
Property-Driven Cooperative Logging for Concurrency Bugs Replication

Nuno Machado, Paolo Romano, Luı́s Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade Técnica de Lisboa

Abstract
This paper presents property-driven partial logging, a
novel information partition scheme that takes into ac-
count load balancing and shared variable properties to
optimize the replay of Java concurrency bugs through
partial log combination. Preliminary evaluation with
standard benchmarks and a real-world application pro-
vides initial evidence of the feasibility of our approach.

1 Introduction

The advent of the multi-core era brought concurrent pro-
gramming to the forefront of software development. Un-
fortunately, the inherent non-deterministic nature of con-
current programs makes them much more challenging to
write and debug than their sequential counterparts.

For this reason, a large body of research has been de-
voted to the development of debugging tools that help
developers to identify concurrency bugs, i.e. bugs re-
sulting from specific interleaves of thread accesses to
shared memory. Deterministic replay has long been
suggested as a key technique to debug concurrent pro-
grams [9, 3, 6, 8, 4, 15]. This technique is based on the
idea of recording non-deterministic events (including the
order of access to shared variables, thread scheduling,
etc) during a faulty execution and, then, using the result-
ing trace to force identical outcomes on subsequent runs
of the same program, hence reproducing the error.

Unfortunately, the instrumentation overhead intro-
duced by classic deterministic replay approaches [9, 6, 3]
can be prohibitive (up to 10x-100x slowdown), making
the approach impractical in most settings.

To mitigate this, some recent approaches made ef-
forts to provide efficient replay on commodity multipro-
cessors by either eliminating the data-races of the pro-
gram [10] or parallelizing the record and replay using
speculative thread execution [16]. In turn, other previ-
ous works [2, 17, 14] have exploited the idea of log-
ging only partial execution information during produc-
tion runs, and of using different exploration techniques,

at the maintenance side, to complete the missing data.
Unfortunately, these latter techniques can incur a very
long inference time, as they require investigating the
space of shared memory access interleavings to find the
ones suitable to reproduce the concurrency bug. This is
a particular important issue because the memory-access
interleaving space grows exponentially with the number
of threads in the program [13].

In this context, CoopREP [12] recently proposed a, so-
called, cooperative approach to achieve deterministic re-
play in Java applications. The key idea at the basis of
CoopREP is to obtain a complete, fault-inducing exe-
cution log by i) leveraging on cooperative partial log-
ging performed by multiple users running the same soft-
ware application and ii) employing statistical techniques
to determine which of the available partial logs should be
combined (and attempted).

In this paper we investigate an important, but so far
unexplored in the context of deterministic replay, de-
sign choice at the basis of cooperative logging strate-
gies, which we argue would deserve further investiga-
tion from the research community: how to partition the
set of shared variables of a program to determine which
subset should be traced by each partial log. CoopREP
tackles this issue by adopting a pure random approach,
which picks a fixed number of shared variables with uni-
form probability. We argue that a simple random choice
comes with a number of shortcomings. First, it provides
no deterministic guarantees on the presence of common
variables between pairs of partial logs, which hinders
the possibility of identifying compatible partial logs via
statistical techniques. Moreover, random selection does
not allow to capture the semantic correlations among
variables, which are usually accessed “together” (i.e., in
close points of the execution flow) and, therefore, should
be recorded in the same partial log. Also, it does not aim
at ensuring uniform load distribution across the users,
which may be an issue, as the frequency of accesses to
shared variables is highly heterogeneous.

In the light of these considerations, we advocate the
need to design new partition schemes, capable of lever-

aging certain properties of interest to optimize the replay
of concurrency bugs through partial logging. This paper
makes a first step in this direction, by proposing an inno-
vative and practical scheme, called Property-Driven Par-
tial Logging (PPL), to automatically create lightweight,
overlapping partitions of semantically correlated shared
variables. PPL approaches the problem using an inte-
ger linear programming (ILP) model that optimizes the
generation of partial logs containing correlated informa-
tion, considering also load balancing and log overlap-
ping. We integrated PPL with CoopREP and conducted a
preliminary experimental evaluation based on three stan-
dard benchmarks for Java multi-threaded programs and
on a well-known open source application server (Tom-
cat). The results show that PPL reduces the number of
attempts to replay the bug in 55% of the cases, while im-
proving the load balancing among the clients by more
than 34%. In terms of performance overhead, PPL im-
poses a runtime degradation between 2.1% and 11.5%,
which is up to 3.8x lower when compared to a classic
full logging strategy, e.g. LEAP [8].

2 Cooperative Record and Replay

CoopREP [12] is a system that provides support for the
replication of concurrency bugs in Java programs, based
on cooperative record and replay.

To contextualize and motivate the need for more clever
partial logging schemes, we first briefly discuss the two
main phases according to which CoopREP operates,
namely i) cooperative partial logging and ii) statistically-
guided partial log combination and replay.

2.1 Partial Log Recording
To address memory non-determinism, CoopREP traces
the local order of thread accesses to the shared pro-
gram elements (SPEs), as previously done by LEAP [8].
Here, the SPEs encompass variables that serve as mon-
itors, as well as other class and field variables that can
be concurrently accessed by different threads1. To track
thread accesses, CoopREP assigns an access vector to
each different SPE. Thereby, during runtime, every time
a thread accesses a shared variable, the thread ID is
stored in the SPE’s correspondent local-order access vec-
tor. For instance, if we have the following access vector
< t1, t2, t2 > for a given shared variable x, it means that
x was accessed first by thread t1 and, later, two times
by thread t2. Using this technique, one gets lightweight,
local order vectors of thread accesses performed on in-
dividual shared variables, instead of requiring a global-
order vector.

To minimize logging overhead, CoopREP adopts a co-
operative approach in which each user instance records

1In the remaining of this paper, we use the terms SPE and shared
variable interchangeably.

accesses to a subset of the total SPEs of the program dur-
ing the production run. The subset of SPEs to be traced
is defined at instrumentation time, at the developer side.
As already mentioned, to define the partition of SPEs to
be traced in the partial record versions, CoopREP ran-
domly selects a subset of SPEs corresponding to a given
percentage of the total number of SPEs in the program.

2.2 Partial Log Combination
Although achieving less performance overhead,
CoopREP, like other previous partial logging tech-
niques [14, 2], may not guarantee the deterministic
reproduction of bugs. In fact, as each instance of
the user program only traces a subset of the accesses
performed to SPEs, it may be impossible, in some cases,
to reconstruct the failure-inducing thread interleaving by
combining their partial logs. We note that the problem
of identifying a failure-inducing thread interleaving is,
generally speaking, a complex one, as the state space
that needs to be explored may grow exponentially.

To mitigate this issue, CoopREP applies statistical
techniques over the set of collected partial logs to iden-
tify those that present more similarities. The goal is to in-
crease the probability of combining partial logs that lead
to a feasible thread interleaving, capable of reproducing
the error during the replay phase.

To accurately measure the similarity between two
partial logs, CoopREP relies on the notion of overall-
dispersion, which is the ratio between the number of
different access vectors logged (across all clients) for a
given SPE and the total number of different access vec-
tors collected for all SPEs (across all clients). Overall-
dispersion is then used in a metric, denoted Dispersion-
based Similarity (DSIM), to measure the similarity be-
tween two partial logs, l0 and l1, as follows:

DSIM(l0, l1) = ∑
x∈Equall0 ,l1

disp(x)×

1− ∑
y∈Diff l0 ,l1

disp(y)

where Equall0,l1 (respectively Diff l0,l1) denotes the set of
SPEs with identical (respectively different) access vec-
tors, recorded by both partial logs l0 and l1, and disp(x)
gives the overall-dispersion of SPE x. Note that this met-
ric assigns higher similarity to pairs of partial logs that
recorded the same access vector for SPEs with great dis-
persion.

The DSIM metric is later leveraged by a heuristic,
called Similarity-Guided Merge, to pinpoint the best par-
tial logs to be the basis to start reconstructing the faulty
execution. This heuristic systematically combines sim-
ilar partial logs to fill the missing access vectors in the
basis log, thus generating an entire execution trace. As
the merged data may not be compatible, the resulting log
is replayed to check whether the bug has been triggered
or not. If not, the heuristic selects another base partial

2

log and repeats the procedure until the bug has been re-
produced or the maximum number of stipulated attempts
has been reached.

Due to space constraints, we omit the details of the
Similarity-Guided Merge heuristic, which is fully de-
scribed in previous work [12]. Instead, in this paper, we
focus on how to create effective and efficient partitions
of the SPEs to be logged in the first place.

3 Limits of Random Selection Schemes

The random scheme adopted by CoopREP to determine
the variables traced by each partial log is attractive due to
its simplicity, but suffers also from a number of relevant
shortcomings:

i) Log Overlapping: Random partial logging, although
often effective, does not guarantee that two partial logs
(acquired at different users) necessarily overlap. The
drawback of this is that, if two partial logs have no SPEs
in common, it is impossible to deduce whether these par-
tial logs were traced from equal executions and, conse-
quently, if they are suitable to be combined.

ii) Load Balancing: The ultimate goal of cooperative
record and replay is to minimize the time and space over-
head imposed during production runs. Although partial
logging per se helps to achieve this goal, randomly se-
lecting the SPEs to be traced may result in some users
being assigned with the shared variables most frequently
accessed and other users with the least accessed ones,
thus providing a poor overall load balance.

iii) SPE Correlation: To optimize the combination of
compatible information, one should trace SPEs that de-
pend on one another in the same partial log. The ra-
tionale is that, during the partial log merging phase, we
can avoid having to combine dependent information col-
lected from potentially different production runs. Ran-
dom partial logging, however, generates SPE partitions
disregarding this property.

The above considerations raise the following question:
is it possible to design solutions capable of addressing
the limitations of random strategies, and to identify ef-
fective and efficient partitions of the SPEs in a practical
and scalable fashion?

We argue that this problem presents two main chal-
lenges: the first one is related to the need to ensure
the practical tractability of the partitioning model, as its
combinatorial nature may easily lead to the formulation
of solutions with prohibitive computational costs. A sec-
ond challenge is related to how to encode the above-
mentioned objectives into a global optimization problem
in a coherent and sound fashion.

S = {1,2,3,4,5,6,7} 1

2 3

4 5 6 7

PL1 = {1,2,4}

PL2 = {1,2,5}

PL3 = {1,3,6}

PL4 = {1,3,7}

PL1 PL2 PL3 PL4

Figure 1: Partial logs generated using the tree quorum
technique for a program with 7 SPEs.

4 Property-Driven Partial Logging

In this section we make a first step to answer the above
question, by presenting Property-driven Partial Logging
(PPL), a novel algorithm that casts the problem of se-
lecting the SPEs to be traced by different partial logs as a
linear optimization that aims at jointly pursuing the fol-
lowing goals: i) maximizing correlation among the SPEs
logged by the same partial log, ii) ensuring the presence
of at least one SPE in common between any two partial
logs, and iii) ensuring a bounded unbalance level for the
logging overhead imposed by recording any two partial
logs.

Next, we describe how each of the three objectives
mentioned above are encoded in PPL. Finally, in Section
4.4, we discuss how they are combined into a unique op-
timization problem solvable using linear programming.

4.1 Log Overlapping
To meet the overlapping requirement, we build partial
logs in such a way that they form a coterie (i.e. a set of
quorums Q, such that for any Q,Q′ ∈Q : Q 6⊂ Q′). For
this, we rely on an adaptation of the tree quorum tech-
nique [1]. This technique takes a universe of elements
U = {1, ...,n} and builds a binary tree. A quorum is
then given by any path from the root to a leaf, and the
coterie is the set of all these paths. Therefore, we can
conclude that, in order to have a coterie of partial logs,
it suffices to have 2blog2Sc partial logs (where S is the to-
tal number of SPEs of the program), each one containing
blog2Sc+1 variables.

Figure 1 illustrates an example of this technique ap-
plied to a program with 7 SPEs (S = {1,2,3,4,5,6,7}).
In this case, to obtain a coterie of partial logs, we require
four partial logs, each one with three SPEs. A possible
configuration is to have SPE 1 as root, as depicted in the
figure. Given that this SPE is going to be traced by all
partial logs, one guarantees that any two partial logs will
overlap. However, it should be noticed that, for partial
log overlapping, we do not require the tree to be binary,
but only that there exists a common root. For instance,
for the example in Figure 1, a partial log configuration
such as PL1 = {1,2,3},PL2 = {1,2,4},PL3 = {1,2,5},

3

and PL4 = {1,6,7} would also be feasible.

4.2 Load Balancing
The load associated to a partial log is related to the size of
the access vectors traced for its SPEs. Hence, the higher
the number of times a SPE is accessed, the greater its
access vector will be and, consequently, the stored log.

To achieve load balance, we force an upper bound in
the difference allowed between the amount of SPE ac-
cesses traced by different partial logs. This upper bound,
denoted MaxLoadDiff, is computed as follows:

MaxLoadDiff = φWorstCase

where WorstCase corresponds (for a given partial log ca-
pacity cap) to the load difference between two extreme
partial log configurations: one recording the cap “heav-
ier” SPEs and the other tracing the cap “lighter” SPEs.
In turn, the parameter φ ∈ [0,1] allows to tune the tight-
ness of that load variation. Hence, a value of φ close to
0 will indicate that the difference between the number of
SPE accesses traced by the partial logs should be mini-
mal, thus ensuring good load balance.

Unfortunately, the information regarding the size of
each SPE access vector is only accurately known at run-
time. To address this, we perform an off-line “training
phase”, during which we trace the frequency of accesses
to SPEs for a given number of successful executions, thus
obtaining an approximate value for each SPE’s load.

4.3 SPE Correlation
The term correlation is used in this context (analogously
to the classic definition used in statistics) to measure to
what degree two random variables satisfy probabilistic
independence. In the particular case of software, one
can observe that dependence relationships among pro-
gram variables are ubiquitous. In fact, it is common
for developers to express program semantic aspects us-
ing correlated variables, even if unconsciously. For in-
stance, developers may rely on variable correlation to
represent correlated real-world entities; use a variable to
define another variable’s state, properties or constraints;
or use multiple variables to describe different aspects of
a complex object [11]. For this reason, correlated vari-
ables are usually updated and accessed together during
the program execution. Thereby, if we are able to cap-
ture these access dependences among variables, we can
get a better insight on which variables should be tracked
together and on how to effectively partition the SPE set
into subsets to be logged by different users. The goal is
to later facilitate the deterministic replay through partial
log combination.

We achieve this in two steps. First, we infer SPE cor-
relations and compute the correlation coefficient for each
SPE (i.e. its inter-dependences with all the other SPEs of

the program). Second, we maximize the sum of the cor-
relation coefficients per partial log through an ILP model.

In the following we describe how SPE correlation in-
ference is performed, whereas the ILP model is further
explained in Section 4.4.

4.3.1 Correlation Inference

We infer correlations among SPEs by employing a tech-
nique similar to that of MUVI [11]. MUVI focuses on
extracting multi-variable access correlations through the
analysis of variable access patterns and the examination
of what variables are usually read or written together.
However, MUVI aims at localizing semantic and multi-
variable concurrency bugs, while we are interested in
replaying the faulty execution rather that detecting the
error. Despite that, we rely on the same notion of to-
getherness to claim that two shared variables are usually
accessed together and, thus, should be considered corre-
lated. More formally, we say that two SPEs are together
if they are accessed in the same method with less than
MaxDistance statements apart, where MaxDistance is a
parameter defined by the developer.

We also define variable correlation for two SPEs x and
y as follows: x is correlated with y (written as x⇒ y), iff
x and y are accessed together at least MinSupport times
and whenever x appears, y appears together with at least
MinConfidence probability, where MinSupport and Min-
Confidence are adjustable thresholds.

The inference of the SPE correlations is then carried
in four steps:

i) Collect SPE access information. We perform a static
analysis of the source code to collect information regard-
ing accesses to SPEs within the same method. For each
access, we collect a tuple containing: the id of the SPE,
the name of the method, the line number of the SPE ac-
cess instruction, and a flag indicating whether the access
is from a method itself (direct access) or its callee meth-
ods (indirect access). All these tuples are then stored in a
database for each method, denoted AccSet. The need for
collecting indirect accesses arises due to encapsulation,
where variables are often read or written inside utility
methods, such as get() and set().

ii) Identify frequent together SPEs. After obtaining
the AccSets for each method, we need to identify pairs
of SPEs that appear together a MinSupport number of
times, in order to be considered as possibly correlated.
Given that computing these patterns can be expensive,
we employ a widely-used frequent itemset mining al-
gorithm, called FPGrowth[7]. FPGrowth is tailored to,
given a database where each entry is a itemset (i.e. a set
of items), efficiently pinpoint which sub-itemsets appear
in more than a minimum number (denoted MinSupport)
of entries.

By applying FPGrowth to our AccSet we then obtain
the different subsets of SPEs that are accessed together

4

in more than MinSupport methods. However, for PPL,
we are only interested in the subsets containing two ele-
ments. We call these subsets candidate pairs.

iii) Generate and prune SPE correlations. In order to
determine whether a candidate pair is a valid correlation
or a false positive, we rely on the following two metrics:

Support: The support of a correlation candidate pair
P : x⇒ y, denoted as support(P), is given by the number
of methods in which x and y are accessed together (ac-
cording to the definition of togetherness). If this number
is smaller than MinSupport, the pair is pruned out.

Confidence: The confidence of a correlation candidate
pair P : x⇒ y gives the conditional probability that y is
accessed in a method, given that x is also accessed in
the same method. It is computed as support(P)

support(x) , where sup-
port(x) is the number of methods that access x.

Confidence is important to assess the accuracy of the
correlation, because a low confidence value makes a can-
didate pair untrustworthy, despite having many support
methods. Hence, if the confidence value is lower than
MinConfidence, the candidate pair is pruned out. On the
other hand, the candidate pairs that remain after the siev-
ing are considered as valid correlations.

iv) Compute SPE correlation coefficient. For a given
SPE s, let Vs be the set of all valid correlations between
s and any other SPE y of the program (i.e. ∀v ∈ Vs,v :
s⇒ y). The correlation coefficient of SPE s is then com-
puted as ∑v∈Vs Con f idence(v) and allows to capture the
overall dependence of each shared variable with respect
to the other variables. In other words, a SPE with high
correlation coefficient means that its thread accesses are
directly related with the accesses to several other SPEs,
which makes it a good candidate to serve as overlapping
point between different partial logs.

4.4 Property-Driven SPE Selection
As already mentioned, PPL combines the three aspects
discussed above into a global optimization problem,
which is described as follows.

Let S = {1, ...,s} be the universe of SPEs in the pro-
gram, l = 2blog2sc the number of partial log configura-
tions to be created, and cap = blog2sc+ 1 the capacity
of each partial log. Let us also consider a weight vector
W 1×s = (w j), j ∈ {1, ...,s}, that gives the load associ-
ated with each SPE j in terms of the number of times it
is accessed, and MaxLoadDiff as the maximum load dif-
ference allowed between each two partial logs (see Sec-
tion 4.2). Finally, let C1×s = (c j), j ∈ {1, ...,s}, be a vec-
tor containing the correlation coefficient for each SPE j
(see Section 4.3.1.iv). The ILP model is then formulated
as follows.

max ∑
l
i=1 ∑

s
j=1 xi j.c j

subject to:

∑
s
j=1 xi j = cap,∀i ∈ {1, ..., l} (i)

∑
l
i=1 xi j ≥ 1,∀ j ∈ {1, ...,s} (ii)

|∑s
j=1 xi j.w j−∑

s
j=1 xi∗ j.w j| ≤MaxLoadDiff ,

∀i, i∗ ∈ {1, ..., l}, i 6= i∗ (iii)

xi j ∈ {0,1}

where X l×s = (xi j) is the unknown binary variable ma-
trix (xi j indicates whether partial log i contains SPE j
or not). Notice that constraints (i),(ii), and (iii) ensure
fixed capacity per partial log, SPE covering, and load bal-
ancing, respectively.

This is a maximization problem, so we know that an
optimal solution will always try to “pack” the SPEs hav-
ing higher correlation coefficient. However, as the SPE
covering constraint limits this selection by imposing that
each SPE must be packed at least once, this will cause the
partial logs to be populated in a tree quorum fashion. As-
suming that MaxLoadDiff is chosen wisely to allow the
problem to be solvable, the SPE with the greatest corre-
lation coefficient will then be the root of the tree, thus
being present in every partial log.

5 Evaluation

To assess the benefits and limitations of the proposed
scheme, we implemented PPL over our CoopREP pro-
totype, using JavaILP2 with lp solve to solve the ILP
problem. We then compared our approach against an un-
balanced PPL approach, as well as against SPE random
partitioning (assuming the same capacity per partial log),
according three main criteria:

• Effectiveness: which scheme allows CoopREP to
replay the concurrency bug in less attempts, when
varying the number of partial logs collected?

• Load Balancing: which scheme provides better
load distribution among the users?

• Performance Overhead: does PPL incur greater
performance overhead with respect to a random
scheme?

Program SLOC #SPE #Total #Partitions Partition
Accesses Generated Capacity

TwoStage 170 4 27103 4 3
TicketOrder 216 8 22470 8 4

Piper 260 6 347 4 3
Tomcat#37458 535K 21 72 16 5

Table 1: Benchmarks description.

2http://javailp.sourceforge.net

5

Program Random PPL (φ = 0.7) Unbalanced PPL
16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512

TwoStage 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TicketOrder X X X X X X X X 3 3 1 1 X X 3 3 1 1

Piper X 6 1 1 1 1 3 1 1 1 1 1 3 1 1 1 1 1
Tomcat#37458 X 9 8 8 1 1 X 2 2 2 1 1 X 2 1 1 1 1

Table 3: Attempts required by CoopREP to replay the benchmark bugs using the three partial logging schemes when
varying the number of logs collected. The X indicates that the heuristic failed to replay the bug in the maximum
number of attempts. The shaded cells highlight the cases where PPL schemes outperformed random partial logging.

Program %Load Difference
TwoStage 0.8%

TicketOrder 0.01%
Piper 1.1%

Tomcat#37458 2.7%

Table 2: Difference between the load of the logs recorded
from both 100 successful and 100 failed executions.

5.1 Methodology

For the experiments, we used three programs from the
ConTest benchmark suite [5] and the real-world appli-
cation Tomcat (bug #37458). These programs are de-
scribed in Table 1 in terms of their source lines of code
(SLOC), number of SPEs, and the total amount of SPE
accesses, respectively. The two final columns indicate
how many partitions should the PPL schemes create and
how many SPEs should each partition contain.

As a remark, it should be noted that failure rate of the
benchmarks that we observed empirically was 80%, 7%,
5%, and 4%, respectively for TwoStage, TicketOrder,
Piper, and Tomcat. This means that, in general, these
bugs are not easily triggered without the help of deter-
ministic replay techniques.

Regarding the training phase, it was conducted with
100 logs from successful executions. Table 2 reports the
percentage of load difference between the access vectors
of those logs and the access vectors of another 100 logs
captured from failed runs. As it can be verified, the fre-
quency of accesses to the SPEs is almost identical in both
correct and faulty executions. This allows to conclude
that using an off-line training phase to obtain an approx-
imate value for each SPE’s load does not significantly
affect the accuracy of the ILP model.

Finally, concerning parameter setting, for correlation
pruning we used minSupport = 2 (some benchmark pro-
grams do not have many methods) and minConfidence
= 0.5. For CoopREP, the Similarity-Guided Merge
heuristic [12] was executed using DSIM metric (see Sec-
tion 2.2) with a similarity threshold of 0.01 and a max-
imum number of attempts to reproduce the bug of 512.
To get a fairer comparison of the recording schemes, the
partial logs were generated from complete logs, picking
the SPEs to be stored according to each scheme’s policy.

All the experiments were conducted in a machine Intel
Core 2 Duo at 2.26 Ghz, with 4 GB of RAM and running
Mac OS X.

5.2 Effectiveness

The effectiveness of the partial logging schemes are di-
rectly related to CoopREP’s bug replay capacity. In
other words, an effective partitioning scheme should al-
low CoopREP to successfully reconstruct the faulty ex-
ecution within a few tries, even when collecting a small
number of partial logs from the user instances.

To assess of the effectiveness of PPL, we compared
the number of attempts required to reproduce the bug
when using partial logs generated by this scheme (con-
sidering φ = 0.7 when computing LoadMaxVar3, see
Section 4.2), as well as by both an unbalanced PPL
approach and random partial logging. For each case,
CoopREP was executed with N generated partial logs,
where N ∈ {16,32,64,128,256,512}. Table 3 reports
the outcomes of the experiments.

The results show that property-driven schemes clearly
outperform random partial logging (the number of at-
tempts to replay the bug is smaller in 55% of the cases),
thus supporting our claim that leveraging log overlapping
and SPE correlation when recording production runs op-
timizes the statistical-guided partial log combination.

In particular, TicketOrder was the benchmark for
which the benefits of PPL are most evident. In this pro-
gram, the bug was triggered due to unsynchronized ac-
cesses to two correlated shared variables. As the random
scheme does not capture correlation and these two par-
ticular SPEs exhibited a different thread interleaving in
all the traced production runs (thus being irrelevant to
measure similarity between partial logs), CoopREP ends
to choose, as a basis to start reconstructing the complete
execution, partial logs where at least one of this SPEs is
missing. Conversely, by using PPL schemes, the relevant
SPEs are recorded together, thus facilitating the task of
merging compatible information.

3We found φ = 0.7 to be the most suitable value from a sensitivity analysis
that evaluated the effect of varying φ on CoopREP’s bug replay capacity, for 512
partial logs. We omit this analysis due to space constraints.

6

5.3 Load Balancing
In order to quantify the load distribution benefits achiev-
able via load balanced PPL with respect to unbalanced
PPL and random partial logging, we measured the load
difference between the maximum and the minimum load
for sixteen partial logs generated with the three schemes.
Figure 2 depicts the obtained results.

As expected, the load upper bound imposed in the for-
mulation of the integer linear programming for property-
driven partial logging always resulted in smaller dispar-
ities between the partial logs with the most and the least
load, respectively. However, surprisingly, the unbalanced
PPL approach never exhibited worse load balance than
random partial logging. This can be explained by the
fact that, for unbalanced PPL, despite removing the con-
straint for load distribution in the linear programming
problem, the SPEs partitions are still generated in a quo-
rum fashion, thus promoting the tracing of similar SPEs
among different partial logs. In fact, the partial logs con-
figurations produced by both PPL approaches are equal
for programs TicketOrder, Piper, and TwoStage, as high-
lighted by the results in both Table 3 and Figure 2.

5.4 Performance Overhead
Figure 3 depicts the performance overhead due to in-
strumentation. As one can see, the three partial logging
schemes incur a runtime degradation between 2.1% and
11.5% on average, being up to 3.8x lower when com-
pared to LEAP [8], a classic full logging strategy.

Comparing now the partial logging strategies among
each other, Figure 3 shows that the random scheme
slightly outperforms PPL schemes for programs
TwoStage and TicketOrder, whereas the opposite sce-
nario is verified for benchmarks Piper and Tomcat. This
is explained by the fact that, since performance overhead
is only determined by the frequency of accesses to the
SPEs traced, PPL may identify either heavy or light
SPEs as root of the quorum tree (depending on whether
they are very correlated to other SPEs or not). Despite
that, for all cases, one can see that the random strategy
always exhibits greater difference between the maximum
and the minimum values of performance degradation
when compared to PPL approaches.

6 Conclusions

In this paper, we shed light on the importance of explor-
ing an important design choice for cooperative record
and replay strategies, that is how to select the shared vari-
ables to be assigned to different partial logs. We also
make a first step in this direction by proposing property-
driven partial logging (PPL), a novel information par-
tition scheme that automatically creates load balanced,
overlapping partitions of semantically correlated shared
variables. Early results highlight the relevance of this

 0

 0.2

 0.4

 0.6

 0.8

 1

Two
Stage

TicketOrder Piper Tomcat
#3758

Lo
ad

 Im
ba

la
nc

e

Random PPL (= 0.7) Unbalanced PPL

Figure 2: Load imbalance for the three schemes, normal-
ized for the WorstCase (see Section 4.2).

 0

 5

 10

 15

 20

 25

 30

Two
Stage

TicketOrder Piper Tomcat
#3758

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

Random
PPL (q = 0.7)

Unbalanced PPL
Full Logging

Figure 3: Performance overhead for the three partial log-
ging schemes, as well as for a full logging strategy [8]
(the error bars indicate the maximum and the minimum
values observed).

design choice both in terms of increased ability to replay
concurrency bugs (the number of attempts to reproduce
the bug is smaller in 55% of the cases) and load distri-
bution among the clients (the load balance is improved
by more than 34%). In terms of performance overhead,
PPL imposes a runtime degradation between 2.1% and
11.5%, which is up to 3.8x lower when compared to a
classic full logging strategy, e.g. LEAP [8].

We believe that PPL paved the way for future works
aimed at building more elaborate solutions (e.g. by com-
bining shared variable tainting with correlation).

7 Acknowledgments

The authors wish to thank the anonymous reviewers
for the valuable feedback and suggestions. This work
has been partially supported by FCT (INESC-ID multi-
annual funding) through the PEst-OE/EEI/LA0021/2011
Program Funds.

7

References
[1] AGRAWAL, D., AND EL ABBADI, A. An efficient and fault-

tolerant solution for distributed mutual exclusion. ACM Trans.
Comput. Syst. 9, 1 (Feb. 1991), 1–20.

[2] ALTEKAR, G., AND STOICA, I. Odr: output-deterministic replay
for multicore debugging. In ACM SOSP (2009), pp. 193–206.

[3] CHOI, J.-D., AND SRINIVASAN, H. Deterministic replay of java
multithreaded applications. In ACM SPDT (1998), pp. 48–59.

[4] DUNLAP, G., LUCCHETTI, D., FETTERMAN, M., AND CHEN,
P. Execution replay of multiprocessor virtual machines. In ACM
VEE (2008), pp. 121–130.

[5] FARCHI, E., NIR, Y., AND UR, S. Concurrent bug patterns and
how to test them. In IEEE IPDPS (2003), pp. 286–293.

[6] GEORGES, A., CHRISTIAENS, M., RONSSE, M., AND
DE BOSSCHERE, K. Jarec: a portable record/replay environ-
ment for multi-threaded java applications. Software Practice and
Experience 40 (May 2004), 523–547.

[7] HAN, J., PEI, J., AND YIN, Y. Mining frequent patterns without
candidate generation. In ACM SIGMOD (2000), pp. 1–12.

[8] HUANG, J., LIU, P., AND ZHANG, C. Leap: lightweight deter-
ministic multi-processor replay of concurrent java programs. In
ACM FSE (2010), pp. 385–386.

[9] LEBLANC, T., AND MELLOR-CRUMMEY, J. Debugging paral-
lel programs with instant replay. IEEE Trans. Comput. 36 (April
1987), 471–482.

[10] LEE, D., CHEN, P. M., FLINN, J., AND NARAYANASAMY, S.
Chimera: hybrid program analysis for determinism. In ACM
PLDI (2012), pp. 463–474.

[11] LU, S., PARK, S., HU, C., MA, X., JIANG, W., LI, Z., POPA,
R., AND ZHOU, Y. Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and concur-
rency bugs. In ACM SOSP (2007), pp. 103–116.

[12] MACHADO, N., ROMANO, P., AND RODRIGUES, L.
Lightweight cooperative logging for fault replication in concur-
rent programs. In IEEE DSN (2012), pp. 1–12.

[13] MUSUVATHI, M., AND QADEER, S. Iterative context bounding
for systematic testing of multithreaded programs. In ACM PLDI
(2007), pp. 446–455.

[14] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE,
K., AND LU, S. Pres: probabilistic replay with execution sketch-
ing on multiprocessors. In ACM SOSP (2009), pp. 177–192.

[15] SRINIVASAN, S., KANDULA, S., ANDREWS, C., AND ZHOU,
Y. Flashback: A lightweight extension for rollback and determin-
istic replay for software debugging. In USENIX Annual Technical
Conference (2004), pp. 29–44.

[16] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J.,
CHEN, P., FLINN, J., AND NARAYANASAMY, S. Doubleplay:
parallelizing sequential logging and replay. In ACM ASPLOS
(2011), pp. 15–26.

[17] ZAMFIR, C., AND CANDEA, G. Execution synthesis: a tech-
nique for automated software debugging. In ACM EuroSys
(2010), pp. 321–334.

8

