
value stores that is also designed to use larger data set (i.e.,
a higher number of agencies) when we scale out the system.

The synthetic benchmark executes transactions with a
very reduced number of data accesses, i.e., up to 5 read/write
operations, which allows to generate workloads containing
very fast and lightweight transactions. The rationale for
including, in the suite of benchmarks used in this evalua-
tion study, also this synthetic benchmark is that it allows
for shaping more easily workloads capable of highlighting
relevant trade-offs in the design of the proposed solution.

For all the benchmarks we adopted two base configura-
tions in order to generate two types of workloads: Workload
A, which is a read dominated workload with 90% of read-
only transactions and 10% of update transactions; Workload
B, which is a mixed workload containing 50% of read-
only transactions and 50% of update transactions. For all
benchmarks we configured the default broadcast rate of
the BATCH strategy at 50 ms, which, after a preliminary
experimental phase, turned out to be always very close to
optimum across all the tested workloads.

 0

 50

 100

 150

 200

 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 15 20 25 30 35 40

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35 40

B
an

dw
id

th
(M

B
/s

)

Number of nodes

Figure 1. TPC-C benchmark deployed on CloudTM for Workload A. Left to Right: Throughput, Cache Hit Percentage, Total Bandwidth.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

B
/s

)

Number of nodes

Figure 2. Synthetic benchmark deployed on CloudTM for Workload A. Left to Right: Throughput, Cache Hit Percentage, Total Bandwidth.

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t(

co
m

m
itt

ed
 tx

/s
)

Number of nodes

EAGER
LAZY
NoCache
BATCH

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80

C
ac

he
 H

it
P

er
ce

nt
ag

e

Number of nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 30 40 50 60 70 80

B
an

dw
id

th
(M

B
/s

)

Number of nodes

Figure 3. Vacation benchmark deployed on FutureGrid for Workload B. Left to Right: Throughput, Cache Hit Percentage, Total Bandwidth.

We evaluate effectiveness of GMU-C using three key
performance indicators, i.e. throughput, cache hit percentage
and total consumed bandwidth (across all nodes in the sys-
tem). We compare the performance of the three invalidation
strategies described in Section IV and the one of the base
GMU protocol, i.e. without caching support, while varying,
on the x-axis, the size of the platform, i.e. number of
machines. Among all the results obtained in the experimental
phase (which can be found here [22]) we present, for space
constraints, a selection of the most representative ones,
which allow to evaluate the performance of GMU-C with
very different workloads, and both in favourable and adverse
conditions.

Figure 1 shows the results obtained with the execution of
the Workload A configuration of TPC-C on the CloudTM
platform. In this configuration, the EAGER and BATCH

variants achieve an extremely high cache hit rate, of about
99%. This results in impressive speedups vs the baseline
(NoCache in the plots), which amount to up to 14x. This is
because TPC-C includes very long read-only transactions
that generate a large network traffic as the system scale
grows, and the probability of accessing data locally de-
creases. This is avoided by the EAGER and BATCH strate-
gies that manage to serve almost the totality of remote read
requests. This is not the case for the LAZY strategy, whose
performance plunge beyond 16 machines, accompanied by a
significant drop of the cache hit rate. This is because TPC-C
exhibits a very skewed data popularity, with a very small set
of frequently read and accessed data items (e.g., warehouses
and districts), which are the cause of a large number of
cache misses with the LAZY strategy. Further, the LAZY
strategy introduces the costs of building and transmitting

the Invalidate messages along the critical path of transaction
execution. In this benchmark, this cost is relatively high as
the writesets of committed transactions can contain a large
number of data items.

Figure 2 shows the results obtained with the execution of
the Workload A configuration of the synthetic benchmark
on the CloudTM platform. In this case the LAZY variant
has its best performance (about 4x speed-up vs the baseline
not using caching) if compared to the other approaches
mainly because (i) the network traffic produced by all
the other strategies has a higher impact due to the very
small transaction execution time and (ii) the benchmark
does not generate very skewed accesses thus not inducing a
significant contention like in TPC-C.

Figure 3 shows the results obtained with the execution of
the Workload B configuration of the Vacation benchmark on
the FutureGrid platform. In this update intensive scenario,
caching is not expected to pay off, since i) update trans-
actions spend most of their execution time in the commit
phase, and given that ii) the intense stream of update
transactions make this workload intrinsically very hard to
be cached. Interestingly, however, even in this adverse
scenario the usage of caching mechanism does not result
in a reduction of performance with respect to the baseline
GMU protocol that does not employ caching.

Summing up the evaluation study it is clearly visible
that GMU benefits significantly from the introduction of the
proposed caching mechanism, especially, as expectable, in
read-dominated workloads. However, the various presented
invalidation schemes used in the caching mechanism exhibit
different trade-offs.
• LAZY is attractive in communication intensive workloads,
where it allows for effectively saving bandwidth. However,
by placing the construction and transmission of the invali-
dation messages in the critical path of transaction execution,
it can incur in non-negligible overheads in workloads that
generate large iSet messages.
• EAGER is more effective in ensuring high hit rate,
especially for applications where read-only transactions are
long and the number of keys in update transactions is big,
but for smaller transactions the overhead introduced can be
detrimental even when having a very good cache hit rate.
• BATCH, despite having the potential for reducing commu-
nication and, hence, enhance efficiency, did not prove to be
particularly beneficial in any of the considered workloads.
The gains in terms of reduced bandwidth with respect to
eager, in fact, are normally outweighed by the drop in the
cache hit rate imputable to the delays induced by batching
the cache invalidation messages.

VI. CONCLUSIONS

The potential for scalability of partial replication protocols
can be severely hampered by inefficient data placement
policies, which can induce poor data access locality as the

system scale grows. A possible approach to maximize the
efficiency of these protocols is to adopt caching techniques
and replicate remote data items that are frequently accessed
in an asynchronous (and hence lightweight) fashion.

In this paper, we introduced GMU-C, a distributed
caching mechanism for GMU, a recently proposed, highly
scalable partial replication protocol for transactional sys-
tems. At the time of writing, GMU is being integrated in a
mainstream distributed transactional key-value store, Infin-
ispan by Red Hat, greatly amplifying its practical relevance
and that of the current work.

We conducted an extensive experimental study to analyze
the efficiency and effectiveness of the proposed caching
mechanism, using large scale deployments on both private
and public cloud infrastructures and adopting diverse bench-
marks. The experimental results clearly show that different
cache invalidation strategies can exhibit very different per-
formances depending on the environment and the workload,
motivating further research in the area of adaptive caching
schemes. The results show striking speedups of up to 14
times in read dominated workloads, and a reduction of the
network bandwidth by up to one order of magnitude.

REFERENCES

[1] A. Adya, “Weak consistency: A generalized theory and op-
timistic implementations for distributed transactions,” PhD
Thesis, Massachusetts Institute of Technology, 1999.

[2] P. A. Bernstein and N. Goodman, “Concurrency control in
distributed database systems,” ACM Comput. Surv., vol. 13,
no. 2, pp. 185–221, Jun. 1981.

[3] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramam-
ritham, and P. Shenoy, “Adaptive Push-Pull: Disseminating
Dynamic Web Data”. IEEE Trans. Comput., vol. 51, no. 6,
pp. 652–668, Jun. 2002.

[4] N. Carvalho, P. Romano, and L. Rodrigues, “Scert: Speculative
certification in replicated software transactional memories”. In
proc. of the 4th Annual International Conference on Systems
and Storage, 2011.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: a distributed storage system for structured data”.
ACM Transactions on Computer Systems, vol. 26, no. 2, Jun.
2008.

[6] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues,
“D2STM: Dependable distributed software transactional mem-
ory”. In proc. of the 15th IEEE Pacific Rim International
Symposium on Dependable Computing, 2009.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Span-
ner: Google’s globally-distributed database”. In proc. of the
10th USENIX conference on Operating Systems Design and
Implementation, 2012.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: amazon’s highly available key-value store”.
In proc. of the 21st ACM SIGOPS Symposium on Operating
Systems Principles, 2007.

[9] S. Elnikety, S. Dropsho, and W. Zwaenepoel, “Tashkent+:
memory-aware load balancing and update filtering in replicated
databases”. In proc. of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems, 2007.

[10] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes,
R. Figueiredo, S. Smallen, W. Smith, and A. Grimshaw, “Fu-
tureGrid - a reconfigurable testbed for Cloud, HPC and Grid
Computing”, Contemporary High Performance Computing:
From Petascale toward Exascale, April, 2013. Editor J. Vetter.

[11] M. J. Franklin, M. J. Carey, and M. Livny, “Transactional
client-server cache consistency: alternatives and performance”.
ACM Transactions on Database Systems, vol. 22, no. 3, pp.
315–363, Sep. 1997.

[12] M. Herlihy and J. E. B. Moss. “Transactional memory:
architectural support for lock-free data structures”. In Proceed-
ings of the 20th annual international symposium on computer
architecture (ISCA ’93). ACM, New York, NY, USA, 289-300.

[13] A. Lakshman, and P. Malik, “Cassandra: a decentralized
structured storage system”. ACM SIGOPS Operating Systems
Review, vol. 44, no. 2, pp. 35–40, Apr. 2010.

[14] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, A. Kul-
shrestha, G. G. Pike, W. Smith, J. Voeckler, R. J. Figueiredo,
J. Fortes, et al., “Design of the FutureGrid Experiment Man-
agement Framework”, GCE2010 at SC10, New Orleans, IEEE,
11/2010.

[15] F. Marchioni and M. Surtani, “Infinispan Data Grid Platform”.
Packt Publishing, Aug. 2012.

[16] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “Stamp: Stanford Transactional Applications for Multi-
Processing”. In proc. of the IEEE International Symposium on
Workload Characterization, 2008.

[17] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues, “AutoPlacer:
scalable self-tuning data placement in distributed key-value
stores”. In proc. of the 10th International Conference on
Autonomic Computing, 2013.

[18] R. Palmieri, F. Quaglia, and P. Romano, “AGGRO: Boosting
STM Replication via Aggressively Pptimistic Transaction Pro-
cessing”. In proc. of the 9th IEEE International Symposium on
Network Computing and Applications, 2010.

[19] F. Pedone, R. Guerraoui, and A. Schiper, “The Database
State Machine Approach”. Distributed and Parallel Databases,
vol. 14, no. 1, pp. 71–98, Jul. 2003.

[20] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues,
“When Scalability Meets Consistency: Genuine Multiversion
Update-Serializable Partial Data Replication”. In proc. of the
IEEE 32nd International Conference on Distributed Computing
Systems, 2012.

[21] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A Scalable
One-Copy Serializable Partial Replication Protocol”. In proc.
of the ACM/IFIP/USENIX 13th International Middleware Con-
ference, 2012.

[22] H. Pimentel, “Enhancing locality via caching in the GMU
protocol”. MSc Thesis. Instituto Superior Técnico, Universi-
dade Técnica de Lisboa, Jul. 2013.

[23] F. Raab, “Tpc-c - the standard benchmark for online trans-
action processing (oltp)”. The Benchmark Handbook, Morgan
Kaufmann, 1993.

[24] N. Schiper, P. Sutra, and F. Pedone, “P-Store: Genuine Partial
Replication in Wide Area Networks”. In proc. of the 29th IEEE
Symposium on Reliable Distributed Systems, 2010.

[25] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme, “Boosting Database Replication Scalability
through Partial Replication and 1-Copy-Snapshot-Isolation”.
In proc. of the 13th Pacific Rim International Symposium on
Dependable Computing, 2007.

[26] D. Serrano, M. Patiño Martı́nez, R. Jiménez-Peris, and
B. Kemme, “An autonomic approach for replication of internet-
based services”. In proc. of the IEEE Symposium on Reliable
Distributed Systems, 2008.

[27] R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe:
A robust and scalable technology for distributed systems
monitoring, management, and data mining”. ACM Transactions
on Computer Systems, vol. 21, no. 2, pp. 164–206, May 2003.

[28] R. Guerraoui and A. Schiper, “Genuine atomic multicast
in asynchronous distributed systems”. Theoretical Computer
Science, vol. 254, no. 1-2, pp. 297–316, Mar. 2011.

