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Abstract—Transactional Memory (TM) is an emerging
paradigm that promises to significantly ease the development
of parallel programs. Hybrid TM (HyTM) is probably the most
promising implementation of the TM abstraction, which seeks
to combine the high efficiency of hardware implementations
(HTM) with the robustness and flexibility of software-based
ones (STM). Unfortunately, though, existing Hybrid TM systems
are known to suffer from high overheads to guarantee correct
synchronization between concurrent transactions executing in
hardware and software.

This article introduces DMP-TM (Dynamic Memory
Partitioning-TM), a novel HyTM algorithm that exploits, to the
best of our knowledge for the first time in the literature, the
idea of leveraging operating system-level memory protection
mechanisms to detect conflicts between HTM and STM
transactions. This innovative design allows for employing highly
scalable STM implementations, while avoiding instrumentation
on the HTM path.

This allows DMP-TM to achieve up to ∼ 20× speedups
compared to state of the art Hybrid TM solutions in uncontended
workloads. Further, thanks to the use of simple and lightweight
self-tuning mechanisms, DMP-TM achieves robust performance
even in unfavourable workload that exhibits high contention
between the STM and HTM path.

I. INTRODUCTION

Multicore processors have become ubiquitous in today’s
computing systems, and the foreseeable future trends point
towards increasingly large and complex parallel architectures.
Developing applications capable of full untapping the potential
of modern parallel architectures, though, is far from being a
trivial task. The problem of regulating concurrent access to
shared state, in a scalable and provably correct way, is a key
source of complexity that developers of parallel programs need
to face. The traditional approach to this problem is to rely
on ad-hoc designed lock-based synchronization schemes. Un-
fortunately, though, the usage of lock-based synchronization,
especially at a fine-grain level, is prone to subtle concurrency
bugs and leads to developing non-composable [1] programs
that are notoriously complex to debug and reason about [2].

Transactional Memory (TM) [3] answers the urge to simplify
parallel programming by borrowing the familiar abstraction
of transactions from the database domain: programmers only
need to identify which code blocks should be executed atom-
ically, delegating to the implementation of the TM run-time
the problem of how to ensure atomicity.

The plethora of alternative systems that have been proposed
in the TM literature, e.g., [4]–[7], can be coarsely classified

depending on whether they rely on hardware implementations
(HTM), on software ones (STM), or on combinations thereof,
where the latter are often referred to as Hybrid TM (HyTM).

HTM and STM have complementary pros and cons. STM,
due to its software nature, can accommodate transactions
that access a virtually arbitrary large number of memory
regions. Further, state of the art STM systems encapsulates
sophisticated concurrency control schemes, which allow for a
high degree of concurrency and have been shown to achieve
high scalability. However, the STM’s need for instrumenting
in software read and write memory accesses represents a
major source of overhead, which can impose a severe toll on
performance [8].

Existing HTM implementations, conversely, leverage on the
pre-existing cache coherency protocol to track conflicts among
transactions and ensure atomicity. By avoiding the overhead of
software instrumentations, HTM can achieve high efficiency.
However, the cache-centric nature of current HTM implemen-
tations imposes also severe limitations. In particular, existing
HTM systems provide no guarantees on the ability to commit
transactions, even if these run solo for a variety of reasons,
e.g., exceeding cache capacity or being subject to a context
switch. Due to these limitations, HTMs require an alternative
fall-back path, typically a single global lock that is activated
in case a transaction fails too many times in hardware.

HyTMs seek to obtain the best of STM and HTM by
allowing HTM transactions to use some STM implementation
on their fallback path. Unfortunately, despite the number of
proposals in this area [7], [9]–[11], existing HyTM imple-
mentations still suffer from large synchronization overheads to
ensure correctness when HTM and STM run concurrently [12].
For example, HyTMs that fallback to the LSA’s STM [13]
require HTM to manipulate per-location metadata (often re-
ferred to as Ownership Records, or ORecs) used by STMs.
This extends significantly the memory footprint of HTM
transactions, making them prone to capacity aborts. The only
HyTM solution we are aware of that avoids instrumenting read
and write memory accesses is HyNORec [4], which uses the
NORec STM on its fallback path. However, NORec is opti-
mized for low thread counts and is less scalable than ORec-
based approaches [8], thus being a suboptimal fallback path
for large-scale parallel systems. Further, HyNOrec induces
spurious aborts of HTM transactions in presence of concurrent
commits of non-conflicting STM transactions.



This work addresses the shortcomings of existing HyTMs by
presenting DMP-TM (Dynamic Memory Partitioning), the first
HyTM system that can rely on highly scalable ORec-based
STM implementations, while avoiding any instrumentation
cost on the HTM path.

The key novel idea exploited in DMP-TM is to rely on
operating system (OS) level memory protection mechanisms
to detect conflicts between HTM and STM transactions. DMP-
TM maps the heap of a TM application twice in the process
virtual address space, one view being accessed by the HTM
path and one by the STM back-end. It then relies on OS
memory protection mechanisms to selectively prevent pages
of one heap from being accessed by the opposite back-end.

This design brings two important benefits, but also non-
trivial challenges. A first key advantage is that DMP-TM is
agnostic to the actual STM implementation being used: this
allows DMP-TM to be used in conjunction with highly scal-
able and efficient ORec-based STM systems, while avoiding
the harsh instrumentation overheads imposed to the HTM path
by existing HyTM systems. Another major benefit stemming
from this design is that DMP-TM allows HTM and STM
transactions that access disjoint memory pages to commit
concurrently, sparing them from spurious aborts that would
instead arise with state of the art HyTM systems [7].

The key challenge related to DMP-TM’s design is that it
relies on system calls to enforce memory partitions, which
have a non-negligible cost. Indeed, DMP-TM investigates an
interesting trade-off, which to the best of our knowledge, has
not been currently explored in the literature: leveraging the
data partitionability present in applications in order to reduce
the runtime overheads of detecting conflicts among STM and
HTM transactions, at the cost of a performance penalty in case
conflicts between STM and HTM transactions do materialize.

The partitionability of memory access patterns of TM ap-
plications is a property already observed in some reference
benchmarks by previous works [14] and also confirmed by
our experiments. When TM applications do exhibit such a
property, DMP-TM allows both HTM and STM transactions
to execute avoiding mutual interference, thus minimizing the
synchronization of STM transactions and completely removing
the need of synchronization overheads for the HTM side. With
workloads that generate excessive contention between HTM
and STM transactions, the cost of migrating page protections
from a heap to the other may outweigh the performance gains
stemming from the avoidance of expensive synchronization
mechanisms in non-contended runs.

In order to maximize the gains achievable in favourable
workloads, while ensuring robust performance also with un-
favourable ones, DMP-TM integrates two key self-tuning
mechanisms that detect, in a transparent and automatic way:
i) which back-end (STM or HTM) to employ for the different
transactional blocks of a TM application; ii) whether the
degree of partitionability of the accesses generated by the STM
and HTM back-ends is too low, being thus preferable to use
exclusively the most efficient of the two back-ends.

We evaluated DMP-TM via an extensive study based on

both synthetic and realistic benchmarks, i.e., STAMP [15] and
a porting of TPC-C [16] to the TM domain, and compared
its performance with HTM, 2 STM and 3 HyTM systems.
The results of our study show that, in favourable workloads,
DMP-TM achieves up to 8.1×/20× speedups vs the best
STM/HyTM implementation and up to 37× vs HTM. DMP-
TM achieves significant performance gains even when faced
with realistic applications: DMP-TM outperforms all the con-
sidered baselines in 2 out of the 3 benchmarks of the STAMP
suite that are favourable for HyTM systems, achieving up to
2× speedups versus the best alternative. Analogous speedups
are obtained even with TPC-C. Overall, our study shows
that DMP-TM can achieve significant performance gains with
realistic workloads that do not exhibit perfectly partitionable
access patterns, providing experimental evidence in support of
the practical viability of the proposed solution.

II. RELATED WORK

As this work targets HyTM, it has relations with the body
of literature that focused on enhancing the efficiency of HTM
systems using software mechanisms.

A first branch of works aimed to enhance the efficiency
of HTM systems that use as fall-back path a single global
lock (SGL). Afek et. al [17] proposed using an auxiliary lock
to avoid the avalanche effect, where cascading aborts happen
when the SGL is acquired. Calciu et. al [18] investigated the
idea of lazy subscription of the global lock to reduce conflicts
between HTM transactions and the fallback path. TUNER [19]
leverages online tuning mechanisms to decide when to acquire
the pessimistic fallback lock. SEER [20] relies on probabilistic
techniques to identify and schedule conflicting transactions
executing in hardware. POWER8-TM [21] aims to increase the
effective capacity of hardware transactions via Rollback-only
Transactions, namely atomic, but non-serializable, transactions
available on IBM’s POWER8 processor [22].

DMP-TM has clearly strong relations with the research in
the area of HyTM systems, which, like DMP-TM, aim to
support the concurrent execution of both HTM and STM
transactions. One such example is HyNOrec [7]. HyNOrec
relies on a simple instrumentation mechanism on HTM side
that only requires to increase the sequence lock used by
NOrec. Although the instrumentation required by HyNOrec
is relatively lightweight, it exposes HTM transactions to
spurious aborts with non-conflicting STM transactions. Re-
duced HyNOrec [23] extended HyNOrec with a transactional
chopping mechanism to further enhance its efficiency. These
solutions are limited to employing NOrec, which is optimized
for low thread counts [4]. Conversely, DMP-TM is STM
agnostic and thus can be integrated with ORec-based STMs
that were shown to achieve much higher scalability levels [6],
[8]. Further, DMP-TM does not require instrumenting the
HTM path and does not suffer from spurious aborts.

Existing HyTM algorithms that support more scalable ORec-
based implementations do exist. Unfortunately, though, they
either suffer from spurious aborts (e.g., HyTL2 [23]), analo-
gous to HyNOrec, or require instrumenting the read, write and
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Fig. 1: Architecture of DMP-TM system

commit operations of HTM transactions (e.g., Invyswell [24]
and Hybrid-LSA [25]), incurring significant overheads —
which we will quantify via the study in Section V.

The Hybrid Cohorts [10] HyTM spares both HTM and STM
transactions from extra instrumentations by only allowing
HTM to commit when there are no active STM transactions.
An analogous idea was explored by PhTM [9], which aims
to reduce synchronization overheads between STM and HTM
by executing them in alternate phases. Unlike DMP-TM, these
solutions prohibit concurrency between HTM and STM.

The idea of exploiting memory protection mechanisms in
the context of TM was previously used [26] to ensure correct
synchronization between a STM system and non-transactional
code, i.e., ensure strong atomicity [1]. DMP-TM builds on
analogous base building blocks (hardware-/OS-based memory
protection mechanisms) but applies them in a different context
(HyTM) and to solve a different problem: enable concurrent,
yet safe, execution between HTM and STM transactions.

Finally, DMP-TM is related with prior works that investigate
the partitionability of workloads not only for TM applica-
tions [14], but also in relational [27] and NoSQL [28] domains.
Particularly relevant for DMP-TM is the work by Riegel et
al. [14], which has first shown that, even in irregular TM
applications like the ones included in the STAMP suite, it is
possible to encounter disjoint data partitions that can benefit
from the adoption of distinct (software-based) synchronization
schemes. It should be noted, though, that DMP-TM considers
different synchronization mechanisms than the ones targeted
by Riegel et al., and, hence, a different definition of ”partition-
ability”. Also, unlike the solution proposed by Riegel at al.,
DMP-TM is designed to operate (and can achieve significant
performance gains) also in presence of workloads that are not
perfectly partitionable.

III. DMP-TM: ARCHITECTURE AND OVERVIEW

Figure 1 depicts DMP-TM’s architecture, which is composed
by four main components: (i) Memory Manager, (ii) Scheduler,
(iii) Signal Handler and (iv) Auto-Tuner. It should be noted
that these are 4 logical components, which, as we will detail
in the next section, are physically implemented in a scalable
and decentralized fashion in DMP-TM to enhance efficiency.

The Memory Manager is responsible for regulating the
accesses by the HTM and STM paths to the shared trans-
actional heap. This entails: mapping the transactional heap
in the process address space twice (via the mmap() system
call), granting and revoking access grants of the two paths

Fig. 2: Mapping of the address space in the HTM Heap and in the STM Heap

to the shared heaps (via the mprotect() system call), as well
as caching in user space the state of the per-page memory
protections (an optimization that spares from executing system
calls in absence of contention between HTM and STM).

The Scheduler classifies transactional blocks as either HTM-
friendly or non-HTM-friendly, and accordingly establishes the
execution paths to be used to support their execution.

The Signal Handler is activated when HTM transactions ac-
cess a memory page that was last accessed in an incompatible
mode by a STM transaction, triggering an access violation. In
such a case, the Memory Manager is consulted to determine
when it is safe to restore the needed protection for HTM.

Finally, the Auto-Tuner determines when it is beneficial
to turn off one of the back-ends, as the excessively high
frequency of system calls’ activations outweighs the gains
achievable by using concurrently the HTM and STM paths.

As already mentioned, DMP-TM is designed to be STM
agnostic, i.e., it can enable concurrent execution of HTM with
any STM algorithm. The flexibility enabled by this feature of
DMP-TM is particularly relevant given that various works have
shown the lack of a no-one-size-fits-all solution when it comes
to STM implementations [29]. In fact, DMP-TM’s current
prototype integrates TinySTM, which was selected due to its
high scalability and to the efficiency of its implementation [8].
However, it would be straightforward to develop variants of
DMP-TM using alternative STM implementations.

As for the HTM implementation, DMP-TM assumes a
conventional/plain interface for transaction demarcation. The
only assumption that DMP-TM makes on the underlying
HTM system is that, upon a page access violation, the HTM
implementation aborts the transaction and makes available
to the signal handler the information on the address that
triggered the exception. This is an information that HTM
implementations by Intel do not currently disclose, but that
is instead provided by IBM POWER8’s HTM (and by other
IBM implementations, to the best of our knowledge).

A. Memory Manager: double heap approach

DMP-TM manipulates the process’ virtual space in such a
way that the heap is mapped twice (see figure 2) — one
heap being used by STM transactions (STM heap) and the
other by HTM transactions (HTM heap). Although both heaps
point to the same data, with this arrangement, it is feasible
to control the access rights of specific regions in one of the
heaps, without affecting the other heap. It is worth noting here
that this solution does not restrict a transaction type to be



executed by a specific thread, i.e., any thread can execute any
transaction, either using HTM or STM, at any moment of time.
DMP-TM automatically maps the access to shared data to the
correct heap according to the back-end being used to execute
a given transaction.

Upon its initialization, DMP-TM creates a shared memory
zone using the directive shm open(). Then, using the Unix
system call mmap() the shared memory zone is mapped twice
to the HTM heap and STM heap. To control access rights,
DMP-TM uses the mprotect() system call, which operates at
the granularity of a single page. This system call changes
the protection of memory pages contained in a given range
of addresses. In order to allow an efficient way to calculate
the page to be revoked in the opposite heap, both heaps are
placed at a constant offset. Thus, calculating the address in
the opposite heap is achieved by simply adding or subtracting
a fixed offset. This implies basically two changes in the way
applications should be developed to be used with DMP-TM:

1) Dynamic memory should only allocate memory from
the shared memory region. To this end, we developed
a simple, custom implementation of malloc that allo-
cates memory exclusively from the range of addresses
associated with the shared region. Analogously to other
memory allocators, e.g., [30], DMP-TM’s custom malloc
implementation splits the range of virtual addresses in
n equally sized, disjoint, page aligned splits, where n is
the number of threads. This allows each thread to serve
malloc/free requests from its ”private” split, avoiding any
synchronization overheads with other threads.

2) Two code paths need to be produced, one for STM and
one for HTM transactions, each targeting the correspond-
ing heap. Given that the translation between the two
address spaces is simple (just a plain translation), the
generation of the code paths could be fully automated by
a compiler — although the current prototype of DMP-TM
does not provide compiler support for this task.

B. Memory Manager: enforcing dynamic partitions

DMP-TM spares HTM transactions from having to check
or notify the STM path about possible conflicts, placing any
required instrumentation on the STM path. Throughout the ex-
ecution of an STM transaction, before any shared data access,
DMP-TM checks if that data lies on a page accessible, in an
incompatible mode, by HTM and, if needed, it accordingly
removes the access permissions from the corresponding page
in the HTM heap. The result of this design is that whenever
a HTM transaction accesses a page for which it does not own
adequate access rights, the OS (which, in its turn, exploits
virtual memory hardware supports) triggers an access violation
by raising a SIGSEGV signal. This causes the immediate abort
of any HTM transaction that has already accessed that page,
or that will access that page in the future. This signal is treated
by the Signal Handler module, which is in charge of restoring
access rights for HTM transactions.

In order to regulate access to the HTM and STM heaps,
DMP-TM stores the following per page metadata:

• Status field, which tracks the access rights of a page in
the HTM heap. Pages can be in one of three states:
(i) Read/Write: HTM can update data on this page,
(ii) Read: HTM can only read data from this page and
(iii) None: HTM can not access this page in any form.
This allows the STM to retrieve in an efficient way, i.e.,
without issuing system calls, the access permissions of
the pages in the HTM heap.

• Transition count, which stores how many times the write
access permissions to a page have been restored by the
Signal Handler. This counter is monitored by STM trans-
actions to detect if the write permissions to a previously
read page have, in the meanwhile, been granted back to
HTM. If this is the case, some HTM transaction may
have overwritten a value previously read by the STM
transaction, which is, thus, restarted.

• Writers Count, which tracks the number of active STM
transactions that wrote to a page. This counter is atomi-
cally incremented by an STM transaction upon its first
write to a page and atomically decremented upon its
commit or abort. This variable is used to prevent restoring
access rights to a page in the HTM heap, while there are
active STM transactions that wrote to it, thus, preventing
HTM transactions from observing inconsistent states.

• Lock bit, which acts as a mutex that is acquired whenever
the protection and state of a page have to be altered,
preventing transactions from concurrently altering the
state and protection (via mprotect()) of the same page.

C. Transaction Scheduler and Auto-Tuner

As discussed earlier, the Scheduler module has the re-
sponsibility of determining the back-end (HTM or STM) to
be used by each transaction. We utilize a simple heuristic
to accomplish this task. The Scheduler tracks the number
of aborts due to the exceeding of the cache capacity by
HTM transactions. If the ratio (capacity aborts/number of
commits+capacity aborts) is greater than 90%, this transaction
type is labelled as STM.

In workloads with high degrees of contention between the
HTM and STM back-ends, DMP-TM is likely to incur high
costs due to the cost of handling access violations and issuing
system calls to restore the access rights on the HTM heap.
In order to detect when these costs outweigh the gains of
executing HTM without instrumentation concurrently with
STM, the Auto-Tuner module of DMP-TM employs a bailout
mechanism based on the following heuristic: If DMP-TM is
spending more than 20% of time issuing system calls, it resorts
to using either of the back-ends. The decision of upon which
back-end to fallback to is taken by sampling the throughput
of both back-ends and choosing the back-end with higher
throughput.

IV. ALGORITHM

Algorithm 1 shows the pseudocode for the STM path and the
Signal Handler’s logic. To simplify presentation, we present
pseudocode for the core functionality that allows STM and



Algorithm 1 Pseudocode for STM and Signal Handler
1: Shared variables:
2: status[N ]← {0, 0, . . . , 0} . per page status field,
3: tc[N ]← {0, 0, . . . , 0} . per page transition count,
4: wc[N ]← {0, 0, . . . , 0} . per page writers count and
5: lb[N ]← {0, 0, . . . , 0} . per page lock bit
6: Local variables: . initialized upon every transaction attempt
7: private tc[N ]← {0, 0, . . . , 0} . local version of tc
8: pages read← ∅ . set of pages accessed as read
9: pages written← ∅ . set of pages accessed as write

10: function STM READ(addr)
11: page← GetPage(addr) . get page where this address lies
12: VALIDATE READSET()
13: if page /∈ pages read then . First time page is read
14: pages read← pages read ∪ page
15: private tc[page]← tc[page]

16: if status[page] == #READWRITE then
17: ACQUIRE lb[page]
18: MPROTECT(READ) . issue mprotect with read-only
19: status[page]←#READ . set status to read
20: RELEASE lb[page]

21: val← TX Read(addr) . call the STM API
22: if private tc[page] 6= tc[page] then
23: STM RESTART()
24: return val

25: function STM WRITE(addr,val)
26: if page /∈ pages written then . First time page is written
27: ATOMIC INCREMENT(wc[page])
28: pages written← pages written ∪ page

29: if status[page] 6=#NONE then
30: ACQUIRE lb[page]
31: MPROTECT(NONE) . issue mprotect with none
32: status[page]←#NONE . set status to none
33: RELEASE lb[page]

34: TX Write(addr, val) . call the STM API

35: function VALIDATE READSET
36: for page ∈ pages read do
37: if tc[page] 6= private tc[page] then
38: STM RESTART()

39: function STM RESTART
40: for page ∈ pages written do
41: ATOMIC DECREMENT(wc[page])
42: TX Abort
43: function STM COMMIT
44: VALIDATE READSET()
45: TX Commit . ask the STM to commit
46: for page ∈ pages written do
47: ATOMIC DECREMENT(wc[page])
48: function HANDLE AV(addr,isReadOnly)
49: wait until wc[page] = 0 . drain writing STM transactions
50: ACQUIRE lb[page]
51: if ¬isReadOnly then
52: status[page]←#READWRITE
53: else
54: status[page]←#READ
55: MEM FENCE
56: if wc[page] 6= 0 then
57: status[page]←#NONE
58: RELEASE lb[page]
59: go to 49 . wait for writers count to be 0
60: if ¬isReadOnly then
61: tc[page] + +
62: MPROTECT(READ/WRITE)
63: else
64: MPROTECT(READ)
65: RELEASE lb[page]

HTM transactions to correctly execute concurrently, omitting
the logic of the Scheduler and Auto-Tuner (see Sec. III-C), as
well as several optimizations that are discussed in Sec. IV-B).

STM reads. When a read is issued by a STM transaction, it is
first checked if the transition count of previously read pages
has changed since the last access. If any of them has changed

in the meanwhile, it means that some HTM transaction may
have updated that page (and possiby committed); thus, the
STM transaction is aborted. Next, if it is the first read access
to this page by this transaction, it stores a local copy of the
transition count to use it for future checks. Then, it checks
the metadata of the page to which it is issuing a read. If the
page’s access rights are Read/Write (line 16), which means
that a HTM transaction can perform updates on it, then the
lock bit is acquired in order to change the protection of the
page to Read, allowing concurrency with HTM transactions
that read this page. After setting the metadata of the page
and releasing the lock bit, the transaction effectively reads the
memory position, using the underlying STM’s API, and checks
again if the transition count has changed. If so, the performed
read is not legal and consequently, the transaction is restarted.
If not, the read is successful.
STM writes. Upon a write to shared data from within a STM
transaction, if it is the first time the transaction writes to a page
it atomically increases the writers count for that page (line
27). This blocks any attempt by concurrent Signal Handlers
of changing the HTM access rights for that page. Then it is
checked if the page corresponding to the location to be updated
is accessible by HTM (line 29). If so, after acquiring the
lock bit, the access rights for HTM are revoked. This protects
HTM from witnessing inconsistent states by observing values
written by incomplete STM transactions. After changing the
page access rights via mprotect() to None and updating the
status field of the page, the lock bit is released and the
transactional update of the value is finally performed.
STM aborts. Before a STM transaction aborts, either due to
data conflict or abort from DMP-TM, the writers count of all
the pages previously written by the transaction is decreased
(lines 40-41). This allows HTM transactions to regain accesses
to those pages.
STM commits. After a STM transaction finishes its execution,
it enters in the commit phase, in which it first checks if the
transition count of the pages previously read have changed
meanwhile (line 44). In the case they have changed, the
transaction restarts as explained before. Otherwise, it continues
to commit according to its implementation-dependent logic.
Then, finally, it decrements the writers count atomically for
all the pages it has written to (lines 46 - 47).
Signal Handler. The Signal Handler (function HAN-
DLE AV()) is activated whenever a HTM transaction ac-
cesses a page for which it does not have adequate access rights.
In this case the OS generates a SIGSEGV, which is intercepted
and managed in the same thread that generated the exception.
After having extracted the target address of the memory oper-
ation that triggered the access violation1, the Signal Handler
waits for the writers count of the corresponding page to be
zero. Next, it acquires the page’s lock bit, sets the metadata to

1This information is obtained via the siginfo struct that is passed by the
OS to the Signal Handler. Existing Intel implementations of HTM reset the
siginfo if the access violation occurs in a hardware transaction, which is the
reason why DMP-TM does not currently support Intel’s architecture.



Read/Write or Read (depending on whether the exception was
generated in an update or a read-only transaction) and checks
again for the writers count, to ensure that it did not change in
the meanwhile. Otherwise, the Signal Handler defers to any
active writing STM by resetting the access rights to None and
going back to wait until the writers count is zero. After that,
the Signal Handler can restore the HTM access rights to the
desired page and, in case the exception occurred in an update
transaction, it increments the transition count to notify STM
transactions about the occurrence of possible conflicts with
HTM transactions. It should be noted that transition count is
increased before acquiring the Read/Write rights, in order to
guarantee that if a HTM transaction is granted back permission
to update and commit a page (via MPROTECT()), the STM
path is guaranteed to detect the corresponding change of the
transition count.

A. Correctness Argument

In this section, we provide a set of (informal) arguments
on the correctness of the DMP-TM. We organize our analysis
by discussing, separately, how DMP-TM enforces isolation of
HTM and STM transactions.
Isolation of HTM transactions. The key invariant enforced
by DMP-TM to ensure correctness of a HTM transaction
THTM , despite the concurrent execution of any STM trans-
action TSTM , is to ensure that THTM has no permission
to access any of the pages written by TSTM throughout
its execution. To this end, STM transactions remove HTM’s
access rights to each page they write to, before issuing the
actual write operation. As already mentioned, the removal
of the access right causes the immediate abort of any HTM
transaction that had already read/written that page, as well as
future accesses by HTM transactions to that page.

It is however necessary to carefully synchronize the concur-
rent execution of the Signal Handler(s) and STM transactions
that compete to restore/remove the access rights of the same
page. In particular, it is necessary to ensure that the Signal
Handler can restore HTM’s access to a page only when there
are no active STM transactions updating that page, i.e., when
the page’s writers count is set to zero. This is achieved by
having the Signal Handler check for the writers count twice,
while setting the metadata to Read/Write in between. For the
second check to be valid, there can be no concurrent STM
transaction that started a write operation on this page yet
— recall that the writers count is atomically incremented
as the first step of processing a STM write. In case of a
STM transaction T starting a write operation after the second
check of the Signal Handler, then T will notice that HTM
transactions have access to the page, thanks to the memory
barrier that precedes the second check (line 55); in this
case, T will acquire the page’s lock (synchronizing with
any concurrent Signal Handler operating on the same page)
and issue a MPROTECT that will abort any concurrent HTM
transaction.
Isolation of STM transactions. In order to ensure correctness
of STM transactions, DMP-TM guarantees that none of the

pages accessed by STM transactions can be altered by HTM
transactions, since the time in which each page is first read and
until the end of the STM transaction. This is achieved via two
key mechanisms: i) ensuring that a STM transaction accesses
a page after having removed any non-compatible permission
to the corresponding HTM heap’s page; ii) checking the
transition count of every read page, upon each read and before
commit, letting the transaction proceed (without aborting) only
if none of them changed since the first time in which that page
was read. This implies that the page was not concurrently
modified by a HTM transaction, since the transition count
would be found different if protections had been changed in
the meanwhile. It should also be noted that the atomicity
of each individual STM read is guaranteed by reading the
transition count of a page before and after performing the
read via the API of the underlying STM implementation.

It should be noted that, in order to reduce overheads, STM
transactions check the status of a page without first acquiring
the corresponding lock. It is hence possible that a STM
transaction finds, in line 16, a page as not writeable by the
HTM path and that, before it completes the read, a Signal
Handler restores write permission to HTM for the same page.
In this case, HTM transactions may even commit and update
to that page, before the STM completes executing its read. In
such a case, though, the transition count would be found to
have changed, when it is checked for the second time in line 22
by the STM transaction. If, instead, the values of the transition
counts are not found to have changed, then the STM read is
also guaranteed to observe the permissions set by the Signal
Handler when it increased the value of transition count — as
the memory fence in line 55 ensures that if the increase to
the transition count is globally visible, so is the corresponding
page’s state. This causes the STM transaction to synchronize
with concurrent Signal Handlers, by acquiring the page’s lock,
and to ensure that HTM write permissions are removed before
performing the read.

B. Optimizations

The following are a set of optimizations that can be applied
to the algorithm described above to further enhance its perfor-
mance:
• instead of checking the transition count of every accessed

page upon each access, one can use a global transition
count that is incremented atomically from within the
Signal Handler together with the increment of the page’s
transition count. Then instead of checking each transition
count of every page upon each STM access, it suffices to
only check if the global transition count has changed. If
it has not (the common case in workloads that exhibit
good partitionability), no further checks are required;
else, we undergo the normal procedure and have the STM
transaction check the transition count of each page it
previously read.

• instead of maintaining a single writers count per page
shared by all STM threads, which must be incremented or
decremented atomically, one can use a set of, per thread,



local counters. This will spare STM transactions from the
need to perform expensive atomic operations. However,
the Signal Handler will need to ensure that all the flags are
unset before it attempts to change the page’s protection.

• certain STM algorithms need to re-validate their readset
in order to ensure the safe execution of transactions, e.g.,
as in the case of TinySTM in presence of concurrent
commits of update transactions. These STM implemen-
tations could be made aware of the execution of read-set
validations performed by DMP-TM (if transition count is
found to have increased), which may allow them to spare
duplicate validations.

The current implementation of DMP-TM integrates the first
two optimizations, but not the last one. Unlike the first two
mechanisms, in fact, the last optimization comes at the cost of
requiring to alter the inner logic of the STM implementation
employed by DMP-TM, whereas one of the key design goals
of DMP-TM is its STM-agnostic nature.

V. EVALUATION

This section reports the results of an extensive experimental
study, in which we evaluated both the static (DMP-TM) and
the dynamic version (DMP-TUNE) of the proposed solution.
In the static version, transactions are statically assigned to
either one of the back-ends according to an exhaustive offline
search for the best configuration, whereas in the dynamic
version the scheduler module decides upon the transaction as-
signment during run-time. We compared DMP-TM and DMP-
TUNE (whose implementation we made publicly available2)
against: i) HTM with a single global lock as fallback (htm-
sgl); ii) TinySTM with the same configuration as the one
used for DMP-TM and DMP-TUNE; iii) HyNOrec using 2
counters to decouple subscribing from signaling; iv) NOrec
with write back configuration; v) HyTinySTM, which we
implemented by adapting the original algorithm [25] to replace
the prefetchw instruction, which is not available in current
HTM implementations, with a write; vi) HyTL2, based on
the algorithm described in [23]. All hardware-based solutions
try executing each transaction 10 times in hardware before
resorting to the fallback path. DMP-TM and DMP-TUNE,
however, try the transactions attributed to HTM 100 times
before acquiring the global lock. This is done since the
transactions attributed to HTM in DMP-TM and DMP-TUNE
are hardware-friendly and likely to commit using HTM, if
tried long enough. Conversely, using such a high retry count
with other hardware-based solutions will dramatically degrade
their performance, since the approaches try all transactions
(including non-HTM-friendly ones) first in hardware.

We start by using synthetic benchmarks to generate diverse
workloads. intended to test extreme scenarios regarding parti-
tionability of HTM and STM access patterns. Then, we tested
DMP-TM using real-world complex benchmarks, namely two
benchmarks of the popular TM benchmark suite STAMP [15]

2https://github.com/pedroraminhas/DMP-TM
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Fig. 3: Speedup and commits breakdown for disjoint data structures running
1, 10 and 80 threads

and TPC-C [16]. All presented results were obtained by exe-
cuting on an 80-way IBM Power8 8284-22A processor with
10 physical cores, where each core can execute 8 hardware
threads. The OS installed is Fedora 24 with Linux 4.7.4 with
page size of 64KB and the compiler used is GCC 6.2.1 with
-O2. The reported results are the average of 5 runs.

Thread pinning was used to pin a thread per core at the
beginning of each run for all the solutions until exhausting
the number of available cores, and then distributing them in
round-robin fashion to minimize unbalances between cores.

A. Synthetic Benchmarks

In order to assess the effectiveness of DMP-TM in diverse,
yet identifiable workload settings, we rely on a synthetic
benchmark based on two different hashmaps, storing 128,
resp. 1024, elements per bucket. This setting was motivated
by the fact that if HTM transactions read all the elements of a
bucket from the first hashmap, the size of the read-set fits in
the cache. However, if HTM transactions read all the elements
from the second hashmap, the read-set will exceed the cache
size, thus causing a capacity abort.

Disjoint data structures. To demonstrate the potential of
DMP-TM we consider a workload, composed of two trans-
actions types, one amenable for execution in hardware and
one not (as it exceeds deterministically HTM’s capacity), that
generate perfectly partitionable memory accesses, i.e., the sets
of pages accessed by each transaction type are disjoint. To We
populated the hashmaps to use 64 pages in total and used a
workload with 10% lookups and 90% update transactions.

Figure 3 reports the throughput speedup normalized with
respect to TinySTM and the breakdown of commits for three
different thread configurations: 1, 10 and 80 threads. For each
of these configurations, we varied the percentage of small
transactions executed. The x-axis reports the probability of
a thread to be executing a long transaction from 1% to 100%
(only long transactions). The results show remarkable gains



either for DMP-TM and DMP-TUNE, since in this experiment
both data structures are disjoint and the operations executed
are so heterogeneous that HTM shines when executing short
transactions, whereas STM excels with long ones. We normal-
ize the throughput of all the solutions according to TinySTM
(which we accordingly omit from the plot), and use log scale
on both y and x-axis to enhance visualization.

With one thread, we can assess the overhead that DMP-TM
and DMP-TUNE incur. When the workload constitutes mainly
small transactions, both variants of DMP-TM achieve better
performance than HTM-SGL, thanks to their ability to run
HTM transactions without any instrumentation and executing
large transactions in STM — which spares the cost of retrying
them several times before using the fallback path. As the per-
centage of large transactions in the workload increases, DMP-
TM variants start to be outperformed by TinySTM, paying a
penalty of ∼20% in the 100% long transactions workload. This
is the cost of the extra instrumentation that DMP-TM adds on
top of TinySTM. Note that NOrec consistently outperforms
TinySTM, thanks to its more lightweight instrumentation.

At 10 threads, DMP-TM becomes the best performing back-
end, achieving speedups of up to ∼2× compared to HTM-
SGL, and more than 3× compared to TinySTM and ∼ 6×
compared to NOrec-based solutions. This can be explained by
the breakdown of commits shown in the middle row of Figure
3. DMP-TM is able to execute short transactions in HTM
and long transactions as STM, unlike HTM-SGL that executes
large transactions using the pessimistic single global lock. In
this configuration, TinySTM starts to surpass the throughput
of HTM-SGL when the workload is running operations in the
smaller data structure with probability less than 20% but only
at 50%, TinySTM’s throughput equalizes DMP-TM. At 100%
of large transactions, due to the fact that DMP-TM requires
additional instrumentation on top of STM, it suffers ∼20%
performance penalty w.r.t. TinySTM.

80 Threads continue showing the same trend as 10 threads,
but with even greater speedups: more than 20× compared
to HTM-SGL, ∼10× compared to HyTinySTM and ∼7×
compared to TinySTM. The gains with respect to both HTM-
SGL and HyTinySTM are due to DMP-TM’s ability to execute
more transactions in hardware, as shown in the commits
breakdown plot. At high number of threads, capacity aborts
become non-deterministic as more threads share hardware
resources and it is, thus, beneficial to retry more times in
hardware than reverting to the fallback path. However, without
differentiating between deterministic and non-deterministic
capacity aborts, high retry counts becomes harmful in terms of
throughput. Again, TinySTM outperforms DMP-TM whenever
the probability of executing large transactions is greater than
30% leading to a 30% overhead at 100% large transactions.

Throughout the entire experiment, the dynamic version of the
algorithm (DMP-TUNE) worked as expected, since whenever
transactions execute operations in the smaller hashmap the
percentage of aborts due to exceeding transactions footprint is
negligible. Nevertheless, when transactions execute operations
in the larger hashmap, they deterministically abort due to
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Fig. 4: Speedup, commits breakdown and system calls ratio for non-disjoint
data structure running 1, 10 and 80 threads

exceeding the cache size. Thus, the scheduler module assigns
the type of transactions accessing large hashmap as STM
transactions, matching the offline assignment used by DMP-
TM . Thanks to this assignment ability, DMP-TUNE is able
to still benefit from using high retry counts unlike other
hardware-based solutions.

Non-disjoint data structures. This experiment stresses the
worst case scenario for DMP-TM, by allocating both hashmaps
in the same memory region and interleaving the buckets of
each hash map. With the granularity of DMP-TM being a
single page, any access to either of the hashmaps is going to
be considered a conflict. Therefore, DMP-TM will suffer from
a very large number of system calls, as for either of the back-
ends to commit a transaction, it is most likely that some page
protection has to be restored, given that we are considering a
90% update workload.

Figure 4 depicts the results of running this workload with
1, 10 and 80 threads. It is clear that DMP-TM suffers large
performance penalties, up to 20× compared with TinySTM
in the worst case. This is true across all workloads except
when the workload is dominated by either short or long
transactions. At those extremes, there is no need for changing
the pages access rights since DMP-TM is executing only one
of the back-ends. Other than that, DMP-TM incurs significant
overheads. This can be explained by looking at the ratio of
system calls to commits, which shows that DMP-TM can pay
up to more than 0.8 system calls per commit.



This is a typical workload where the Auto-Tuner module
should decide to bailout and stick to either one of the back-
ends. Inspecting the speedup plots in Figure 4, we can see
that DMP-TUNE manages to match the performance of the
best performing of both back-ends. At 1 thread, HTM-SGL
performs better than TinySTM, except when the system is
running only large transactions (right side of the 1 thread
figure); so, as expected, DMP-TUNE falls back to HTM-SGL
with percentage of long transaction less than 100%. At 10
threads, by looking at the commit breakdown is possible to
see that DMP-TUNE falls back to HTM-SGL in workloads
characterized by less than 50% of long transactions. However,
after this mark, TinySTM begins to be the best performing
back-end. Thus, DMP-TM falls back to TinySTM at this mark.
At 80 threads mark, the best performing back-end is TinySTM,
independently of the percentage of long transactions, and
DMP-TUNE correctly adapts itself to employing TinySTM.

B. STAMP

STAMP [15] is a popular TM benchmark suite constituted
of 8 different complex applications. Out of the 8 applications,
Genome and Intruder are the ones that typically benefit from
HyTM systems as they encompass both small and large
transactions. Other applications generate either only small
transactions (SSCA2 and KMeans) or large ones (Labyrinth
and Yada). Thus, there is no room for improvement for
any HyTM. The remaining two applications are Bayes and
Vacation. Bayes is known to suffer of very high variance and
yields unreliable results [31]. Vacation is another benchmark
that can benefit from a HyTM system, however, it has low
degree of partitionability. Hence, DMP-TUNE would perform
as good as either HTM or STM. We omitted the results of
Vacation for space constraints.

Genome represents the process of reconstructing the original
source genome from a pool of DNA segments. We conducted
an extensive brute-force experimental study in order to infer
which of the 5 transaction types generated by Genome to
run with HTM or STM. We found that this workload in-
deed presents partitionability, as we can define three disjoint
transactional clusters according to their data access. DMP-TM
successfully exploits this workload’s property, achieving the
maximum throughput and scaling to 64 threads, yielding ∼2×
higher throughput than HyTinySTM, the second best baseline
at 80 threads (Figure 5).

This can be explained by analyzing the commits break-
down, which shows DMP-TM’s ability to execute >90% of
transactions in hardware, ∼1% using the pessimistic fall-
back path and ∼5% as STM at all thread counts. Although
HyTinySTM manages to demonstrate similar commit patterns
up to 8 threads, it performed worse than DMP-TM due to the
extra instrumentation it imposes to its HTM path. Beyond 8
threads, HyTinySTM could not commit as many transactions
in hardware, since it incurs more frequent capacity aborts that
consume its retry count and lead to more frequent activations
of the fallback path.

Furthermore, the workload is characterized by low con-
tention. Therefore, up to 4 threads, NOrec and TinySTM
achieve slightly better throughput than DMP-TM as they do
not impose any extra instrumentation to their STM path. Up
to 2 threads, HyNOrec, shows similar throughput as DMP-
TM, since as shown in the commit breakdown plots of Figure
5, it still manages to commit 95% and 38% of the times in
hardware, respectively for 1 and 2 threads, and uses as fallback
NOrec, which as stated before achieves higher throughput than
DMP-TM in this workload for a low thread count. However,
as the thread count increases, abort rate starts to increase. In
these contention settings, DMP-TM benefits from executing
transactions in software, which enables more concurrency
than the SGL fallback used by HTM-SGL. For the case
of HyNOrec, the fallback of only one thread makes all the
threads fallback to NOrec, and this has an adverse impact on
performance when the thread count is higher than 4. After
16 threads, HyTinySTM starts to incur overheads due to
the fact that at this thread count, cores are shared by more
than one hardware thread, which reduces the effective cache
capacity available for each hardware thread. As HyTinySTM
instruments hardware transactions to check for changes in the
STM ORecs, it suffers from an increased abort rate compared
to the solutions that do not instrument hardware transactions,
namely HTM-SGL and DMP-TM. For the case of HyTL2,
unlike the STM counterpart, TL2, not shown in the study,
does not extend the snapshot used during STM reads, which
leads to an increase of the transaction’s abort rate.

Intruder is a signature-based network intrusion detection
system that encompasses three parallel transactions. The right
column of figure 5 shows DMP-TM being the only back-end
to scale up to 16 threads achieving ∼1.5× higher through-
put than TinySTM, the second best performing back-end.
The lower speedups in Intruder, as compared with Genome,
can be attributed to the lower percentage of transactions
(∼30%) that DMP-TM manages to execute in hardware.
Again, HyTinySTM, which even commits more transactions in
hardware, is outperformed by DMP-TM achieving 2× lower
throughput at 16 threads, due to the costly instrumentation of
its HTM path. NOrec’s HyTM counterpart follows the same
trend as NOrec. However, the commit breakdown shows that
starting the execution in the HTM path and falling back to
NOrec causes performance losses in the order of 0.73× com-
pared to NOrec. It is worth noting that NOrec achieves the best
throughput until 4 threads, thanks to its lower instrumentation
costs. However, at 8 threads, its throughput deteriorates due
to the increase of the contention in the workload. Further,
HTM-SGL and HyTL2 are the worst back-ends, due to the
pessimistic nature of the fallback of the former and to the
inability of the STM fallback path of the latter to perform
well in high contention workloads.

C. TPC-C

Finally, we move to evaluating DMP-TM using TPC-C [16].
TPC-C is a well-known benchmark for relational database
management systems that emulates a workload of a whole-
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sale supplier. It consists of five transactions operating on
a database. In this work, we use a port of TPC-C for in-
memory databases3 where transactions are executed by an
underlying TM implementation. To promote partitionability,
we performed vertical partitioning, according to the TPC-
C standard, by moving attributes that are points of conflict
to different memory regions to reduce false conflicts. We
consider two different workloads that exhibit different degrees
of partitionability between short and long transactions.

The left column of Figure 6 reports the results of a workload
composed by 95% of payment, 1% stock level and 4% of
delivery transactions. This workload has a high degree of
partitionability, reflected in a very low system calls to commits
ratio. DMP-TM achieves the best throughput showing up to
2.4× speedups compared with the second best contender,
TinySTM. At a low thread count, namely up to 4 threads,
TinySTM achieves slightly better throughput than DMP-TM
due to the fact that it has no extra instrumentation. Although
HTM-SGL and HyTinySTM execute more than 90% of the
transactions in hardware, they yield ∼3× lower throughput
than DMP-TM. For HTM-SGL, this is due to the fact that
stock level and delivery operations, that do not meet HTM’s
capacity limitations, are much longer than payment operation.
This hinders parallelism and thus limits throughput gains
and scalability of HTM-SGL. While for HyTinySTM, also in

3https://github.com/evanj/tpccbench
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Fig. 6: Speedup, commits breakdown and system calls ratio for two workloads
of TPC-C.

this case the problem is rooted to the high instrumentation
costs of the HTM path. NOrec, HyNOrec and HyTL2 incur
performance losses due to the fact that payment operation
has very high contention. After 32 threads, neither DMP-
TM nor DMP-TUNE scale. This happens despite the commit
breakdown plot (and the abort rate) incurred by these solutions
do not show any significant spike. We have verified, though,
that, above 32 threads, the Instruction Per Cycle drop severely,
with a corresponding spike in the number of stalled cycles —
which suggests that, increasing the thread count, the bottleneck
for DMP-TM eventually becomes contention to some physi-
cal resource, probably memory or some micro-architectural
resource of the processor.

Finally, the right column of Figure 6 shows the throughput
results for a workload with low degree of partitionability, as
reflect by the high systems calls to commits ratio. Due to
the high number of system calls, DMP-TM incurs 16× lower
throughput compared with TinySTM at 80 threads. Again
thanks to its self-tuning ability, DMP-TUNE is able to fallback
to TinySTM and achieve similar throughput.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented DMP-TM, a HyTM algorithm that
exploits a key novel idea: leveraging operating system-level
memory protection mechanisms to detect conflicts between
HTM and STM transactions. This innovative design allows
for employing highly scalable ORec-based STM implementa-



tions, while avoiding any instrumentation on the HTM path.
DMP-TM demonstrated robust performance in an extensive
evaluation, achieving gains of up to ∼20× when compared to
state of the art HyTM systems.

As a concluding remark, we note that the current imple-
mentation of DMP-TM cannot be used with Intel’s HTM
implementations, which, unlike IBM’s, lack support for a
simple feature: reporting information on the address that
caused an access violation that occurred within a transaction.
We hope that the performance benefits achievable by DMP-
TM will motivate other CPU manufacturers, besides IBM, to
integrate this feature in their future CPU generations.

In our future work, we plan to investigate two mechanisms to
allow DMP-TM to cope with this limitation and allow interop-
erability with existing Intel’s HTM implementations. The first
technique consists in obtaining the address of the instruction
that caused the exception via the Last Branch Records, which
in recent Intel processors store the last branches executed
by the CPU and can be used to pinpoint the address of
the instruction that caused an access violation [32]. The
key challenge with this approach lies in determining which
memory address had the offending instruction targeted, based
on the program control flow information stored in the LBRs.

A second approach we intend to investigate is the use
of Processor Tracing (PT), namely a recent ISA extension
that supports inbuilt tracing mechanism for Intel TSX, and
provides extensive control not only on the control flow within
transactions, but also precise timing analysis on asynchronous
events (like interrupts and signals). While it appears that
this information could be used to accurately estimate the
memory addresses that triggered an access violation by a HTM
transaction, the overheads incurred by tracing and analyzing
this information in run-time are still unclear and can only be
evaluated by building a realistic prototype.
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