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We present an analytical performance modeling approach for concurrency control al-
gorithms in the context of Software Transactional Memories (STMs). Unlike existing ap-
proaches, we consider a realistic execution pattern where each thread alternates the exe-
cution of transactional and non-transactional code portions. Also, our model captures dy-
namics related to the execution of both transactional read/write memory accesses and non-
transactional operations, even when they occur within transactional contexts. Further, we
rely on a detailed approach explicitly capturing key parameters, such as the execution cost
of transactional and non-transactional operations, as well as the cost of begin, commit and
abort operations. The proposed modeling methodology is general and extensible, lending
itself to be easily specialized to capture the behavior of different STM concurrency control
algorithms. In this work we specialize it to model the performance of Commit-Time-Locking
algorithms, which are currently used by several STM systems.

1 Introduction

Software Transactional Memories (STMs) [1, 2, 3, 4] are emerging as a highly attractive and potentially disruptive
programming paradigm. Leveraging on the proven concept of atomic and isolated transactions, STMs spare the
programmers from the pitfalls of conventional handcrafted synchronization, thus significantly simplifying the devel-
opment of concurrent applications. Further, STMs have been recently identified as an ideal candidate to simplify the
programming of distributed applications deployed in large scale data centers [5] or in cloud computing environments
[6].

Compared to traditional transactional systems, such as database systems, STMs are based on (and require)
innovative design/development approaches, where the optimization focus is shifted on aspects that historically had
less importance. Among them we can mention hardware-cache aware design (see, e.g, [7]) as well as tailoring
of the design to the specific instruction set offered by the target computing architecture (see, e.g., [8]). At the
same time, concurrency control schemes commonly adopted in database environments are not likely to fit all the
requirements of fine grained, volatile memory operations typical of STM-based applications [4].

According to the above considerations, the wide set of database oriented performance analysis results (see,
e.g., [11, 12, 13, 14, 15, 16]) cannot be (fully) representative of the actual performance levels provided by STM
systems. Hence, a major issue to address when dealing with innovative concurrency control algorithms specifically
tailored to STM environments (see, e.g., [3, 9, 10]) is the lack of analytical models able to reliably capture their
actual dynamics. Such models would be helpful since they could provide indications on aspects of interest for
both designers of STM layers and developers of STM-based applications. As an example, it would be extremely
important to assess how well a given STM concurrency control algorithm scales vs the degree of parallelism, namely
the number of CPU-cores available within the underlying computing platform.

In this paper we address such a lack by providing a two-layered analytical modeling methodology well suited for
STM systems. In our approach, a top modeling-layer predicts the system performance as a function of the degree
of concurrency within the system (e.g. the number of worker threads in charge of executing transactional memory
operations, and the probability that they are executing transactional vs non-transactional code portions), indepen-
dently of the specific scheme adopted for regulating memory accesses by concurrent conflicting transactions. The



latter aspect is instead demanded to the bottom layer of the model, which can be specialized in a way to determine
commit/abort probabilities on the basis of the specific choices determining the actual synchronization (concurrency
control) scheme among threads executing conflicting transactional code portions.

In this work we provide an instantiation of the bottom layer which models the behavior of the Commit-Time-
Locking (CTL) concurrency control algorithm, which is adopted by several popular STM systems, such as TL2
[9]. The performance model has been also validated against simulation results obtained considering data access
patterns based on the well known STAMP benchmark [17].

The remainder of this paper is structured as follows. In Section 2 we discuss literature results related to our
contribution. The analytical modeling methodology, together with the specific model instantiation for CTL is provided
in Section 3. The comparison between model and simulation results is provided in Section 4. Section 5 concludes
the paper.

2 Related Work

The work in [18] provides an analytical model for STM systems. However, the provided modeling approach suf-
fers from two key limitations, which are overcome by the approach we present in this paper. First, the model in
[18] assumes that applications are constantly executing transactions, while real STM-based applications rely on
threads that alternate the execution of transactional and non-transactional code, with data conflicts being possible
exclusively during the execution of transactional code portions. Second, the model in [18] abstracts over time by
describing the execution of a transaction as a sequence of steps whose duration is left unspecified. This restricts
the usage of the model exclusively to qualitative comparisons among different STM algorithms, making it infeasible
for forecasting fundamental time-related performance metrics, such as response time or throughput (unless when
assuming that all the phases of the execution of any transaction have identical, constant duration). Differently, our
analytical modeling approach is able to capture the advancement of time according to a continuous timeline, which is
achieved via a Continuous Time Markov Chain. Also, it relies on a detailed workload characterization model, which
includes key cost parameters related to both STM internals and STM-based applications, such as the duration
of transactional operations (read/write accesses to transactional memory locations, as well as begin/commit/abort
operations), and explicitly accounts for the time-interval in between two transactional operations.

Leveraging on the common notion of atomic transactions, STM algorithms and DBMS concurrency control
schemes are naturally closely related. The analytical modeling of concurrency control in database environments
has been widely investigated over the last three decades. Analytical modeling approaches have been presented
in, e.g. [13, 14, 15, 19, 20, 21] for the case of centralized database systems, and in [16, 22] for the case of dis-
tributed/replicated databases. However, database transactions encompass accesses to stable storage and incur in
the overhead of SQL parsing and plan optimization. Conversely, in STM environments, transactions are used as
a programming-language construct for the manipulation of in-memory data structures. This makes their execution
time several orders of magnitudes smaller than the counterpart in DBMS scenarios [29], which amplifies the impact
of the overhead associated with the STM-specific internal schemes for the management of low-level data-structures
(e.g. CTL [9]). These schemes do not have a direct counterpart in the database literature so, consequently, they are
not covered by the literature on analytical modeling of concurrency control schemes for database systems. Also,
existing performance models of concurrency control schemes do not capture the behavior of applications alternating
the execution of transactional and non-transactional phases, as it is conversely typical of STM-based applications.

3 The Analytical Model

3.1 Assumptions and Considerations

As typical of STM applications/benchmarks [17, 23, 24] we assume a fixed number k of threads. Also, we assume
that each thread executes on a distinct CPU-core. Each thread alternates the execution of transactional and non-



transactional code blocks. A non-transactional code block is formed by a sequence of machine instructions which
we denote as ntcb. Each transaction starts with a begin operation, then executes n transactional operations (namely,
either read or write operations) and finally ends by issuing a commit operation. After the begin operation and after
each transactional operation, the thread executes a code block, denoted as tcb, during which it does not perform
transactional read/write operations.

We denote with tbegin, tread, twrite and tcommit, the expected time required by a thread to execute, respectively,
begin, read, write and commit operations. Note that, in practice, these durations are affected by both the speed of
the underlying hardware platform and the internals of the underlying STM layer. Compared to existing approaches
(see, e.g., [18]), the choice of capturing the above costs through ad-hoc parameters enhances the flexibility of
our model, thus allowing it to be employed for what-if analysis aimed at forecasting the performance for diverse
scenarios and/or workloads. As an example, the model can be used to assess the performance of STM-based
applications when deployed on different hardware platforms (which might give rise to different machine instruction
patterns) or when changing the internals of the underlying STM layer (e.g. via the exploration of trade-offs between
alternative implementation strategies).

We assume the duration of tcb and ntcb to be exponentially distributed, with mean ttcb and tntcb, respectively.
Whenever a transaction is aborted, an abort operation is executed, whose handling has an expected duration tabort.
After experiencing an abort, a transaction is temporarily held in a back-off state for an exponentially distributed
time period, denoted as tbackoff , at the end of which it gets restarted. The probability for a transactional operation
to be a memory write is denoted as pwrite, otherwise it is a memory read operation. To simplify the model, we
will assume that the n read/write operations occurring within a transaction access distinct data items, uniformly
distributed across the whole set of d data items maintained within the memory layout. In other words, we assume
that two distinct read/write operations never access the same data item.

3.2 Modeling Approach Overview

As hinted, we logically structure our model in two distinct parts, each one capturing complementary aspects of the
execution dynamics of STM-based applications. The first part of the model, which we name top modeling-layer,
is presented in Section 3.3. It exploits a Continuous Time Markov Chain (CTMC) to determine how the various
threads in the system alternate among the following three phases: (i) execution of a non-transactional code block,
(ii) execution of an STM transaction, (iii) blocked in back-off.

By allowing the determination of the probability distribution of the number of threads in each of these three
phases, this layer of the model can be used to output standard performance metrics such as throughput and ex-
ecution time. This part of the model is de-facto oblivious of the specific algorithm used by the STM to regulate
concurrency, over which it abstracts via two key input parameters: (a) the average transaction execution time (in-
dependently of its final outcome) and (b) the commit probability, given a number i ∈ [1, k] of threads concurrently
executing transactions. Instead, these parameters are computed by what we refer to as bottom modeling-layer, one
instance of which, tailored to CTL, is presented in Section 3.4. This layer is focused on capturing proper dynam-
ics associated with the specific conflict detection and resolution schemes adopted by the STM layer, assuming a
constant, albeit parametric, number of threads simultaneously executing transactions.

By decoupling the modeling of the dynamics associated with thread alternation among the various phases
from the modeling of the concurrency control algorithm, our two-layered modeling methodology provides the below
reported benefits:

1. It simplifies the modeling stage of the concurrency control algorithm, delegated to the bottom modeling-
layer, since this model does not require to explicitly consider dynamic variations of the number of threads
concurrently executing transactional code blocks. The model only requires to provide performance predic-
tions under the assumption that exactly i threads are concurrently executing transactions. Then, it will be
the responsibility of the top modeling-layer to exploit the independent performance forecasts associated
with different values of i in order to generate the final performance predictions.



2. It allows seamless replacement of the model of the STM concurrency control scheme presented in this
paper, namely the CTL model [9] (see Section 3.4), with alternative ones either relying on different mod-
eling approaches and/or targeting different concurrency control algorithms.

3.3 Top Modeling-Layer: Thread Execution Model

We model the alternation of the various phases for the execution of the different threads (inside a transaction,
executing a non-transactional code block or blocked in back-off after an abort) via a Continuous Time Markov
Chain (CTMC) [25]. Each state of the CTMC is marked and identified by a couple of integers (i, j) representing,
respectively, the number of threads running transactions and the number of threads in back-off. Since the total
number of threads in the system is equal to k, the only admissible states in the CTMC are those for which the
corresponding (i, j) pair respects the constraints: i, j ∈ [0, k] and i+ j ≤ k.

For each state (i, ·), with i > 0, the model takes as input parameters the transaction execution rate, denoted as
µi, and the probability pc,i for a transaction to successfully commit, in case of i threads simultaneously executing
transactions. These need to be provided by the bottom modeling-layer in charge of capturing the effects of the
specific concurrency control scheme. In the following we will denote with pa,i = 1 − pc,i the probability for a
transaction to experience an abort, when considering that i threads are concurrently executing transactions. Also,
we will denote with λ = 1

tntcb
, the rate according to which a thread executes a non-transactional code block (in

between two transactions).
We can now list the rules defining the transition rates from any two states of the CTMC:

- for i + j < k, the transition rate from state (i, j) to state (i + 1, j), associated with the activation of a
transaction after the completion of the execution of a non-transactional code block, is equal to k−i−j

ttcb
;

- for i > 0, the transition rate from state (i, j) to state (i− 1, j), associated with transaction commit events
and the subsequent activation of a non-transactional code block, is equal to µi · pc,i · i;

- for i > 0, the transition rate from state (i, j) to state (i− 1, j+1), associated with transaction abort events
and the start of the back-off period, is equal to µi · pa,i · i;

- for j > 0, the transition rate from state (i, j) to state (i + 1, j − 1), associated with the termination of
back-off periods and transaction restart, is equal to 1

tbackoff
· j.

We exclude state (0, k) as a possible one since, (i) the CTMC characterizing our model does not express
state transitions where multiple transactions get simultaneously aborted due to (mutual) conflicts, and (ii) adopting
whichever literature STM concurrency control algorithm, if a single thread is currently executing a transactional code
block, then the corresponding transaction cannot be aborted. It is easy to show that the set of states of the CTMC,
denoted as S, has cardinality equal to (k+1)·(k+2)

2 − 1. Note also that, if i+ j < k, it follows that k − (i+ j) threads
are executing non-transactional code blocks.

As typically expected in any real system, if we assume µi > 0, pc,i ̸= 0 and pc,i ̸= 1 (the cases of pc,i = 0
or pc,i = 1 express, respectively, a pathological scenario with no possibility of transaction progress and a trivial
scenario entailing no data contention), given that i ∈ [1, k], the CTMC is irreducible, and is formed by an ergodic set
of states. Thus the stationary probability vector v is unique and satisfies the typical equation

v ·Q = 0 (1)

where Q is the infinitesimal generator matrix of the CTMC [26]. Assuming that the system is in steady-state, and
that we are provided with µi and pc,i values (∀i ∈ [1, k]), we can compute the probability to be in each state (i, j) ∈ S
by resolving equation (1). We can then evaluate the system throughput τ as the sum of the transaction commit rates
in the different states, weighted according to the probability for the system to be in each state (i, j)

τ =
∑

(i,j)∈S

vi,j · i · µi · pc,i (2)



The overall transaction commit and abort probabilities, denoted as pc and pa, can be accordingly evaluated,
using the below expressions

pc =
∑

(i,j)∈S

vi,j · pc,i (3)

pa = (1− pc) (4)

3.4 Bottom Modeling-Layer: CTL Model

In this section we introduce an analytical model of Commit-Time-Locking (CTL) concurrency control, considering
the version implemented within the TL2 STM layer [9]. This version is considered as one of the best performing
concurrency control algorithms for typical STM workloads. We will start by over-viewing such a target version of the
CTL algorithm, and then we will move to the presentation of its analytical model.

3.4.1 Algorithm Overview

Unlike, e.g., strict 2PL [27], CTL does not acquire locks upon accessing data items. Instead, lock acquisition is
delayed to commit time, and only involves written data items (write-locks). This choice enhances concurrency with
respect to conventional lock-based schemes by, e.g., avoiding to block transactions issuing a write operation on a
data item that has already been read/written by a concurrent transaction.

Given the absence of read-locks, consistency is ensured via a validation mechanism used to notify transaction
T , which speculatively read a data item x, about the fact that x was overwritten by some concurrent transaction
T ′ preceding T in the commit order. To this end, a versioning scheme is employed which associates a timestamp
value with each data item, referred to as Write-Version-Clock (WVC). The generation of WVC values relies on a
unique Global-Version-Clock (GVC), which is read by any transaction upon startup, and is atomically increased
upon transaction commit. The updated value is used as the new WVC value for all the data items written by the
committing transaction.

When validating a transaction against a read data item x, two actions are performed:

1) it is checked whether there is a write-lock being held on x (which implies that another transaction has
written x and is currently within its commit phase);

2) it is checked whether the current timestamp associated with x is grater than the timestamp read by the
transaction upon starting up (which indicates that some concurrent transaction has overwritten x and has
already been committed).

If one of the previous checks fails, the transaction gets aborted. This validation scheme is used upon each read
operation and, as we shall discuss below, also at commit time. Accordingly, CTL concurrency control schemes
guarantee the opacity property [28], which ensures that the snapshot observed by any transaction is equivalent
to the one that would have been observed according to some serial execution history. As discussed in [28], this
property is crucial since for several categories of STM-based applications, transactions observing an inconsistent
snapshot may be trapped within infinite loops, or may even cause the application program to crash (e.g. due to an
invalid memory reference).

As far as write operations are concerned, in CTL they are buffered within a private workspace until the commit
phase. When a transaction attempts to commit, it first acquires the write-locks for all the data items within its write-
set. If any of these lock acquisitions fails (due to lock holding by some other transaction), the transaction is aborted.
Otherwise, the transaction increments the GVC and tries to validate all the data items it has within its read-set
(according to the aforementioned validation procedure). If the validation fails for at least one item within the read
set, the transaction gets aborted. If no abort occurs, the data within the write-set are copied back to their original
memory locations, together with the updated values for their WVCs, reflecting the updated value of the GVC. All the
acquired locks are released at the end of the commit phase, or upon the abort.



3.4.2 Analytical Model

As previously discussed, the bottom modeling-layer computes the transaction execution rate µi = 1/rt,i (where rt,i
is the average transaction execution time) and the transaction commit probability pc,i under the assumption that
there are i threads simultaneously processing transactions, with 1 ≤ i ≤ k. If i = 1, a single thread is currently
executing transactional code, thus no data conflict can arise. This also means that the currently executed transaction
can not be aborted and it follows that pc,1 = 1. Therefore, for the average transaction execution time we have that

rt,1 = tbegin + n · top + (n+ 1)ttcb + tcommit (5)

where top, namely the average time to execute an operation, is equal to

top = tread(1− pwrite) + twrite · pwrite (6)

For i ̸= 1 we proceed as follows. Once fixed i, we use a procedure that iteratively recalculates the values of pc,i
and rt,i. Upon starting the iterative procedure, the initial values can be selected as pc,i = pc,i−1 and rt,i = rt,i−1

for commodity. The output values by an iteration step are used as the input values for the next step. We conclude
the iterative procedure as soon as the corresponding input and output values for pc,i and rc,i differ by at most an ϵ.
In all the configurations that we have experimented, using ϵ=1%, the procedure has always converged in at most
fifteen iterations.

In each iteration step the following set of parameters, captured by our model, are re-evaluated:

- poa,l, namely the probability for a transaction to abort while executing its lth operation due to validation fail
(recall that a transaction can abort while executing an operation only if the operation is a read);

- palc, namely the probability for a transaction to abort at commit time due to lock contention experienced
in the commit-time lock acquisition phase;

- pavf , namely the probability for a transaction to abort at commit time due to validation failure of its read-
set.

In order to model these parameters, we consider that the expected system state seen by any of the i active
transactions is determined by the activities associated with the other i− 1 transactions currently within the system.
Thus we use the following approach.

When a transaction successfully commits, an average number n · pwrite of locks are first acquired, and then
released after read-set validation and write-back phases. Actually, the duration of the lock acquisition and release
phases are typically negligible with respect to the duration of validation and write-back phases (recall that, during
lock acquisition, transactions do never block, even if they experience contention). Hence, for simplicity, we assume
lock acquisition and release to be instantaneous and to occur, respectively, at the beginning and at the end of the
commit phase. Also, if a transaction is aborted, no real rollback operation is required for undoing the effects of the
corresponding write operations since transaction write-sets are reflected to memory only if transactions successful
commit. Thus, to simplify, we ignore the cost of aborts when we evaluate the average lock holding time, assuming
that if a transaction successfully completes the lock acquisition phase, it holds the locks for an average time equal
to tcommit.

From now on we make the assumption that transactions arrive to the commit phase according to a Poisson
process. Let us now compute the probability for a transaction to abort while executing a read operation on a data
item x, given that it finds the corresponding lock currently busy. For this case to be possible, there must exist
another transaction that has written x, that is currently in its commit phase and that has successfully acquired the
locks for all the data items in its write-set. Given that we are assuming uniformly distributed accesses to distinct
data items in each of the n operations issued within a transaction, it follows that the probability for a committing
transaction to have a specific data item within its write-set is n · pwrite/d. Exploiting the aforementioned assumption



of Poissonianity of the arrival rate of transactions to the commit phase, we can compute the probability to incur in
lock contention while issuing a read operation as:

plock = lr · tcommit ·
n · pwrite

d
(7)

where lr is the rate according to which the remaining i− 1 transactions in the system successfully execute the lock
acquisition phase. This rate can be evaluated as follow

lr =
1

rt,i
· (pc,i + pavf ) · (i− 1) (8)

where pavf is the probability for a transaction to abort during the read-set validation phase. Note that pc,i + pavf is
the probability for a transaction to successfully execute the lock acquisition phase. We will evaluate pavf later in this
subsection.

Now we determine the probability poa,l for a transaction T to abort while executing the l-th operation due to the
fact that the corresponding data item is accessed in read mode and was updated since T started its execution (that
is, some other transaction has written the data item and has successfully committed after T started). The rate ur at
which a data item is updated by transactions is equal to

ur = cr · (n · pwrite)/d (9)

where cr expresses the rate at which the other i− 1 transactions successfully commit, and can be evaluated as

cr =
1

rt,i
· pc,i · (i− 1) (10)

Equation (9) is obtained by relying again on the assumption that each operation of a transaction accesses a
distinct data item and that each of the d data items within the transactional-memory system is accessed with the
same probability. If the l-th operation by transaction T is a read operation, the average time tb,l elapsed since
T started its execution can be expressed as tbegin + ttcb · l + top · (l − 1). As we are assuming that the arrival
of transactions to the commit phase forms a Poisson process, the probability pou,l for a read (executed as the l-th
operation of T ) to access a data item that has been updated by some successfully committing transaction after T
started can be expressed as

pou,l = (1− e−ur·tb,l) (11)

Hence, the probability for a transaction to abort during the execution of its first operation (i.e., when l=1), namely
poa,1 can be evaluated as

poa,1 = (1− pwrite) · (plock + (1− plock) · pou,1) (12)

Since the abort of a transaction T during its l-th operation (where 2 ≤ l ≤ n) implies that T did not abort during its
previous l − 1 operations, it follows that

poa,l = pona,l · (1− pwrite) · (plock + (1− plock) · pou,l) (13)

where pona,l is the probability of not aborting until the completion of the (l − 1)th operation. For this last probability
we have

pona,1 = 1 (14)

and
pona,l = (1− poa,l) · pona,l−1 (15)

In equations (12)-(13) we have assumed that the aborts due to lock conflict and the aborts due to validation
failures are independent events.



The probability palc for a transaction T to abort at commit time due to lock contention can be evaluated as follow.
T can experience contention while requesting the lock on a data item x only if, at the time in which T starts its
commit phase, some other transaction that has written x has successfully completed its lock acquisition phase, and
is still executing the commit procedure. Considering that T aborts only if at least one of the data items in its write-set
is locked, then we approximate the abort probability as

pwlc = cr · tcommit · (1− (1− n · pwrite

d
)n·pwrite) (16)

where the term 1 − (n·pwrite

d ) in the above equation represents the probability for a data item not to be locked by a
committing transaction that successfully completes its lock acquisition phase. Thus we have

palc = pona,n+1 · pwlc (17)

where we recall that pona,n is the probability for a transaction not to be aborted until the completion of its nth operation,
that is until it enters its commit phase. Consequently, the probability plana for a transaction not to be aborted during
its execution and to succeed in its commit-time lock acquisition phase is equal to

plana = pona,n · (1− pwlc) (18)

Let us now show how we can evaluate pavf , namely the probability for a transaction T to abort at commit time
due to validation failure for its read-set. The validation fails if at least a data item x belonging to the read-set of T
is locked by another transaction, or if a new version of x has been committed after the validation executed by T
during its read operation on x. We denote with pru,l the probability that the lth data item of T ’s read-set has been
updated after the original validation (occurred upon the corresponding read operation). We calculate this probability
as follows

pru,l = (1− e−ur·tv,l) (19)

where tv,l is the elapsed time since the original validation, that is

tv,l = (ttcb + top) · (n− l + 1) + tcommit (20)

Analogously to what we did in equation (13), we evaluate the abort probability due to failure in the validation of
the lth data item within the read-set of T as follows

pra,l = prna,l · (1− pwrite) · (plock + (1− plock) · pru,l) (21)

where prna,1 = 1 and, for l > 1, prna,l = (1− pra,l) · prna,l−1. Then, we can express pavf as

pavf =

n∑
l=1

pra,l (22)

At the end, successful commit probability for the case of i active threads can be evaluated as

pc,i = prna,n+1 (23)

The average execution time of a transaction rt,i can now be computed as the sum of the average time for a
transaction to reach a different execution phase, weighted with the probability for the transaction to abort exactly in
that phase. Let us denote with

- ta,l the average duration of a transaction that aborts during its l-th operation, that is:

ta,l = tbegin + l · (ttcb + top) + tabort (24)
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Figure 1: Throughput vs the address space size d.

- t1 = tb + ttcb + tabort the average duration of a transaction that aborts during its commit phase due to
contention while acquiring locks for the data items in its write-set, where

tb = tbegin + n · (ttcb + top) (25)

- t2 = tb + ttcb + tcommit + tabort the average duration of a transaction that aborts during its commit phase
due to failure in validating its readset;

- t3 = tb + tcommit the average duration of a transaction that successfully commits.

Overall, the average transaction execution time can be expressed as

rt,i =
n∑

l=1

(poa,l · ta,l) + palc · t1 + pavf · t2 + pc · t3 (26)

4 Validation

In this section we provide the results of an evaluation study aimed to verify the accuracy of the proposed modeling
methodology, and of the presented CTL model. The study is based on the comparison between some key perfor-
mance parameters determined via our analytical model and the corresponding values as obtained by means of a
discrete event simulator. The latter relies on a detailed, high fidelity simulation model of the internals of an STM
layer, which has been developed by also taking into account the internals of TL2. The simulation model mimics the
execution of a closed system entailing k concurrent worker threads, whose conflicts when executing transactional
code portions are regulated by CTL.

The workload parameters for this study have been selected on the basis of measurement and tracing activities,
carried out for the STAMP benchmark, and in particular for the Intruder application specified by the benchmark. To
this end, we have exploited an implementation of TL2 which we have instrumented to trace the data access pattern
and the costs associated with the corresponding operations, as well as the internal operations performed by the
STM layer. Measurements have been carried out using a quad-core 2.4 GHz machine equipped with 4 GB of RAM
and running the Suse Linux operating system (kernel 2.6.17).

By the tracing process for Intruder, we gathered the following values: tbegin = 0.2µsec, tread = 0.25µsec, twrite =
0.2µsec, tcommit = 2µ sec, tabort = 1µsec. Also, according to the traces, the transactional workload has been
modeled by fixing the number n of operations per transaction to the value 70, with pwrite = 0.3. The other adopted
settings are: tbackoff = 30,ttcb = 0.5µsec, tntcb = 10µsec.
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The independent parameters in the study are the total number of data items d (namely, the transactional memory
address space) and the number of worker threads k. Actually, once fixed the number of worker threads, variation of d
allows capturing settings with differentiated levels of contention which, in their turn, determine different probabilities
for a transaction to be aborted during a run. In this validation we chose two different values for the parameter d.
The first one represents a memory layout composed by 5K data items (corresponding to the lower value of d within
the benchmark specification). Instead, the second one represents a memory with 50K data items (corresponding
to the highest benchmark specified value). Clearly, higher levels of data contention are achieved when the memory
is configured with lower values of d, since transactional memory accesses by the worker threads are distributed
on a relatively reduced number of memory objects (i.e. a relatively reduced address space). On the other hand,
the parameter k has been selected to span form 4 to 76, in case of restricted address space size, and from 4 to
96 for the greater value of d. The comparison between analytical and simulation results is based on the following
three parameters: (A) system throughput (Figure 1), (B) commit probability (Figure 2) and (C) mean execution
time evaluated over each single transaction run, independently of whether the run is committed or aborted (Figure
3). The plots point out the accuracy of the presented analytical model, highlighting how analytical and simulation
results coincide across the whole considered region of the parameters’ space, namely low vs high number of worker
threads, as well as large vs small address space.

By Figure 2, in correspondence with the lower value of d, we can appreciate the accuracy of the analytical
model even in high contention scenarios (namely, for very reduced values of the transaction commit probability).
By Figure 3, we remark how, for reduced size of the address space, the relatively high contention probability often



leads transactions to be early aborted (they are aborted as soon as the first conflicting memory reference is issued),
thus contributing to a reduction of the mean value for the run execution time. (Recall that the mean run execution
time is evaluated over both committed and aborted run instances.) Hence, we observe an increase of the mean run
execution time in the configuration with larger address space, where the weight of aborted run instances becomes
lower. We also note that, by the aforementioned early abort phenomenon, high contention likely generates the case
of increased variance for the mean run execution time. The above phenomenon, and their effects on the observed
mean value, are correctly captured by our analytical model with very limited error, which is an additional support of
the high fidelity of our analytical approach.

5 Conclusions

In this paper we have addressed the issue of analytical modeling of concurrency control schemes in Software
Transactional Memories (STMs). Compared to their counterpart in the context of database systems, concurrency
regulation approaches for STMs are different in nature, given that the focus is on optimizing design/implementation
aspects that have been traditionally treated as less relevant for databases. The provided modeling methodology
is general, and can be used to capture differentiated mechanisms within the concurrency regulation layer. We
have also specialized our approach to the case of Commit-Time-Locking (CTL) concurrency control algorithms,
and we have evaluated the accuracy of the presented CTL performance model against simulation results based on
execution patterns resembling the behavior of the STAMP STM benchmark.
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