
STI-BT: A Scalable Transactional Index

Nuno Diegues and Paolo Romano
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—In this article we present STI-BT, a highly scal-
able, transactional index for Distributed Key-Value (DKV)
stores. STI-BT is organized as a distributed B+Tree and adopts
an innovative design that allows to achieve high efficiency in
large-scale, elastic DKV stores. We have implemented STI-BT
on top of a mainstream open-source DKV store and deployed it
on a public cloud infra-structure. Our extensive experimental
study reveals the efficiency of our solution with demonstrable
scalability in a cluster of 100 commodity machines, and speed
ups with respect to state of the art solutions of up to 5.4x.

I. INTRODUCTION

The ever growing need for computational power and
storage capacity has fostered research of alternative solutions
to classic monolithic relational databases. In this context,
Distributed Key-Value (DKV) stores (such as Dynamo [1])
became quite popular due to their scalability, fault-tolerance
and elasticity. On the down side, developing applications
using these DKV stores is far from trivial, due to two main
factors: the adoption of weak consistency models and of
simplistic primitives to access data.

Concerning data consistency, the inherent complexity of
building applications on top of weakly consistent systems
has motivated a flurry of works offering strongly consistent
transactional semantics in large scale platforms [2]–[7].

On the other hand, the lack of indexing support for non-
primary data attributes forces programmers to either imple-
ment ad-hoc indexing strategies at the application level, or
to rely on asynchronous indexing solutions [8], [9]. Neither
approach is desirable, as the former is costly and error-prone,
whereas the latter ensures only weak consistency.

In this paper we tackle this issue by introducing STI-BT,
a transactional index designed to match the scalability and
elasticity requirements of DKV stores. STI-BT is organized
as a distributed B+Tree and adopts a unique design that
leverages on the following mechanisms in a synergic way:

. Data placement and data-driven transaction migration: a
unique feature of STI-BT is that accesses to any indexed data
item require normally only one remote access, regardless of
the size of the index and of the number of machines in the
system. This is achieved via the exploitation of data place-
ment and transaction migration techniques, which are jointly
leveraged to maximize data locality. STI-BT partitions the
index into sub-trees that are distributed to different machines
via lightweight data placement techniques based on custom

consistent hashing [10] schemes. Transaction migration is
used to relocate the execution of an operation to a remote
machine when the data required is not available locally.
This results in a drastic minimization of communication,
enhancing the efficiency and scalability of the index.

. Hybrid replication: STI-BT adapts the number of copies
of the tree nodes according to their depth in the tree: top
levels are fully replicated, whereas lower levels are partially
replicated over a small set of machines. This brings a number
of advantages. The nodes in the top of a B+Tree, despite
representing a minimum fraction of the tree, account for a
large part of the read accesses. By fully replicating them,
STI-BT avoids the load unbalance that would otherwise
occur if they were replicated only in a small set of machines.
Also, top level nodes have the lowest probability of being
updated, which makes the cost of maintaining them fully
replicated negligible even in large clusters. Conversely, using
partial replication for the lower levels (the majority of
the data) ensures fault-tolerance, maximizes efficiency of
storage, and keeps the cost of updating the index bounded
at any scale of the system.

. Elastic scaling: The ability to adjust the resources em-
ployed to the actual demand is one of the most attractive
features of DKV stores. For this reason, STI-BT was tailored
to ensure efficiency in the presence of shifts of the platform’s
scale. It reacts to changes by autonomously adjusting the
boundaries of the fully replicated part, with the intent of
minimizing it, and redistributing the index across the cluster.

. Concurrency enhancing mechanisms: STI-BT combines a
number of mechanisms to minimize data contention. STI-
BT is built on top of GMU [3], a recent distributed multi-
versioning scheme that executes read-only transactions in
a wait-free fashion, hence allowing for executing lookup
operations highly efficiently. To maximize scalability also
in conflict-prone workloads, we used algorithms to navigate
and manipulate the index that exploit concurrency-enhancing
programming abstractions [11], [12] and drastically reduce
the conflicts among concurrent index operations.

We have built STI-BT on top of Infinispan, a mainstream
open-source transactional DKV store from Red Hat. We
conducted an extensive experimental study, deploying STI-
BT in a large scale public cloud infrastructure (up to
100 machines) using benchmarks representative of OLTP
workloads. The results highlight the high scalability of the

proposed solution, which can achieve up to 5.4⇥ speedups
over state of the art solutions.

The rest of the paper is organized as follows. In Section II
we discuss related work. Section III introduces background
concepts and assumptions. Section IV overviews our so-
lution, of which we provide a more detailed description
through Sections V-VIII. Finally, we present our evaluation
in Section IX, and conclude in Section X.

II. RELATED WORK

The development of B+Trees for indexing data consti-
tutes a large body of work. One traditional usage targets
centralized systems with persistent storage in disk [13], [14],
whereas others have targeted distributed environments [15]
(although without allowing atomic accesses to data items).

A Scalable BTree was proposed in [16] to index large-
scale data transactionally. Accesses to the tree are governed
by Sinfonia [17], a distributed abstraction of shared memory
with serializable transactions. However the main drawback
is the focus on queries alone, for instance by fully replicating
every tree node (except leafs). Thus, its performance lacks
scalability under mixed workloads where the data is updated.

Another design of a distributed B+Tree was proposed in
Minuet [18] (also on top of Sinfonia). Similarly to STI-
BT, Minuet also exploits multi-versioning to enhance con-
currency between transactions. Yet, Minuet handles multi-
versioning externally to Sinfonia, by using a centralized
snapshot identifier that is incremented whenever a read-only
transaction requires a fresh snapshot. As we shall discuss
in the next Section, our solution uses a scalable distributed
multi-versioning scheme [3], which provides significant ben-
efits for read-only transactions. Furthermore, Minuet dis-
tributes the tree nodes randomly across the Sinfonia cluster.
In STI-BT, we exploit the structure of the tree to co-locate
tree nodes and maximize data locality. Finally, we extend
their usage of Dirty Reads (initially promulgated in [11])
to cope with Delayed Actions [12] for reduced concurrency
conflicts in transactions.

The solution for large-scale data indexing presented in
Global Index [19] also proposes to use tree structures, albeit
in a different way. Every machine maintains the local data
indexed in a local B+Tree and chooses only a subset of
nodes to publish — publishing means adding the tree nodes
to the Global Index, which is a BTree built using an peer-
to-peer overlay network called BATON [20]. The published
nodes of some machine reflect an over-estimation of the
data indexed at that machine, with the objective to reduce
the frequency of expensive global synchronization upon
updates of the index. The downside of this design is that,
due to the inaccuracy of the published information, queries
typically contact unnecessary machines, which can hinder
performance. STI-BT’s design, conversely, ensures that at

most a remote machine is contacted to process an index
operation, except for the rare case of concurrent rebalances
affecting regions of the tree accessed by the operation.
Another fundamental difference is that Global Index only
ensures eventual consistency across replicas, whereas STI-
BT ensures strong consistency.

Other work has focused on indexing multi-dimensional
data. The key idea of Global Index has been adapted to
this purpose [21]: each machine indexes its local data in
an R-tree to account for the multi-dimensions. Once again,
the locality-efficient design contributions of STI-BT could
be used in the distributed index that is built on top of
these R-Trees. Other approaches to this topic rely also on
distributed data-structures (such as the SkipTree [8]), on
space-filling curves (as on Squid [22]), or on hyperspace
hashing (as on HyperDex [23]). Many of these techniques
have been developed in the context of Peer-to-Peer (P2P)
network overlays — we refer to [24] for a recent survey
on this topic. Traditionally, these systems were designed
for environments with limited synchrony and high churn,
as typical of large networks over the Internet. As such,
they provide weak or no consistency guarantees at all, much
less transaction abstractions that allow to atomically access
and modify multiple data items. In contrast, STI-BT ensures
strong consistency (without compromising scalability), and
is designed to operate in clusters of cloud machines, which
are more stable than typical P2P systems.

III. BACKGROUND AND ASSUMPTIONS

Like other modern cloud data platforms [2], [17], Infinis-
pan (our underlying DKV store) also supports transactional
strong consistency. In particular, Infinispan integrates the
GMU protocol [3], a strongly consistent transactional repli-
cation protocol that relies on a fully decentralized multi-
versioning scheme. Unlike classic solutions, GMU does
not rely on a global logical clock, which may represent a
contention point and impair scalability. Conversely, GMU
determines version’s visibility and transaction serialization
order by means of vector clocks, which are updated gen-
uinely (i.e., contacting only the machines involved in the
execution of the transaction) and hence in a highly scalable
fashion. Also, GMU never aborts read-only transactions
and spares them from the costs of distributed validation,
maximizing the efficiency of read-intensive workloads.

Concerning data placement, Infinispan relies on consistent
hashing [10] to determine the placement of data (similarly to
Dynamo [1], for instance). Consistent hashing is particularly
attractive in large scale, elastic stores, as it avoids reliance
on external lookup services, and allows to minimize the
keys to be redistributed upon changes of the system’s scale.
However, deterministic random hash functions to map keys
identifiers to machines lead to poor data locality [25], [26].
Hence, DKV stores using consistent hashing (like Infinispan)

Table I: Description of terminology used through the paper.

symbol description
↵ arity of a tree node
C cut-off level
M memory available in a machine
N number of machines in the cluster
K degree of partial replication

typically allow programmers to provide custom functions.
As we will discuss in Section V, STI-BT relies heavily on
novel, custom data placement strategies layered on top of
consistent hashing to enhance data locality.

Finally, STI-BT relies on the structure of a B+Tree, where
leaf nodes are connected to allow for in-order traversal and
inner nodes do not contain values held by the index. We
highlight Table I describing the symbols in our terminology.

IV. DESIGN RATIONALE AND OVERVIEW

One of the main goals of STI-BT’s design is to maximize
data locality, i.e., to minimize the number of remote data
accesses required to execute any index operation. This is
a property of paramount importance not only to ensure
efficiency, but also scalability. In fact, in solutions based on
simplistic random data placement strategies, the probability
of accessing data stored locally is inversely proportional
to the number of machines. Hence, as the system scales,
the network traffic generated by remote accesses grows
accordingly, severely hindering scalability.

Data locality may be achieved using full replication, but
that would constrain scalability from a twofold perspective.
First, the cost of propagating updates (to all machines) grows
with the size of the cluster. Second, it prevents scaling out
the storage capacity of the system by adding machines.

We also highlight that partial replication techniques pose
challenges to load balancing. Consider a simple approach
in which each tree node is replicated across K = f + 1
machines, to tolerate up to f faults in the cluster. Since the
likelihood of accessing a tree node is inversely proportional
to its depth in the tree, the machines maintaining the topmost
tree nodes will receive a larger flow of remote data accesses,
hence becoming bottlenecks of the system.

To cope with the issues mentioned above, STI-BT divides
the B+Tree in two parts: the topmost C � 1 levels are fully
replicated, whereas the bottom part, containing the Cth level
downwards, is partially replicated. Here, C represents the
cut-off level, i.e., the depth level of the tree where the nodes
are no longer fully replicated. As we will discuss, C is a
dynamic value, which is adjusted when the scale of the
platform is altered. Hence, C is stored in a fully replicated
key of the underlying key-value store, which ensures that
its value can be known by any machine with transactional

consistency. In addition to this, the bottom part of the tree
is organized in co-located sub-trees. In Fig. 1 we can see
the index distributed among 3 machines and the cut-off (we
use K = 1 in the example).

The main advantage of this design is that, traversing
down the tree at any given machine can, at most, incur
in one remote access to another machine. If a traversal at
machine M1 reaches level C, and requires data replicated at
machine M3, we take advantage of the co-location within
each sub-tree to forward the execution flow of the transaction
from M1 to M3. The B+Tree supports range searches by
traversing down to the leaf holding the initial value of the
interval of the search, and then following the pointers to the
next leaf. Hence, we try to replicate neighbour sub-trees
in the same machine, which also helps to minimize the
communication required for range searches. This locality-
aware design results in a uniform load of the machines if
the popularity of accesses is uniform across the indexed data.

STI-BT integrates also a set of mechanisms to minimize
the likelihood of contention among concurrent operations
on the index. The key idea is to address the two possible
sources of contention in a B+Tree— structural changes of
the tree topology and modifications of the node’s contents
— by exploiting the commutativity of the various operations
supported by the index. This allows achieving high efficiency
even in challenging update-intensive scenarios.

Another innovative algorithmic aspect of STI-BT is the
management of the cut-off level C. This is governed by
two contradicting forces: (1) we aim to maintain the fully
replicated part as small as possible, to ensure that rebalances
are less likely to update inner nodes that are fully replicated;
and (2) we need the cut-off level to be deep enough so that it
contains enough tree nodes at that level to serve as sub-tree
roots to load-balance between all the machines in the cluster.
Based on these considerations, STI-BT reacts to the elastic
scaling of the underlying DKV by adapting the number of
fully replicated nodes in the distributed B+Tree.

V. MAXIMIZING DATA LOCALITY

We now discuss in more detail how to achieve the co-
location and forwarding of execution flow. We begin with
the example in Fig. 1 with the flow of two index operations,
one in M1 and the other in M3, each corresponding to a
transaction being processed at each machine.

The transaction at M1 accesses the index to obtain a data
element in the sub-tree B. This sub-tree is stored at M2, for
which reason the traversal cannot be processed only with the
data stored at M1. To minimize communication, when the
traversal reaches the level of depth C we move the request
to M2 and continue the traversal there. The design of STI-
BTensures that this can happen only once while traversing

Machine 1 Machine 2 Machine 3

sub-tree A sub-tree B sub-tree C

local
search

local
search

move request local
searchfully

replicated
partially

replicated

Figure 1: Example of communication flow in STI-BT.

the tree, which is optimal except when the request can be
processed only with local data (as for the transaction at M3).

Underlying this solution is the ability to co-locate data.
For this, we still rely on the underlying consistent hashing
from the DKV store, but extend it by means of a custom
hashing scheme. To this end, we encode two parts in the
identifier of each key k (that maps to a tree node), i.e.,
k = hku, kcli: a unique identifier (ku), which identifies the
node of the B+Tree, and a co-locality identifier (kcl), which
is used to ensure co-location of different unique identifiers.
STI-BT hashes only kcl when performing machines lookup
for a key k, and uses ku when conducting local queries
within a given machine. As a result, two different keys,
sharing the co-location identifier kcl, are hashed to the same
machine. We exploit this by assigning the same kcl to all
keys used to maintain the contents of a given sub-tree, which
results in co-locating its tree nodes on a set of K machines
determined via consistent hashing.

We also exploit the underlying DKV store’s consistent
hashing to govern the execution flow of transactions. To
better present this idea, we shall rely on Algorithm 1. For
simplicity, we omit the management of the DKV store when
possible. Also, for the moment it suffices to consider that
each tree node is mapped into a single key/value in the DKV
store — we extend that in Section VII. Finally, we use a
generic function portraying the role of operations accessing
the tree (such as an insertion or range query), with focus on
the common part of traversing down the tree.

We begin by considering a traversal in machine M1 at a
given tree node, as shown by the generic function in line 6.
The traversal goes down the tree nodes as long as those
data items are fully replicated (verified through the meta-
data of the key that allows to access the tree node). When
the next child tree node to traverse has a key that is partially
replicated, one of two things can happen: (1) the key is
locally replicated (the condition in line 10 is true), so the
sub-tree is owned by M1 and the operation is finished locally
by calling function LOCALACCESS; or (2) the sub-tree is
stored elsewhere, and so we decide to move the flow of
execution (line 13 onwards). In the latter case, which can
only occur at depth level C in our STI-BT, we create a task
with the arguments of the access being performed in the

Algorithm 1 Execution flow.
1: struct TreeNode
2: bool isLeaf . if false, then right/left siblings are null
3: List subNodes . sorted children nodes
4: TreeNode* parent, rightSibling, leftSibling

5: . called in the context of application’s transactions
6: function ACCESS(Transaction tx, B+

Tree tree, Obj o)
7: TreeNode node tree.getGlobalRoot()
8: while node.ku.isFullyRepl()
9: node node.getSubNodes().chooseChild(o)

10: if ownerOf(node.kcl) = localMachine
11: return LOCALACCESS(node, o)
12: else
13: long[] vecClock tx.getSnapshotVC()
14: send REQUEST[vecClock, LOCALACCESS(node, o)]

to ownerOf(node.kcl)
15: receive REPLY[vecClock, Obj result]
16: tx.setSnapshotVC(vecClock)
17: tx.addParticipant(ownerOf(node.kcl))
18: return result

19: when receive REQUEST[long[] vc, Task function]
20: Transaction tx startTx()
21: tx.setSnapshotVC(vc)
22: Obj result trigger function
23: vc tx.getSnapshotVC()
24: tx.suspend()
25: send REPLY[vc, result]

26: function LOCALACCESS(TreeNode node, Object obj)
27: . conduct the local operation; rebalance if needed

tree. We then use the consistent hashing function on the kcl
identifier of the child’s key to obtain the set of machines
that replicate that data, and send the task to a random node
in that set, which in our example is M2 (line 14).

In fact, due to the transactional context under which these
executions occur, we must send additional meta-data: the
transaction that is executing at M1 has necessarily performed
some reads that restrict the snapshot of data that is visible
to the transaction. This information is encoded via a vector
clock in GMU (see Section III). Thus we retrieve the current
transaction’s vector clock (line 13) and send it to M2,
which answers back with a possibly updated vector clock
reflecting any additional reads executed during execution at
M2. In practice, M2 starts a new transaction that is forced
to observe the snapshot used by transaction at M1, thus
guaranteeing consistency. No further meta-data is required
at M2 from M1: namely, we avoid moving the buffered
write-set along with the transaction. This is because, before
moving to M2, the traversal at M1 would only have read
tree nodes and necessarily not written to any. On top of
this, the remote execution will only read contents of the
B+Tree (and not other data in the store), thus avoiding the

possibility of a read-after-write. An exception to this occurs
when multiple queries are invoked over the same tree in
the course of a single transaction; in the event that these
repeated invocations access the same parts of the tree, they
will thus contact some previously contacted machines (say
M). In such case, we note that the part of the write-set that
is relevant is already available at M , because it was created
there during the previous remote execution(s).

After the execution returns to the origin machine of the
transaction (for instance M1), the transactional context is
also updated (in line 17) to contain a reference to the transac-
tion that was issued at a remote machine (for instance M2).
This remote transaction was suspended before the execution
flow returned to the origin machine, and is thus pending
a final decision. We extended the underlying DKV store
to consider these additional participants in the distributed
commit procedure. This means that M2 will be seen as a
participant to the distributed transaction coordinated by M1,
just as if M1 had invoked some remote accesses to M2.

Finally, we abstracted away the details of the usual
implementation of a B+Tree in the generic function LO-
CALACCESS. Note that modifications, such as insertion or
removal, may require rebalances due to splits or merges. In
such case, the rebalance operation goes back up and modifies
the inner nodes as required. The likelihood of changing an
inner node is proportional to its depth. Thus, it is normally
unlikely that a rebalance reaches the top part of our STI-BT,
which is fully replicated and incurs larger update costs.

VI. LOAD BALANCING SUB-TREES

The algorithm described so far took advantage of the
existence of sub-trees with co-located data in the DKV store.
Due to that design, a machine replicating more sub-trees
ends up receiving more requests from remote nodes. On top
of this, memory constraints may also apply (we assume that
each machine has limited M memory capacity). For these
reasons, STI-BT integrates a load balancing scheme aimed
to homogenize resource consumption across machines.

As the B+Tree changes, rebalances occur and inner tree
nodes are changed. In particular, at the C depth level, inner
nodes may also change — we call the nodes at this level
sub-tree roots because each one is a root of a sub-tree whose
contents are all co-located. Conceptually, each machine has
a list of sub-tree roots that is used to reason on the data of
STI-BT that is stored there. We ensure that these lists (one
per machine, per STI-BT) have balanced lengths in order to
balance consumption of memory and processor (assuming
that the popularity of indexed data is uniform).

To cope with load-balancing, each machine periodically
triggers a routine to assess the number of sub-trees it cur-
rently owns. This procedure is executed under a transaction

and it is re-attempted in case the transaction aborts due to
a concurrency conflict.

The procedure, triggered at a given machine Mi, starts
by assessing how many sub-trees the machine is responsible
for. For this, it uses an array of all lists of sub-tree roots
— one list per machine. It then computes the average size
for all machines to assess the balance of the tree. We use
a small tolerance value � to avoid repeated migration of
sub-trees between the same machines. If Mi does not have
an excess of sub-trees with respect to the average, then the
procedure concludes. Otherwise, it means we can enhance
the load-balancing by having Mi offer some of its sub-trees
to under-loaded machines: we change the keys of the tree
nodes (being migrated) to the new kcl (that maps to a new
machine, according to the consistent hashing).

So far we assumed for simplicity that a single, coarse-
grained transaction encapsulated the whole migration pro-
cedure. Instead, for instance, it is possible to remove a root
from a list of sub-tree roots and insert it in the other list in
different transactions, because only the machine who owns
a given root is responsible to migrate it else where — no
two machines will race to migrate a given sub-tree. Hence,
when changing the tree nodes to replicate them elsewhere,
one can use a transaction to encapsulate the changes of each
tree node. This minimizes the likelihood of conflicts and,
in such events, the work to be repeated. The only cost of
this optimization is that concurrent data accesses may have
to traverse a partially collocated subtree. Consequently, in
such rare event, STI-BT performs two remote executions
when traversing down the tree.

VII. MINIMIZING DATA CONTENTION

In order to minimize data contention among index op-
erations, STI-BT relies on mechanisms aimed to avoid
structural conflicts — i.e., allow traversals of the tree to be
executed in parallel with tree rebalances, and to allow intra-
node concurrency — i.e., concurrent updates of different
key/values in a tree node. To implement these mechanisms,
we leverage on two programming abstractions proposed
to enhance concurrency in transactional systems: Dirty
Reads [11] and Delayed Actions [12]. Dirty Reads instruct
the underlying concurrency control to avoid validating a
read operation executed by the transaction. Delayed Actions
allow for postponing the execution of conflict-prone code
portions until the transaction’s commit phase, where they
can be executed in a sequential and conflict-free fashion.

STI-BT uses Dirty Reads when traversing down inner
nodes of the B+Tree, and when navigating horizontally
through the elements of a node. This allows for exploiting
the commutativity among (update) operations that target
different data items [27], allowing them to be successfully
executed in parallel and avoiding unnecessary aborts (that
would be triggered if plain reads were used). This technique

brings additional benefits beyond minimizing data con-
tention. Since the topmost part of STI-BT is fully replicated,
if it did not use Dirty Reads to access fully replicated
tree nodes, committing an update transaction would demand
involving all machines in the cluster (to ensure consensus in
validating the accesses to such nodes). The usage of Dirty
Reads to access fully replicated nodes allows removing the
corresponding keys from the transaction’s read-set, signif-
icantly reducing network communication and the cost of
maintaining the topmost part fully replicated.

Delayed Actions are used to avoid contention hotspots
associated with the manipulation of the counters that main-
tain the number of elements stored by each tree node.
Whenever an element is inserted to/removed from a node,
the corresponding counter needs to be updated within the
same transaction, and can become a contention point in
conflict-prone workloads. To avoid this issue, we read this
counter (to determine whether it is necessary to merge or
split the node) using Dirty Reads, and update its value
using a Delayed Action. As the latter takes place at commit
time in an atomic step, this prevents that the update of a
node’s counter can ever cause the abort of the encompassing
transaction. On the down side, this approach can lead to
“missed” concurrent updates to a node’s counter. This does
not affect correctness but can cause an unbalance of the
tree, which we detect and fix using a background thread in
each machine that periodically checks the local sub-trees and
rebalances them, if necessary. A detailed description of STI-
BT’s concurrency mechanisms has to be omitted for space
constraints, but can be found in our technical report [28].

VIII. ELASTIC SCALING

In cloud environments, the provisioning process of a
DKV store is typically governed by an autonomic manager,
which takes into account a number of factors (e.g., current
load, energy consumption, utilization of computational and
storage resources) and aims to ensure Quality-of-Service
levels while minimizing costs [29], [30]. Regardless of the
reasons that may determine a change in the machines of
the cluster, STI-BT reacts by autonomously reconfiguring its
structure (in particular, its cut-off level C) to ensure optimal
efficiency at any scale. If the cluster size changes, it is
possible that the current C is not deep enough to contain
enough sub-tree roots (at least one per machine). Conversely,
upon a scale down, the sub-trees may exceed the actual need:
this is also undesirable, as the shallower the cut-off, the less
likely it is for an update to affect the fully replicated part.

Before presenting the details of the algorithm used to
reconfigure C, we first introduce an example to explain the
high-level idea. Consider C = 2 and ↵ = 4; then we have
↵C = 16 sub-trees available (assuming K = 1). Suppose
that the cluster scales up and brings in a 17th machine; then
we cannot assign a sub-tree to the joining machine with the

Algorithm 2 Scaling the cluster.
28: . triggered after the join/leave of one machine
29: function MANAGECUTOFF(B+

Tree tree, int N)
30: ‹int, int› ‹C, r› DKV.getCutoffInfo()
31: int mid getMachineForRound(r) . round-robin
32: int numSubTrees totalSize(getRootsLists(tree))
33: if N > numSubTrees . lower C level
34: ADJUSTCUTOFF(tree, mid, lower)
35: if r = ↵

C
. lowered fully the current C level

36: C C + 1; r 0
37: else r r + 1
38: else if N < (numSubTrees� ↵+ 1) . raise C level
39: ADJUSTCUTOFF(tree, mid, raise)
40: if r = 0 . raised fully the current C level
41: C C � 1; r K ⇥ ↵

C

42: else r r � 1
43: DKV.setCutoffInfo(C, r) . update meta-data

44: function ADJUSTCUTOFF(B+
Tree tree, int mid, op)

45: List subTrees getAllRootsLists(tree)[mid]
46: TreeNode subTreeRoot subTrees.pickSubTree()
47: if op = lower

48: subTreeRoot.ku.setFullRepl(true)
49: mySubTrees.remove(subTreeRoot)
50: mySubTrees.add(subTreeRoot.getChildren())
51: else
52: subTreeRoot.ku.setFullRepl(false)
53: TreeNode parent subTreeRoot.getParent()
54: subTrees.remove(parent.getSubNodes())
55: subTrees.add(parent)

current C. This motivates for deepening C (i.e., increment
it) to create further sub-trees. Hence, by fully replicating
↵C+1 inner nodes, we obtain ↵C+1 = 64 total sub-trees.
Yet, we do not need to be so aggressive: in fact, we do
not need so many new sub-trees as we only brought in one
new machine. The penalty here is that we are increasing
considerably (and unnecessarily) the fully replicated part of
the tree in a situation where we only acquired little new
resources. By considering only one sub-tree root node in
the fully replicated part of the index, we can turn its ↵
children into new sub-tree roots, which can be migrated
to new machines joining the DKV store. Hence, we adapt
C using a finer-grained, more efficient strategy: we fully
replicate the minimum sub-tree root nodes at the current C
to create as many additional roots as the joining machines.

Algorithm 2 describes this procedure, which is triggered
whenever a change of the DKV’s scale is detected. For ease
of presentation, the pseudo-code considers that the cluster
size increases (or decreases) one machine at a time. As
explained above, C needs to be adapted only if STI-BT has
an insufficient (line 33) or excessive (line 38) number of
sub-trees with respect to the new cluster size N .

To manage the cut-off, we maintain some meta-data in

the DKV store to ensure its coherency across machines.
This meta-data is used to decide which sub-tree root will be
moved to/from the fully replicated part (in lines 34 and 39).
We use a round-robin strategy to pick a sub-tree from a
different machine each time this procedure is executed, and
use meta-data r to keep track of the current round — the
rounds count how many sub-trees of the current C have been
lowered to C+1. Hence why we only update C sometimes: r
consecutive growths (or shrinks) must occur before the full
level is considered changed and the cut-off is changed.

The function ADJUSTCUTOFF is responsible for applying
the cut-off change in the area of the tree corresponding to
one sub-tree. When the objective is to lower the cut-off
(due to the scale of the cluster increasing), this entails two
things: (1) to make the current sub-tree root fully replicated,
conceptually moving the cut-off to the next level in that part
of the tree (line 48); and (2) to update the list of sub-tree
roots that is used for load-balancing (lines 49-50). Lines 52-
55 conduct a symmetric raise procedure. These nodes
belong to the top part of the tree and, since we use Dirty
Reads to avoid validating reads issued on inner nodes, it is
very unlikely for this procedure to incur any conflict.

Finally, we assess the impact of C on memory efficiency.
Since the nodes above C are fully replicated, the more
machines there are, the larger the portion of memory each
one has to allocate to hold the fully replicated nodes. This
is an additional motivation for minimizing C. We evaluate
the memory capacity TC of STI-BT on a cluster of size
N : The equation above subtracts FR fully replicated nodes

TC = N ⇥ (M�↵⇥FR) where FR =
C�1P
i=0

↵i = ↵C�1
↵�1

(each holding ↵ keys of the DKV store) from the capacity of
each machine. We can then evaluate the memory efficiency
of STI-BT, noted ⌘, as the ratio of its actual capacity to
that of an ideal system whose total capacity scales perfectly
with the number of machines (i.e., TC = N ⇥ M): This

⌘ = 1� ↵(N�1)
(↵�1)M

analysis highlights the efficiency of STI-BT in large scale
deployments (containing hundreds or thousands of servers).
In fact, even in such scenarios, it is realistic to assume that
the number of keys held by each machine is much larger than
the number of machines (i.e., M � N), yielding a memory
efficiency very close to 1 for any, non-minimal value of ↵.

IX. EXPERIMENTAL EVALUATION

We developed a prototype of STI-BT on top of Infinispan,
a popular in-memory transactional DKV developed by Red
Hat. Each experiment uses K = 2 for fault-tolerance, and
the reported results represent the average over 10 runs. We

use geometric mean for averages over normalized results.
All tests were executed using ↵ = 25, unless specified
otherwise. We conducted our tests on FutureGrid, a large
scale public cloud infrastructure, from which we acquired a
pool of up to 100 virtual machines equipped with 2 physical
cores, 4GB of RAM and interconnected via InfiniBand. We
also present experiments using a single many-core machine
with 48 AMD Opteron cores at 2.1Ghz and 128GB RAM.

A. YCSB Workloads

YCSB [31] is a popular benchmark for DKV stores,
whose workloads comprehend single key operations (read,
insert and modify) as well as range scans and read-modify-
write operations, emulating data access patterns of real appli-
cations (typically skewed). We used strong scaling by always
loading the index with 10GB of data drawn from a uniform
distribution (our experiments evidenced that larger data-sets
had no impact on the results). Finally we also scale the
number of clients with the number of machines running the
key-value store (co-located processes). To help understand
the benefits of STI-BT, we created several B+Tree variants:
. Baseline: a B+Tree built on top of Infinispan without any
of the contributions mentioned in this paper.
. Sub-Trees: this version enhances Baseline by exploiting
sub-tree co-location and execution migration. Hence, trans-
actions perform fewer remote accesses. The topmost part,
however, is partially replicated. Thus, traversing the first tree
nodes results in remote accesses with a high likelihood.
. Dirty: this version adds Dirty Reads to the Baseline, by
exploiting them when accessing inner nodes. In this scheme,
tree nodes are placed randomly, which causes a high number
of remote accesses. The advantage of this variant is that
update transactions (that require commit time validation)
involve a smaller number of machines in the commit phase
because Dirty Reads need not be validated.
. TopFull: this version differs from the Baseline by fully
replicating the topmost part of the tree (the nodes above
C). When traversing these nodes, this variant also uses
Dirty Reads, to avoid contacting all machines (due to full
replication) during transaction’s validation. However, this
variant is expected to reduce remote accesses only slightly,
as all operations imply traversing partially replicated parts
of the tree scattered using random placement.

We start by showing, in Fig. 2, experiments for each of
YCSB’s workloads using 60 machines, which corresponds to
a medium scale deployment given the maximum size of our
experimental test-bed. The results highlight the significant
speed ups achieved by STI-BT over the Baseline (average
throughput improvement of 13.5⇥) regardless of the work-
load. By evaluating the relative improvement achieved by
each variant, the plots allow us to analyze the relevance
of each design contribution. In particular, we obtained the

0

5

10

15

20

25

A B C D E F

t
h
r
o
u
g
h
p
u
t

(
1
0
0
0

t
x
s
/
s
e

c
)

workload

Baseline

Sub-trees

Dirty

TopFull

STI-BT

Figure 2: YCSB workloads with 60 machines.

following speedups over the Baseline: 6.6⇥ for Sub-Trees;
2.5⇥ for Dirty; and 1.9⇥ for TopFull. Note that each
contribution on its own never reaches more than half the
throughput of STI-BT; this fact will be more evident when
we look at individual workloads. In Table II, we show
the number of remote data fetches per transaction, and
the number of machines contacted per commit. For STI-
BT, the remote operations represent only the migration of
control flow (on average once per transaction) and rebalance
operations that require updating nodes belonging to two sub-
trees that are not assigned to the same machine. Sub-Trees
requires further remote accesses due to the topmost part
not being fully replicated. Finally, the Dirty design does
not reduce the remote accesses, and the TopFull variant
reduces this number only marginally. Note that the Dirty
variant reduces the machines contacted by a larger extent
than TopFull because of the reduced read-set for validation.

We now look in more detail at Workload A in Fig. 3a,
which shows the throughput of each variant as the platform’s
scale grows, highlighting that STI-BT scales until 100
machines almost linearly even in this challenging, update
intensive workload. We also show the peak throughput using
a 48-core machine, which does not ensure fault-tolerance
(no replication/distribution overhead) for reference purposes
of the absolute throughput. In this experiment we note that
all other variants besides STI-BT are either not scalable, or
achieve inferior performance. In particular, the Sub-Trees
variant performs best among them, but its trend stagnates

Table II: Remote gets | machines contacted, relative to Fig.2.

A B C D E F

Baseline 15|19 14|15 10|9 12|14 32|29 14|22
Sub-Trees 3|5 3|5 2|4 2|4 3|5 2|4

Dirty 15|15 14|12 10|9 12|12 30|23 14|15
TopFull 9|18 8|11 7|8 8|12 16|26 11|19
STI-BT 0.2|2 0.3|2 0.1|2 0.1|2 1.4|3 0.1|2

at large scale. This strengthens the relevance of combining
the whole set of mechanisms included by STI-BT, as each
one alone performs rather poorly. This is also confirmed
in the Cumulative Distribution Function of the transactions’
execution latencies (see Fig. 3c): while STI-BT processed
90% of the transactions in 6ms (or less), this value is,
respectively, 2⇥, 3⇥, 6⇥ and 10⇥ higher for Sub-Trees,
Dirty, TopFull and Baseline.

Workload E, instead, requests 95% range scans and 5%
insertions (see Fig. 3d). The results show that the gains in
throughput and latency of STI-BT are even larger than for
workload A (except for Sub-Trees). This workload is scan-
heavy, for which reason co-locating sub-trees is even more
important, as it allows traversals at the leaf nodes to be
conducted locally most of the times. Hence, in this workload,
the Sub-Trees feature is clearly the most important, whereas
the others are of no help. In fact, the latency CDF of the
other variants has a longer tail due to traversals that take up
to hundreds of milliseconds. Note that these scan requests
are wrapped in read-only transactions that are abort-free.

B. Fresh Read-Only Transactions

The Minuet B-Tree [18] shares the design of the Dirty
variant that we showed above, without any co-location or
placement as the Sub-Trees and TopFull variants. Also Min-
uet relies on multi-versioning, but it adopts a fundamentally
different approach to implementing it. STI-BT is layered on
top of GMU, which relies on a scalable vector clock-based
distributed timestamping mechanism, that avoids to contact
any other machines than those maintaining data accessed
by the transaction. Conversely, Minuet relies on a shared

0

2

6

10

14

20 40 60 80 100

t
h
r
o
u
g
h
p
u
t

(
1
0
0
0

t
x
s
/
s
)

#machines

many-core

(a) Throughput in A.

0

10

20

30

20 40 60 80 100

#machines

many-core

Baseline

Sub-trees

Dirty

TopFull

STI-BT

(b) Throughput in E.

20

40

60

80

100

1 2 5 10 20 50 100

C
D

F
(%

)

Latency (ms)

(c) Latency CDF in A.

0

20

40

60

80

100

1 2 5 10 20 50 100

C
D

F
(%

)

Latency (ms)

(d) Latency CDF in E.

Figure 3: Scalability and Latency CDF (at 60 machines) for YCSB’s workloads A (heavy update) and E (short scans).

0

10

20

30

20 40 60 80 100

t
h
r
o
u
g
h
p
u
t

(
1
0
0
0

t
x
s
/
s
e

c
)

#machines

Baseline

Minuet

STI-BT

Figure 4: YCSB workload D.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80 90 100

s
l
o
w

d
o
w

n

r
e
l
a
t
i
v
e

t
o

S

T
I
-
B

T

#machines

AllInner

FixedAt2

Figure 5: Varying cut-offs (C).

0

5

10

15

20

25

A B C D E F

t
h
r
o
u
g
h
p
u
t

(
1
0
0
0

t
x
s
/
s
e

c
)

workload

5

10

20

25

50

Figure 6: Varying arity (↵) in YCSB.

global clock (maintained by a single machine), which is
incremented whenever a read-only transaction requests a
fresh view of the data. As we will show, this centralized
design hinders performance and compromises scalability.

In Fig. 4 we show detailed results obtained with workload
D, which mimics accesses to the latest available data (read-
dominated). As the source code of Minuet is not available,
we emulated it by using a fully fledged STI-BT where
read-only transactions first run an update transaction that
increments a partially replicated key-value representing the
shared clock. When that increment fails, we do not repeat the
update transaction, and instead use the borrowing technique
introduced in Minuet [18]. Note that the way in which
we implemented Minuet is clearly favouring it, as it also
benefits from the smart data placement of STI-BT (not used
in Minuet). Regardless of that, this Minuet-like solution is
clearly not scalable when faced with workloads that require
fresh data. Conversely, STI-BT scales up almost to 30
thousand transactions per second with 100 machines while
always providing fresh, consistent snapshots.

C. Cut-off Adaptation and Tree Arity

To assess the effects of adapting C as the system
scale changes, we consider two alternative, static strategies:
AllInner, which fully replicates all inner nodes (similarly
to [16]), and FixedAt2, which places the cut-off at depth 2.

In Fig. 5 we show the slowdown of both strategies vs our
adaptive mechanism, using Workload A. FixedAt2 performs
similarly to STI-BT when the cluster size is small; but
as more machines join, the sub-tree assignment becomes
unbalanced, as some machines keep more trees than others.
AllInner’s performance is significantly lower, as rebalance
operations are likely to modify fully replicated inner nodes,
an inherently non-scalable operation.

In Fig. 6, we show the average throughput of STI-BT
across all YCSB workloads while varying the tree arity.
We can see that performance increases slightly as the arity
increases, and eventually stagnates. This is due to the fact
that low arity values lead to deeper trees, which cause a
higher number of accesses to the underlying DKV. However,

this effect becomes negligible as the arity increases. Overall,
this shows that STI-BT ensures stable performance for
non-minimal arity values (beyond 20, which motivated the
settings of ↵ for the other experiments presented).

X. CONCLUSIONS

In this paper we have presented STI-BT, a scalable
solution to index data transactionally on a DKV store. STI-
BT allows overcoming one of the inherent, and most severe
limitations of this emerging type of platforms: the lack of
(efficient) transactional indexes for non-primary attributes.
STI-BT ensures that the index is transactionally consistent
with the data, sparing programmers from the complexity
of asynchronous/weakly consistent indexing solutions. This
is achieved without compromising the key strength points
that have determined the success of DKV stores, namely
scalability and elasticity.

STI-BT combines a number of innovative mechanisms
aimed to i) maximize data locality, ii) achieve optimal
efficiency at any scale, and iii) minimize data contention. We
integrated STI-BT in a mainstream transactional DKV store,
and conducted an extensive experimental study. Our results
demonstrate its scalability and efficiency, by achieving linear
scalability in a cluster of 100 commodity machines, and up
to 5.4⇥ speed-ups over state of the art solutions.

ACKNOWLEDGMENT

This work was supported by national funds through FCT
(Fundação para a Ciência e Tecnologia) under project PEst-
OE/EEI/LA0021/2013 and by projects Cloud-TM (257784),
specSTM (PTDC/EIA-EIA/122785/2010), and GreenTM
(EXPL/EEI-ESS/0361/2013).

REFERENCES

[1] G. DeCandia et. al., “Dynamo: Amazon’s Highly Available
Key-value Store,” in Proc. Symposium on Operating Systems
Principles (SOSP), 2007, pp. 205–220.

[2] J. Corbett et al., “Spanner: Google’s globally-distributed
database,” in Proc. Conference on Operating Systems Design
and Implementation (OSDI), 2012, pp. 251–264.

[3] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues,
“When Scalability Meets Consistency: Genuine Multiversion
Update-Serializable Partial Data Replication,” in Proc. In-
ternational Conference on Distributed Computing Systems
(ICDCS), June 2012, pp. 455–465.

[4] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A Scalable
One-Copy Serializable Partial Replication Protocol,” in Proc.
Middleware, 2012, pp. 456–475.

[5] A. Turcu, B. Ravindran, and R. Palmieri, “Hyflow2: a high
performance distributed transactional memory framework in
scala,” in Proc. on Principles and Practices of Programming
on the Java Platform (PPPJ), 2013, pp. 79–88.

[6] M. S. Ardekani, P. Sutra, and M. Shapiro, “Non-Monotonic
Snapshot Isolation: scalable and strong consistency for geo-
replicated transactional systems,” in Proc. International Sym-
posium on Reliable and Distributed Systems (SRDS), 2013,
pp. 163–172.

[7] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional
storage for geo-replicated systems,” in Proc. Symposium on
Operating Systems Principles (SOSP), 2011, pp. 385–400.

[8] S. Alaei, M. Ghodsi, and M. Toossi, “Skiptree: A new scalable
distributed data structure on multidimensional data supporting
range-queries,” Computer Communications, vol. 33, no. 1, pp.
73–82, Jan. 2010.

[9] D. Logothetis and K. Yocum, “Ad-hoc data processing in the
cloud,” Journal Proc. VLDB Endowment, vol. 1, no. 2, pp.
1472–1475, Aug. 2008.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin, “Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the World
Wide Web,” in Proc. Symposium on Theory of Computing
(STOC), 1997, pp. 654–663.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III, “Software Transactional Memory for Dynamic-sized Data
Structures,” in Proc. 22nd Symposium on Principles of Dis-
tributed Computing (PODC), 2003, pp. 92–101.

[12] N. Diegues and P. Romano, “Bumper: Sheltering Transac-
tions from Conflicts,” in Proc. International Symposium on
Reliable and Distributed Systems (SRDS), 2013, pp. 185–194.

[13] P. L. Lehman and s. B. Yao, “Efficient locking for concur-
rent operations on B-trees,” ACM Transactions on Database
Systems, vol. 6, no. 4, pp. 650–670, Dec. 1981.

[14] G. Graefe, “A survey of B-tree locking techniques,” ACM
Transactions on Database Systems, vol. 35, no. 3, pp. 1–26,
Jul. 2010.

[15] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath,
and L. Zhou, “Boxwood: abstractions as the foundation for
storage infrastructure,” in Proc. Conference on Symposium on
Opearting Systems Design and Implementation (OSDI), 2004,
pp. 8–24.

[16] M. K. Aguilera, W. Golab, and M. A. Shah, “A Practical Scal-
able Distributed B-tree,” Journal Proc. VLDB Endowment,
vol. 1, no. 1, pp. 598–609, Aug. 2008.

[17] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis, “Sinfonia: A New Paradigm for Building
Scalable Distributed Systems,” in Proc. Symposium on Oper-
ating Systems Principles (SOSP), 2007, pp. 159–174.

[18] B. Sowell, W. Golab, and M. A. Shah, “Minuet: A Scal-
able Distributed Multiversion B-tree,” Journal Proc. VLDB
Endowment, vol. 5, no. 9, pp. 884–895, May 2012.

[19] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient B-tree
Based Indexing for Cloud Data Processing,” Journal Proc.
VLDB Endowment, vol. 3, no. 1-2, pp. 1207–1218, Sep. 2010.

[20] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “BATON: a
balanced tree structure for peer-to-peer networks,” in Proc.
31st International Conference on Very Large Data Bases
(VLDB), 2005, pp. 661–672.

[21] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in Proc. International
Conference on Management of Data (SIGMOD), 2010, pp.
591–602.

[22] C. Schmidt and M. Parashar, “Squid: Enabling search in
DHT-based systems,” Journal of Parallel and Distributed
Computing, vol. 68, no. 7, pp. 962–975, 2008.

[23] R. Escriva, B. Wong, and E. G. Sirer, “HyperDex: A Dis-
tributed, Searchable Key-value Store,” in Proc. Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), 2012, pp. 25–36.

[24] C. Zhang, W. Xiao, D. Tang, and J. Tang, “P2p-based
multidimensional indexing methods: A survey,” Journal of
Systems and Software, vol. 84, no. 12, pp. 2348–2362, 2011.

[25] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues, “AutoPlacer:
scalable self-tuning data placement in distributed key-value
stores,” in Proc. International Conference on Autonomic
Computing (ICAC), 2013, pp. 119–131.

[26] A. Turcu, R. Palmieri, and B. Ravindran, “Automated data
partitioning for highly scalable and strongly consistent trans-
actions,” in Proc. International Systems and Storage Confer-
ence (SYSTOR), 2014.

[27] J. Kim, R. Palmieri, and B. Ravindran, “Enhancing Concur-
rency in Distributed Transactional Memory through Commu-
tativity,” in Proc. Euro-Par, 2013, pp. 150–161.

[28] N. Diegues and P. Romano, “STI-BT: A scalable transactional
index,” INESC-ID, Tech. Rep. 24, September 2013.

[29] S. Das, D. Agrawal, and A. El Abbadi, “ElasTraS: An elastic,
scalable, and self-managing transactional database for the
cloud,” ACM Transactions on Database Systems, vol. 38,
no. 1, pp. 1–45, Apr. 2013.

[30] D. Didona, P. Romano, S. Peluso, and F. Quaglia, “Trans-
actional Auto Scaler: Elastic Scaling of In-memory Transac-
tional Data Grids,” in Proc. 9th International Conference on
Autonomic Computing (ICAC), 2012, pp. 125–134.

[31] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proc. Symposium on Cloud Computing (SoCC), 2010, pp.
143–154.

