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Abstract—Transactional memory (TM) is emerging as an
attractive synchronization mechanism for concurrent comput-
ing. In this work we aim at filling a relevant gap in the TM
literature, by investigating the issue of energy efficiency for one
crucial building block of TM systems: contention management.

Green-CM, the solution proposed in this paper, is the first
contention management scheme explicitly designed to jointly
optimize both performance and energy consumption. To this
end Green-TM combines three key mechanisms: i) it leverages
on a novel asymmetric design, which combines different back-
off policies in order to take advantage of dynamic frequency
and voltage scaling; ii) it introduces an energy efficient design
of the back-off mechanism, which combines spin-based and
sleep-based implementations; iii) it makes extensive use of self-
tuning mechanisms to pursue optimal efficiency across highly
heterogeneous workloads.

We evaluate Green-CM from both the energy and perfor-
mance perspectives, and show that it can achieve enhanced
efficiency by up to 2.35 times with respect to state of the art
contention managers, with an average gain of more than 60%
when using 64 threads.

I. INTRODUCTION

Transactional Memory (TM) is an emerging paradigm for
parallel programming that represents an attractive alternative
to traditional lock-based synchronization techniques. The
concept was introduced 20 years ago [1] and was object
of a thorough research during the past decade. Nowadays,
two of the main processor manufacturers, Intel and IBM,
provide hardware support for transactional memory in their
latest generation CPUs [2], [3].

The basic idea behind transactional memory is to arrange
the code into blocks, called transactions, that are to be ex-
ecuted atomically. The transactional memory is responsible
for management of data races between different transactions
in a transparent way, ensuring isolation and atomicity.

Most TM implementations take a speculative approach
and run transactions in a lock-free, optimistic fashion. This
makes them prone to incur high abort rates in presence
of high contention workloads, which can lead to severe
degradation of both performance and energy efficiency. It is
the responsibility of the Contention Manager (CM) module
to reduce the detrimental effects of contention, by deciding
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which transactions should be aborted in case of a conflict,
and when to restart an aborted transaction.

The literature in the area of CM is quite prolific [4]–[7],
yet most existing CM solutions are designed to optimize
solely performance. However, up to date very few works
have investigated CM designs aimed at maximizing energy
efficiency [8], [9], an aspect that is increasingly relevant
for a wide range of systems, from sensors or mobile nodes
powered by batteries, to data centers, whose scalability is
nowadays constrained by their energy costs [10].

This work aims at filling this relevant gap in the CM
literature by proposing Green-CM, a contention manager
that optimizes energy-efficiency of TM applications via three
key mechanisms:
1) Green-CM introduces an energy efficient implementation
of one fundamental building block at the basis of most
existing CMs and that can have a strong impact on energy
consumption: the back-off primitive that is used when-
ever the CM decides to block a conflicting transaction for
some period of time. The proposed solution uses a hybrid ap-
proach that alternates between two implementations, based,
respectively, on spinning and timer-interrupts. The latter
allows for effectively reducing energy consumption, but
incurs long latencies due to the need for invoking a system
call; spinning has opposite advantages and drawbacks: it is
accurate also for very short backing off periods, but suffers
of high energy costs. By leveraging on both implementations
in synergy, Green-CM aims to achieve the best of both
worlds, namely low energy consumption and high accuracy.
2) Green-CM introduces an innovative, Asymmetric CM
(ACM) policy that aims to take advantage of DVFS (Dy-
namic Voltage and Frequency Scaling) [11], an architectural
feature that is widely employed in modern processors [12],
[13] in order to enhance their energy efficiency. DVFS al-
lows various cores of a processor (and/or various processors
in a multi-socket system) to adjust dynamically the voltages
and frequencies at which they operate: on the one hand,
this allows for reducing the energy consumed by idle cores;
on the other hand, it allows for increasing the frequency
of active cores, as long as the number of idle cores is
large enough to ensure that the global thermal envelope
remains within acceptable margins. ACM is based on the key
idea of promoting the exploitation of DVFS capabilities via



the usage of asymmetric back-off policies. More in detail,
ACM combines aggressive and conservative (i.e., linearly
vs exponentially increasing) back-off policies, in order to
promote the dynamic creation, at medium/high contention
scenarios, of two sets of threads: 1) threads that are likely to
be backing off, allowing the corresponding processor to enter
deep sleep states, and 2) threads that spend most of their
time executing transactions, and which can run at higher
frequencies thanks to DVFS.
3) Green-CM makes extensive use of lightweight reinforce-
ment learning techniques to dynamically adapt its internal
parameters and specifically: a) determining automatically in
which scenarios spin vs timer-interrupts based implemen-
tations should be used, and b) what degree of asymmetry
should be used when determining the Contention Manage-
ment back-off policies. We propose and evaluate different
variants of gradient descent based controllers to tackle each
of these two problems, both individually and in conjunction.

We conduct an extensive experimental study, based
on standard TM benchmarks (STAMP [14] and STM-
Bench7 [15]) and recent TM-based implementations of
real-life applications (Memcached [16]), and considering 6
alternative CM implementations, which we evaluate from the
twofold perspective of performance and energy consump-
tion. The experimental data shows that Green-CM achieves
average gains of 25% when considering joint energy-
performance metrics, i.e., energy-delay product (EDP), with
peak gains that extend up to 2.35x lower EDP. We also assess
the effectiveness of the proposed self-tuning mechanisms,
which, we show, achieve performance that are on average
within 15% from, and sometimes even superior to, the best,
manually identified, static solutions.

The remainder of this paper is structured as follows.
Section II discusses related work. Section III details the
design of Green-CM which is then evaluated in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

Most of the literature of TM is concerned with optimizing
TM performance [17]–[20], but the issue of energy effi-
ciency is much less explored. Indeed, the few existing works
on TM that tried to optimize both energy and performance
were mainly revolving around energy efficient hardware
implementations of TM [8], [21]–[23].

Sanyal et al. [21] pursue energy efficiency in hardware
transactional memory by clock gating processors upon abort
of a transaction. Baldassin et al. [9] adopted a similar idea,
although implemented at the software level and integrated
with the CM module: using DVFS to lower the frequency
of cores upon abort and during the (exponential) back-off
phase. Their study was limited to 8 threads only using a
simulator that has a very low cost for entering a lower
frequency mode, which make this solution largely sub-
optimal in practice.

Two studies were performed on energy consumption
of TM. Rughetti [24], [25] studied the performance and
energy trade-offs of various algorithms; the study showed
the necessity of adaptability within TM to minimize data
contention as it is the main source of energy consumption.
Diegues et al. [26] evaluated the performance and en-
ergy efficiency of different TM implementations, including
hardware-based (HTM), software-based (STM) and hybrid
(HyTM) using a large number of popular benchmarks. The
results of this study highlight that the choice of the right TM
implementation is strongly workload dependant. The Green-
CM algorithm has been designed to operate both with STM
and HTM, as it does requires no information on the set of
items accessed by aborting transactions — an information
not available when using HTM [27].

Wamhoff et al. [28] performed an extensive study of
DVFS in Intel and AMD processors. This work characterized
the behavior of frequency scaling on both architectures
describing how it can be utilized either automatically (hard-
ware triggered) or manually (software enabled). This work
showed also how to exploit DVFS in order to enhance the
performance of an STM called FastLane [29]. This STM
has a master thread that runs at a boosted frequency and
whose transactions never abort. The downside is that it
forces all other threads to run at lower frequencies, which
yields performance gains only at low thread counts

A large body of research has been devoted to investigate
CM algorithms [4]–[7] ranging from very simple policies,
such as aggressive CM in which the victim transaction is
always aborted, to more complex algorithms that use differ-
ent heuristics for determining the back-off time upon aborts
(e.g., linear vs exponential), or that take into account the
amount of work done by the contending transactions. None
of these CM policies were evaluated from the perspective
of energy efficiency, and we fill this gap in Section IV-B,
where we compare Green-CM with 6 state of the art CM
algorithms (and report significant gains).

Finally, our work is related to the studies that have ana-
lyzed the energy efficiency of alternative implementations of
locking schemes (whereas we focus on TM). For instance, it
was shown [30], that a hybrid combination of busy-waiting
and sleeping is the optimal solution in terms of energy-delay
product to implement a mutex semaphore. This work, how-
ever, leaves unsolved the issue of determining when to use
spinning or sleeping. In Green-CM we use a similar concept
in the implementation of the primitive used by threads to
back-off for the completion of their back-off phase: we opt
for either spinning or sleeping depending on the duration of
the requested backing off phase. There are however at least
two fundamental differences. Our technique is employed
for a different primitive, i.e., a back-off and not a mutex,
for which the duration of the backing off time period is
a-priori known: we can hence exploit this information to
make an informed decision on whether to use spin-based or
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Figure 1: Architecture of Green-CM

sleep-based implementations. Further, Green-CM solves the
problem of automating the decision of when to use spinning
or sleeping via an on-line self-tuning technique.

III. GREEN-CM

This section is devoted to describing Green-CM. We start
by illustrating its high level architecture in Figure 1, in which
we can identify three main components: the Asymmetric
Contention Manager (ACM), a hybrid implementation of the
back-off primitive, and the Controller.

Upon the abort event of a transaction, the first component
to be triggered is the Asymmetric Contention Manager. This
module is in charge of determining the duration of the back-
off phase for the transaction and, as we will discuss more
in detail in Section III-B, it determines whether to use an
aggressive (i.e., linear) or a conservative (i.e., exponential)
back-off depending on two factors: i) the CPU core on which
the corresponding thread is running, and ii) the boosting
degree (noted B in the following), i.e., a tunable parameter
(dynamically configured by the Controller) that allows for
controlling how many threads should use each of the two
available back-off policies.

The duration of the back-off phase is provided as input
to a hybrid implementation of the back-off primitive, which
is described in Section III-A. The hybrid back-off primitive
uses either a spin-based or a sleep-based implementation
depending on two factors: i) the duration of the the back-
off phase, and ii) the value of two parameters, noted α and
T , which represent, respectively, the number of spin cycles
executed in a time unit, and the minimum back-off duration
for using a sleep-based approach. Analogously to the case
of B, the tuning of α and T is delegated to the Controller.

The Controller module gathers periodic measurements
on the commit rate and energy consumption over the last
time window, and uses this information to implement a
lightweight, on-line self-tuning scheme. We used a sampling
period of 1 msec, this sampling period ensures that energy
measurements on our target architecture are reliable. We
shall discuss the Controller module in Section III-C.

A. Hybrid Back-off Implementation

The goal of contention managers is to reduce the detri-
mental effects of contention on the efficiency of Transac-
tional Memory. This objective is pursued by reducing the
likelihood that threads executing conflicting transactions ex-
ecute at the same time. One of the most common techniques
to perform this is to force threads to back-off for a certain
period of time when they encounter contention, before re-
starting the aborted transaction. The duration of the back-off
period is determined by the back-off policy employed by
the CM (e.g., exponential back-off) and can be expressed
either in terms of processor cycles (e.g., number of iterations
during which to spin) or in time units (e.g., nanoseconds).

In principle there exist two ways of implementing a
back-off mechanism: i) spinning, i.e., busy-waiting, in an
empty loop, or possibly by invoking at each iteration
“pipeline-friendly” assembly instructions, such as pause
in x86 architectures; ii) sleeping by invoking the sleep
system call. The two methods exhibit clear trade-offs for
what concerns performance and energy consumption. Busy
waiting has very fine granularity, but, from the perspective
of energy consumption, it is strongly inefficient. Sleeping,
on the other hand, achieves low energy consumption but
provides coarse granularity (various tens of microseconds in
recent architectures/OSs [28])), which can have a detrimental
impact on the effectiveness of the CM policy.

Since existing CM have focused on optimizing per-
formance, basically neglecting the issue of energy effi-
ciency, existing implementations rely solely on spin-based
approaches — which, do not suffer of the accuracy issues of
sleep-based approaches for short back-off periods. The draw-
back is that they miss the opportunity of reducing energy
consumption when back-off times are sufficiently large to
be effectively supported using sleep-based implementations.

The hybrid approach that we propose in this paper, and
whose pseudo-code is reported in Algorithm 1, is based
on a simple, yet effective idea: using a sleep-based or a
spin-based implementation depending on the duration of the
back-off period. The intuition is that spin-based implemen-
tations are ideal for “sufficiently short” back-off periods,
whereas sleep-based ones work best for “sufficiently long”
back-off period.

Despite the idea may at first glance appear relatively
straightforward, it does hide two non-trivial, and closely
intertwined, issues:

1) Spin-based and sleep-based implementations operate us-
ing different time scales: the latter expresses the back-off
duration in real-time units (e.g., nanoseconds), whereas the
latter uses spin cycles, or, equivalently, processor cycles. In
order to hide both implementations under the same interface,
and use the two transparently, it is necessary to reconcile
their time scales, by identifying a conversion factor, which
we note α, in order to map processor cycles to real-time (or



1 function void back-off( int waitCycles)
2 if waitCycles

α ≤ T then
3 while waitCycles 6= 0 do
4 waitCycles- -;
5 end
6 else
7 sleep( waitCycles

α - min sleep );
8 end
Algorithm 1: Pseudo-code for the hybrid back-off mech-
anism.

vice versa).
The issue here is that, in modern processors, the number
of spin (or processor) cycles executed within a time unit
can vary significantly depending on the impact that the
workload’s characteristics have on architectural aspects like
DVFS, pipeline and caching.
2) What is the minimum value of the back-off duration,
which we denote by T , for which sleep-based implementa-
tions are more efficient (from a joint energy-performance
perspective) than spin based ones? Ideally, the value of
T should be set to the minimum back-off duration for
which the gains in terms of energy consumption achieved by
sleeping outweigh the performance losses due to its lower
accuracy.

One additional noteworthy aspect is that, in order to
enhance the accuracy of the sleep-based implementation, in
line 7, we adjust the requested sleep duration before invoking
the sleep system call. More in detail, we subtract from
the target back-off duration (i.e., waitCycles

α ) the minimum
latency for executing a sleep system call (i.e., for executing
sleep(0)), which we noted min sleep in the pseudo-
code. In fact, whenever the sleep system call is called with
x as input parameter, the actual latency for the execution of
sleep is equal to min sleep+x+err, where err is an error
factor depending on the actual sleep accuracy (e.g., hardware
timer resolution). This latency can be easily measured exper-
imentally, and by taking it into account, one can significantly
enhance accuracy when the back-off duration is of the same
order of min sleep.

As we will discuss more in detail in Section III-C, the
identification of the correct value of the parameters α and
T plays a crucial role in determining the efficiency of the
CM scheme. We address this problem via a light-weight,
on-line self-tuning mechanism, which we also detail in
Section III-C.

B. Asymmetric Contention Management

Ideally, a CM may take advantage of the DVFS capa-
bilities provided by modern CPUs by scaling down the
frequency of a core whenever a transaction has to be aborted
and backed off, and scaling up the frequency of that as soon
as the back-off period completes. If a sufficient number

of transactions are in the back-off state, the CM could
explicitly request to boost the frequency of some cores,
provided that the thermal envelope of the corresponding
CPU is within the safety margin. Unfortunately, controlling
the dynamic frequency scaling mechanism requires issuing
system calls, which induce prohibitive costs [28] and would
largely outweigh the gains achievable thanks to DVFS.

The idea at the basis of ACM is to approximate such
an ideal, yet impractical CM policy, by using a lightweight
design that aims at favouring the spontaneous activation of
hardware-controlled DVFS mechanisms. Modern CPUs, in
fact, identify in an automatic fashion the opportunity to
boost the frequency of subset of cores, whenever a sufficient
number of cores in the same CPU have entered a sleep state
and are executing below the nominal frequency.

In order to make the contention management scheme
DVFS-aware we exploit a simple idea, which is, to the best
of our knowledge, still unexplored in the literature, i.e., we
adopt an asymmetric approach that divides threads into two
categories: threads active on cores to be boosted, which we
call boosted threads, and threads executing on cores to be
pushed towards lower operating frequencies. This can be
achieved by letting the contention management treat these
two categories in an asymmetric fashion: the threads to be
boosted will be backed off for linearly increasing periods,
while the other category will be backed off for exponentially
increasing periods.

Under such arrangement, and considering a hybrid imple-
mentation of the back-off mechanism, like the one described
in the previous section, boosted threads are likely to be either
executing transactions or spinning, as they will most likely
back-off for short periods. The other threads, on the other
hand, tend to back-off for longer periods. Hence, they are
more likely to use the sleep-based back-off implementation
and to have their cores enter deeper sleep states.

Note that, in order to favour the activation of the
hardware-controlled DVFS mechanism, the selection of
which threads should be boosted has to be made in an
architecture-aware fashion. In fact, in order to create the
preconditions for DVFS to accelerate the frequency of the
core on which a boosted thread is executing, the number
of boosted threads active in each CPU should not exceed
the maximum number of cores M that can simultaneously
execute at frequencies higher than the nominal ones. For
instance, in AMD Opteron CPUs such as the ones that
we use in our experimental evaluation, at most two cores
out of the 8 cores available in each processor can enter
the boosted state, when the other 6 are sleeping. This
architecture dependant parameter is taken into account by
the ACM, which scatters the B boosted threads across the
available CPUs, assigning at most M boosted threads per
CPU.

As we will further discuss in Section III-C, the decision
of how many boosted threads to use, which we call boosting



degree (B) is non-trivial, as the optimal tuning is in general
workload-dependant. As already mentioned, we delegate the
task of automating the tuning of B to the Controller module,
which we describe next.

C. Controller

As already mentioned, the Controller relies on on-line
self-tuning techniques in order to identify the values of
the parameters α, T and B that yield maximum energy-
efficiency. Before discussing the design of the proposed self-
tuning mechanism, though, we present experimental data
aimed at highlighting the relevance of tuning each of these
three parameters. The analysis of this data will also allow us
to obtain some important insights that have driven the design
of the self-tuning mechanisms employed by the Controller.
• The need for self-tuning. Let us start by performing a
sensitivity study to the tuning of α and T . To this end,
we consider two benchmarks of the STAMP benchmark
suite [14], which generate workloads with distinct charac-
teristics: Intruder generates relatively long transactions that
have a high contention probability; transactions in Kmeans,
conversely, are relatively short and less prone to aborts. The
results reported in this section, and in the remainder of the
paper, were obtained running with 64 threads on a machine
equipped with an AMD Opteron 6272 CPU running linux
3.13 and equipped with 32 GB of RAM.
In Figure 2 we set the number of active threads to 64, and
report the EDP obtained when varying α from 100 to 107

with T = min sleep (which we recall is the minimum sleep
granularity), normalized with respect to the EDP obtained
when using the optimal values for α and T , identified via
an exhaustive off-line search. The rationale for setting the
threshold T = min sleep is that sleep is expected to pay
off only if the sleep time is larger than the time it takes to
execute the sleep system call. In fact, for lower sleep times,
the CPU is going anyway to be occupied for min sleep
time units and, hence, consume more CPU cycles than a
spin-based implementation.
The plot allows us to draw two interesting conclusions. On
the one hand, we observe that the optimal value of α for
the two benchmarks is significantly different, being equal to
5K for Intruder and to 250K for Kmeans — a difference
of two orders of magnitude. Also, if one uses the optimal
setting of α for Kmeans, resp. Intruder, with Intruder, resp.
Kmeans, the EDP is more than 2×, resp. 5× higher. These
data clearly highlight the relevance of appropriately tuning
this parameter.
On the other hand, by setting statically T = min sleep (and
properly tuning α) we obtain an EDP that is very close to
(i.e., at most 5% higher than) the EDP obtained by using
any alternative value of T . This is true despite the fact
that the two considered benchmarks have radically different
workload characteristics. In fact, we have experimentally
verified across the entire set of benchmarks considered in
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Figure 3: EDP for different static values of B normalized to
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this paper (whose full list is provided in Section IV-B) that
the quality of the solution obtained by using this simple
heuristic is always very close to the optimal one. In the
light of these considerations, and in order to maximize the
convergence speed of the self-tuning mechanisms employed
by the Controller, we opt for setting setting T = min sleep
and consequently reducing the dimensionality of the opti-
mization problem.
Next, we analyze the effects of using different values for the
B parameter. To this end we consider 5 popular TM bench-
marks, namely Intruder, Kmeans, Genome, Memcached and
STMBench7 1, which we run using 64 threads in total. We
treat B as the independent parameter, and set α and T to
their optimal, off-line determined, values. In the machine
used in our study, at most 16 cores can operate above the
nominal frequencies (when the remaining 48 are in sleep
state). Hence, we accordingly set the maximum value of
B to 16. In Figure 3 we report the EDP obtained using
different static values of B normalized to the EDP obtained
using the best setting of B. By the plot we get that the
optimal setting of B varies significantly with the considered
benchmark: for Intruder, for instance, EDP degrades by
around 70% if B = 16, since the contention level generated

1Since the key performance indicator for Memcached and STMBench7
is the commit rate, for these benchmarks we compute EDP as the ratio
between energy consumed and commit rate.



by having so many threads using an aggressive, linear back-
off policy grows unacceptably large; the opposite is true for
STMBench7, for which the optimal B’s value is 16, and
using lower values can yield up to 40% increase of EDP.
• Design of the self-tuning scheme. As already discussed,
by setting T = min sleep we reduce the dimensionality of
the on-line optimization problem that the controller has to
tackle, which is limited to identify the optimal tuning of α
and B. The Controller tackles this problem by employing a
lightweight, model-free on-line search approach [31], which
identifies the optimal values of the target parameters by
exploring alternative points in the α×B space. There are two
main design decisions that are the basis of any model-free
on-line optimization algorithm:
– How to explore the search space.
– The exploration vs exploitation dilemma, i.e., when to
stop exploring and start exploiting the available knowledge.
In the design of the Controller we have considered alterna-
tive policies for tackling each of these two problems. We
describe each of them in the following, and postpone their
evaluation to Section IV-A.

How to explore the search space. The exploration poli-
cies that we consider represent variants of the classic hill-
climbing algorithm, which, we recall, operates as follows:
at each iteration the neighbours of the current configuration
are tested and the one that maximizes the target metric
is set as the new configuration for the next iteration. The
basic hill-climbing algorithm suffers of three main problems,
which can be addressed by considering several additional
mechanisms, described in the following:
∗ local minima: due to the localized nature of its search
policy, hill-climbing is well known to be prone to get
stuck in local minima. A commonly employed solution to
this problem is to force random jumps with a fixed, small
probability. This variant is noted jmpX, where X is the jump
probability.
∗ curse of dimensionality: the number of neighbours for
a configuration grows exponentially with the dimensionality
of the search space [31]. In order to circumvent this issue
we consider two alternative exploration policies: i) We treat
the two dimensions α and B as tunable in a completely
independent fashion, and run two hill-climbing based op-
timizers, each targeting a different dimension, in parallel
and without any synchronization. We note this policy as
independent. ii) We subdivide the exploration in phases,
and during each phase we optimize along exclusively one
dimension, changing the target dimension whenever a phase
ends. We note this policy as alternate.
∗ slow convergence in large domains: the hill-climbing can
converge after an unacceptably high number of explorations
if the domain that is being explored spans a broad range of
values and the granularity used to identify the neighbours
of the current configuration (also called, exploration step)

is too small. On the other hand, using overly large explo-
ration steps increases convergence speed, but can have a
detrimental effect on the quality of the identified solution.
In the problem at hand, as already noted, α spans a very
broad domain (from a few hundreds to about one million).
To cope with this issue, when moving along the α dimension
the controller uses an adaptive exploration step: it starts by
adopting a large (125K) exploration step, which it halves
whenever the direction of exploration along the α dimension
is inverted (because a suboptimal value is found) till a
minimum value for the exploration step (1K) is reached.
We use instead a fixed exploration step equal to one when
moving along the T dimension.

Exploring vs exploiting. The hill-climbing approach
never stops exploring, i.e., when it identifies a minimum,
it keeps on oscillating around it for ever. This has the
advantage of making it prone to react to changes in the
function being optimized (e.g., imputable for instance to
shifts of the application’s workload). On the down side,
if the function is stable, moving away from the (local)
optimum, and re-exploring a configuration that is known
to be suboptimal, means incurring a certain penalty. A
simple heuristic that can be used to tackle this problem is
to detect subsequent oscillations around the current local
minimum, and stop explorations. We call such a variant
stabilizing.

IV. EVALUATION

This section aims to quantitatively evaluate Green-CM
from a twofold perspective. We start by assessing the
effectiveness of the various self-tuning considered in Sec-
tion III-C. Then, we evaluate the performance, energy con-
sumption, and EDP of Green-CM with respect to state of
art CM solutions.

As already mentioned, Green-CM was designed to work
with both hardware and software based TM implementa-
tions. In this study, we select as reference TM implemen-
tation TinySTM [18], a software-based TM that has been
shown to excel in a wide range of workloads [26]. TinySTM
comes with different contention managers including expo-
nential back-off with busy waiting. We consider a set of
4 well-known TM benchmarks: Intruder-high and Kmeans-
high, from the STAMP suite [14], and Memcached [16] and
STMBench7 [15], both generating 50% read and 50% write
transactions. The results are the average of at least 5 runs.

A. Tuning Strategies

We start by evaluating the effectiveness of the self-tuning
algorithms when operating on each dimension of the search
space α×B individually. This preliminary analysis will allow
to circumscribe the combinations of self-tuning algorithms
that will be evaluated to optimize α and B in conjunction.

Individual tuning of α and B. For the individual optimiza-
tion of α and B we fix the number of active threads at 64
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Figure 4: Normalized EDP across different benchmarks
using various strategies to self-tune individually α and B.

and consider four alternative self-tuning strategies: nostab,
a non-stabilizing policy that does not perform probabilistic
jumps; stab, a stabilizing policy that does not perform prob-
abilistic jumps; stab jmp1 and stab jmp10, wo stabilizing
policies that perform random jumps with probability, resp.,
1% and 10%. When evaluating the self-tuning of α, we set
B = 0. When self-tuning B, we set α to the corresponding
optimal, off-line found value for B.

Figure 4(a) shows the EDP across different benchmarks
when using the different tuning strategies for α, normal-
ized to the EDP obtained when using the (per-benchmark)
optimal, off-line found value of α. By the plot, it can be
deduced that the stabilizing tuner that performs random
jumps with 1% probability outperforms all others, achieving
an EDP that is only 8% larger than the optimal static solution
(identified via an exhaustive off-line exploration).The reason
behind this is the fact that stabilization minimizes the cost
paid oscillating around a minimum. Also, a small jump
probability is sufficient to allow the tuner to escape from
local minima, without excessively hindering performance
with overly frequent random explorations.

Analogous considerations can be drawn by analyzing
Figure 4(b), which shows the results for the same study
conducted on the tuner of B. The considered strategies
behave similarly to the previous case, although the relative
differences between them are smaller. We argue that this is a
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Figure 5: Normalized EDP across different benchmarks
using different strategies for coupling the two tuners.

consequence of the fact that identifying the optimal tuning of
B is a relatively easier problem, given that the corresponding
domain is much smaller than the one of α.

Joint tuning of α and B. Next, we consider different
strategies for tuning α and B in conjunction. We consider
the following tuning policies: i) independent stab jmp1, two
independent tuners, using stabilization and random jumps
with 1% probability. ii) bidim stab jmp1, same as above,
except that a single learner is used that explores all the
current neighbours in the bi-dimensional α × B space; iii)
stab jmp X - stab, an alternate policy, which starts
by exploring the α space until it stabilizes. In phase 2, an
exploration in the B space is performed till stabilization.
In phase 3, and in the subsequent odd phases, it optimizes
α performing random jumps with probability X% until it
stabilizes on a new optimum configuration. In phase 4, and
in the subsequent even phases, it explores the B dimension
until it stabilizes.

Figure 5 shows the EDP normalized w.r.t. the best static
configuration which was found by testing offline different
combinations of T and B. An interesting fact that can be
deduced from these results is that using higher probability of
random jumps after performing a stabilization yields better
results as compared to using a single learner. We argue that
this can depend on the fact that, in order to escape from
a local minimum, a larger number of attempts is required,
on average, in a bi-dimensional space. Hence, using a larger
jump probability is more beneficial in this scenario. The
2nd best option, with an only marginally higher EDP value
with respect to stab jmp 10 - stab is represented by
the independent tuners. This suggests that, despite the lack
of synchronization between the two tuners, they can still
successfully crawl the search space and quickly identify high
quality solutions.

B. Evaluating Green-CM

In this section we compare Green-CM, using the stab
jmp 10 - stab tuner, with respect to the following state
of the art CMs: suicide, karma, timestamp (ts), aggressive
(agg), exponential back-off with sleep for back-off imple-
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Figure 6: EDP, energy consumption and execution time of Intruder and Kmeans, relative to Green-CM
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Figure 7: EDP, energy consumption and commit rate of STMbench7 and Memcached, relative to Green-CM

mentation (sleep) and exponential back-off with spin for
back-off implementation (spin).

Figure 6, shows the EDP, energy consumption and running
time for Intruder and Kmeans. Figure 7 shows the EDP,
energy consumption and commit rate for STMbench7 [15]
and Memcached [16]. We normalized the performances of

the considered CMs with respect to the ones of Green-
CM, defining the normalization in such a way to guaran-
tee that values higher (resp. lower) than one mean worse
(resp. better) performance than Green-CM, independently
of the considered metric. This was performed to enhance
data visualization, as in some cases Green-CM outperforms
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Figure 9: Frequency distribution of cores for different thread configurations for Intruder.

existing CMs by various high orders of magnitude.
Overall, Green-CM can achieve up to 2.35 times lower

EDP than the best other contention manager with an average
of 65% improvement across all benchmarks at 64 threads
and 83% improvements at 48 threads with an overall average
gain of 25% across all benchmark and thread configurations.
Green-CM also achieves better efficiency in terms of EDP
in most thread configurations higher than 4 threads for all
benchmarks except KMeans and Memcached where it is as
good as the best competitor at 8 threads..

We can note also that the gains from using Green-CM are
more prevalent at higher number of threads. This is expected,
since the higher the thread counts, the higher the contention
level, the higher the relevance of contention management.

Finally to demonstrate the individual impact of using an
asymmetric contention management strategy we evaluate
our system with and without asymmetry enabled. Figure 8
shows the EDP, energy consumed and execution time for
running Intruder with three different configurations: expo-
nential back-off using a spin-based implementation (spin),
tuning only α with B = 0 (no-asym), and Green-CM with
both tuners enabled (asym).

From the results we can see that using an asymmetric
policy for contention management yielded extra gains in
terms of both energy and performance reaching around 25%
at 64 threads. These gains can be explained by correlating
the results with the average core frequency operating dis-
tribution charts shown in Figure 9. These charts show the
distribution of cores according to their average operating

frequency throughout the running time of the benchmarks.
Note that the considered AMD processor support 7 different
frequency levels, P0, .., P6, where P0 is the highest fre-
quency (3.0GhZ), P6 is the lowest (1.4 GhZ) and P2 is the
nominal frequency (2.1GhZ).

It can be seen that between 10 to 25% of the cores
reach the maximum boosted state (P0) when asymmetry is
enabled, providing evidence on the effectiveness of ACM
to favour the spontaneous activation of hardware-controlled
DVFS mechanisms. Another aspect that can be noted is
that, as the number of threads increase, more cores get to
operate at lower frequencies: this is a consequence of the
increase of contention, which leads threads to back-off for
longer periods. This explains the gains in terms in of energy
efficiency compared to exponential back-off using spin for
the back-off implementation.

V. CONCLUSION

In this work we investigated the design of Green-CM,
an energy efficient contention manager for transactional
memory systems. We evaluated, using realistic workloads
and actual TM system, the energy efficiency of alternative
implementations of the back-off primitive, i.e., one funda-
mental building block of several state of the art contention
management techniques. In the light of this study, we
proposed a hybrid implementation that determines the most
efficient back-off implementation to use, on the basis of the
specified back-off period.



On top of this building block, we designed an asymmetric
policy for contention management that aims to favour the
activation of the DVFS mechanisms that are ubiquitously
present in modern CPU architectures. Our experimental
study shows that the proposed solutions shows improved
EDP for various workloads compared to state of the art.
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