
Enhancing Performance Prediction Robustness
by Combining Analytical Modeling and Machine Learning∗

Diego Didona1, Francesco Quaglia2, Paolo Romano1, Ennio Torre2

1INESC-ID / Instituto Superior Técnico, Universidade de Lisboa
2 Sapienza, Università di Roma

ABSTRACT
Classical approaches to performance prediction rely on two,
typically antithetic, techniques: Machine Learning (ML)
and Analytical Modeling (AM). ML takes a black box ap-
proach, whose accuracy strongly depends on the represen-
tativeness of the dataset used during the initial training
phase. Specifically, it can achieve very good accuracy in
areas of the features’ space that have been sufficiently ex-
plored during the training process. Conversely, AM tech-
niques require no or minimal training, hence exhibiting the
potential for supporting prompt instantiation of the perfor-
mance model of the target system. However, in order to
ensure their tractability, they typically rely on a set of sim-
plifying assumptions. Consequently, AM’s accuracy can be
seriously challenged in scenarios (e.g., workload conditions)
in which such assumptions are not matched. In this paper
we explore several hybrid/gray box techniques that exploit
AM and ML in synergy in order to get the best of the two
worlds. We evaluate the proposed techniques in case stud-
ies targeting two complex and widely adopted middleware
systems: a NoSQL distributed key-value store and a Total
Order Broadcast (TOB) service.

1. INTRODUCTION
Predicting the performance of applications and systems

is a primary concern for various purposes such as capacity
planning, elastic scaling and anomaly detection. Existing
approaches to performance prediction typically rely on two,
antithetic, techniques, namely Analytical Modeling (AM)
and Machine Learning (ML).

AM has been, for decades, the reference technique to carry
out performance evaluation and prediction of computing
platforms, in a wide range of application contexts (see, e.g.,
[43, 20]). AM takes advantage of available expertise on the

∗
This work has been supported by FCT - Fundação para a Ciência e

a Tecnologia through PEst-OE/EEI/LA0021/2013, project specSTM
(PTDC/EIA-EIA/122785/2010) and project GreenTM EXPL/EEI-
ESS/0361/2013

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688047.

internal dynamics of systems and/or applications, and en-
codes such knowledge into a mathematical model aimed at
capturing how (tunable) parameters map onto performance.
AM techniques typically require no or minimal training in
order to operatively carry out predictions in the target sce-
nario, and have been shown to achieve a good overall accu-
racy. On the other hand, in order to be instantiated and/or
be made tractable, AMs typically rely on simplifying as-
sumptions on how the modeled system and/or its workload
behave. Their accuracy can hence be seriously challenged in
scenarios (i.e., areas of the features’ space or specific work-
load conditions) in which such assumptions are not matched.

ML-based modeling lies on the opposite side of the spec-
trum, given that it requires no knowledge about the tar-
get system/application’s internal behavior. Specifically, ML
takes a black box approach that relies on observing the sys-
tem’s actual behavior under different settings in order to
infer a statistical behavioral model, e.g., in terms of deliv-
ered performance. Over the last years, ML techniques have
become more and more popular as tools for performance pre-
diction of complex systems. Two are the main reasons be-
hind this trend. On one side, the ever-increasing complexity
of modern computing architectures represents a challenge for
the accuracy of existing white box modeling techniques. On
the other side, difficulties arise when employing white box
models in virtualized, multi-tenant Cloud Computing envi-
ronments, where details about the infrastructure physically
hosting the application are normally (intentionally) hidden
away from the users, restricting the possibility of employing
detailed white box models for relevant parts of the system
(e.g., the interconnection/networking infrastructure).

However, ML-based approaches are not the silver bullet
for the problem of performance prediction. Their key draw-
back is that the accuracy they can reach strongly depends
on the representativeness of the dataset used during the ini-
tial training phase. In fact, predictions targeting areas of
the features’ space that have not been sufficiently explored
during the training process have typically very poor accu-
racy [2]. Unfortunately, the space of all possible configura-
tions for a target application grows exponentially with the
number of variables (a.k.a. features in the ML terminology)
that can affect its performance — the so called curse of
dimensionality [1]. Hence, in complex systems comprising
large ecosystems of hardware and software components, the
cost of conducting an exhaustive training process, spanning
all possible input configurations, can quickly become pro-
hibitive. Overall, pure ML approaches appear as not fully
suited for contexts, like the Cloud, in which it is relevant

145

to promptly build models capable of determining configura-
tions that guarantee optimal performance (and consequently
resource usage).

In this paper we explore the problem of how to combine
white and black box performance modeling and prediction
methodologies by proposing and evaluating three techniques
based on the common idea of building an ensemble of differ-
ent methodologies. By exploiting AM and ML in synergy,
we aim at building a performance model that is more ro-
bust, i.e., less prone to error than a model based on any
of the two techniques implemented alone. The gray box
techniques that we propose serve this purpose in a twofold
fashion: i) by incorporating some ML component, they al-
low for increasing the prediction accuracy over time as new
data from the operational system are collected; ii) by rely-
ing on a pre-built analytical performance model, they can
be instantiated with a lower training time than conventional,
pure ML-based predictors.

Particularly, we take inspiration from the literature on en-
sembles of ML models, which has been targeted at studying
how to combine multiple black box ML techniques, and pro-
pose three algorithms that allow for the synergistic use of
AM and ML models:

• K Nearest Neighbors (KNN): during the learning pro-
cess, this algorithm evaluates the accuracy that can be
achieved by the selected AM model(s) of the target sys-
tem and by one (or several) black box ML approaches
(e.g., Decision Trees, Artificial Neural Networks, Sup-
port Vector Machines) in points of the features’ space
that were not included in the training sets used to
build the ML-based learners (namely, a validation set).
When used to predict the performance achievable in a
configuration c, the average error achieved by the AM
model(s) and by the ML-based learner(s) across the
K Nearest Neighbors configurations belonging to the
validation set is used to determine which prediction
method to choose.

• Hybrid Boosting (HyBoost): in this technique a chain
(possibly of length one) of ML algorithms is used to
learn the residual errors of some AM. The intuition is
that the function that characterizes the error of the
AM may be learned more easily than the original tar-
get function that describes the relation between input
and output variables. With this approach, the actual
performance prediction in operative phases is based
on the output by AM, adjusted by the error corrector
function.

• Probing (PR): The idea at the basis of this algorithm
is to use ML to perform predictions exclusively on the
regions of the features’ space in which the AM does
not achieve sufficient accuracy (rather than across the
whole space). To this end two learners are exploited.
Initially a classifier is used to learn in which regions
of the features’ space the AM incurs a prediction error
larger than some predetermined threshold. In these
regions, a second black box regressor is trained to learn
the desired performance function.

All of the above algorithms allow for reducing the per-
formance model instantiation time compared to pure ML
techniques. In fact, either (i) the employed ML predictors
do not need to reach extremely high precision across the

whole features’ space — given that they are complemented
by white-box predictors (as it occurs in KNN) that can nor-
mally provide good accuracy in broad areas of the features’
space; or (ii) they are targeted at estimating a function,
namely the error curve associated with AM, which can be
simpler (i.e., require less samples) to learn than the actual
performance function (as it occurs in HyBoost); or (iii) they
need to be trained only in circumscribed regions of the fea-
tures’ space (as it occurs in PR), which again can reduce
the number of samples to be observed during the training
phase.

Also, the structure of the framework is open to the possi-
bility of using a family of AM techniques of recent interest
(see, e.g., [12]), where parametric meta-models (requiring
fewer assumptions on the target system than classical ana-
lytical models, hence widening their applicability) are fast
trained, in order give rise to the actual AM instance suited
for the target system. This has been shown to be doable
by relying on a very reduced amount of samples of the real
system behavior. Hence, the same (or a reduced portion) of
training data that are used for the ML models envisioned in
our framework, could be also used to carry out the meta-
model training phase.

We assess the validity of our proposal through an ex-
tensive experimental evaluation carried out in two different
application domains: throughput prediction of a popular
open-source NoSQL distributed key-value store, Red Hat’s
Infinispan [25], and response time prediction of a total or-
der broadcast service, a key building block for fault-tolerant
replicated systems.

Our experimental results show that the best performing of
our proposed techniques can reduce the Root Mean Square
Error on average by about 40% with respect to AM and
ML, with maximum gains that extend up to a factor 3× vs
AM and 5× vs ML. On the other hand, they also show that
none of the proposed ensemble techniques outperforms all
the others in all the considered scenarios, and that their ac-
curacy is strongly dependent on the correct determination of
their internal meta-parameters. In this work we extensively
investigate this issue and we highlight various interesting
trade-offs that affect the parameters’ tuning of the proposed
algorithms.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. In Section 3 we provide some
background on ML techniques, which will form the basis
for the comprehension of our proposal. The three innova-
tive ensemble algorithms are presented in Section 4. The
experimentation-based evaluation of the effectiveness of our
proposals is provided in Section 5. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK
The body of literature on solutions relying either on AM

or ML to predict applications’ performance is extremely
vast [29, 10, 35, 23, 8, 39, 42, 40]. On the other hand,
to the best of our knowledge, only a few approaches rely on
the synergistic exploitation of AM and ML. We group them
in the discussion depending on how the combination of the
two techniques is achieved.

Estimate and model. These works rely on ML to per-
form workload characterization and to estimate the service
demand of the requests in the system. Next, this informa-

146

tion is used to instantiate an AM, e.g. based on queuing
theory. Techniques employed to identify the parameters’
values for the AM include regression [44, 9], clustering [34],
Genetic Programming [18] or a combination of Kalman Fil-
ters and autoregressive models [45]. As ML is only employed
to characterize the workload, the accuracy of these solutions
is ultimately dependent on the accuracy of the adopted AM
technique. The ensemble techniques proposed in our work,
on the other hand, rely on ML to correct the inaccuracies of
an analytical model, and can hence improve accuracy over
time, as new sampling data is collected from the system be-
ing modeled.

Divide and conquer. This technique consists in building
performance models of individual parts of the entire system,
which are either based on AM or on ML. The sub-models are
then combined according to some formula in order to achieve
the prediction curve of the system as a whole. We find ap-
plications of this technique in the context of performance
modeling of distributed transactional applications [14, 16]
and response time prediction of Map-Reduce jobs [22]. In
the former case, AM is employed to capture the effects of
data and CPU contention on performance, whereas ML is
employed to forecast response time of network-bound oper-
ations. In the latter one, AM is exploited to compute some
performance metrics that are input features for the ML pre-
dictor.

The solution we propose in this work is fully complemen-
tary with respect to the divide and conquer approach. In
fact, performance predictors resulting from the adoption of
this technique can still show the limitations typical of the
base AM and ML techniques at their core (resp. inaccuracies
due to approximations and lengthy training phases). Our so-
lution is specifically aimed at mitigating such limitations, by
relying on ensembles of learners to increase accuracy (e.g.,
by discarding the output of some AM/ML predictor in spe-
cific operating points) while jointly reducing the cost of the
training process. We demonstrate the effectiveness of our
proposal by considering the divide and conquer-based model
presented in [16] as the reference performance predictor for
the NoSQL transactional platform case study.

Bootstrapping. This technique, which has been applied
in various contexts ranging from automatic resource provi-
sioning to anomaly detection, consists in relying on an AM
predictor to generate an initial synthetic training set for the
ML, with the purpose of avoiding the initial, long profiling
phase of the target application under different settings [15].
Then, the ML is retrained over time in order to incorpo-
rate the knowledge coming from samples collected from the
operational system [38, 32, 37, 33].

With respect to this solution, that only employs the AM
to generate the initial training set for the ML, our ensemble-
based forecasting techniques maintain the AM as a base pre-
dictor, and exploit different ML-based techniques to train
complementary black box models aimed at correcting the
AM’s inaccuracies.

In a previous work [13], we have explored the possibility
to infer at runtime, via a single ML, a corrective function
that, applied to the output of some AM predictor, is able to
increase the overall accuracy. The HyBoost ensemble that
we propose in this work improves over that solution, partic-

ularly by allowing for the combination of multiple learners
to compensate for the error of the base AM.

Generally speaking, one (additional) common shortcom-
ing of the above discussed literature solutions is that they
rely on a single ML in combination with an AM. This repre-
sents a major limitation to the degree of accuracy and pre-
dictive power that AM and ML, combined, could achieve: in
fact, several independent results in the ML field identify in
models’ diversity and heterogeneity the key means to build
a robust and accurate model with low training time [17, 4].
Our results back and extend this claim: by investigating
different techniques of combining white box and black box
models, relying in their turn on the exploitation of several
MLs, not only we do assess the benefits of combining the
two techniques, but we show evidence that there is not a
single hybrid ensemble model that always outperforms the
others.

Finally, it is worthy to note that nothing prevents our
framework to be usable for combining ML with other kinds
of white box predictors like simulation models. Although in
principle these are generally considered as more expensive
(in terms of time for being solved) as compared to AM ones,
the vast literature on high performance parallel simulation
techniques provides a good support for instantiating simula-
tors allowing to promptly evaluate the behavior of complex
systems (thanks to speedups by parallel runs [11, 3]). This
would lead to the availability of white box simulation mod-
els with features that are still complementary to ML ones,
such as reduced instantiation time, leading not to subvert
the possibility to reach the actual targets of our proposal
when employed as an alternative to AM in the presented
ensemble algorithms.

3. BACKGROUND ON ML MODELING
Before presenting the proposed gray box ensemble tech-

niques, we recall some basic concepts on ML-based tech-
niques and introduce terminology that will be used in the
remainder of the paper.

From a mathematical perspective, a ML algorithm, noted
γ, is a function defined over a set, called training set and
noted Dtr = {< x, y >}, where x =< x1, . . . , xn > is a point
in a n−dimensional space, called features’ space and noted
F , and y is the value of some unknown function φ : F → C.
In this paper we consider the case in which the co-domain C
of function φ is the set R of real numbers, namely we consider
a regression problem. The proposed techniques can however
be straightforwardly adapted to cope with problems, known
under the name of classification problems, in which the co-
domain of φ is discrete.

The output of a ML algorithm γ is a function, called model
and noted Γ, which represents an approximator of function
φ over the features’ space F . More precisely, a model Γ :
F → C takes as input a point x ∈ F , possibly not observed
in Dtr, and returns a value ŷ ∈ C. The process of building
a model using a ML algorithm γ over a given training set is
also called training phase.

The literature on ML has proposed a number of alter-
native statistical approaches to infer the model Γ given a
training set Dtr, like Decision Trees (DT), Artificial Neural
Network (ANN) and Support Vector Machines (SVM). In-
dependently of the specific approach used to derive Γ, these
techniques pursue the same objective: minimizing the error
of Γ on the training set, while preserving the ability to gen-

147

eralize the information observed during the training phase
in order to provide accurate estimations of φ even in re-
gions of the features’ space that were not observed during
the training phase.

Various definitions of error can be adopted to evaluate this
trade-off, and, more in general, the accuracy of a prediction
model (independently of whether it adopts a black or white
methodology). In this paper we adopt as error function the
Root Mean Square Error (RMSE), whose definition we recall
in the following. Given a set of actual values yi ∈ Y and
of corresponding predictions ŷi ∈ Ŷ , with ŷi, yi ∈ C, the
RMSE of Ŷ with respect to Y is defined as:

RMSE(Ŷ , Y) =

√∑
ŷi∈Ŷ

(Ŷi−Yi)2
|Ŷ |

4. GRAY BOX ENSEMBLE ALGORITHMS
In this Section we present the three different algorithms

that exploit ML techniques in ensemble with a white box
analytical model, denoted as ΓAM . Before presenting the
proposed techniques, we provide a generic mathematical for-
malization of ΓAM .

Analogously to a ML-based model, an analytical model
ΓAM is a function FAM → C, which can be queried to pre-
dict the performance of the modeled system ŷ = AM(x)
over a given configuration x ∈ FAM . For simplicity, we will
assume in the following that FAM = FML and refer to them
by simply using the notation F . In other words, we assume
that the domain FAM over which the analytical model ΓAM
is defined coincides with the features’ space, noted FML,
used by the ML techniques that will be used to learn a cor-
rection function for ΓAM . In practice, this assumption is
not strictly required, and we simply require that the vari-
ables defining the features’ space are observable, i.e., they
can be measured in the target system. For instance, the
white box model AM may actually use a smaller subset of
the variables defining the features’ space of the black box
learners used in ensemble with AM. This could happen, for
instance, if the AM were not to account for a set of param-
eters, say P /∈ FAM , whose effects on system’s performance
may be too hard to model explicitly via analytical models.
The parameters in P could, however, be incorporated in the
features’ space FML, so as to keep their value into account
when learning the target function.

The key difference of an analytical model ΓAM with re-
spect to a ML-based model Γ is that the latter is obtained
by running a ML algorithm over a training set Dtr (i.e.,
Γ = γ(Dtr)). Hence, whenever new observations are in-
corporated in the training set, yielding an updated training
set D′tr ⊇ Dtr, an updated version of the ML-based model
Γ′ = γ(D′tr) can be computed by training the ML-based
learner on D′tr.

Conversely, an analytical model ΓAM incorporates a priori
domain knowledge on the target system, and it does not
require a training phase nor can be dynamically updated.
In other words, we consider the analytical model ΓAM to be
a static/immutable object, which cannot be updated based
on the feedback obtained from the target system.

One may note that analytical models typically rely on a
number of internal parameters, which can be used to cal-
ibrate the model’s output. Such parameters could be up-
dated, via fitting techniques [26], in order to minimize the
error achieved by the AM over the set of performance sam-

Algorithm 1 K Nearest Neighbors

1: Set Γ = ∅ . Set of models to use
2: Set γ = {γ1, ..., γM} . Set of ML regressors
3: Set Dval = ∅ . Validation set
4:
5: function init(Analytical Model ΓAM , Training Set Dtr)
6: Γ = {ΓAM} . Initialize with the AM model
7: . Build the training set for ML regressors
8: Set Dregr = StatifiedSample(Dtr)
9: . Use a disjoint data set as Validation set
10: Dval = D \Dtb
11: for m = 1→M do
12: Γm = γm(Dtb) . Train m-th regressor
13: Γ = Γ ∪ {Γm}
14: end for
15: end function

16: function forecast(xs)
17: Set Dk={<xi,yi >∈KNN(xs, Dval) s.t. ||xi,xs|| < c}
18: for each Γi ∈ Γ do
19: RMSE[i] = compute RMSE of model Γi on set Dk
20: end for each
21: µ = argmin

i=1...M
RMSE[i] . Find learner with lowest RMSE

22: return Γµ(xs)
23: end function

ples gathered over time from the target system. Also, as
discussed in Section 2, gray box performance modeling tech-
niques based on the divide-and-conquer approach, couple
analytical and ML-based models targeting different, but de-
pendent, subcomponent of the system. Whenever the ML-
based models are updated, this leads to changes of the input
parameters for the white box analytical models. From this
perspective, hence, these gray box techniques can be seen
as equivalent to white box analytical models whose internal
parameters can be dynamically adjusted.

It is worth noting that, by assuming the analytical model
ΓAM to be an immutable object, we can ensure that the
proposed techniques can also be employed in case ΓAM can
be dynamically updated. To this end, it simply suffices to
treat the updated white box model ΓAM′ as a new/different
model. On the other hand, having not to impose such an
assumption, we would allow the usage of techniques (e.g.,
ensemble techniques designed for “re-trainable” ML-based
learners) that may not be applicable in case the analytical
model was actually static.

As already mentioned, we present in the following three
ensemble techniques that pursue the same objectives (min-
imizing training time and achieving an accuracy better or
comparable to that of both black and white box techniques)
using different algorithmic approaches. In the light of the
above considerations, the proposed techniques can be seen as
instances of ensemble techniques for ML-based learners, spe-
cialized for the case in which one of the learning algorithms
in the ensemble outputs always the same model, namely the
one coded in the AM formulas, which is essentially indepen-
dent of the actual ML training set.

4.1 K Nearest Neighbors
The pseudo-code of the first presented technique, which

we call K Nearest Neighbors (KNN), is reported in Algo-
rithm 1. This technique relies on an analytical model, noted
ΓAM , and on a set γ of M alternative prediction models,
noted γ1, . . . , γM . These predictors in γ should be selected
to maximize model diversity, which can be achieved in vari-
ous ways. A first technique consists in considering different
ML algorithms, e.g., DT and ANN. One can also train each

148

learner γi using a different training set, with the purpose
of specializing the various models to predict performance
in different regions of the features’ space. Model diversity
can also be promoted by using different analytical models
(focused on capturing different systems’ dynamics), or even
alternative modeling techniques such as simulation.

The KNN algorithm is initialized via the Init function, by
providing ΓAM and a data set of samples, Dtr =< xi, yi >,
which conveys information on the performance yi ∈ C of the
target system over a set of observed configurations xi ∈ F .
The data set Dtr is not entirely used to train the set Γ of
regressors. Conversely, Dtr is split into two disjoint data
sets, namely Dregr and Dval.
Dregr is used as training set for the learners in Γ, and it

should be obtained by extracting a random subset amount-
ing to a percentage pregr of Dtr. In order to enhance the
representativeness of the samples included in Dregr, the pro-
cess of extraction of Dregr from Dtr is performed by means
of the stratified sampling technique [2], which ensures that
the distribution of the values yi ∈ C is the same in the two
sets.
Dval is obtained as the complementary subset of Dregr ∈

Dtr, which ensures the disjointness of the two sets Dregr and
Dval by construction. The Dval is used at query time (Func-
tion Forecast), when one wants to predict the expected
performance of the target system, noted ys, in the configu-
ration xs. To this end, it is first computed the set Dk that
contains the k nearest neighbors {x1,. . .,xk }∈ Dval within
distance c from point xs. The samples in Dk, for which we
have available also the corresponding actual performance,
are then used to compute the average accuracy of each of
the models in the set Γ (Line 19). This allows for determin-
ing the model, noted γµ in the pseudo-code (Line 21), which
is expected to maximize prediction accuracy in the region
surrounding xs. Based on this geometrical interpretation,
the c parameter can be interpreted as a cut-off threshold,
which allows discarding samples of the validation set that
are too far away from xs and which may not be representa-
tive of the target configuration xs.

The relevance of ensuring the disjointness of Dval and
Dtr can be understood by recalling that samples x∈ Dtr
are used to train the regressors in Γ. Estimating the ac-
curacy of these models using the same samples that were
used to derive the models during the training phase would
lead to significantly overestimate the accuracy achievable by,
so called, over-fitted models, i.e., models that minimize (or
even nullify) the error with respect to the configurations ob-
served during the training phase, but which are unable to
generalize and thus incur large errors even in regions in the
proximity of points contained in the training set.

4.2 Hybrid Boosting
The second algorithm we present applies a well-known

technique from the literature on ensembles of black box
learners, which is known as Boosting [2]. In particular,
as we are considering a regression problem (whereas the
boosting technique was defined for classification problems),
we draw inspiration from the Adaptive Logistic Regression
technique [19]. This is a boosting algorithm that was orig-
inally conceived to operate with ML-based regressors, and
which we adapted to support the joint usage of one analyt-
ical model and of a set of black box learners.

Algorithm 2 Hybrid Boosting

1: Set γred = {γred1 , . . . , γredM } . ML regressors for residue pred.

2: Set Γred = {Γred1 , . . . ,ΓredM } . Models for residue pred.
3: Set Γper = {Γper0 ,Γper1 , . . . ,ΓperM } . Models for perf. pred.

4:
5: function init(Analytical Model ΓAM , Training Set Dtr)
6: Γper0 = ΓAM . Set the AM as the 1st predictor
7: for m = 1→M do
8: Dm = ∅
9: for each <xn,yn >∈ Dtr
10: ym,n = yn − Γperm−1(xn) . Compute the residual error

11: Dm = Dm ∪< xn, ym,n > . of previous learner
12: end for each
13: Γredm = γredm (Dm) . Train on the residuals

14: βm = argmin
β

∑N
n=1 yn − (Γperm−1(xn) + βΓredm (xn))

15: Γperm = Γperm−1 + βmΓredm . Set the m-th predictor

16: end for
17: end function

18: function forecast(xs)

19: return Γper0 (xs) +
∑M
m=1 βmΓredm (xs)

20: end function

The pseudo-code of this technique, which we name Hy-
brid Boosting (HyBoost), is reported in Algorithm 2. In
addition to the analytical model ΓAM , also in this case we
assume the availability of a set of M regressors based on
machine learning techniques, which we denote γred. Unlike
in KNN, however, these learners are not used to build al-
ternative models of the performance of the target system.
Conversely, the learners are stacked in a chain (i.e., an or-
dered set) and used to learn the error (residue) introduced
by the previous learner in the chain.

More in detail, HyBoost uses two (ordered) sets of predic-
tive models, noted Γred and Γper, composed by, respectively,
m and m + 1 models. The first model in Γred, i.e., Γred1 , is
obtained by training the first regressor γred1 with a training
set Di that characterizes the error (defined as the difference
between the actual and predicted value) of the analytical
model ΓAM for each point in the original training set Dtr.
Any other model Γredi , with i ∈ [1,M], is trained to learn the
prediction error of the model Γperi−1, which incorporates the
knowledge of the AM and of the first i−1 ML-based learners
by means of the following recurrence equation (Line 15):

Γperm = Γperm−1 + βmΓredm

where βm is a coefficient (computed in Line 14) such that the
cumulative training error of the resulting m-stage regressor
is minimized.

The key intuition at the basis of this algorithm, as already
hinted, is that learning the residual errors of an analytical
model may be easier than learning the original function for
which we are trying to build a robust predictor. Also Hy-
Boost, analogously to KNN, can exploit machine learners
using different algorithms. Moreover, it may be further ex-
tended and optimized using well-known techniques in the
literature on boosting ML-algorithms, such as adaptively
weighting the elements in the training set of the i-th learner
in order to focus it on minimizing its fitting error on samples
over which the i− 1-th learner incurred the largest errors.

4.3 Probing
We named the last of the three presented techniques Prob-

ing, and we reported its pseudo-code in Algorithm 3. This
approach, which to the best of our knowledge has no direct

149

Algorithm 3 Probing

1: Classifier γcls . Detects when ΓAM is wrong
2: ClassificationModel Γcls
3: Regressor γreg . Learns φ in areas where ΓAM is wrong
4: RegressionModel Γreg
5: Set Dbad, Dcls, Dgood = ∅ . Initialize data sets
6:
7: function init(Analytical Model ΓAM , Training Set Dtr)
8: for each <xn,yn >∈ Dtr
9: if |(yn − ΓAM (xn))/yn| ≥ c then
10: Dbad = Dbad ∪ {< xn, yn >}
11: Dcls = Dcls ∪ {< xn,“bad”>}
12: else
13: Dcls = Dcls ∪ {< xn,“good”>}
14: end if
15: end for each
16: Γcls = γcls(Dcls) . Train the “good/bad” classifier
17: Γreg = γreg(Dbad) . Train the regressor for samples in Dbad
18: end function

19: function forecast(xs)
20: if Γcls(xs) =“bad” then
21: return Γreg(xs)
22: else
23: return ΓAM (xs)
24: end if
25: end function

correspondence in the literature on ensembles of ML-based
learners, uses 2 ML-based learners:

1. a classification algorithm, noted γcls, to learn where
(i.e., in which regions of the features’ space) the an-
alytical model is not sufficiently accurate (based on a
parametric threshold c over the absolute percentage
error);

2. a regression algorithm, noted γreg which is trained to
learn the function φ describing the performance of the
target systems exclusively in the regions in which the
analytical model does not achieve adequate accuracy.

To this end, during the initialization phase, each sample
< xi, yi > in the training set is classified as either “good”
or “bad” based on the absolute percentage error achieved by
the analytical model when queried for xi (Lines 8-15). In
addition, whenever a sample < xi, yi >∈ Dtr is classified as
bad, it is included in the data set Dbad that is used to train
the black box regressor γreg.

When queried to predict the performance of the system
on configuration xs, it is first determined, using the clas-
sification model Γcls whether the analytical model ΓAM is
expected to achieve good or bad accuracy, and use, accord-
ingly, either ΓAM or the black box model Γreg.

The intuition underlying this technique is that, if the er-
rors of the AM are focused in restricted and easily identifi-
able regions (via Γcls), one can then specialize the training
phase of a black box learner exclusively on those regions. By
narrowing the scope in which the ML-based learner Γreg is
used to the regions of high error for ΓAM , the complexity of
the function that needs to be learnt via ML may be reduced,
which may ultimately benefit the accuracy of Γreg.

5. EVALUATION
This section is devoted to assess the effectiveness of the

proposed gray box modeling techniques by means of an ex-
tensive experimental evaluation based on two case studies
on middleware systems: the Appia Group Communication
Toolkit [28] and a popular open-source distributed key-value

store, Infinispan [25] by Red Hat. For each middleware plat-
form, we consider two recently proposed performance pre-
diction models [14, 32], which we use as a first baseline and
which we combine with different ML approaches (Decision
trees, Neural Networks and SVM) via the proposed gray box
techniques.

We start by presenting the two case studies, and the corre-
sponding performance models in Section 5.1. In Section 5.2
we evaluate the impact of the key parameters of the pre-
sented gray box modeling techniques on their accuracy. Fi-
nally, Section 5.3 focuses on comparing the accuracy and
training/querying time of the proposed solutions and of a
number of alternative performance modeling approaches.

5.1 Case studies
In order to evaluate experimentally the effectiveness and

the sensitivity to parameters of the gray box ensemble meth-
ods discussed in the previous section, we consider two case
studies: i) response time prediction of a Sequencer-based
Total Order Broadcast (STOB) service, implemented in Ap-
pia [28] and ii) throughput prediction of an application de-
ployed over a popular distributed transactional key-value
data store, Red Hat’s Infinispan (v. 5.2) [25]. We consider
these two middleware systems for two main reasons. First,
because of their relevance and wide adoption, they allow to
demonstrate the viability of the proposed techniques when
applied to mainstream software. Second, because of the di-
versity of the corresponding performance prediction prob-
lems: the features’ spaces of the two case studies have very
different dimensionality (2 for STOB vs 7 for Infinispan),
and the corresponding analytical models exhibit different
distribution of errors. This allows us to evaluate the pro-
posed solutions in very heterogeneous scenarios, increasing
the representativeness of our experimental study.

STOB primitive. Total Order Broadcast (TOB) [21] is a
primitive that allows a group of processes to achieve con-
sensus on a common delivery order of messages that can
be broadcast (possibly concurrently) by processes in this
group. TOB is a fundamental building block at the ba-
sis of a number of fault-tolerant replication mechanisms for
databases [30], transactional memory [7] and highly-available
objects [27]. TOB algorithms based on sequencer processes
(STOB) [28] are probably among the most widely deployed
TOB protocols, as they achieve the minimum bound on mes-
sage latency for the TOB problem. In failure-free runs of the

0500010 000

Λ Hmsgs � secL

0

20

40

60

b

20 000

40 000

60 000

80 000

100 000

Latency HΜsecL

Figure 1: Response time of the STOB service

150

(a) STOB (b) Infinispan

Figure 2: Error distribution of Γm of the two case studies.

STOB algorithm, if no processes leave or join the group, the
processes agree on the identity of a single process, before
starting to totally order broadcast (TO-Bcast) messages.
Such a process, called sequencer, has the role to impose
a common total order of delivery on messages to all pro-
cesses in the group. A total order broadcast of a message
is supported via the execution of a plain broadcast of the
message by the sender process. When a process receives a
message from the network, however, it cannot immediately
deliver it to the application. In order to guarantee group-
wide agreement on the final delivery order, in fact, it has
first to wait to receive from the sequencer the correspond-
ing sequencing message, and to ensure that all previously
ordered messages have been delivered. The batching level,
denoted in the remainder as b, defines how many messages
the sequencer waits to receive before generating a sequenc-
ing message. Setting b to 1 ensures minimal latency at low
load; at high load, however, higher values of batching lead
to amortize the cost of sequencing each message, and allow
the sequencer to sustain higher throughput.

The AM adopted in this work as white box predictor of
the latency of a STOB algorithm has been proposed in [32],
in order to automate the tuning of the batching level in func-
tion of the message arrival rate λ. This is a relatively simple
model, which represents the sequencer node as a M/M/1
queue [24], and, based on purely analytical methods, com-
putes the STOB message delivery as the traversal time of a
client in the queue.

This case study is interesting because, although the pa-
rameters characterizing the system’s behavior are only two
(message arrival rate and batch size), the resulting perfor-
mance function (shown in Figure 1) exhibits non-linear be-
havior. This is typical of queuing systems [24], as the re-
sponse time quickly grows to infinite when the message ar-
rival rate approaches the maximum service rate sustainable
by the sequencer (given the current batching level b). It
is well known that most ML techniques can be challenged
when faced with functions having accentuated non-linear be-
haviors. Moreover, the error distribution of the correspond-
ing analytical model is particularly interesting as the error
looks generally low, except for a very specific zone of the
input parameters’ space. Such localized error is depicted in

Figure 2(a), where the the messages arrival rate is on the
x-axis and the batching level on the y-axis.

Infinispan. NoSQL data stores have emerged as reference
data platforms for the Cloud: they adopt less expressive
data models than the classic relational one, and opt for sim-
pler, yet more scalable, paradigms, as in key-value stores;
moreover, in order to enhance performance, these systems
typically maintain data fully in-memory and rely on replica-
tion as their primary mechanism to ensure fault- tolerance
and data durability. Infinispan is a popular NoSQL data
store which, analogously to other recent cloud platforms [6,
36], provides support for strong consistency via the abstrac-
tion of atomic transactions.

Predicting the performance of such platforms is far from
being a trivial task, as it is impacted by several factors: con-
tention on physical (i.e., CPU and network) and logical (i.e.,
data) resources, characteristics of the transactional workload
(e.g., conflict likelihood and transactional mix) and config-
uration of the platform itself (e.g., scale and replication de-
gree). This case study is, thus, an example of a model-
ing/learning problem defined over a very vast dimensional
space (spanning 7 dimensions in our case) and characterized
by a very complex performance function.

The reference model that we employ as base predictor
for this case study is PROMPT [16]. PROMPT relies on
the divide-and-conquer approach described in Section 2. On
one hand, it exploits the knowledge of the concurrency and
replication scheme (e.g., Two-Phase Commit) employed by
the data platform to capture the effects of workload and
platform configuration on CPU and data contention via a
white box analytical model. On the other hand, it relies on
ML to predict latencies of network bound operations.

Overall, besides involving a much wider features’ space,
this case study is particularly interesting as it allows us to
evaluate the effectiveness of our approach also when used in
combination with another gray box modeling technique. In
Figure 2(b) we also visualize, again by means of a heat-map,
the error distribution of PROMPT, obtained by projecting
the features’ space over two dimensions, namely number of
nodes in the system (on the x-axis) and percentage of write
transactions (on the y-axis). It can be noted that the error
distribution of PROMPT is more diffuse than for the case of

151

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R

M
S

E
 n

o
rm

.
w

.r
.t

.
Γ

A
M

c

Cubist-20

KNN-20

Cubist-30

KNN-30

(a) Training set 20% and 30%

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

 n
o

rm
.

w
.r

.t
.

Γ
A

M

c

Cubist-50

KNN-50

Cubist-80

KNN-80

(b) Training set 50% and 80%

Figure 3: Sensitivity analysis of KNN w.r.t. the c parameter (STOB)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

 n
o

rm
 w

.r
.t

.
Γ

A
M

c

Cubist-20

KNN-20

Cubist-30

KNN-30

(a) Training set 20% and 30%

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

 n
o

rm
 w

.r
.t

.
Γ

A
M

c

Cubist-50

KNN-50

Cubist-80

KNN-80

(b) Training set 50% and 80%

Figure 4: Sensitivity analysis of KNN w.r.t. the c parameter (Infinispan)

STOB (see Figure 2(a)), which was characterized by intense
spikes in clearly circumscribed regions of the features’ space.

Experimental dataset and test bed1. For the STOB
case study, we consider a data set containing a total of five
hundred observations drawn from a cluster of 10 machines
equipped with two Intel Quad-Core XEON at 2.0 GHz, 8 GB
of RAM, running Linux 2.6.32-26 server and interconnected
via a private Gigabit Ethernet. In the experiment performed
to collect the samples, the batching level was varied between
1 and 24, and 512-byte messages were injected at arrival
rates ranging from 1 msgs/sec to 13K msgs/sec.

As for the transactional application case study, we con-
sider a dataset composed by approximately five hundred
samples, collected by deploying Infinispan on a cloud infras-
tructure composed by 140 Virtual Machines (VM) equipped
with 1 Virtual CPU and 2GBs of RAM; each VM runs a Fe-
dora 17 Linux distribution with kernel 3.3.4- 5.fc17.x86 64.
The physical infrastructure hosting the cloud is composed
by 18 physical servers equipped with two 2.13 GHz Quad-
Core Intel(R) Xeon(R) processors and 32 GB of RAM and
interconnected via a private Gigabit Ethernet; the employed
virtualization software is Openstack Folsom.

The considered application is a porting of YCSB [5], the
de facto standard benchmark for key-value stores, which has
been modified in order to support transactions. The gener-
ated workloads are A, B and F: workload A has a mix of
50/50 reads and writes, and models a session store record-
ing recent actions; workload B is the one of a photo tagging

1Dataset in Weka format and source code are available at
https://github.com/EnnioTorre/CombiningMultiplePredictors

application, which contains a 95/5 reads/update mix; work-
load F models a user database, in which records are first
read and modified within a transaction. In order to gen-
erate a wider set of workloads, we also vary the number of
reads and writes performed by transactions between 1 and 5.
Finally, we consider two different data access patterns: Zip-
fian, i.e., the popularity of data items follows the zipf distri-
bution (with zipfian constant 0.7), and Hot Spot, according
to which the x% of the data accesses are biased towards the
y% of the data items (with x = 99 and y = 1 in our case);
the data set is always composed of 500K keys. The samples
relevant to the application’s throughput are collected while
varying workloads and the data platform configuration, de-
ployed on a number of nodes, noted N , ranging from 2 to 140
and set up with a replication factor in the set {1, 2, 3, N

2
, N}.

5.2 Analysis of Parameters’ Sensitivity
In this section we evaluate the sensitivity of the proposed

ensemble techniques with respect to their key parameters,
namely the cut-off threshold c (for KNN and Probing) and
the number M of black-box learners exploited in the en-
semble. We consider as baselines, in this phase, the perfor-
mance models described in Section 5.1, as well as a state
of the art ML-based regressor, Cubist [31]. Cubist adapts
and extends the popular C4.5 decision tree classification al-
gorithm to cope with regression problems, by interpolating
arbitrary functions by means of peace-wise linear functions.
The choice of Cubist as reference base learner for the results
presented in this section is due to the fact that, at least in
the considered case studies, Cubist consistently resulted to
be the most accurate individual (non-ensembled) ML tech-

152

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 20 30 40 50 60 70 80

R
M

S
E

 n
o

rm
.

w
.r

.t
.

Γ
A

M

Percentage of additional training set

Cubist HyBoost

(a) STOB

 0

 0.5

 1

 1.5

 2

 2.5

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
M

S
E

 n
o

rm
.

w
.r

.t
.

Γ
A

M

Percentage of additional training set

Cubist HyBoost

(b) Infinispan

Figure 5: Evaluating the accuracy of HyBoost.

nique, when compared to (Weka’s implementations of) ANN
and SVM2.

In order to quantify accuracy of the compared alterna-
tives, we select as metric the RMSE normalized with respect
to the RMSE of the performance models described in Sec-
tion 5.1. Whenever we assume the availability of a given
training set Dtr, we always compute the RMSE over a dis-
joint test set that comprises all the elements in the entire
data set but the ones in Dtr.
KNN. Figure 3 and Figure 4 show the normalized accu-
racy achieved by KNN while varying the cut-off parameter
c for the case, respectively, of STOB and Infinispan. Each
plot reports results obtained by letting KNN and Cubist ob-
serve two percentages of the training set, namely: 20% and
30% in Figures 3(a) and 4(a); 50% and 80% in Figures 3(b)
and 4(b). In this experiment we configured KNN to use at
most k = 10 neighbors, and a single black-box regression
model, Γ, which is built by using Cubist.

The plots highlight that the optimal settings of the c pa-
rameter is quite different in the two case studies. In par-
ticular, for STOB the experimental data clearly show that
small cut-off values (on the order of 1% to 5%) are prefer-
able to larger ones. The opposite is true for the Infinispan’s
case study, where the cut-off parameter that provides op-
timal accuracy is around 40%. This can be explained by
considering that the performance function φ that needs to
be learnt in the STOB case study is highly non-linear and
defined over a small bi-dimensional space. Indeed, given the
low dimensionality of the features’ space, this data set allows
for a quite dense (and hence accurate) sampling of φ. Such
a dense sampling, combined with the fact that φ is subject
to quick variations, implies that, by increasing the cut-off
parameter, one also increases the probability of including in
the set of points Dk (which, we recall, is used to estimate
the accuracy of the various prediction models) samples be-
longing to regions of F in which φ exhibits very different
dynamics. On the other hand, given the much higher di-
mensionality of F for the case of Infinispan (and the cor-
respondingly much sparser sampling of F provided by the
considered data set), using large cut-off values does pay off,
as it increases the likelihood of finding suitable neighbors.

2It stems from the no-free-lunch-theorem [41] that no ML
algorithm can universally outperform all the others. Hence,
we do not exclude that for specific parameters’ tunings,
ANN, SVM, or any other alternative ML algorithm may
outperform Cubist.

In the negative case, being most of the points in the train-
ing set quite far apart, for a large fraction of the queries
(especially with low percentages of training set), no suitable
neighbor is found — in which case, KNN uses, as fall-back,
the analytical model.

Overall, both Figures highlight that KNN, when properly
tuned, consistently outperforms both the analytical models
and the regression models built by Cubist with gains that are
more consistent, at low percentage values of the training set,
with respect to Cubist, and, vice-versa, more accentuated
with respect to the analytical models for higher percentage
values of the training set.
HyBoost. The internal parameters of HyBoost are M ,
namely the depth of the chain of black-box learners that
are used to learn a correction function for ΓAM , and the
ML algorithms that compose such chain. We experimented
with chains of learners of length up to 10 and considered
ensembles of black-box learning algorithms including Cu-
bist, Neural Networks and SVM. We present, however, re-
sults only with M = 3, as the results have shown that, both
with STOB and Infinispan, using additional learners did not
have any added value on the accuracy. We argue that this
depends on the fact that the error function of the ensem-
ble composed by ΓAM and by one ML-based regressor was
extremely irregular, hence resulting not easy to learn using
additional black-box regressors.

Therefore, we report, in Figure 5, the RMSE (again nor-
malized with respect to the RMSE of ΓAM) achieved by
HyBoost while varying the percentage of samples observed
during the training phase. The plots highlight remarkable
differences between the performances achieved by HyBoost
in the two considered case studies. With Infinispan, Hy-
Boost yields substantial improvements with respect to both
ΓAM and Cubist, with maximum gains for 30% of train-
ing set where it reduces the RMSE by a factor 3x with re-
spect to PROMPT and 5x with respect to Cubist. As for
STOB, instead, the error function of the analytical model,
as shown in Figure 2(a), is strongly non-linear and irregu-
lar, and, consequently, the chain of corrective MLs fails in
effectively compensating for ΓAM ’s inaccuracies.
Probing. In Figure 6 and Figure 7 we report the results of
a study aimed at assessing the sensitivity of Probing with
respect to the cut-off parameter c for the case, respectively,
of STOB and Infinispan. Let us analyze first the case of In-
finispan, where we can see that, with small training sets, this
method yields the best results with high cut-off values, i.e.,

153

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
R

M
S

E
 n

o
rm

.
w

.r
.t

.
Γ

A
M

c

Cubist-20

Prob-20

Cubist-30

Prob-30

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
M

S
E

 n
o

rm
.

w
.r

.t
.

Γ
A

M

c

Cubist-50

Prob-50

Cubist-80

Prob-80

Figure 6: Sensitivity analysis of Probing w.r.t. the c parameter (STOB)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
M

S
E

 n
o

rm
 w

.r
.t

.
Γ

A
M

c

Cubist-20

Prob-20

Cubist-30

Prob-30

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
M

S
E

 n
o

rm
 w

.r
.t

.
Γ

A
M

c

Cubist-50

Prob-50

Cubist-80

Prob-80

Figure 7: Sensitivity analysis of Probing w.r.t. the c parameter (Infinispan)

greater than 50%. This is indeed expectable, considering
that, after having observed only a few samples in the train-
ing set it is very hard to build a reliable black-box model in
a scenario with such a high dimensional features’ space. It
follows that in this scenario and for this setting of c, Probing
will always query the analytical model. This also explains
why Probing performs exactly like ΓAM in these cases. For
larger percentages of training sets, the optimal configuration
is instead obtained for very small values of c, i.e., close to
1%. With such a configuration, clearly the ML regressor is
used most of the times, as the prediction error of ΓAM will
be larger than 1% for the vast majority of the points in DTR.
Hence we may observe performance very close to those of the
ML in this case. Overall, in the Infinispan scenario, Probing
never really manages to outperform significantly both the
white box and the black box approaches. A possible expla-
nation can be found in Figure 2(b). As already mentioned,
the error distribution of ΓAM is extremely disperse in this
scenario. In these conditions, generalizing rules capable of
accurately determining when to use ΓAM or the black-box
learner is quite a challenging task for Γcls.

As already mentioned, instead, in the case of STOB, ΓAM
exhibits a much more irregular error distribution that, how-
ever, exhibits high values only in a clearly localized por-
tion of the features’ space. This simplifies considerably the
problem of classifying automatically the regions in which the
white box model is expected to achieve good/bad accuracy
— explaining why Probing performs so much better in this
scenario with respect to the case of Infinispan. Concerning
the optimal tuning of c, the STOB scenario confirms what
our results had already highlighted for Infinispan, when us-
ing relatively large training sets (50% and 80%): picking
low cut-off values, and trusting consequently more the ML,

is the optimal strategy. Somewhat surprisingly, picking very
low cut-off values (and hence trusting excessively the ML)
is the most rewarding strategy also when considering small
training sets in STOB. This may be explained by consid-
ering that since in this case φ is relatively simple, the ML
could already learn a very robust approximator of φ, which
can hardly be further improved by exploiting ΓAM .

5.3 Mutual Comparison
So far, the proposed ensemble techniques have been only

evaluated individually. This section compares their mutual
performance, assuming that each ensemble technique is us-
ing the optimal parameter values determined in the previous
section3.

Figure 8 compares the three proposed gray box ensemble
techniques with respect to each other, to ΓAM and to a pure
black-box model built using Cubist. The left plot reports
the results obtained for STOB. In this scenario, KNN and
Probing are the two techniques that deliver the best results,
consistently outperforming both ΓAM and Cubist when the
percentage of training set used to initialize the ensemble is
larger than or equal to 30%. Conversely, HyBoost exhibits
quite disappointing performance in this use case. As already
discussed above, the cause of these differences is imputable
to the strong non-linearity of the error distribution of ΓAM ,
which HyBoost tries unsuccessfully to learn via ML tech-
niques. On the other hand, as the regions in which ΓAM

3The correct settings of these parameters can be identified
recurring to the standard methodology used to tune the in-
ternal parameters of ML-based algorithms: performing a pa-
rameter’s sweep during the training phase, and using cross-
validation to evaluate the accuracy achieved when using a
candidate parameter configuration over a test set disjoint
from the training set used to initialize the ensemble [2].

154

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

20 30 50 80
R

M
S

E
 n

o
rm

.
w

.r
.t
.

Γ
A

M

Percentage of additional training set

Cubist KNN HyBoost Prob

(a) STOB

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

20 30 50 80

R
M

S
E

 n
o

rm
 w

.r
.t

.
Γ

A
M

Percentage of additional training set

Cubist KNN HyBoost Prob

(b) Infinispan

Figure 8: Mutual comparison between KNN, HyBoost and Probing.

incurs the largest errors are relatively circumscribed, solu-
tions like KNN and Probing, which are based on the idea
of determining in which regions to use which learner, result
the most effective.

The landscape changes significantly in the Infinispan case
study. Here, HyBoost is by far the most effective technique,
reducing RMSE on average by a 2x factor vs ΓAM and a
3x factor vs Cubist. KNN and Probing, instead, fail to
achieve significant gains with respect to both the baselines,
although normally remaining competitive with the best of
the two across the entire spectrum of considered training
set percentage values. The reason underlying these results
is again identifiable by looking at the error distribution of
ΓAM , which, as shown in Figure 2(b), varies slowly in this
case and exhibits pronounced linear trends.

Overall, these results suggest two main considerations.
No one size fits all: None of the proposed techniques was
able to consistently outperform all others in all the con-
sidered scenarios. This result is indeed not surprising if
one takes into account seminal results, such as the no-free-
lunch-theorem [41], which states precisely the impossibility
of building a universal statistical learning technique. It is
therefore imperative not to blindly rely on any of the pro-
posed ensemble techniques, but to always verify, using cross-
validation during the training phase, the actual effectiveness
of each technique based on the problem at hand.
The error distribution of ΓAM is crucial: Our experimen-
tal study suggests that one of the key factors that affects
the performance of the proposed solutions is the “shape” of
the error distribution of ΓAM . A natural research question
triggered by this finding is whether it is possible to identify
rigorous conditions under which each of the proposed en-
semble algorithms is favored. Another, probably even more
interesting, question is whether one could intentionally in-
troduce biases in the design of analytical models to make
them more amenable to be used within a gray box ensem-
ble such as the ones proposed in this work. For instance,
one may prefer a simpler, yet globally less accurate analyti-
cal model, if it could be guaranteed (even probabilistically)
that the error distribution of the adopted model was easier
to learn using techniques like HyBoost.

6. CONCLUSIONS
In this paper we explored the problem of how to combine

white and black box performance modeling methodologies
by proposing and evaluating three techniques that aim at

taking the best of the two worlds, namely avoid incurring
the drawbacks (e.g., non-minimal errors in specific operative
conditions) of any individual technique, while minimizing
the time for instantiating a reliable performance model of
the target system/application.

Our proposal is aligned with the needs arising in modern
computing systems, namely (a) their extremely high com-
plexity and the reliance on virtualization, factors that tend
to be adverse to white box, e.g., analytical, performance
modeling techniques (e.g., given that system internal oper-
ations may be not perfectly known, hence being difficult to
be reliably expressed in term of their behavior via analytical
formulas), and (b) the need for timely instantiating scenario-
specific performance models, which can then be used for
prompt optimization of the usage of, e.g., Cloud rented re-
sources. The latter requirement is particularly challenging
for black box approaches based on machine learning, given
that the building of reliable machine learning predictors gen-
erally requires lengthy training phases, leading to delays in
the actual optimization based on the performance model.

We evaluated the effectiveness of our proposals by relying
on case studies related to two highly relevant open-source
middleware platforms, namely a key-value data store and a
group communication system. We feel our proposal stands
as a relevant achievement in terms of the construction of
supports for coping with the problem of performance (and
hence resource usage) optimization of highly complex com-
puting systems.

7. REFERENCES

[1] R. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). 2007.

[3] C. D. Carothers and K. S. Perumalla. On deciding
between conservative and optimistic approaches on
massively parallel platforms. In Winter Simulation
Conference, 2010.

[4] R. Caruana et al. Ensemble selection from libraries of
models. In Proc. of ICML, 2004.

[5] B. F. Cooper et al. Benchmarking cloud serving
systems with ycsb. In Proc. of SOCC, 2010.

[6] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In Proc. of OSDI, 2012.

155

[7] M. Couceiro et al. D2stm: Dependable distributed
software transactional memory. In Proc. of PRDC,
2009.

[8] M. Couceiro et al. A machine learning approach to
performance prediction of total order broadcast
protocols. In Self-Adaptive and Self-Organizing
Systems (SASO), 2010 4th IEEE International
Conference on, pages 184–193. IEEE, 2010.

[9] P. Desnoyers et al. Modellus: Automated modeling of
complex internet data center applications. ACM
Trans. Web, 6(2):8:1–8:29, June 2012.

[10] P. Di Sanzo et al. On the analytical modeling of
concurrency control algorithms for software
transactional memories: The case of
commit-time-locking. Perform. Eval., 69(5):187–205,
May 2012.

[11] P. Di Sanzo et al. A framework for high performance
simulation of transactional data grid platforms. In
Proc. of SIMUTools, 2013.

[12] P. Di Sanzo et al. Regulating concurrency in software
transactional memory: An effective model-based
approach. In Proc. of SASO, 2013.

[13] D. Didona et al. Identifying the optimal level of
parallelism in transactional memory applications.
Computing, 2013.

[14] D. Didona et al. Transactional auto scaler: Elastic
scaling of replicated in-memory transactional data
grids. ACM Trans. Auton. Adapt. Syst.,
9(2):11:1–11:32, July 2014.

[15] D. Didona and P. Romano. On Bootstrapping
Machine Learning Performance Predictors via
Analytical Models. ArXiv e-prints, Oct. 2014.

[16] D. Didona and P. Romano. Performance modelling of
partially replicated in-memory transactional stores. In
Proc. of MASCOTS, 2014.

[17] T. G. Dietterich. Ensemble methods in machine
learning. In Proc. of MCS Workshop, 2000.

[18] M. Faber and J. Happe. Systematic adoption of
genetic programming for deriving software
performance curves. In Proc. of ICPE, 2012.

[19] J. H. Friedman. Stochastic gradient boosting. Comput.
Stat. Data Anal., 38(4):367–378, Feb. 2002.

[20] V. Grassi et al. On the optimal checkpointing of
critical tasks and transaction-oriented systems. IEEE
Trans. Software Eng., 18(1):72–77, 1992.

[21] R. Guerraoui and L. Rodrigues. Introduction to
Reliable Distributed Programming. Springer-Verlag
New York, Inc., 2006.

[22] H. Herodotou et al. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics.
In SOCC, 2011.

[23] D. Jiang et al. Autonomous resource provisioning for
multi-service web applications. In Proc. of WWW,
2010.

[24] L. Kleinrock. Queueing Systems, volume I: Theory.
Wiley Interscience, 1975.

[25] F. Marchioni and M. Surtani. Infinispan Data Grid
Platform. Packt Publishing, 2012.

[26] D. W. Marquardt. An algorithm for least-squares
estimation of nonlinear parameters. SIAM Journal on
Applied Mathematics, 11(2):431–441, 1963.

[27] H. Meling et al. Jgroup-arm: A distributed object
group platform with autonomous replication
management. Softw. Pract. Exper., 38(9):885–923,
July 2008.

[28] H. Miranda et al. Appia: A flexible protocol kernel
supporting multiple coordinated channels. In ICDCS,
2001.

[29] G. Pacifici et al. Performance management for
cluster-based web services. Selected Areas in
Communications, IEEE Journal on, 23(12):2333–2343,
2005.

[30] F. Pedone et al. The database state machine
approach. Journal of Distributed and Parallel
Databases and Technology, 14:2003, 1999.

[31] J. R. Quinlan. Rulequest Cubist.
http://www.rulequest.com/cubist-info.html, 2012.

[32] P. Romano and M. Leonetti. Self-tuning batching in
total order broadcast protocols via analytical
modelling and reinforcement learning. In Proc. of
ICNC, 2011.

[33] D. Rughetti et al. Analytical/ml mixed approach for
concurrency regulation in software transactional
memory. In Proc. of CCGRID, 2014.

[34] R. Singh et al. Autonomic mix-aware provisioning for
non-stationary data center workloads. In Proc. of
ICAC, 2010.

[35] R. Singh et al. Analytical modeling for what-if
analysis in complex cloud computing applications.
SIGMETRICS Perform. Eval. Rev., 40(4):53–62, Apr.
2013.

[36] Y. Sovran et al. Transactional storage for
geo-replicated systems. In SOSP, 2011.

[37] G. Tesauro et al. On the use of hybrid reinforcement
learning for autonomic resource allocation. Cluster
Computing, 2007.

[38] E. Thereska and G. R. Ganger. Ironmodel: Robust
performance models in the wild. SIGMETRICS
Perform. Eval. Rev., 36, June 2008.

[39] B. Trushkowsky et al. The scads director: scaling a
distributed storage system under stringent
performance requirements. In Proc. of FAST, 2011.

[40] L. Wang et al. Fuzzy modeling based resource
management for virtualized database systems. In
MASCOTS, 2011.

[41] D. H. Wolpert. The lack of a priori distinctions
between learning algorithms. Neural Comput.,
8(7):1341–1390, Oct. 1996.

[42] J. Xu et al. On the use of fuzzy modeling in virtualized
data center management. In Proc. of ICAC, 2007.

[43] P. S. Yu, D. M. Dias, and S. S. Lavenberg. On the
analytical modeling of database concurrency control.
J. ACM, 40(4):831–872, 1993.

[44] Q. Zhang et al. A regression-based analytic model for
dynamic resource provisioning of multi-tier
applications. In ICAC, 2007.

[45] T. Zheng et al. Integrated estimation and tracking of
performance model parameters with autoregressive
trends. In Proc. of ICPE, 2011.

156

