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Abstract. Software testing is often unable to detect all program flaws.
These bugs are most commonly reported to programmers in error
reports containing core dumps and/or execution traces that frequently
reveal users’ private information without providing all necessary informa-
tion for effective debugging. Hence, these mechanisms are sparsely used
due to users’ data privacy concerns. This paper presents REAP, a new
fault replication method, which allows for enhancing privacy protection
while still providing software developers with the ‘steps-to-reproduce”
errors. REAP uses symbolic execution and randomized search heuristics
to identify alternative execution paths leading to an observed error. We
evaluated REAP using a testbed including real bugs of popular, large
scale applications. The results show the high effectiveness of REAP in
anonymizing user input: on average, REAP reveals only 16.78% of the
bits in the original input, achieving an average residue (the number of
common characters in the original and anonymized input) of 15.07%. Our
evaluation also highlights that REAP significantly outperforms state of
the art techniques in terms of achieved privacy and/or scalability.
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1 Introduction

It is common for software errors to manifest themselves after the software is re-
leased and persist long after that [1], despite more than half of the resources in a
typical development cycle being invested in testing and bug fixing. Software bugs
represent several billion dollars per year worth of maintenance costs in Europe
and in the US alone [2]. Currently, the most popular tools to provide develop-
ers with information about application crashes (e.g. [3–5]) are error-reporting
tools. These tools aim to allow software vendors to fix bugs in a timely manner.
However, error reports usually include solely partial snapshots of the memory,
stack traces of the failed process and a textual description of the faulty scenario,
which is often insufficient to reproduce the error [6, 7]. Fault replication mecha-
nisms address the shortcomings of classical error reports, by allowing engineers
to reproduce, at the development site, a faulty execution taken place at the
client side. These mechanisms monitor target applications on client devices in
order to gather enough information for execution reproduction, while imposing
the least overhead possible. Numerous fault-replication mechanisms have been
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developed and are becoming more capable of efficient application monitoring
and successful bug reproduction ([8–10] to name a few). Unfortunately, privacy
and security concerns have prevented widespread adoption of many of these tech-
niques and, because they rely on user participation, have ultimately limited their
usefulness [11]. In fact, whether the user is working on a confidential document
or has typed in personal information, sensitive private information is likely to
be included either in the memory snapshot taken to generate an error report or
in the non-deterministic sources logged by fault replication mechanisms [12].

A promising approach aimed at tackling these privacy concerns is based on the
idea of obfuscating sensitive information inserted while ensuring the reproduc-
tion of the faulty execution ([11–13]). These mechanisms use symbolic execution
(e.g. [14]) in order to derive a set of logical constraints of the user input, called
path condition [15], that ensures the application will re-execute along the same
execution path that previously led to failure. Alternative inputs, which reproduce
the bug can then be drawn from the set of all inputs satisfying the identified
path condition. This approach was shown to have the potential to achieve high
obfuscation levels since large portion of the input data can often be replaced by
alternative values derived from less constrained symbolic values. However, the
degree of obfuscation achievable by these techniques is directly dependent on
the restrictiveness of the path condition’s constraints (i.e. on the cardinality of
the set of inputs that match a given constraint), which can be critically affected
by the application’s structure and bug placement in the code.

In this paper we propose REAP (Reporting Errors using Alternative Paths),
a novel approach based on the idea of increasing the degree of obfuscation by
exploiting the presence of alternative execution paths leading to the same fail-
ure. REAP relies on symbolic execution techniques, and on lightweight search
heuristics that perform bounded-depth detours from the original execution path
in order to identify alternative, failure inducing paths (and their corresponding
alternative user inputs). We provide a theoretical analysis of the search heuristics
employed by REAP, establishing a conservative upper bound on the information
leakage that it can achieve and the information that an attacker can derive on the
original user input. We present the results of an extensive experimental analysis
based on 6 publicly available applications, which includes popular, large scale
software projects and privacy-sensitive applications from the financial and online
dating domains. REAP’s evaluation assesses the feasibility of the proposed so-
lution in realistic settings, and quantifies the obfuscation quality enhancements
achievable in comparison with state of the art solutions. The results show that,
contrasted with state of the art solutions analyzing solely the conditions of the
original execution path, REAP can achieve, with comparable execution times, up
to an 83.22% average reduction in revealed input data. Furthermore, REAP can
identify alternative inputs in a matter of minutes with large scale applications.

This paper is organized as follows. Section 2 overviews existing obfuscation
mechanisms and discusses their main strengths and limitations. Section 3 presents
the REAP system. We evaluate the proposed system in Sec. 4 before presenting
some concluding remarks.
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2 State of the Art and Motivations

2.1 Final Application State Error Reporting

Initial approaches to automatic error report, such asWindows Error Reporting [4]
and Mozilla Crash Report [5] involved mainly information collected at the end of
a failed program execution. When an application crashes, the error reporting sys-
tem gathers information uncritically from the state of the process at the moment
of the crash and submits it as an error report, if authorized by the user. Two major
disadvantages of these methods stand out: i) there is no filtering of the submitted
information regarding users’ privacy preservation, which means that sensitive in-
formation may end up being incorporated in the dump of the application state
performed upon the occurrence of the bug [12]; ii) the generated report does not
provide any historical information on how the error was reached, which typically
makes the reproduction of the bug a complex and time consuming task [6, 7].

One of the first systems to attempt to filter user private information from error
reports was Scrash [16]. Applications have all their sensitive data marked as such
during development, and allocated in a specially reserved area of memory. When
an error report is submitted for a Scrash enabled application, all the sensitive
variables are removed. This approach has three main problems. First, it requires
access to an application’s source code. Second, it assumes that the application
programmers are trustworthy and will mark all sensitive data as such. And finally,
error reports that have been amputated of relevant data may not allow for the
full replay of the original error.

2.2 Input Anonymization in Fault Replication Systems

Fault replication systems that transmit the user input to the maintenance site
arguably raise even larger privacy concerns. Two main approaches have been pro-
posed to identify anonymized, failure-inducing inputs: input minimization [17]
and path condition analysis [11, 12, 18].

Input minimization techniques [17] were originally designed to speed-up test-
ing/debugging and attempt repeated random removals of input chunks, in order
to identify input fragments that are irrelevant for the reproduction of the bug.
By purging irrelevant inputs, these techniques can enhance privacy. However, as
discussed in previous works [11, 12], due to their purely random nature, input
minimization techniques typically fail in frequent scenarios in which valid in-
puts must respect precise structural conditions. (e.g. a credit card number must
be composed of exactly 16 digits satisfying the Luhn checksumming algorithm;
XML documents must comply with a defined structure).

Approaches based on path condition analysis [11, 12, 18] overcome these
limitations, by reasoning on the logical constraints imposed by the conditional
branches that were taken during a failure-inducing execution, i.e. its path condi-
tion. In other words, the logical restrictions imposed by a path condition delimit
the domain from which input values can be chosen and still trigger the same
error.



456 J. Matos, J. Garcia, and P. Romano

1: int age, n=0; /*bug source*/
2: boolean isMale, isMarried;
3: double score=1;
4: read from input: age, isMale, isMarried;
5: if (age>25)
6: score = score * 1.5;
7: else
8: score = score / 2;
9: if (isMale)
10: score = score * 2;
11: else
12: score=score / 2;
13: if (isMarried)
14: score = score * 2;
15: else
16: score = score / 2;
17: score = score / n /*divide by 0*/

Fig. 1. Example code excerpt Fig. 2. Trade-off explored by REAP

Therefore, the degree of obfuscation attained by these approaches [11, 12,
18] is critically affected by the restrictiveness of the logical clauses in a path
condition. The two main metrics to evaluate privacy in this context [11, 12] are
the number of leaked information bits (henceforth called leakage) and the residue.
The leakage of a particular path condition is calculated as − log2(α), where α
is the fraction of the domain of the application input variables that satisfy the
path condition. The residue is a more intuitive metric defined as the number of
input characters that remain unchanged after the anonymization process.

The code excerpt in Figure 1 is used to motivate and illustrate the behavior of
REAP. We note that the code excerpt exhibits a trivial bug (division by 0 caused
by a wrong initialization of variable n in line 3, which manifests itself in line 17).
The bug could be easily detected using classic debugging tools. However, despite
its simplicity, the example clearly highlights the potentialities of REAP and the
limitations of the two existing approaches. Now let us assume that the user input:
age = 26, isMale = true, and isMarried = false. The path condition derived
from the execution with this data yields the constraints:

age ∈ [25,MaxInt] ∧ isMale ∧ isMarried (1)

In such a scenario, the age input by the user can be (partially) obfuscated by
replacing it with any value larger than 25. The remaining input values, on the
other hand, will have to be fully disclosed. It should be noted that in the program
of Figure 1, it is actually possible to achieve total input anonymization, given
that the bug manifests in all possible execution paths, and, hence, independently
from the value of the user input. MPP [19] is, to the best of our knowledge, the
only system that attempts to exploit the presence of multiple failure-inducing
execution paths in order to maximize the obfuscation level of a bug report.

By considering the disjunction of the path conditions of all execution paths lead-
ing to a bug, MPP can achieve, at least for small-scale programs, the theoretical
lower bound on information leakage, identifying all the possible inputs that replay
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the bug. Unfortunately, MPP suffers from severe scalability limitations for two
main reasons. MPP relies on an off-line reachability analysis that performs a sym-
bolic execution of the program, and produces as output, for all lines of code, a path
condition and a triggering input for all the execution paths that traverse that line
of code. As demonstrated by the experimental data presented inMPP’s paper [19],
and as confirmed by our experimental evaluation, the costs associatedwithMPP’s
off-line reachability analysis are prohibitive for applications other than small scale
ones. Also, as not all the execution paths identified during the symbolic execution
may actually trigger the bug, the client needs to re-execute all of them, in order to
verify which subset of the paths actually reproduces the error. This can be quite
inefficient especially if the bug is located in a line of code that happens to be reach-
able through a high number of paths.

In the considered code example, MPP would generate 8 path conditions, each
one associated with different combinations of the three tests on the input vari-
ables. As all of these paths lead to the bug, the disjunction of their path con-
ditions yields a total relaxation of the constraints on the input variables, and
achieves perfect anonymization. Unfortunately, the price for attaining such a
boost on input obfuscation grows exponentially with the number of tests on
different input variables contained by the program.

As depicted in Fig. 2, REAP seeks an innovative balance between efficiency
and anonymity in the design space of privacy preserving fault replication schemes.
At the extreme of lowest anonymity are systems like in [11, 12, 18], which explore
only the original execution path. On the other hand, by exploring all execution
paths leading to the observed point of crash, MPP may provide the maximum
possible anonymity, but suffer of severe scalability limitations. REAP strikes
a balance between these two extremes, by taking advantage from alternative
failure-inducing execution paths, while using scalable search heuristics that en-
sure its practicality even in large-scale, complex programs.

3 REAP

This section presents an overview of REAP’s framework, used to generate search
heuristics aimed at identifying alternative failure-inducing execution paths. It is
also discussed the anonymization capabilities of REAP.

3.1 Overview of the System

The various stages of execution of REAP are illustrated by the diagram in Fig-
ure 3, and described in the following.

Original Input Anonymization Phase. Similarly to existing fault-replication
systems [11, 12, 19], REAP relies on automatic code instrumentation to log user in-
puts in a transparent fashion. When an application failure f is detected, REAP re-
executes symbolically the application feeding it with the original failure-inducing
input I (just as in the systems in [11, 12]). The Original Input Anonymization
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φ φ φ

Fig. 3. Architectural Overview of REAP

(OIA) phase pursues a twofold goal: i) identifying the sequence of program state-
ments composing the original failure-inducing execution path, denoted as φ; ii)
computing the path conditions, P , associated with φ.

Leakage Minimization Phase. Next, REAP executes what we called leak-
age minimization (LM) phase. In this phase REAP relies on randomized depth-
bounded search heuristics that aim to identify an alternative failure-inducing
execution path φ′ by performing controlled detours from φ. To this end, we
introduce a flexible search heuristics framework, which allows not only to con-
trol the duration/extensiveness of the search phase, but also to customize the
behavior of the search algorithm, i.e., the logic controlling the selection of the
detouring points and the trajectories to explore once a detour is ongoing. In this
work we show how REAP’s search framework can be used to derive two alter-
native heuristics for which we prove a fundamental property: if REAP identifies
an alternative path φ′, it guarantees that no attacker can deterministically de-
duce φ, even if she is aware of the topology of the full execution graph and has
unbounded processing capabilities. Beyond that, if such an attacker performed
a probabilistic analysis of every possible failure-inducing path, it could only de-
duce that the most likely original execution path coincides with that output by
REAP (i.e., φ′), hence effectively concealing φ. Section 3.3 provides a theoretical
analysis of REAP’s anonymization capabilities.

Privacy Evaluation and Report Submission. Once φ′ is obtained, REAP
determines a feasible value for the input I ′ that triggers the execution path φ′

by finding a solution to the corresponding path condition P ′. Further, REAP
computes the residue associated with I ′, and derives a conservative lower bound
for the attained leakage level. Finally, the user is presented with the anonymized
input, along with the corresponding leakage and residue values, and is asked to
authorize the transmission of the bug report to the maintenance site.

3.2 Search Heuristics Framework

As we have already mentioned, REAP searches for alternative failure-inducing
execution paths by performing detours of bounded length from the original faulty
execution path φ. Before detailing the algorithms employed by REAP to this end,
we introduce how an execution path is modeled in REAP.

REAP associates with the execution path φ of a program a directed acyclic
graphwhere each node of the graph represents a sequence of statements comprised
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between two subsequent conditional tests on some input-dependent variable. The
graph is built dynamically, during the symbolic execution of φ, adding a node to
the graph (and connecting it to the previously generated node) every time that a
branch of an input-dependent test is taken. Whenever a node is added to the
graph, this is also labeled using the following triple: a location identifier com-
posed by line of code and class signature; the current stack trace; the value of
the current iteration of any cycle within which the node is being executed. This
simple scheme allows us to avoid aliasing problems, ensuring that if a program
statement is executed in two different execution contexts, two unique identifiers
will be attributed to it. As in typical symbolic execution engines [20], an execu-
tion path is modeled assuming that each logical test generates only two edges1,
hence the execution graph is a binary tree.

We can now present the framework used to generate the search heuristics em-
ployed by REAP. The framework is embodied by the function φSeeker, whose
pseudocode is shown in Algorithm 1. This function encapsulates the logic of a
generic search heuristic that, given the original execution path φ and a fault f2,
returns the path condition of a possible alternative failure-inducing execution
path φ′. The behavior of φSeeker is customizable via the following parameters:

– numDetours: the total number of detours the search heuristic should at-
tempt.

– maxDetourLength: the maximum depth that the search heuristic can traverse
after having performed a detour and before joining back the original path;

– maxAttempts: the maximum number of times that the LM-phase can be run;

and via the following two functions, whose implementation allows to flexibly
derive a wide range of alternative search algorithms:

– DetoursSelector takes as input the original path φ, and the total number
of detours that should be attempted, numDetours, and returns a set of
numDetours nodes in φ from which φSeeker should attempt a detour;

– PickChild is used whenever a detour is being performed, to determine
which of the two branches outgoing from a node (passed as input parameter)
should be explored next. Both functions accept also as input parameter the
identifier of the current search attempt, in order to allow the definition of
adaptive policies whose behavior evolves across different attempts.

The heuristics’ behavior is fully specified by defining how they implement
the functions DetoursSelector and PickChild, as well as they set the
numDetours parameter. The parametersmaxDetourLength and maxAttempts
are used as tuning knobs to control, respectively, the radius of the search, and
the maximum duration of the search. At each step of the search, the current
node is executed symbolically and the corresponding logical constraint is added
to the path condition P that identifies the domain of feasible input values that
are able to replay the current execution path. The logical constraint for the first

1 This simplifies reasoning on the execution graph, while still allowing capturing
arbitrarily complex branching structures.

2 We assume that faults are observable and uniquely identifiable as in [11, 12, 19].
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Algorithm 1. Pseudocode defining the family of algorithms used to iden-
tify alternative paths

1 function φSeeker
Input parameters:

ExecPath φ;
Fault f ;
int numDetours,maxDetourLength, maxAttempts;
function Node PickChild(Node n, int attempt);
function Set<Node> DetoursSelector(ExecPath

φ, int numDetours, int attempt);
Output parameter:

PathCondition;

2 begin
3 for int currAtt=0; currAtt < maxAtt; currAtt++ do
4 Set<Node> detours=∅;
5 PathCondition P=∅;
6 detours = DetoursSelector(φ, numDetours, currAtt);
7 if ( Forward(φ.getFirstNode(),P) ∧ P �= φ.getPathCondition() ) then

// an alternative failure-inducing path was found
8 if currAtt == 1 then
9 return P ;

10 else
11 return with probability 0.5 either P or φ.getPathCondition();

12 return φ.getPathCondition();

13 boolean Forward(Node n, PathCondition P)
14 begin
15 if n == null then

return false;

16 execute n symbolically;
17 add to P the logical constraint of n;
18 if n reproduces f then

return true;

19 Node next,checkp,current;
20 checkp = next = the successor of n that lays on the original path φ;
21 if n ∈ detours then
22 current = the successor of n that does not lay on the original path φ;
23 next = Detour(current,maxDetourLength, P);
24 if next == null then

next = checkp; // detour failed, continue along the original path φ

25 return Forward(next, P);

26 Node Detour(Node n, int bound, PathCondition P)
27 begin
28 if bound == 0 then

return null;

29 execute n symbolically;
30 Node next = PickChild(n, currAtt);
31 if next ∈ φ then

// the detour has re-joined the original path φ
32 add to P the logical constraints of this detour;

return next;

33 return Detour(next,bound-1,P);

starting node of the program is void, but, for every other node n, it is equal to
the logical condition imposed by the edge connecting n’s predecessor to n.
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Next, if the current node has been selected for a detour (line 21), a detour
attempt is performed using the Detour function. This function implements a
bounded-depth search in which, at each step, the next node to be explored is
selected by means of the PickChildmethod. If the detour joins back the original
path (line 31), the path condition of the detour is added to that of the current
execution path. Otherwise, if the detour reaches the upper bound on its length
(maxDetourLength) without joining the original path, the detour attempt is
aborted and the exploration proceeds along the original path (line 24).

The Forward function can terminate either because it reaches the same
crash point as φ and does not reproduce f (line 15) - which can happen if
one or more nodes of φ, required to reproduce f , were detoured - or because
it replays f (line 18). Note that in the latter case, Forward may fail all the
detour it attempts and return the original path. This case is detected in line 7,
where it is accounted as a failed attempt. In case of successful identification of
an alternative failure-inducing path, φSeeker behaves differently depending on
whether this is the first attempt or not. In the former case, the corresponding
path condition P is returned. If REAP performs multiple attempts to find path
φ′ it may create a bias towards φ. For example, if only two failure inducing paths
exist and maxAttempts = ∞, REAP eventually finds the alternative path with
probability 1. Consequently the original path could be deduced deterministically
by an attacker who knows REAP’s behavior. To cope with this issue, if REAP
requires more than one attempt to find an alternative path, it returns φ with
probability 0.5 (line 11). As we will discuss in Section 3.3 this allows effectively
concealing the original path φ in case an alternative path φ′ �= φ is returned by
φSeeker. Finally, if no failure-inducing path is identified after maxAttempts
attempts, φSeeker simply returns φ.

Below we describe two different search algorithms, which we called Bounded
Random Walk (REAP-BRW) and Bounded Adaptive Greedy (REAP-BAG).

REAP-BRW: Bounded Random Walk. This algorithm has a similar behavior
to a random walk, within the radius bounded by maxDetourLength around φ.
The value of numDetours is picked at random between 0 and the length of φ.
Further, DetoursSelector selects numDetours nodes in φ as the source of
a detour with uniform probability. Finally, the function PickChild returns a
child node at random, also with equal probability.

REAP-BAG: Bounded Adaptive Greedy. A logical test made on a set of input
variables generates two edges that divide the input domain (of these variables),
usually in a not equal way. This algorithm is biased to pick the edge outgoing
from a node, whose path condition is satisfied by the largest number of input
values (i.e., associated with the least restrictive path condition), a broad edge.
We refer to the edge associated with the smaller part of the domain as narrow
edge. This heuristic tends to choose broad edges over narrow edges, although
with an adaptive probability, which decreases as the number of attempts per-
formed so far increases. For this algorithm, the function SortChild returns
the child node that encompasses the largest fraction of the input domain. The
SortChild function implements the adaptive greedy policy, by selecting a broad



462 J. Matos, J. Garcia, and P. Romano

edge from the currently visited node (automatically selected for the detour as
numDetours = |φ|) with probability P (B):

P (B) =
t+ 1

2t
(2)

where t is the attempt being performed, and a narrow edge with the complemen-
tary probability P (N) = 1−P (B). This ensures that in the first iterations REAP-
BAG will attempt with higher probability to follow the least restrictive execution
paths, while converging the behavior towards the REAP-BRW heuristic as the
number of attempts grows.We note that this heuristic is inspired to analogous poli-
cies used in the context of reinforcement learning problems to explore the trade-
off between exploration and exploitation in face of uncertainty in [21]. In the cases
where the input domain is divided equally, the edges are chosen with 0.5 probabil-
ity, like in REAP-BRW. The DetoursSelector function selects the nodes in φ
to be the source of a detour, with the probability given by equation 2.

3.3 Privacy

In this Section we analyze the privacy properties ofREAP-BRW andREAP-BAG.

Preliminary notations. We denote with F the set of all failure inducing paths
and with F(φ′,MDL) the set of all failure-inducing paths from which the execu-
tion path φ′ could be obtained via detours of maximum length equal to MDL.
Further, we denote with i the original input that triggered the bug, and with
I(φ) the set of inputs triggering an execution path φ. Finally, we denote re-
spectively P (BRW → φ′), P (BAG → φ′), the probability that REAP-BRW,
REAP-BAG output an input associated with the failure-inducing path φ′ start-
ing from the failure-inducing path φ. When we refer to both REAP’s variants
we write, instead, P (R → φ′).

Proof overview. We demonstrate that the original path, denoted as φ, cannot
be deduced from the path output by REAP, denoted as φ′. To do so, we first
demonstrate that if REAP outputs a path φ′, then φ′ is the execution path in
F(φ′,MDL) that is the most likely of being the original path. Next we discuss
why, in case REAP outputs an alternative path φ′ �= φ, the information leakage
of φ∪φ′ and can be used as an upper bound of the information leakage reached
by REAP. This result allows us to derive a methodology to quantify and report
to end-users the information leakage allowed by REAP. Before presenting the
proofs, we introduce some preliminary remarks.

Remark 1. In order for REAP to be application independent, its privacy guar-
antees (including the measurements of both leakage and residue) rely on the
assumption of pure entropy, just like in all previous work [11, 12, 19]. Hence, we
assume no a priori knowledge on the input structure nor on any information
that can be deduced or contextualized in the program semantics.

Remark 2. Let φ∗ be the original failure-inducing path in F(φ′,MDL) (note
that this set also includes φ∗ = φ′). We denote with C(φ∗, φ′) the set of edges
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in common between φ∗ and φ′, and with D(φ∗, φ′) the set of edges present in φ∗

and not in φ′. The latter set contains the edges obtained when REAP performs
a detour from φ∗, whereas the edges in C(φ∗, φ′) are obtained whenever a node
of φ∗ is not selected to perform a detour, or when a detour attempt starting
from that node fails. Finally |C(φ∗, φ′)|+ |D(φ∗, φ′)| = |φ′|.

Remark 3. Both REAP-BRW and REAP-BAG, when executed with MDL = d
starting from an execution path φ, can only identify alternative paths φ′ such
that each sub-path (i.e., sequence of consecutive edges) si ∈ D(φ, φ′) has length
at most d. This allows us to provide a more rigorous definition of the set of
alternative failure-inducing paths identifiable starting from a path φ, which we
denoted as F(φ, d): φ∗ ∈ F(φ, d) ⇒ ∀si ∈ D(φ, φ∗) |si| ≤ d.

Remark 4. Since we are assuming that the only source of non-determinism is
the user input, then, given two execution paths φ and φ′ where φ �= φ′, it follows
that, given two inputs3 i ∈ I(φ) and i′ ∈ I(φ′), they must differ by at least one
bit. Hence, I(φ) ∩ I(φ′) = ∅.

Theorem 1. Assume REAP-BRW is provided with the execution path φ as in-
put and that it returns a (possibly different execution path) φ′. Then among all
paths φ∗ ∈ F(φ′, d), no path has higher probability of being the original path than
φ′. Formally: φ′ ∈ argmax

φ∗∈F(φ′,d)
P (BRW → φ′|i ∈ I(φ∗))

Proof. For REAP-BRW to generate path φ′ starting from path φ∗, with φ∗ �= φ′,
in one of the maxAttempts attempts it performs the following must happen:

1. for all edges c ∈ C(φ∗, φ′), REAP-BRW must either i) not detour from the
original path φ∗, or ii) detour from the original path and fail the detour
attempt. As the start node, say nc, of an edge c ∈ C(φ∗, φ′) is also in the
original path φ∗, when REAP-BRW encounters n, it decides whether to
detour with probability 0.5. Conversely, the probability of failing a detour
attempt from node n depends on the actual topology of the execution graph
of the program, but it is independent from the original path φ∗; we denote
this probability as Pfd(nc) and assume it unknown in the following. Overall,
the probability for REAP-BRW to generate all the edges nc ∈ C(φ∗, φ′)
starting from φ∗ is: ∏

nc∈C(φ∗,φ′)

0.5 + Pfd(nc)

2. when it encounters the starting node, say n, of every edge di ∈ D(φ∗, φ′),
REAP-BRW must select (between the two edges outgoing from n) the edge
di ∈ φ′. As REAP-BRW picks an edge during a detour with probability
0.5, the probability for REAP-BRW to generate the edges in D(φ∗, φ′) is
0.5|D(φ∗,φ′)|.

3 Recall that when we refer to an input i ∈ I(φ), we mean the entire string of bytes
provided as input to trigger the execution path φ.
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Hence, the conditional probability that REAP-BRW identifies path φ′ from any
path φ∗ ∈ F(φ′, d) in a single attempt, given that the original user input was
associated with φ∗ is:

P (BRW → φ′|i ∈ I(φ∗)) = 0.5|D(φ∗,φ′)| ·
∏

nc∈C(φ∗,φ′)

0.5 + Pfd(nc) (3)

It is straightforward to observe that:

φ′ ∈ argmax
φ∗∈F(φ′,d)

P (BRW → φ′|i ∈ I(φ∗))

as i) the cardinality of |C(φ∗, φ′)| is maximum when φ∗ = φ′, and ii) Pfd ≥ 0.
Hence, no path in F(φ′, d) is more likely to be the original path than φ′, if
REAP-BRW outputs φ′ in a single attempt.

On the other hand, if REAP identifies an alternative pathφ′ �=φusingmore than
one attempt, it outputs, with probability 0.5, either φ or φ′. This guarantees that
no path in F(φ′, d) has higher probability of being the original path than φ′. ��
Theorem 2. Assume REAP-BAG is provided with the execution path φ as input
and that it returns a (possibly different execution path) φ′. Then among all paths
φ∗ ∈ F(φ′, d), no path has higher probability of being the original path than φ′.
Formally: φ′ ∈ argmax

φ∗∈F(φ′,d)
P (BAG → φ′|i ∈ I(φ∗))

Proof. The proof structure is analogous to the one of Theorem 1, so only a
sketch of proof is provided for space constraints. Consider the set of edges in
C(φ∗, φ′), and denote with B(C(φ∗, φ′)), resp. N(C(φ∗, φ′)), the set of broad,
resp. narrow, edges in C(φ∗, φ′). Also, denote with E(C(φ∗, φ′)) the set of edges
that are neither broad, nor narrow - which we call even edges. Using the same
arguments employed in the previous theorem, one can compute the probability
that REAP-BAG generates all the edges nc ∈ C(φ∗, φ′) starting from φ∗, denoted
as PC(BAG → φ′|i ∈ I(φ∗)), as:

∏

nc∈E(C(φ∗,φ′))

0.5 + Pfd(nc)
∏

nc∈B(C(φ∗,φ′))

P (B) + Pfd(nc)
∏

nc∈N(C(φ∗,φ′))

P (N) + Pfd(nc)

and the probability PD(BAG → φ′|i ∈ I(φ∗)) of yielding the edges in D(φ∗, φ′):

0.5|E(D(φ∗,φ′))| · P (B)|B(D(φ∗,φ′))| · P (N)|N(D(φ∗,φ′))|

The probability P (BAG → φ′|i ∈ I(φ∗)), which is equal to:

PC(BAG → φ′|i ∈ I(φ∗)) · PD(BAG → φ′|i ∈ I(φ∗)) (4)

is maximum for φ∗ = φ′, since ∀φ∗ ∈ F(φ′, d) with φ∗ �= φ′ it must be that
|C(φ′, φ′)| > |C(φ∗, φ′)|.

When considering scenarios in which an alternative path φ′ is output after
multiple attempts by REAP-BAG, the same considerations valid for REAP-
BRW also apply to REAP-BAG. ��
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Theorem 3. If REAP finds an alternative path φ′ starting from a different path
φ, the information leakage is at most equal to that computed by considering the
logical disjunction of the path conditions associated with φ and φ′.

Proof. Assume that an attacker was provided with the correct knowledge that,
among all the paths in F(φ′, d), the actual original path may only be either φ or
φ′. In this case, the uncertainty of the attacker is smaller than if she had to select
among the entire set of paths in F(φ′, d) (as, in general, the paths in this set
may have a non-null probability of being the original path). The uncertainty of
this scenario is therefore a lower bound on the actual uncertainty of the attacker.
Hence, the leakage results that we derive in the following represent a consistent
upper bound on the actual leakage allowed by REAP.

Given that we are assuming that all inputs are equiprobable, and that we are
only considering the paths φ and φ′, it follows that the probability that the user
original input lies on path φ, φ′, denoted, resp., as P (i ∈ I(φ)), P (i ∈ I(φ′)), is:

P (i ∈ I(φ)) = |I(φ)|
|I(φ ∪ φ′)| , P (i ∈ I(φ′)) =

|I(φ′)|
|I(φ ∪ φ′)| (5)

where we denoted with |I(φ)| the cardinality of the input domain associated with
φ. The unconditional probability for both variants of REAP to output a failure
inducing path φ′ starting from a path φ∗ ∈ F(φ′, d) can hence be computed as:

P (R → φ′ ∧ i ∈ I(φ∗)) = P (R → φ′|i ∈ I(φ∗)) · P (i ∈ I(φ∗)) (6)

The attacker can compute the probability that φ is the original path given
that REAP outputs φ′, denoted as P (i ∈ I(φ)|R → φ′), as follows:

P (i ∈ I(φ)|R → φ′) = (7)

=
P (R → φ′ ∧ i ∈ I(φ))

P (R → φ′ ∧ i ∈ I(φ)) + P (R → φ′ ∧ i ∈ I(φ′))
= (8)

=
P (R → φ′|i ∈ I(φ)) · P (i ∈ I(φ))

P (R → φ′|i ∈ I(φ)) · P (i ∈ I(φ)) + P (R → φ′|i ∈ I(φ′)) · P (i ∈ I(φ′))

where, in order to derive Eq. 8 from Eq. 7, we have exploited Remark 4.
Since by Eq. 4 (for REAP-BAG) and Eq. 3 (for REAP-BRW) we have that

P (R → φ′|i ∈ I(φ)) ≤ P (R → φ′|i ∈ I(φ′)), we can obtain an upper bound for
Eq. 7 by replacing in its denominator P (R → φ′|i ∈ I(φ′)) with P (R → φ′|i ∈
I(φ)), and simplifying the expression using Eq. 5:

P (i ∈ I(φ)|R → φ′) ≤ P (i ∈ I(φ))
P (i ∈ I(φ)) + P (i ∈ I(φ′))

=
|I(φ)|

|I(φ)| + |I(φ′)| (9)

Finally, for the attacker to correctly guess the actual user input, in addition
to identifying that the original path was not φ′ but φ (whose probability is given
by Eq. 7), she needs to pick the correct input among those in I(φ). Since we
are assuming that inputs are equiprobable, the latter probability, which we note
P (right input in I(φ) is guessed), is simply |I(φ))|−1 hence:
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P (original input is guessed|R → φ′) =
= P (i ∈ I(φ)|R → φ′) · P (right input in I(φ) is guessed) ≤
≤ 1

|I(φ))| + |I(φ′))| (10)

Recalling that, by Remark 4, I(φ) ∩ I(φ′) = ∅, the claim follows. ��

3.4 Prototype Implementation

We implemented REAP for applications written in the Java language4. This tool
has three main components: the execution monitor, the symbolic execution en-
gine and the anonymizer. The execution monitor instruments the compiled Java
application using the SOOT [22] bytecode instrumentation tool in order to log
all user input in a transparent fashion. Note that, in order to ensure determin-
istic error replay, one should log all sources of non-determinism of the program,
and not solely user input. On the other hand, dealing with other sources of
non-determinism is out of the scope of the REAP system for the following two
main reasons: i) different types of non-deterministic sources could be tackled
using dedicated solutions aimed at supporting deterministic replay [23, 24]; ii)
from the privacy perspective, which represents the focus of our work, user in-
puts are arguably the most critical sources of non-determinism. Our prototype of
REAP supports multi-threaded programs (using the Java Pathfinder extension
jpf-concurrent [25]) but, at this time, does not handle the reproduction of concur-
rency bugs. Coping with such kind of bugs would require instrumenting REAP
to log, during the symbolic execution phase, any accesses to shared memory,
analogously to other sources of non-determinism.

The symbolic execution engine is one of the most crucial components of REAP.
REAP uses Java PathFinder [14, 20] (JPF) for this purpose. By default, all vari-
ables that are affected by the execution of read calls of the java.io library are as-
sumed to be user input and are therefore marked as symbolic. Our anonymization
tool is implemented in Java and uses JPF’s constraint solving implementation
to obtain new input from the path condition. The JPF solving implementation
bridges JPF to the actual solver, which can be specified as a parameter. JPF’s
constraint solving implementation supports several constraint solvers, but in our
work we used z3 [26].

4 Evaluation

In this section we evaluate REAP’s anonymization quality and scalability. REAP
was evaluated using six different applications, selected because they manage user
sensitive private information, and/or due to their high popularity and to the
availability of real bugs. We provide only a brief overview of these applications
and of their bugs and references for detailed descriptions.

4 The REAP prototype is open source:
http://sourceforge.net/projects/fastfixrsm/

http://sourceforge.net/projects/fastfixrsm/
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In every plot in this section, the first data point (labeled ’-’ in the x-axis)
represents the results of the OIA phase. Due to the non-deterministic properties
of our algorithms, especially of the REAP-BRW, each point of the x-axis of each
plot represents the average of 50 runs. The experimental platform used in this
study is a machine running the MacOS X Lion operating system, with a 2.5 GHz
Intel Core i5 processor and 4 GB of memory. In all experiments, we evaluate each
of the algorithms presented in this paper with the test cases presented above for
several values of maxDetourLength.

4.1 Subjects

• Apache Tomcat is a large and well-known Java web server (4213 classes,
188 kLOC) that powers numerous large-scale, mission-critical web applications
across a diverse range of industries and organizations [27]. In our test caseTomcat
crashes due to the bug reported in [28]. We aim to anonymize several properties
such as security roles, application parameters, amongst many other fields.
• Apache Xerces [29] is a popular and large application for parsing and manip-
ulating XML files (1436 classes, 90 kLOC). The bug reported in [30] causes a
NullPointerException to be thrown when using external unparsed entities. In our
test case Xerces parses a xml file that triggers this bug and REAP will attempt
to anonymize its content.
• MySQL/JDBC [31] is the most popular open source Java database connector
(752 classes, 85 kLOC). Our test case is based on the vulnerability reported
in [32] and we intend to anonymize the content of the queries.
• Apache Commons CLI [33] is a well known application that provides an API
for parsing command line options passed to programs (110 classes, 4145 LOC).
The bug considered [34] throws an exception when the parser erroneously treats
arguments as commands in case of syntax similarities. REAP is intended to
anonymize the commands and arguments inserted by the user.
• PaiNPai [35] is an personal finances manager (108 classes, 5369 LOC). The
bug in this subject is artificial. However, it is a great example of a program that
deals with highly sensitive information, such as bank account numbers and other
private information of the account holders. Given the confidential nature of such
information we consider PaiNPai to be an important subject in our evaluation.
• iDate is a dating mobile application that finds people matching a specified
profile. This application crashes when users use different versions of this applica-
tion, as they differ in the representation of the input values. In similarity to the
PaiNPai subject, iDate requires the input of very private information. The users
devise a personal profile with information such as age, gender, height, weight and
also their dating preferences, to be compared with the profiles of other users. We
adapted iDate (3 classes, 1225 LOC) to run on a desktop computer.

4.2 Privacy

We measure privacy using two metrics: leakage, the amount of bits of the orig-
inal input revealed by the new input, and residue, the amount of bytes of the
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Fig. 4. Bar charts showing the leakage

original user input that remain unchanged in the new input. For each test case
in every plot, the first point represents the privacy attainable by exploiting the
path condition associated with the original execution path φ, generated by the
OIA phase (which coincide with that achieved by the solutions in Castro et
al. [12] and Clause and Orso [11]). Additionally these plots measure the impact
on privacy due to choice of the value of maxDetourLength, which we treat as
the independent parameter of our study.

Leakage. Figure 4 shows the amount of bits revealed in our experiments. The
results suggest that even considering a conservative overestimation of the leak-
age allowed by REAP, evaluated by the path conditions in φ ∪ φ′, REAP-BAG
reveals considerably less information than state of the art solutions [11]. In this
evaluation, REAP-BAG achieved anonymizations of 83, 22%, on average, and up
to 99.84%, whereas REAP-BRW achieved an average of 68.18%. Comparing to
the OIA phase, the LM phase of REAP-BAG was able to improve 28.34%, on av-
erage, and up to 53.88%, whereas REAP-BRW improved 13.30%. Specifically for
each test case, the average improvement of REAP-BAG/REAP-BRW compar-
ing to the OIA phase was respectively: 31.58%/2.07% for Tomcat, 2.55%/2.55%
forXerces, 8.22%/ 4.61% for MySQL, 42.09%/27.26% for CLI, 32.19/0.87% for
PaiNPai and 53.43/42.45% for iDate. Figure 4 also suggests that increasing the
value of maxDetourLength may not provide a path that leaks less information,
which was the case specially for Xerces and iDate. In some cases, REAP-BRW
did not show significant improvements when compared to the OIA phase. This
is due to its random nature that, in many cases, returns an alternative path
that is mostly composed by narrow edges. These paths give very few additional
solutions and therefore there is little gain in terms of leakage. In Xerces, REAP
did not anonymize more than 70.15%, as many XML tags need to be fully dis-
closed if the failure is to be reproduced. Nevertheless these parts are merely XML
structural terms and do not reveal sensitive information about the user.

Figure 4 suggests that many of our subjects perform several restrictive logical
tests, which force the leakage of significant portion of the user input thereby
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// e a c h o f t h e f o l l o w i n g t e s t s f u l l y l e a k t h e t y p e o f q u e r y
i f ( S t r i n gU t i l s . startsWithIgnoreCaseAndWs (noCommentSql , ”INSERT” )
| | St r i n gU t i l s . startsWithIgnoreCaseAndWs (noCommentSql , ”UPDATE” )
| | ( . . . )

Listing 1.1. MySQL/JDBC

// t r u e i f f t h e u s e r
// i s a m ino r
i f ( IsNomineeMinor){
( . . . )
}

Listing 1.2. PaiNPai

// i f t h e v a l u e o f t h e v a r i a b l e r o l e i s i n
// s e c u r i t y R o l e s [ ] , i t w i l l b e r e v e l e a l e d
for ( int i =0; i<s e cu r i tyRo l e s . l ength ; i++){

i f ( r o l e . equa l s ( s e cu r i t yRo l e s [ i ] ) )
return ( true ) ;

Listing 1.3. Tomcat

Fig. 5. Code excerpts exemplifying restrictive logical tests
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Fig. 6. Box plots showing the residue

reducing the effectiveness of an OIA-only approach. Figure 5 presents examples
of code excerpts from some of our test cases. In these examples, a mechanism
such as the OIA phase (or previous work [11, 12, 18]) would leak all the informa-
tion introduced by the user. However, REAP may be able to circumvent those
branches taken in φ, and find alternative solutions, as suggested in Fig. 4.

Residue. Figure 6 presents the residue measurements in our experiments. The
results show that REAP is also able to considerably reduce the dissimilarity
between the original input and the alternative input. In this evaluation REAP-
BAG achieved, on average, residue reductions of 84.93% and REAP-BRW at-
tained 83.07%. Compared with the OIA phase, the LM phase of REAP-BAG
improved 23.42% and REAP-BRW improved 21.5%. This means that, before the
report is sent, the user is be presented with a very dissimilar input from the one
in the original execution.

The main lessons learned in this part of the evaluation are i) solutions that
consider only the original execution path, such as the OIA phase and mechanisms
presented in [11, 12, 18], often leak considerable amounts of information, ii)
by detouring restrictive logical tests, REAP is able to further anonymize the
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Fig. 7. Bar charts showing the execution time

input, iii) informed search heuristics, such as REAP-BAG, have the potential
to significantly outperform pure random approaches, like REAP-BRW and iv)
REAP is able to produce alternative inputs that are very dissimilar comparing
to the original ones.

4.3 Scalability

Figure 7 gives a complete notion of the overhead of REAP when compared with
the single phase process of obfuscating using only the original execution path.
It is important to note that for each run (with the exception of OIA), the total
execution time includes the execution time of the OIA phase and the execution
time of the LM phase. The results show that REAP takes at most a few minutes
to finish. This is, in practice, perfectly admissible, especially if one considers that
REAP will run as a background task executing during idle periods.

Figure 7 suggests that REAP-BRW algorithm is faster than REAP-BAG. This
is because, REAP-BRW is biased towards shorter paths. In fact, the number of
constraints of the path conditions obtained by REAP-BRW was, on average,
77.23, which is much smaller than the average 223.22 of REAP-BAG and 134.31
of the OIA phase. Additionally REAP performed, on average, 1.09 attempts
to reproduce the error. In other words, REAP seldom requires more than one
attempt to reproduce the error. In terms of memory usage use REAP-BRW
required, on average, 373MB and REAP-BAG 601MB.

We also ran MPP [19] with these subjects and, except for iDate, MPP either
depleted all available memory or did not find any reproducible alternative path
in the first 24 hours of execution. These results confirm what was already found
in [19], i.e. it can be prohibitively expensive to compute all possible execution
paths of medium/large sized programs, even if this is done offline. For iDate,
which is by far the smallest subject in our testbed, the execution time of the
MPP Client — even when provided with all pre-computed paths of MPP Server—
was two orders of magnitude larger than REAP’s (300 sec vs 2 sec).
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The main lessons learned in this part of our evaluation are i) REAP is a
feasible approach for large applications and may not require to be bounded to
small values of maxDetourLength, ii) REAP-BAG is slower than REAP-BRW
iii) REAP-BRW is likely to find shorter paths and iv) MPP is not a feasible
approach for medium and large-sized applications.

5 Conclusions and Future Work

This paper presented REAP, a system that tackles the issue of user privacy
in error reporting. REAP advances the state of the art by increasing privacy
through the exploration of alternative execution paths using heuristics that per-
form bounded deviations in the surroundings of the original path in a scalable
way. Our experimental study highlighted that the additional costs, in terms of
computation time needed to identify alternative failure-inducing paths, were of
at most a few minutes, even for complex applications. Our evaluation also demon-
strated that REAP is able to reduce significantly the information leaked with
respect to state of the art solutions [11, 12, 18] that do not identify alterna-
tive failure-inducing paths, achieving average leakage and residue reductions of
83.22% and 84.93% respectively. We conducted a rigorous analysis of the security
properties and guarantees of REAP.

REAP was released as an open-source framework and designed to maximize
flexibility and ease of extension. By open sourcing REAP, we hope to foster
the interest of other researchers in investigating the design of alternative search
algorithms aimed at further enhancing its performance and privacy.

Our future research direction aims at extending REAP in order to support
the anonymization of concurrency bugs.
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