
Self-tuning Batching in Total Order Broadcast
Protocols via Analytical Modelling and

Reinforcement Learning
Paolo Romano

INESC-ID, Lisbon, Portugal
Matteo Leonetti

Sapienza University of Rome, Italy

Abstract—Batching is a well known technique to boost the
throughput of Total Order Broadcast (TOB) protocols. Unfor-
tunately, its manual configuration is not only a time consuming
process, but also a very delicate one, as incorrect settings of the
batching parameter can lead to severe performance degradation.

In this paper we address precisely this issue, by presenting
an innovative mechanism for self-tuning the batching level in
TOB protocols. Our solution combines analytical modeling and
reinforcement learning techniques, taking the best of these two
worlds: drastic reductions of the learning time and the ability
to correct inaccurate predictions by accumulating feedback from
the operation of the system.

I. INTRODUCTION

Total order broadcast [1] (TOB) represents a fundamental
problem in distributed systems. Informally, the TOB problem
requires that a group of distributed processes reach agreement
on a common order of delivery of messages, in presence of
concurrent broadcasts by any process of the group.

The relevance of this problem, and of the associated al-
gorithmic solutions, is due to the fact that it represents an
essential building block that is largely employed to simplify
the solution of a wide range of distributed problems.TOB, in
fact, represents the cornerstone of the classic active replica-
tion technique [2], which has been employed in a range of
heterogeneous application domains [3]–[6]. It also represents
an incarnation of consensus [7], [8], another well-known
fundamental problem of distributed systems.

The design space for TOB protocols is quite large, and
an abundant number of different algorithmic solutions have
been published in the literature (Defago et al. [1] provide
a comprehensive survey). Existing TOB algorithms usually
optimize specific performance metrics (e.g. latency vs through-
put) and target systems with different degrees of synchrony
[1]. Among TOB protocols, Sequencer-based TOB (STOB)
algorithms are particularly attractive for their low latency. This
class of algorithms relies on a single node, the sequencer,
to impose a total order on the stream of messages broadcast
by the group of processes. STOB algorithms have their key
strength point in that they are optimal in terms of the number
of communication steps necessary to establish the total order.
On the down side, their main limitation is that their maximum
throughput is upper bounded by the capacity of the sequencer
to generate sequencing messages. In LANs, or in typical data

centers, which represent the focus of this paper, the bottleneck
is typically represented by the sequencer’s CPU.

In order to cope with this issue, a simple, although very
effective technique consists in delaying the generation of the
sequencing message, so to “batch” together multiple incoming
messages at the sequencer side. The sequencer then sends a
single message to specify the order in which all of the other
messages should be delivered by the processes in the group.
By amortizing the per-message overhead, batching allows to
reduce the consumption of resources, thereby boosting the
throughput of the system. On the other hand, at low load,
waiting for additional messages to form a batch induces
unnecessary stalls that hamper the performance of the total
order service. The problem is exacerbated in the presence
of dynamic, fluctuating workloads. In this (in practice very
common) case, the optimal batching factor actually varies over
time, making static configuration policies largely suboptimal.

At current date, however, the problem of how to self-tune
the batching level in STOB protocols is largely unexplored.
The only solutions we are aware of, in fact, are far from being
fully satisfactory as they depend on the accurate, manual, tun-
ing of different kinds of system parameters [9]. Hence, rather
than solving the problem of tuning the batching level, they
actually replace it with the problem of manually configuring
some different system parameter.

In this paper, we present an innovative mechanism for self-
tuning the batching level of STOB protocols, that combines
analytical modeling and Reinforcement Learning (RL) tech-
niques. The joint use of these two techniques allows to take
the best of the two worlds.

By exploiting the knowledge of a queuing-theory based
mathematical model, we can drastically abate the training time
required by standalone RL techniques. This has a fundamental
impact not only on the time required to achieve optimal
performance, but also, and perhaps more importantly, on the
stability of the system at high loads. In these scenarios, the lack
of initial knowledge on the system’s performance would force
solutions based on plain RL to explore, with equal probability,
the whole range of possible batching configurations. Unfortu-
nately, at medium-high throughput, the usage of excessively
small batching configurations has the effect of overloading the
sequencer, and destabilizing the whole group communication
system, even for short periods of time.

In addition, by complementing the analytical model with a
RL mechanism, we can rely on a computationally efficient,
analytical model. The unavoidable prediction errors of the
model can be corrected over time, by accumulating feedback
from the operation of the system. We cast the learning problem
in the context of regret minimization for multi-armed bandit
problems [10]. This is a fundamental problem of the RL
area, in which an agent is faced with a bandit (gambling
machine) with multiple levers, each one associated with an
unknown stochastic return. We break the optimization task
into several sub-problems by discretizing the possible loads
(incoming messages per second) into a number of ranges.
The decision of choosing a batching level is faced separately
for each load range. Specifically, given a load range, we
see each batching level as a lever of a bandit (gambling
machine). We leverage recent results on bandit problems to
face the traditional exploration-exploitation trade-off, in a
robust and efficient manner. Such a trade-off is determined by
the necessary balance between using the best batching level
determined at any given time, and the need to try other ones
to assess its optimality.

II. RELATED WORK

Packing small messages into larger ones to maximize per-
formance is a well known optimization that is commonly
employed in several domains [9], [11], [12]. TCP Nagle’s algo-
rithm [13] represents a noteworthy, widely deployed example
of such a technique.

The effects of batching on the performance of TOB pro-
tocols was first studied empirically in [12] and later mathe-
matically in [11]. To the best of our knowledge, the work in
[9] is the only one to have investigated the issue of designing
self-tuning mechanisms for TOB protocols. Unfortunately, the
techniques proposed in this work require the explicit setting of
additional parameters, e.g. the duration of timers used to wait
for messages to be batched, thus failing to fully automatize the
tuning of the batching mechanism. The self-tuning mechanism
presented in this paper, conversely, is entirely parameter free.
Further, it relies on a unique combination of analytical mod-
elling and reinforcement learning techniques, which, to the
best of our knowledge, has never been explored up to date.

Our work is also related to performance evaluation and
modelling studies of TOB [14], [15] (and related agreement
problems, consensus in primis [16], [17]). Instead of deriving
a full performance model of the (S)TOB algorithm, the ana-
lytical model presented in this paper is restricted to capturing
exclusively the effects of batching on the CPU utilization of
the sequencer node, being designed to serve a different, and
more specific purpose.

Machine learning techniques have already been used to pre-
dict the performance of computer systems in several contexts.
These include solutions aiming at forecasting the throughput
of TCP flows [18], Pub-Sub systems [19], and Atomic Broad-
cast protocols [20], at automatically classifying traffic based
on semi-supervised learning techniques [21], at automatizing

the allocation of resources in cloud-computing infrastructures
[22], and at generating software aging models [23].

III. OVERVIEW OF THE STOB ALGORITHM

As already discussed in the Introduction section, STOB
algorithms are probably among the most widely deployed
TOB protocols [24], as they achieve the minimum bound
on message latency for the TOB problem. Various variants
of STOB protocols have been proposed in the literature,
e.g. with fixed vs dynamic leader [12] vs with vs without
uniform delivery guarantees [25]. In this work we focus
on the simplest of the STOB algorithms, namely a STOB
algorithm which does not guarantee message uniformity, and
in which the sequencer role is statically assigned (unless in
presence of group membership changes). This choice is made
essentially for the sake of simplicity. Nevertheless, all of the
aforementioned variants can exploit the batching optimization
without additional difficulties, and the self-tuning techniques
described in this paper could be adapted to be integrated in
more complex variants of this family of TOB algorithms. In
the remainder of the paper we shall refer, for simplicity, to the
non-uniform, static STOB algorithm described in the following
simply as to STOB.

In failure-free runs of the STOB algorithm, if no processes
leave or join the group, the processes agree on the identity
of a single process, before starting totally order broadcasting
messages. Such a process, called sequencer, has the role to
impose a common total order of delivery of messages to all
processes in the group. If a process wants to totally order
broadcast (TO-Bcast) a message, it executes a plain broadcast
of the message. When a process receives a message from the
network, however, it cannot immediately totally order delivery
(TO-deliver) it to the application. In order to guarantee group-
wide agreement on the final delivery order, in fact, it has
first to wait to receive from the sequencer the corresponding
sequencing message, and to ensure that all previously ordered
messages have been delivered.

The batching level, denoted in the remainder as b, defines
how many messages the sequencer waits to receive before gen-
erating a sequencing message. As already discussed, setting
b to 1 ensures minimal latency at low load. At high loads,
however, higher values of batching allow to amortize the cost
of sequencing each message, and the sequencer to sustain
much higher throughput rates.

IV. SYSTEM OVERVIEW

Our self-tuning system has been developed as a layer for
Appia [24], a popular Group Communication System (GCS)
fully implemented in Java. Appia follows an architectural
design that allows to compose layered stacks of micro-
protocols according to the application needs. The self-tuning
layer sits between the Sequencer TOB layer and the interface
towards the application, thus achieving total transparency for
the application.

The self-tuning layer traces TO broadcast/delivery events
in order to collect the following two performance metrics at

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

Av
g.

 S
el

f-D
el

iv
er

y
La

te
nc

y
at

 th
e

Se
qu

en
ce

r n
od

e\
n

(m
s

Avg. Self-Delivery Latency over Non-Sequencer Nodes\n (msec)

Figure 1. Self-delivery latency at the sequencer and at the non-sequencer
nodes.

the sequencer process: the message arrival rate, and the self-
delivery latency, i.e., the latency experienced by the sequencer
to TO-deliver messages whose TO-broadcast was activated
locally.

The choice of measuring exclusively the self-delivery la-
tencies allows to circumvent the issue of ensuring accurate
clock synchronization among the communicating nodes, which
would have clearly been a crucial requirement in case we had
opted for monitoring the delivery latencies of messages gener-
ated by different nodes. Preliminary experiments conducted in
our cluster have indeed highlighted that the accuracy achiev-
able using conventional clock synchronization schemes, such
as NTP, is inadequate for collecting measurements of the TO
broadcast inter-nodes delivery latency in LAN environments,
being the latter frequently around or less than a millisecond.

Further, we experimentally verified that, at least in typical
LAN settings, there is a very high correlation between the
self-delivery latency at the sequencer and the self-delivery
latency experienced by the other nodes in the group. This
claim is supported by the data in Figure 1 and Figure 2.
The data in the plots was obtained using a plain (not self-
tuning) STOB protocol in a cluster of 10 machines equipped
with two Intel Quad-Core XEON at 2.0 GHz, 8 GB of
RAM, running Linux 2.6.32-26-server and interconnected via
a private Gigabit Ethernet. All the experimental data reported
in the remainder of this paper have been collected using this
cluster. In this experiment, we let the batching level b vary in
the set {1,2,3,4,6,8,16,32,64,128} and, for each batching level,
we injected 512 bytes messages at an arrival rate ranging from
1 msg/sec up to saturating the GCS. In all of the experiments,
independently of the batching level used, it was verified that
the bottleneck has always resulted to be the sequencer CPU,
and the available network bandwidth was always far from
being saturated. In Figure 1 we report on the x axis the
self-delivery (in msec) experienced on average by the non-
sequencer nodes, and on the y axis the self-delivery latency
experienced by the sequencer node.

To generate the plot in Figure 2 we manually computed the

 1

 10

 100

 1 10 100

O
pt

im
al

 b
 b

as
ed

 o
n

Se
lf-

D
el

iv
er

y
La

te
nc

y
 a

t t
he

 S
eq

ue
nc

er
 N

od
e

Optimal b based on Self-Delivery Latency
 Across Non-Sequencer Nodes

Figure 2. Optimal batching value computed on the basis of the sequencer’s
vs non-sequencer nodes’ self-delivery latency.

optimal batching value that, given the current load, minimized
i) the self-delivery latency of the sequencer node, and ii) the
average self-delivery latency over all the non-sequencer nodes.
The correlations of the datasets in Figure 1 and Figure 2
are, respectively, 0.85 and 0.99. This experimental evidence
confirms the fact that, in a LAN, by relying exclusively on
local measures of self-delivery latency taken at the sequencer
node, it is possible to obtain an accurate picture of the
performance perceived, on average, by any node of the system.

V. THE ANALYTICAL PERFORMANCE MODEL

As discussed in the Introduction section, our self-tuning
relies on an analytical model which is used to initialize a
reinforcement learning system. In this section we first present
the analytical model. Next we discuss how it is possible
to determine its parameters’ values. Finally we validate its
accuracy and effectiveness in driving the self-tuning process
without additional feedback from the reinforcement learning
subsystem.

A. The Mathematical Model

The design of the analytical performance model used in
our system has been driven by two key requirements: i) high
computational efficiency, thus allowing to compute its solution
also in real-time without significantly overloading the CPU of
the sequencer node; ii) possibility to identify its parameters via
an automatized and extremely fast procedure, thus making it
easily employable in practical settings also by non-specialists.

These two requirements led us to opt for a relatively simple
model that captures the impact of batching on self-delivery
latency focusing on two main aspects: the additional delay
introduced by forcing the sequencer to wait for the completion
of a batch of messages, and the alleviation of the load pressure
on the CPU of the sequencer due to the generation of a reduced
number of sequencing messages. We choose to explicitly
model the possible effects of contention on the network, as
typical applications that use TOB services in a LAN [5], [26]
generate messages large at most a few KBs. In these settings,

the sequencer’s CPU remains the bottleneck even at very high
batching values.

We model the CPU of the sequencer as a M/M/1 queue
[27] for which each job corresponds to a batch of messages
of size b. We denote with λ(b,m) the arrival rate of a batch
of b messages given that the TO-Bcast rate is equal to m,
and with µ(b,m) the average rate at which a batch of size
b is sequenced given that the TO-Bcast rate is m. We can
then express, by using well known queuing theory results, the
STOB self-delivery latency as the response time of the queue:

T (b,m) =
1

µ(b,m)− λ(b,m)
(1)

subject to the stability constraint: 0 ≤ λ(b,m) < µ(b,m). We
take into account the effects of batching by expressing λ(b,m)
and µ(b,m) in Equation 1 as follows:

λ(b,m) =
m

b
(2)

where we denoted with m the average message arrival rate
to the sequencer, and accounted for the fact that, when using
a batching value b, the sequencer processes batches at a rate
inversely proportional to b.

µ(b,m) =
1

T1st +
(b−1)
2m + Tadd(b− 1)

(3)

which expresses µ(b) as the inverse of the sum of three
components:i) the CPU time, denoted as T1st, required to
generate a sequencing message for a single incoming message,
or, equivalently, for a batch containing a single message; ii)
the time required to receive the b− 1 remaining messages of
the batch; iii) the CPU time required to process the b − 1
remaining messages of the batch. This typically corresponds
to unmarshalling each incoming message and buffering it in
memory, but it does not include the actual sending of the
sequencing message (which is accounted for by T1st in our
model). Note that, in practice, the CPU time required to
include an additional message into an existing batch (Tadd)
is much lower than the one associated with sending the
sequencing message for a message (T1st). In the following
we will therefore assume that Tadd < T1st.

By merging Equations (1-3) we can derive the average self-
delivery latency as a function of the batching level and of the
average message arrival rate:

T (b,m) =
1

1

T1st+
(b−1)
2m +Tadd(b−1)

− m
b

(4)

subject to the constraint:

1

T1st +
(b−1)
2m + Tadd(b− 1)

− m

b
> 0 (5)

By letting b tend to infinity in the above constraint, we can
easily determine an upper bound on the maximum throughput,
m∗ sustainable by the sequencer:

m∗ = limb→∞
b+ 1

2T1st + 2Tadd(b− 1)
=

1

2Tadd
(6)

Finally, by imposing ∂T (b,m)
∂m = 0 and ∂2T (b,m)

∂2m > 0 we
can derive the optimal batching value as a function of the
message arrival rate m, as reported in Equation 7, where we
used the shorthand σ = 1

T1st
. The optimal batching value is

predicted via a piece-wise function. For low values of the
arrival rate, as expectable, the model predicts that batching
harms performance, rather than improving it. As the load
increases, as long as it remains lower than the maximum
sustainable throughput, the optimal batching value grows non-
linearly and has a vertical asymptote at m = m∗.

b∗(m) =

1, if m < Taddσ
2

2 + 1
2

√
4σ2+2T 2

addσ
4

2

2m−σ−2mTaddσ

σ−2mTaddσ+
√

2(σ+2m(Taddσ−1))2

(2σTadd−1)2(1+2σTadd)σ
2

,

if Taddσ
2

2 + 1
2

√
4σ2+2T 2

addσ
4

2 < m < m∗

(7)

B. Determining the Model’s Parameters

In order to solve our analytical model, it is first necessary
to determine the value of the parameters T1st and Tadd. Even
though the semantics of T1st and Tadd might not appear
immediately manifest, it is in practice possible to estimate
their values via the following, very quick, training phase. To
compute T1st it suffices to observes that, for b = 1, Equation
4 reduces to:

T (1,m) =
1

1
T1st
−m

, where m <
1

T1st

In other words, T1st is simply the inverse of the maximum
throughput sustainable by the system when b = 1, and its value
can therefore be easily computed (in an approximated manner
of course) by setting the batching level to 1 and injecting traffic
at an increasing rate, until saturating the GCS.

In order to derive the value of the Tadd parameter we
exploit Equation 6. To this end, we set b to the maximum
value that we intend to use in our self-tuning system, which
we denote with bmax and identify the maximum throughput
sustainable by the system, denoted as m∗bmax . In all our
experiments we found that the throughput’s gains achievable
by increasing the batching value over 128 become negligible,
thus we used bmax = 128. Using Equation 6, we can then set
Tadd =

1
2m∗

bmax

.

C. Model accuracy and efficiency

In order to determine the accuracy of the presented an-
alytical performance model, we used the data collected for
the experiment described in Section IV to manually identify
the optimum batching value as a function of the message
arrival rate. In Figure 3 we compare the optimal batching value
predicted by the analytical model with the one manually found
via exhaustive exploration of the parameters’ space. The two
plots report the same data, but the one on the bottom uses a
log scale on the y-axis. By looking at the top plot, we observe
that globally the model captures quite closely the dynamics of

 20

 40

 60

 80

 100

 120

 0 2000 4000 6000 8000 10000 12000 14000

O
pt

im
al

 B
at

ch
in

g
Va

lu
e

Average Msg. Arrival Rate (msgs/sec)

Exaustive Manual Tuning
Analytical Model

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000

O
pt

im
al

 B
at

ch
in

g
Va

lu
e

Average Msg. Arrival Rate (msgs/sec)

Exaustive Manual Tuning
Analytical Model

Figure 3. Validating the accuracy of the analytical model.

 0

 5000

 10000

16 17 18 19 20 21 22
Hour of the day

m
sg

s/
se

c

 1

 10

 100

La
te

nc
y

(m
se

c)

Figure 4. Self-tuning based on analytical model

the real system. The logarithmic scale plot, on the other hand,
allows to better visualize that the analytical model tends to
underestimate the optimal settings of the batching value at
medium loads (at approx. 3000-8000 msgs./sec).The fact that
the proposed model fails under some circumstances comes
indeed with no surprise, as real systems are characterized by
some degree of uncertainty that no model can escape, and the
proposed model relies on assumptions whose correctness can
only be hypothesized.

In order to assess the actual impact of the model’s error

on system’s performance we inject traffic using the traces
collected by a real system, namely FenixEDU, the Web
application that is responsible for the management of the
whole campus of one of the main universities in Portugal,
the Instituto Superior Técnico of Lisbon. The traces we used
report the number of messages in input to the cluster hosting
the FenixEDU system during September 3, 2010. In this day,
at 18:00, the enrolment of students for the following semester
started, and the FenixEDU system was subject to a spike of
load lasting several hours.

We injected traffic according to the traces from 16:00 to
22:00, and used the analytical model’s prediction to dynami-
cally adapt, with a frequency of 1Hz, the batching level. Figure
4 shows in the bottom plot the message arrival rate, and in the
top plot the self-delivery latency at the sequencer node (in log
scale). It is possible to note that the self-delivery latency is
subject to two spikes: one during the ramp-up front of the
traffic surge, and one during the ramp-down front, and both
occurring as the average message arrival rate is of around
5000-6000 messages per second. As already discussed, at this
load pressure, in fact, the analytical model underestimates the
optimal batching level, which led the system to thrashing.
Interestingly, since the ramp-up front is faster than the ramp-
down, the system is able to recover from the thrashing caused
by the incorrect choice of the batching level during the ramp-
up. As soon as the ramp-up is completed, at high load,
the analytical model predicts correctly the optimal level of
batching, avoiding the GCS from crashing. Conversely, since
the ramp-down lasts for a much longer time period (several
hours vs around 30 minutes), the prolonged permanence in a
state in which the batching level is erroneously tuned (namely
configured with an excessively low value) causes the GCS to
eventually collapse.

Concerning the computation efficiency of the analytical
model, we implemented it in Java pre-computing every expres-
sion of Equation 7 that is independent of the message arrival
rate m. We measured the time required to solve the model by
passing as input parameter m the whole set of integer values
in the range [1,14000], and repeated the process 100 times.
On a machine equipped with an Intel Core 2 Duo at 2.53GHz
running Mac OS X 10.6.6, the average time to determine the
optimal batching value was in the order of 20 nanoseconds.

As a final note, it is noteworthy to highlight (even though
for space constraints it will not be possible to report detailed
experimental data) that we have also experimented with the
usage of analytical models more complex than the above
described one. These include models in which the (average)
time to sequence a batch of size b at load m (essentially
the denominator of Equation 3) is expressed as a generic
polynomial of b. This kind of approaches could in theory
allow for capturing more complex non-linear dynamics. How-
ever, they require a complex and time consuming phase of
identification of the model parameters via non-linear fitting
techniques [28]. Also, in our experiments, their accuracy
resulted only marginally better than the one achievable by
the model presented in Section V-A. These considerations

have ultimately led us to opt for adopting a simpler, and
consequently easier to instantiate and solve, analytical model,
whose errors are dynamically compensated via the usage of a
RL technique, as we discuss in the following.

VI. COMBINING A RL APPROACH

In order to compensate the errors of the analytical model,
our system relies on a RL technique that dynamically updates
the initial knowledge provided by the model based on the
feedback gathered by observing the consequences of the self-
tuning choices. To this end, we cast the problem of deciding
the optimal batching level given the current system load to
a classical RL problem, namely the multi-armed bandit [29].
In this problem, a gambling agent is faced with a bandit (a
slot machine) with k arms, each associated with an unknown
reward distribution. The gambler iteratively plays one arm per
round and observes the associated reward, adapting its strategy
in order to maximize the average reward. Formally, each arm
i of the bandit, for 0 ≤ i ≤ k, is associated with a sequence
of random variables Xi,n representing the reward of the arm
i, where n is the number of times the lever has been used.
The goal of the agent is to learn which arm i maximizes
the criterion: µi =

∑∞
n=1

1
nXi,n, that is, achieves maximum

average reward. To this purpose, the learning algorithm needs
to try different arms in order to estimate their average reward.
On the other hand, each suboptimal choice of an arm i costs,
on average, µ∗ − µi, where µ∗ is the average obtained by
the optimal lever. Several algorithms have been studied that
minimize the regret r, defined as r = µ∗n−

∑K
i=1 µiE[Ti(n)],

where Ti(n) is the number of times arm i has been chosen. In
our system we leverage on a recent result of Auer et al. [10],
who introduced an algorithm, UCB, that achieves a logarithmic
bound on the number of suboptimal trials not only in the
limit, but also for any finite sequence. Building on the idea of
confidence bounds this algorithms create an overestimation of
the reward of each possible decision, and lowers it as more
samples are drawn. Implementing the principle of optimism in
the face of uncertainty the algorithm picks the option with the
highest current bound.

In particular, assuming that rewards are limited in [0,1],
each arm is associated with a value:

µi = xi +

√
log n

ni
min{1/4, Vi(ni)} (8)

where xi is the current estimated reward for arm i, n is the
number of the current trial, ni is the number of times the level
i has been tried, and:

Vi(s) = |
1

s

s∑
τ=1

X2
i,τ − x2i |+

√
2 log n

s

The right-hand part of the sum in Eq. 8 is an upper
confidence bound that decreases as more information on each
option is acquired. By choosing, at any time, the option with
maximum µi, the algorithm searches for the option with the
highest reward, while minimizing the regret along the way.

 0

 5000

 10000

16 17 18 19 20 21 22
Hour of the day

m
sg

s/
se

c

 1

 10

 100

La
te

nc
y

(m
se

c)

Model
Model+RL

Figure 5. Self-tuning combining RL and analytical model

In order to apply this technique, we discretized the pa-
rameters space, defined by the cartesian product b × m, as
follows. We considered k = 8 different batching levels,
denoted as b1, .., bk and such that bi = 2i for 0 ≤ i < 8
. We split the message arrival rate into l = 15 intervals,
denoted as ml, having endpoints in L = {0, 10, 100} ∪
{n ∗ 1000|1 ≤ n ≤ 10} ∪ {12000, 14000, 16000} expressed
in messages per second. Each message arrival rate interval ml

is associated with an instance of the bandit problem with k
arms, where each arm is associated with a different batching
level. Since in UCB rewards are bound in the [0,1] interval,
given an observed self delivery latency t, we use the following
function to defining its reward R(t):

R(t) =
maxLatency −min{maxLatency, t}

maxLatency

where maxLatency is a parameter defining the maximum
self-delivery observable by the sequencer that we set, con-
sistently with what we did in Section V-B, to 100 msec (a
threshold above which our GCS started thrashing severely).

As already mentioned, the original UCB technique does not
rely on the availability of initial knowledge on the arms’ re-
ward distribution. In the application domain considered in this
paper, however, the blind initial exploratory phase undertaken
by UCB has severe consequences on system’s stability. At high
loads (i.e. at more 8000 messages per second in our cluster),
in fact, the GCS starts thrashing after a few seconds if the
batching level is not adequately tuned. This makes a plain
UCB-based self-tuning technique extremely unstable, and, de
facto, unusable in practice.

We tackle this issue by initializing the statistics of every
arm of each UCB instance with the self-delivery latency
predicted by Equation 4 of the analytical model. Figure 5
reports the performance achieved by the combined usage of
the UCB-based RL technique and the analytical model, when
considering the same trace-driven workload already used in
Section V-C. In the plot we also report the performance
achieved by the self-tuning mechanism relying solely on the
analytical model. These experimental data allow us to make

several interesting considerations.
At high loads, the initial knowledge provided by the an-

alytical model allows the RL method to avoid exploring
inadequately low batching values which would rapidly lead
the GCS to thrashing: for message rate values larger than
10000 msgs/sec, in fact, the initial rewards for batching values
lower or equal than 16 are all identically null. At medium
loads, where the analytical model incurs in the biggest errors,
destabilizing the system, the RL method is able to rapidly
update its initial, incorrect knowledge, ensuring predictable
performance and globally enhancing the robustness of the self-
tuning mechanism. Finally, at extremely high and low load val-
ues, where the analytical model always guesses perfectly the
optimal batching value, the exploratory behavior of RL leads
to a slight deterioration of performance. This is an unavoidable
cost that has to be incurred by any RL based system. However,
since the UCB technique ensures that the regret increases at
most logarithmically, the performance deterioration imputable
to suboptimal exploratory behaviors is expected to become
negligible over time.

VII. CONCLUSIONS

Analytical modelling and reinforcement learning techniques
are traditionally considered as two alternative approaches to
build autonomic systems. In this paper we investigated, to
the best of our knowledge for the first time in literature, the
possibility to combine these two approaches to build self-
optimizing distributed systems.

We applied this concept, specifically, to tackle the problem
of self-tuning the batching level of sequencer based total order
broadcast protocols. Our experimental results show that, by
appropriately combining these two different methodological
approaches, it is possible to achieve the best of the two worlds.
By exploiting the knowledge of a queuing-theory based math-
ematical model, we can drastically abate the training time
required by standalone RL techniques. On the other hand, by
observing the consequences of the self-tuning choices, the RL
can progressively correct the unavoidable approximation errors
of the analytical model.

ACKNOWLEDGMENTS

This work has been partially supported by the project
“Cloud-TM” (co-financed by the European Commission
through the contract no. 257784), the FCT project ARISTOS
(PTDC/EIA- EIA/102496/2008) and by FCT (INESC-ID mul-
tiannual funding) through the PIDDAC Program Funds.

REFERENCES

[1] X. Defago, A. Schiper, and P. Urban, “Total order broadcast and mul-
ticast algorithms: Taxonomy and survey,” ACM Comput. Surv., vol. 36,
no. 4, pp. 372–421, 2004.

[2] F. B. Schneider, Replication management using the state-machine ap-
proach. ACM Press/Addison-Wesley Publishing Co., 1993.

[3] K. Ostrowski, K. Birman, and D. Dolev, “Live Distributed Objects: En-
abling the Active Web,” IEEE Internet Computing, November-December
2007, 2007.

[4] P. Romano, D. Rughetti, F. Quaglia, and B. Ciciani, “Apart: Low cost
active replication for multi-tier data acquisition systems,” in Proc. of
NCA. IEEE Computer Society, 2008, pp. 1–8.

[5] F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine
approach,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 71–98,
2003.

[6] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based
replication of software transactional memory,” in Proc. Middleware.
Springer Berlin / Heidelberg, 2010, pp. 376–396.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[8] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, pp. 133–169, May 1998.

[9] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,”
in Proc. SRDS, 2006, pp. 311–320.

[10] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[11] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman, H. Nelken, J. Satran,
and P. Vortman, “High throughput reliable message dissemination,” in
Proc. SAC, 2004, pp. 322–327.

[12] T. Friedman and R. V. Renesse, “Packing messages as a tool for boosting
the performance of total ordering protocols,” in Proc. of HPDC, 1997,
pp. 233–.

[13] J. Nagle, “Congestion control in ip/tcp internetworks,” SIGCOMM
Comput. Commun. Rev., vol. 14, pp. 11–17, October 1984.

[14] F. Cristian, R. D. Beijer, and S. Mishra, “A performance comparison
of asynchronous atomic broadcast protocols,” Distributed Systems En-
gineering, vol. 1, pp. 177–201, 1994.

[15] R. Ekwall and A. Schiper, “Modeling and validating the performance of
atomic broadcast algorithms in high-latency networks,” in Proc. Euro-
Par, ser. Lecture Notes in Computer Science. Springer, 2007, pp.
574–586.

[16] A. Coccoli, P. Urban, A. Bondavalli, and A. Schiper, “Performance
Analysis of a Consensus Algorithm Combining Stochastic Activity
Networks and Measurements,” in Proc. DSN, 2002, pp. 551–560.

[17] N. Santos and A. Schiper, “Tuning paxos for high-throughput with
batching and pipelining,” in Proc. ICDCN, 2012.

[18] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” in Proc. SIGMETRICS. New
York, NY, USA: ACM, 2007, pp. 97–108.

[19] L. Garces-Erice, “Admission control for distributed complex responsive
systems,” in Proc. ISPDC. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 226–233.

[20] M. Couceiro, P. Romano, and L. Rodrigues, “A machine learning
approach to performance prediction of total order broadcast protocols,”
in Proc. SASO. Los Alamitos, CA, USA: IEEE Computer Society,
2010, pp. 184–193.

[21] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Of-
fline/realtime traffic classification using semi-supervised learning,” Per-
form. Eval., vol. 64, no. 9-12, pp. 1194–1213, 2007.

[22] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,” Cluster Computing, vol. 11, no. 3, pp. 213–227, 2008.

[23] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive
modeling and prediction of software aging,” in Proc. NOMS, Apr 7–11
2008.

[24] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol
kernel supporting multiple coordinated channels,” in Proc. ICDCS’01.
IEEE, Apr. 2001, pp. 707–710.

[25] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed
Programming. Springer, 2006.

[26] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues, “D2STM:
Dependable distributed software transactional memory,” in Proc. PRDC.
IEEE Computer Society, 2009.

[27] L. Kleinrock, Queueing Systems. Volume 1: Theory. Wiley-Interscience,
Jan. 1975.

[28] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its
Applications. Wiley, 1988.

[29] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, no. 5, pp. 527–
535, 1952.

