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Abstract—This work investigates how to combine two powerful
abstractions to manage concurrent programming: Transactional
Memory (TM) and futures. The former hides from programmers
the complexity of synchronizing concurrent access to shared
data, via the familiar abstraction of atomic transactions. The
latter serves to schedule and synchronize the parallel execution
of computations whose results are not immediately required.

While TM and futures are two widely investigated topics, the
problem of how to exploit these two abstractions in synergy is still
largely unexplored in the literature. This paper fills this gap by
introducing Java Transactional Futures (JTF), a Java-based TM
implementation that allows programmers to use futures to coordi-
nate the execution of parallel tasks, while leveraging transactions
to synchronize accesses to shared data. JTF provides a simple and
intuitive semantic regarding the admissible serialization orders of
the futures spawned by transactions, by ensuring that the results
produced by a future are always consistent with those that one
would obtain by executing the future sequentially.

Our experimental results show that the use of futures in a TM
allows not only to unlock parallelism within transactions, but also
to reduce the cost of conflicts among top-level transactions in high
contention workloads.

I. INTRODUCTION

Transactional Memory (TM) is probably among the ab-
stractions for parallel programming that have garnered the
largest interests of the research community over the last
decade. TM relieves programmers from the complexity of
defining lock-based inter-thread synchronization mechanisms
to safe guard concurrent accesses to shared data. With TM,
programmers need simply to define which code blocks should
be executed as transactions. Under the hood, the TM run-time
system automatically performs concurrency control ensuring
that transactions only commit if their execution is equivalent
to a serial one. TM is implementable in software [1], hard-
ware [2], or combinations therof, and its relevance has been
strongly amplified by the recent integration of hardware TM
support in the latest generations of CPUs by Intel and IBM,
and by the inclusion of programming constructs for TM in the
standard C/C++ languages.

The adoption of TM into mainstream programming will
strongly depend on how easy it will be to integrate memory
transactions into existing programming languages, abstrac-
tions and patterns. Unfortunately, the current state-of-the-
art implementations of TM are not necessarily compatible
with important programming constructs that are widely used
in the programming community. One striking example of
such a conflict can be found with the powerful and widely-
used abstraction of futures [3], [4]. Futures are a convenient
programming construct that activates a parallel computation

(typically encapsulated by a method in an object-oriented pro-
gramming language) and returns a placeholder, called future
(or sometimes promise [5]). The returned future can be used by
the subsequent instructions on the calling thread (also called
continuation) to check whether the computation has already
completed, and to obtain the result of the computation once
it becomes available. Futures are part of C++, Java and the
.Net platform (among others), hence a familiar construct to the
average parallel developer in such environments. Yet, perhaps
surprisingly, futures are not compatible with any current state-
of-the-art implementations of TM. This paper fills this gap
by proposing a powerful abstraction, the transactional future.
Transactional futures correctly combine TM with futures,
allowing programmers to exploit intra-transaction parallelism
via the abstraction of futures, while delegating to TM the
complexity of regulating concurrent access to shared data.

The design of an efficient run-time system supporting the
transactional future abstraction introduces two subtle issues.
First, enabling transactions to launch futures implies that
computations executing as futures can access shared data
and generate conflicts with their continuations, as well as
with other futures belonging to the same or to a different
transaction. Handling these conflicts requires using specialized
techniques, which are otherwise unneeded in conventional TM
systems. Second, the integration of futures and transactions
opens a relevant question regarding which serialization orders
are admissible between futures and their continuations, as well
as among futures. In order to preserve the ease of use of TM,
we support a consistency model of transactional futures that
is simple and intuitive, namely, the equivalence to sequential
execution not using futures.

Besides specifying the semantics and consistency model of
the transactional future abstraction, we present the design of a
software-based TM, called Java Transactional Futures (JTF),
that implements the proposed abstraction for the Java run-time.
The JTF system transparently wraps futures and continuations
into atomic blocks, which run as parallel sub-transactions and
are guaranteed to be serialized as if they were instantaneously
executed at the moment in which they were spawned.

We evaluated JTF by parallelizing, using transactional fu-
tures, two popular benchmarks for transactional systems (i.e.,
both TM and database systems) and tested it using a 48-core
machine. The results of our experimental study show that,
by exploiting intra-transaction parallelism, JTF can not only
significantly reduce the execution time of long running transac-
tions, but also strongly benefit throughput in contention-prone
workloads, by reducing the likelihood of conflicts among



transactions and the performance penalty due to aborts.

II. DEFINING THE SEMANTICS OF
TRANSACTIONAL FUTURES

The transactional future abstraction reconciles futures and
transactions to enable intra-transaction parallelism while syn-
chronizing the parallel computations that result from the
activation of a future. Computations executing as futures, just
like continuations, can perform concurrent access to shared
data, and the TM run-time system is responsible for regulating
such accesses. To achieve this goal, it is necessary to extend
the conventional TM execution model and define how futures
interact with continuations and with other futures, belonging
to the same or to a different encompassing transaction.

A transactional future is submitted (or spawned) in the
context of a transaction.1 We designate the transaction that
submits a transactional future as its parent transaction. After
submitting a transactional future, the parent transaction obtains
a reference that can be invoked to evaluate the transactional
future, i.e., to obtain the return value that the future produced
after it committed. This invocation is blocking, i.e., the thread
that requests the evaluation waits until the transactional future
commits. A transactional future can be evaluated by other
threads/transactions than its parent; in fact, the transaction that
submits a transactional future and obtains a reference to it can
then share that reference with other threads.

As the name suggests, the transactional future runs as a
transaction, more precisely a child transaction of the parent
transaction. As such, its accesses to shared memory can
be tracked and regulated by the TM system. Running in
the context of a child transaction makes the execution of
a transactional future dependent on the top-level transaction
where it was invoked: if a top-level transaction aborts, a
cascade abort of its transactional future(s) will apply.

After submitting a future, the parent transaction halts its ex-
ecution and runs another sub-transaction, called continuation.
Associating a new transactional context with the continuation,
distinct from its parent’s one, enables rolling back the con-
tinuation if it conflicts with itsl future without having to roll
back the entire parent transaction (and its descendants).

Submitting transactional futures is not limited to top-
level transactions; transactional futures can be submitted from
within any transactional context, including continuations or
transactional futures. Hence, the execution of a program yields
a set of binary trees of transactions, as the one illustrated in
Fig. 3a. Top-level transactions are the roots of each tree, which
can be arbitrarily deep. Each node corresponds to a submit
point that produces always two sibling sub-transactions: a
transactional future and the corresponding continuation.

When a transactional future is submitted, it inherits the
current snapshot of its parent and, by recursion, its ancestors.
More precisely, when a transactional future t reads from a

1A transactional future submitted/evaluated outside of a transactional con-
text can be considered as submitted from within an empty top-level transaction
that encompasses solely its submission/evaluation.

memory location that had been written by any of its ances-
tors, t should observe the most recently written value by its
ancestors. The same rule applies to continuations.

As for isolation guarantees among each top-level transac-
tion (including any sub-transaction that descends from that
top-level transaction), we consider opacity [6], a standard
consistency criterion for TM. Informally, opacity guarantees
strict serializability [7] for committed transactions. Further,
it prevents transactions that abort from observing arbitrary
snapshots not producible by a sequential execution of a subset
of the committed transactions.

However, defining isolation between transactions from dif-
ferent top-level trees is not enough, as we also need to consider
the isolation between sub-transactions descending from the
same top-level transaction. The proposed model considers
that any transactional future and continuation executes in
isolation relatively to its own sibling. When a sub-transaction
(a transactional future or a continuation) commits, its write
set becomes immediately visible to its sibling transaction.
Hence, the continuations and futures of a given top-level
transaction will only observe their mutual updates if that
is compatible with their serialization orders. Furthermore,
the read and write sets of a sub-transaction that commits
are consolidated by the parent transaction (i.e., merged with
the parent’s read and write sets). Consequently, the updates
performed by the continuations and the transactional futures
of a top-level transaction T are only made (atomically) visible
to other top-level transactions when T commits.

Let us now discuss how futures and continuations of a
top-level transaction should be serialized. Intuitively, both
the future and the continuation sub-transactions ought to
appear as executed atomically and serialized after their parent
(sub-)transaction, i.e., they should observe values written in the
context of the parent (sub-)transaction. However, the decision
of whether a future should be serialized before or after its
continuation is a less obvious one. We advocate that serializing
a transactional future at the time of its submission (i.e., before
the continuation), which we call strong ordering semantics, is
definitely more appealing for two reasons: i) It ensures that
the parallel execution of a method in a future is equivalent to a
sequential run in which the method is executed synchronously,
and not via a future. ii) In scenarios in which transactional
futures can be evaluated out of the context in which they
were submitted, it may be hard to reason about which sets
of operations shall appear as atomically executed with respect
to a transactional future.

We provide two concrete examples of why weaker semantics
are problematic. Consider first the execution in Fig. 1, in which
transaction T0 submits transactional future TF1, which in its
turn submits transactional future TF2, which is then evaluated
by T0. In this execution, if TF2 were allowed to be serialized
at the time of its evaluation, it should observe both w(x,x1),
issued by TF1, and w(y,y0), issued by T0. In other words, the
transactional context associated with TF2’s continuation would
have to encompass both writes although they belong to two
distinct sub-transactions. Consider now the example in Fig. 2,
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Fig. 1. Chained transactional futures.
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Fig. 2. Top-level transactions communicate via a transactional future.

in which two top-level transactions, T1 and T2, communicate
with each other by means of a transactional future, TF , which
is submitted by T1 and evaluated by T2: If TF were allowed
to be serialized at the time of its evaluation, we argue that it
would be unclear to even define its continuation (with respect
to which, we recall, TF should appear as atomic).

Strong ordering semantics avoid the ambiguities illustrated
above. Furthermore, with strong ordering semantics, the eval-
uation time of a future has no impact on its serialization
order; only the submission time counts. This allows to use
transactional futures in a safe and intuitive manner. Consider
for instance the family of futures and continuations captured
by the tree depicted in Fig. 3a. It is easy to see that the
continuation of TF1 (i.e., TC4) has to be serialized after TF1,
TF2 and TF2’s continuation (i.e., TC3). Also, all the sub-
transactions in the right sub-tree of T0 can only commit after
all the sub-transactions in T0’s left sub-tree have committed.
Finally, the results produced by all transactional futures and
continuations of this family are only visible to other top-level
transactions once T0 commits.

III. OVERVIEW OF THE JTF SYSTEM

Analogously to other Java-based STM [8], [9], JTF requires
programmers to explicitly identify the objects whose accesses
need to be tracked by the transactional system. This is achieved
by storing references to objects or primitive data types within
a data container, called VBox (versioned box), that exposes
methods to retrieve (get) and update (put) the current value of
the object. These methods are intercepted by the JTF runtime,
which uses them to track and regulate concurrent data accesses
from within the transactional contexts.

Like classic TM systems, JTF exposes methods to begin,
commit and abort transactions. In addition to conventional
TM systems, though, it provides methods also to request the
execution of a method (via the standard Callable interface in
Java) as a transactional future, and to evaluate transactional
futures’ results. When a transactional future is submitted, the
JTF runtime schedules its execution on an internal thread pool
and transparently wraps the execution of the future’s method in
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Fig. 3. Data Structure under JTF System

the context of a new (sub-)transaction. Further, JTF also starts
another child transactional context to run the continuation.
In this way, JTF can discard all the effects produced by
the continuation and still preserve the effects of the parent
transaction before the invocation of the transactional future
(i.e., support partial rollback).

JTF allows for evaluating the future’s result at any time,
without requiring the evaluation to occur from within a trans-
actional context. The evaluation semantic of a transactional
future is identical to that of a plain future, blocking the
calling thread until the future’s execution has completed. A
reference to the future can be propagated among different
threads (e.g., via writes to shared memory), which allows to
use transactional futures as a channel to support inter-thread
communication. This mechanism does not interfere with Java’s
garbage collection mechanism, as a transactional future and
its result can be safely garbage collected as soon as no other
object stores its reference.

A. Concurrency control

We start by discussing how JTF treats top-level transactions,
then we discuss how transactional futures are handled.

Top-level transactions. Every top-level transaction in JTF
has a version number which is assigned when the transaction
is created, and establishes the data snapshot visible to that
transaction during execution. This number is fetched from
a global counter that represents the version number of the
latest read-write transaction that successfully committed. Child
transactions also receive a version number, which they inherit
from the parent transaction.

JTF stores in the VBoxes the set of committed (or perma-
nent) data versions that may be required to process reads from
concurrent transactions. The committed versions are stored in a
sorted list, which we call permanent list, in descendent order of
recency and are tagged with a version number that defines the
serialization order of the top-level transaction that committed
this version (see Fig. 3b).

The write operation of a top-level transaction is imple-
mented by simply storing the value in a private writeset.
Reads are managed by first doing a lookup in the transaction’s
writeset, and, if the requested data item is not found there, the
most recent version created by a transaction that committed
before the transaction started is returned.



JTF integrates a lock-free commit algorithm, first introduced
in JVSTM [8], which uses a helping mechanism to implement
the following two steps in a non-blocking, yet atomic, fashion:
increasing the global counter and writing-back the values from
the transaction’s write-set to the corresponding VBoxes.

Transactional Futures: submission. As already mentioned,
JTF transparently wraps the execution of a transactional future
and its continuation into two sub-transactions. These sub-
transactions inherit the version number from their parent,
which ensures that they will be serialized in the same order
as their parent with respect to other top-level transactions.

JTF supports partial roll-back of a transactional tree, e.g., if
a continuation misses the write generated by its corresponding
future2, only the sub-tree rooted on the continuation sub-
transaction is aborted. To this end, the JTF run-time check-
points the control state of the thread submitting the future, by
means of a first-class-continuation (FCC) [10]. FCCs should
not be confused with the continuations of (transactional)
futures; FCCs are a lightweight checkpointing mechanism that
allows to reify, save and restore the program control state (e.g.,
its stack and the JVM registers’ value). In JTF, we use the
FCC support provided by the OpenJDK Hotspot VM [10],
which introduces very limited overhead and, unlike other
approaches [11], does not require any byte-code rewriting.

Transactional Futures: read and write operations. Unlike
top-level transactions, sub-transactions do not maintain a pri-
vate write-set. When a sub-transaction writes, it acquires a lock
(valid for the entire transactional tree) and inserts its version
in a second list, called tentative list, in the corresponding
VBox (see Fig. 3b). Unlike the versions in the permanent list,
each tentative version is associated with the orec (ownership
record [12]) of the (sub-)transaction that created it. The orec
maintains a pointer to the (sub-)transaction (the owner), the
version of the write (txTreeVer) and the owner status. Each
sub-transaction creates the orec when the write occurs and
propagates it to its parent when the sub-transaction commits.

In order to determine which tentative data item versions
are visible to the sub-transactions of a transactional tree,
sub-transactions maintain two additional meta-data: nClock, a
counter initialized with 0 and incremented whenever a direct
child transaction commits; ancVer, a map computed when
the sub-transaction starts, which includes the parent’s ancVer
extended with the parent’s current nClock value.

A sub-transaction T can only observe the tentative version
of a transaction T ′ if, at the time in which T started: i) T ′

has already committed, and ii) the commit of T ′ has been
already propagated to an ancestor of T . This is verifiable by
checking in the ancVer of T whether the owner of the orec
of a data version is an ancestor of T (orec.owner∈T .ancVer),
and verifying whether such ancestor had already witnessed
the commit of T ′ at the time in which T had started
(orec.txTreeVer≤T.ancVer(orec.owner)).

2We say that a continuation, TC , misses the write of its corresponding
future, TF , if TC issues a read on a data item x, for which a new version,
xF , is produced by TF , and TC does not return xF .
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Fig. 4. Metadata reflecting the visible snapshots in a transactional tree.

This mechanism is illustrated in Fig. 4, which depicts the
metadata maintained at a given point of execution of the
transactional tree originally considered in Fig. 3a. T0’s nClock
reflects the commit of its left sub-tree, having as root TF1.
By TC4’s ancVer, we get that when TC4 started, TF1 had
already propagated its commit to T0. TC4 and its descendants
can hence observe the tentative writes of any of the sub-
transactions of the left sub-tree of T0. TC6, however, cannot
see the tentative versions of TF5, although TF5 has already
committed. This is because at the moment in which TC6

started, TF5 had not yet committed (as the TC4’s entry in
the ancVer of TC6 is 0).

Transactional Futures: commit phase. Whenever a sub-
transaction (either a transactional future or a continuation)
finishes its execution it must then check for conflicts that
may have broken the sequential semantics of the top-level
transaction’s code. However, there is a sequential dependence
between transactional futures and continuations. In practice,
this implies that when a sub-transaction running a transactional
future or a continuation finishes execution, and before it
validates, it must wait that all other sub-transactions that
precedes it according to the strong ordering semantics have
validated and committed.

When a child transaction T reaches its turn to commit, it
must then check if there is an intersection between its reads
and the writes of some other sub-transactions (in the same
transaction tree) that have committed while T was executing.
In that case, it means that a conflict that broke the sequential
semantic occurred, and T must be re-executed.

As already mentioned, the commit procedure of a sub-
transaction (either running a transactional future or a contin-
uation) ensures that the writes it performed are propagated to
the parent transaction, which becomes the new owner of these
versions. From that point on, those writes are made visible
to new child transactions the parent might spawn. This allows
transactions that re-execute, due to a conflict, to read the writes
they missed on their previous execution.

Once all transactions in the transactional tree have com-
mitted, the control is passed to the top-level transaction. At
that point, the top-level transaction will validate its execution



Algorithm 1 Write Procedure by Transactional Future or
Continuation
1: Write(T,vbox,value):
2: pointerWrite ← vbox.tentative
3: orec ← pointerWrite.orec
4: status ← orec.status
5: if orec.owner == T then
6: . T owns the tentative version
7: pointerWrite.value ← value
8: return
9: end if

10: if status 6= RUNNING then
11: if pointerWrite.CASorec(orec,T.orec) then
12: pointerWrite.value ← value
13: return
14: end if
15: . T fails to acquire ownership
16: pointerWrite ← vbox.tentative
17: orec ← pointerWrite.orec
18: end if
19: if orec.owner.root 6= T.root then
20: . write-write conflict between top-level trans.
21: ownedbyAnotherTree(T,vbox,value)
22: return
23: end if
24: for all pointerWrite in vbox.tentative do
25: . Tentative ver. list owned by another sub-txn
26: . T iterates over the list to insert its version
27: if follows(T,pointerWrite.owner) then
28: tentativeWrite.CASnext(new TentativeVersion(value))
29: return
30: end if
31: if pointerWrite.orec.owner == T then
32: pointerWrite.value ← value
33: return
34: end if
35: end for

against other top-level transactions in the system and commit.

IV. JTF’S CONCURRENCY CONTROL IN DETAIL

This section presents the pseudo-code of JTF’s concurrency
control algorithm. For space constraints, we describe the
behaviour of transactional futures and continuations, omitting
the pseudo-code of top-level transactions.

A. Write operations

Alg. 1 reports the pseudo-code for managing the write
operation of a sub-transaction. When writing to a VBox, the
(sub)transaction T fetches the tentative version at the head of
the tentative list and reads its ownership record orec to tell
whether it owns that version or not (line 7). In this positive
case, it simply overwrites the previous write.

Otherwise, T checks if the transaction that created that
tentative version has already completed execution, in which
case T attempts to acquire ownership of the tentative write at
the head of the list (line 11) using a compare-and-swap (CAS).
If the CAS fails, we know some other transaction acquired
the ownership of the tentative write, in which case T must
check if the new owner belongs to a different transactional
tree by comparing the roots of the transaction trees. If the
owner belongs to a different transaction tree, i.e., inter-tree
conflict occurs, the transaction uses a fallback mechanism,
ownedbyAnotherTree() (line 21). This mechanism aborts the

Algorithm 2 Read Procedure by Transactional Future or
Continuation
1: Read(T,vbox):
2: pointerWrite ← vbox.tentative
3: orec ← pointerWrite.orec
4: status ← orec.status
5: . fast path when no read-after-write
6: if status 6= RUNNING then
7: return readFromPermanent(vbox)
8: end if
9: while pointerWrite 6= null do

10: if pointerWrite.owner == T ∧ status 6= ABORTED then
11: return pointerWrite.value
12: end if
13: if T.ancVer.contains(orec.owner)

∧ orec.txTreeVer ≤ T.ancVer.get(orec.owner) then
14: . add to the child transaction T’s read-set
15: T.readSet.put(vbox)
16: return pointerWrite.value
17: end if
18: pointerWrite ← pointerWrite.previous
19: orec ← pointerWrite.orec
20: end while
21: . confirm no read-after-write could happen
22: if T.root.writeset.contains(vbox) then
23: return T.root.writeset.get(vbox)
24: end if
25: return readFromPermanent(vbox)

sub-transaction, up to the root ancestor. Then it re-executes the
affected sub-transactions in the context of the root top-level
transaction. The key difference is that top-level transactions
maintain a traditional write-set, called rootWriteSet, to use
when a VBox is locked by another transactional tree.

If the owner of the tentative version at the head of the list
belongs to the same transactional tree (line 24), T iterates over
the tentative version’s list until it finds a proper place to insert
the new tentative write. Recall that the tentative version list
is organized by descending order of recency, according to the
serialization order imposed by the strong ordering semantics.
In order to determine whether T should be serialized after the
owner, say T ′, of a tentative version, the follows() functions is
used, which compares the ancVer of T and T ′ and identifies
their first (closest to the root) ancestor of T not in common
with T ′, say T ′′. If T ′′ is a continuation, or if T ′′ = ∅ (i.e.,
T and T ′ have the same parent) and T is a continuation, then
T follows T ′ in the serialization (T ′ →T ).

As we will discuss shortly, maintaining the tentative version
list sorted by serialization order, allows better performance
of the read procedure as reads can return the first value
encountered in the tentative write list which meets the value
visibility rule, avoiding iterating the whole list. Furthermore,
maintaining the tentative version list sorted ensures that when
the top-level transaction commits, it can find the values that
must be written back to the permanent write lists on the head
of the tentative write lists.

B. Read operations

The pseudo-code for managing the read operations of a sub-
transaction is reported in Alg. 2.

When processing a read, a transaction T checks whether
the latest tentative write was performed by a transaction that



Algorithm 3 Wait commit rule used to enforce strong ordering
semantics
1: WaitTurn(T):
2: if T is a Continuation then
3: wait until T.parent.nClock == 1
4: return
5: end if
6: . T is a Transactional Future
7: Set ancCont ={T’ ∈ T.ancVer : T’ is a continuation}
8: Transaction anc = closest ancestor of T in ancCont
9: if anc = ∅ then

10: return
11: end if
12: wait until anc.parent.nClock==1
13: return

has already committed or aborted (line 6). This means that
this VBox does not contain tentative versions created by sub-
transactions belonging to the same transactional tree of T .
Hence, the read is simply served by selecting the most recent
version in the permanent list committed before T started (this
logic is encapsulated in the readFromPermanent() primitive).

Otherwise, T needs to check whether itself or any of its
ancestors have previously written to the VBox. At this point,
T iterates over the tentative version list of the VBox until one
of the following conditions is verified: (1) T is the owner of
the tentative version. In this case, the transaction also needs
to make sure that the write does not belong to a previous
aborted execution. This previous execution corresponds to the
case in which the sub-transaction failed validation and was
forced to re-execute. If the write was performed in T ′s current
execution, then no further checks are needed and the procedure
returns that value (line 11). (2) The owner of the tentative write
is an ancestor of T . Under this circumstance, T may read that
entry only if the entry was made visible by its owner before T
started. This is enforced by looking up in the ancVer what is
the maximum version of the ancestor’s write the transaction
can read and comparing it with the version of the tentative
write, txTreeVer (line 13-19).

If no valid value was found in the tentative version list, then
there are no tentative versions produced by sub-transactions
in T ′s transactional tree that are visible to T . Therefore, T
checks whether its top-level transaction had already written
to the same VBox (lines 21-22). If this is the case, it reads
from the top-level transaction’s write-set. Else, it fetches a
committed value from the permanent version list.

C. Commit procedure

The pseudo-code for committing and aborting a sub-
transaction is reported in Alg. 4.

When a sub-transaction T tries to commit, it needs to
validate its read-set in order to detect if it has missed the writes
produced by other sub-transactions belonging to the same
transactional tree and preceding T in the serialization order
imposed by the strong ordering semantics. To this end, before
activating its validation procedure, a sub-transaction first waits
for the commit events of every sub-transaction that should be
serialized before it. We postpone shortly the description of the

Algorithm 4 Commit and Abort Procedure by Transactional
Future or Continuation
1: Commit(T):
2: waitTurn(T)
3: if ¬ validate(readSet) then
4: Abort(T)
5: return
6: end if
7: T.parent.nClock += 1
8: T.orec.txTreeVer ← parent.nClock
9: T.orec.owner ← parent

10: for all t in committedChildren do
11: t.orec.txTreeVer ← parent.nClock
12: t.orec.owner ← parent
13: end for

14: Abort(T):
15: waitTurn(T)
16: for all vbox in T.boxesWritten do
17: pointerWrite ← vbox.tentative
18: if pointerWrite.orec.owner == T then
19: revertOverwrite(vbox)
20: end if
21: end for
22: T.orec.status ← ABORTED
23: for all t in childrenTransactions do
24: t.orec.status ← ABORTED
25: end for

logic used by JTF to enforce this serialization order, which is
encapsulated in the waitTurn function.

The validation phase, encapsulated by the validate() prim-
itive (line 3), scans the tentative version lists of the VBoxes
read by the transaction. If a version is found belonging to
an ancestor of T , and this version does not coincide with the
one in T ′s readset, validation fails and the transaction must be
aborted and re-started. If the transaction was running a transac-
tional future, it simply calls the abort method and re-executes
the transactional future from the beginning. Otherwise, if the
transaction was running a continuation, it aborts and uses the
FCC support in order to restore the execution state to the point
where the continuation started.

If a sub-transaction T passes the validation phase, it in-
creases by one the nClock of its parent transaction (line 7).
Next T propagates its own writeset, and that of its child
transactions, to the parent (sub-)transaction. To this end, T
updates its own orec, and the ones of its child transactions, by
setting : i) the owner field to point to its parent transaction; ii)
the txTreeVer field to nClock’s value of its parent transaction.

When aborting, transactions must revert the writes they
performed when their write is at the head of the tentative
version list. In this case, an aborting transaction cannot directly
mark its tentative version as aborted. In fact, the head of the
tentative list is used to establish a lock that grants access to the
entire transactional tree3. If some other sub-transaction of the
same transactional tree had stored a version v in the second
position of the tentative list, the head of the tentative version
list has to be substituted with v. In order to make this operation

3Recall that, when a transaction is performing a write, it checks if the owner
of the write at the head of the list has already finished (line 10 of Alg. 1).
Once the lock is established, only transactions in the same transactional tree
of the transaction are allowed to write to the list.



lock-free, we need to make sure that no transaction changes
any of the version between the tail of the list and the version
of the aborting transaction [9]. To ensure this, a transaction
T only aborts when every transaction that could precede T in
the serialization order has finished executing (either aborted
due to an inter-tree conflict or committed). This is done, just
like for the case of commits, by using the waitTurn() function.

Finally, the transaction completes its abort by changing the
status of the orecs it controls (its own orec and its children
transactions’ orec) to ABORTED (lines 22-25).

D. Transaction serialization order

To enforce a transaction serialization compliant with the
strong ordering semantics defined in Section II, JTF com-
mits, at any point in time, at most one sub-transaction of a
transactional tree, and only after having ensured that all the
sub-transactions that precede it in the serialization order have
already committed.

It should be noted that, since JTF supports nesting of
transactional futures, it is, in general, not possible to establish
the serialization order of sub-transaction a priori, i.e., upon
their creation. Consider, for instance, the transactional tree
in Fig. 3a: had TF1 not submitted TF2, TC4 would have
received a serialization order equal to 2 (and not 4).4 JTF
tackles this problem by establishing the commit order of
transactional futures/continuations a posteriori, via two simple
and lightweight waiting rules — one for transactional futures
and one for continuations (see waitTurn() in Alg. 3).

The waiting rule for a continuation, say T , is very simple:
it suffices to wait till the nClock of its parent becomes equal
to 1. This means that the sub-tree rooted in the corresponding
transactional future, which directly precedes T in the serial-
ization order, has already committed.

The waiting rule for a transactional future, say TF , is
slightly more complex, but it is also based on the same princi-
ple: identifying the transaction that immediately precedes TF

in the serialization order. Let TC be the ancestor of the first
continuation encountered by traversing “upwards” (from the
closest to the furthest ancestor) TF ’s ancVer. If TC = ∅ then
it means that TF is the first transactional future to commit
according to the strict ordering semantics, and can commit
without incurring any wait. Else, if such a TC exists, it is safe
for TF to validate and commit as soon as the left-subtree of
TC’s parent has completed execution. In fact, no other sub-
transaction can, from that point on, ever commit and serialize
before TF . Hence, a transactional future can only commit
when the nClock of TC’s parent is equal to 1.

E. Optimizing read-only transactions

Since JTF uses a multi-versioning concurrency control,
the snapshot observed by read-only top-level transactions is
guaranteed to be consistent (although possibly obsolete, i.e.,
not reflecting the effects of update transactions that committed

4On the other hand, if nesting of futures was not to be supported, futures
would be submitted only by the thread executing the top-level transaction,
and their serialization order would coincide with their submission order.

during the read-only transaction’s execution). Thanks to this
property, read-only top-level transactions can skip validation,
and immediately commit when they finish executing.

However, even if transactional futures were marked as
read-only, it is in general not safe to skip their validation.
In fact, a read-only transactional future may miss the write
performed by a preceding (according to the serialization order)
sub-transaction. On the other hand, in JTF, we detect and
take advantage of the situation in which it is actually safe to
skip the validation of a read-only transactional future. This is
true whenever all other sub-transactions that precede it in the
serialization order have already committed before it started, or
if all of those transactions are read-only as well. To support
the latter optimization, we added a new list in every top-level
transaction, which contains the identifier of every committed
read-write sub-transaction of a transactional tree. Whenever
a read-only transactional future reaches the commit phase, it
waits for its commit turn using the waitTurn() primitive. Then
it checks if there is any read-write sub-transaction in this list. If
the list is empty, then the transaction can safely skip validation
at the end of execution.

V. EVALUATION

In this section we conduct an experimental evaluation aimed
to seek answers to the following key questions:
• how large are the overheads introduced by JTF to coor-

dinate the execution of transactional futures, and how do
they compare with the inherent costs of non-transactional
futures?

• what is the minimum granularity of a transaction for
which it is beneficial, from a performance perspective,
to use parallelization via transactional futures?

• what performance gains can be achieved by JTF in pres-
ence of diverse workloads encompassing both synthetic
benchmarks and well-known transactional benchmarks?

The results presented in this section are the average of
five runs, executed on a machine with a AMD Opteron 6168
processors (48 cores total), 128GB of RAM, Linux 2.6.32 and
an OpenJDK 64-bit Server 1.7.0 (build 19.0-b03) JVM.

Synthetic benchmarks. We start by presenting the results
obtained by using a synthetic benchmark that we designed
to exert tight control on the characteristics of the generated
workload and to emulate extreme scenarios that allow us to
assess the overheads and potential gains of JTF. This bench-
mark generates, in each transaction, a configurable number of
read/write memory accesses to an array of 1M elements. In
between two memory accesses, the benchmarks emulates the
execution of CPU-bound computations via a loop that executes
a tunable number of iterations, called iter, in which we issue
register-based arithmetic operations. Tuning the value of iter
allows to generate diverse load pressure for the CPU and
memory subsystems, and synthesize CPU-bound rather than
memory-bound workloads.

We start by considering, in Fig. 5a, a workload composed
solely by read-only transactions, in which we vary the transac-
tion length (i.e., number of read accesses within a transaction)
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Fig. 5. Synthetic Benchmarks.

from 10 to 100K and the number of CPU-bound iterations
between two consecutive memory accesses from 0 to 10K.
The items targeted by read operations are selected uniformly
at random across the whole array. It should be noted that,
since we consider a workload composed exclusively of read-
only transactions, synchronization is, in fact, unnecessary,
and correctness could be ensured even by using a plain/non-
transactional future implementation. Also, with such a conflict
free workload, futures can provide no benefit by reducing the
likelihood or the cost of aborts. Hence, by comparing the
performance of JTF with that of a non-transactional future
in this workload, we can isolate and quantify the overhead
induced to enforce the transactional future semantics and
the costs that are inherent to the use of futures, such as
inter-thread communication and increased contention on the
memory bus among the threads executing the future(s) and
the continuation. On the y-axis, we report the normalized
throughput achievable by parallelizing the transactional code
across 16 threads (i.e., 15 executing futures and 1 executing
in the continuation) and running concurrently two top level
transactions. The normalization is with respect to a baseline
that does not exploit futures and uses two threads. Hence, the
maximum throughput increase expectable amounts to 16×.

The data in Fig. 5a shows that JTF achieves close to
optimal performance if transactions have at least 10K memory
accesses and the workload contains sufficiently long CPU-
bound computations. In fact, when setting the value iter to 0
(which yields a completely memory bound workload), increas-
ing the degree of intra-transaction parallelism just hampers
performance even for long-running transactions that execute
100K memory accesses. This is somewhat unsurprising, as
by increasing the total number of concurrently active threads
from 2 to 32, the memory subsystem is subject to a 16×
larger load. In a memory-bound workload, this causes a surge
in the average number of stall cycles incurred by CPUs due
to memory accesses (a fact which we experimentally verified
via the perf profiler). Yet, it is interesting to highlight that
these overheads are not caused by the concurrency control
scheme used in JTF. In fact, Fig. 5 shows that the performance
of JTF is quite close to that of a non-transactional future
implementation. These data confirm that most of the overheads
incurred by JTF are inherent to the usage of futures, and that

the additional overheads introduced by JTF are modest even in
such a challenging scenario (the average slowdown w.r.t. non-
transactional future is <1%).

Next, we set iter to 1k and consider conflict prone work-
loads. In this case, transactions perform a variable length prefix
of read accesses, followed by 10 update operations on a set
of 20 “hot spot” items (selected uniformly at random with
restitution). We report the normalized throughput achieved by
JTF when using a total of 48 threads, which we allocate to
execute either futures or top-level transactions/continuations.
In Fig. 5a, we use the i∗j notation to indicate that we execute
i top level transactions, each parallelized via j threads (j − 1
executing futures and one executing the continuation). We use
as baseline for normalization a configuration in which we
use 48 concurrent top-level transactions (i.e., no futures). This
allows us to compare whether, given a fixed pool of available
threads, it is more beneficial to exploit them in order to pursue
inter-transaction or intra-transaction parallelism.

As shown in Fig. 5b, in such a high contention workload,
the usage of transactional futures significantly reduces the
likelihood of conflict between transactions. This is due to
two main factors: i) the more threads are allocated to futures,
the smaller the number of concurrent top-level transactions,
and, consequently, the lower the probability that the latter
incur a conflict; ii) also, intra-transaction parallelism (via
futures) allows for reducing the execution time of a single-top
level transaction, which, in its turn, reduces the transaction
vulnerability window as well as the cost of a transaction’s
restart. Such a reduction of the abort rate amplifies remarkably
the gains achievable by JTF, when compared to the previously
considered read-only workload: the throughput gains (Fig. 5c)
start to be significant with much shorter transactions and
the transaction execution latency, which accounts also for
transactions’ retries due to abort, is reduced by up to 400×.
This is explainable considering that, in this high contention
scenario, transactions can be re-executed tens of times before
being committed, whereas the average number of transaction
re-executions is around one in the 2*24 configuration.

Vacation and TPC-C. We now consider two well known and
more realistic benchmarks for transactional systems: Vacation
of the STAMP benchmark’s suite [13] and TPC-C [14].
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Fig. 6. Vacation and TPC-C Benchmarks.

The former is a popular benchmark for TM systems, which
emulates the activities of a travel agency; the latter is an
OLTP benchmark for database systems that mimics the activi-
ties of a warehouse supplier. We adapted these benchmarks
to be parallelized using JTF. In both benchmarks, we use
transactional futures to parallelize long running transactions
that execute a long cycle, during which they read a number
of domain objects and compute various functions, e.g., they
identify travels within a given price range, or compute the total
amount of money raised by the warehouse.

For both the Vacation and the TPC-C benchmark we re-
port in Fig. 6 the average throughput, execution time and
abort rate. We use as independent variable in this experiment
the total number of active threads, and report data for five
different thread allocation strategies: a baseline in which no
transactional future is used, and all available threads execute
independent top-level transactions; four alternative configura-
tions, which allocate the available threads to parallelize top-
level transactions by means of, respectively, 1, 3, 5, and 7
transactional futures (along with one continuation thread).

By comparing the throughputs achievable by the two bench-
marks (see Figs. 6a and 6d), we observe that, if transactional
futures are not used, Vacation can scale up to approximately
16 threads; TPC-C, on the other hand, generates an inherently

non-scalable workload, for which using more than one top-
level transaction causes a quick surge in the transaction conflict
probability (see Fig. 6f) and only hinders performance.

Overall, the use of transactional futures produces an im-
provement on performance, which is similar in both bench-
marks. By allocating available threads to parallelize (a smaller
number of) top-level transactions, rather than to activate addi-
tional, conflict-prone, top-level transactions, the likelihood of
contention is strongly reduced. In other words, at high thread
counts, the transactional future abstraction allows to utilize
available computational resources in a much more effective
way. From the throughput’s perspective, transactional futures
allow to extend the maximum achievable throughput by nearly
50% in Vacation and to scale up to 48 threads. In relative
terms, the throughput gain when using 12 top-level transac-
tions parallelized with 3 transactional futures (plus 1 contin-
uation) is 8.4× larger than when using 48 non-parallelized
top-level transactions. With TPC-C, where contention among
top-level transactions is higher than in Vacation, the relative
throughput gains deriving from transactional futures, at parity
of totally used threads, are, unsurprisingly, even larger, extend-
ing up to 10.7× (again at 48 threads). Even more impressive
are the benefits in terms of reduction of the time required
to commit a transaction, see Figs. 6b and 6e, with gains
peaks of up to two orders of magnitude for both benchmarks.
Such striking gains can be explained, as already discussed
when analyzing the synthetic benchmarks, by considering that
transactional futures not only allow for reducing the average
number of transaction re-starts due to aborts, but also for
reducing the cost incurred when aborting transactions (i.e.,
the mean execution time of aborted transactions).

VI. RELATED WORK

Futures [4] have reached a broad adoption among main-
stream programmers for their convenience as a tool to easily
expose fine-grained parallelism [15]. Java futures [16] can be
seen as a form of method-level parallelism, as they can be
used to explore parallelism in programs by forking at method
calls. However, current implementations of Futures provided in
the Java Development Kit lack suport for concurrency control
among the asynchronous work performed by different future/
continuation tasks.

Safe futures [15] use techniques similar to those used in
software-based thread-level speculation [17] to avoid patho-
logical side-effects between a future and its continuation when
both touch shared locations. With safe futures, even though
some parts of the program are executed concurrently and
may access shared data, the equivalence of serial execution
is safely preserved. However, safe futures assume that the
underlying program is single-threaded. In other words, that the
only parallel threads consist of the future and its continuation.
This constitutes a crucial hindrance for the adoption of safe
futures in multi-threaded applications, which are parallelized
using coarse-grained threads. To the best of our knowledge,
our contribution is the first to propose safe support for futures
in the scope of multi-threaded programs.



Another interesting line for exploring futures is their usage
on concurrent shared data structures. Kogan and Herlihy [18]
studied how futures can be used to optimize type-specific,
long-lived concurrent data structures. Indeed, these authors
had already discussed, as an interesting future work direction,
the possibility of combining the abstractions of futures and
transactions. Our work explores this idea and proposes, to
the best of our knowledge, the first generic solution (i.e., not
restricted to shared data structures) that supports the execution
of arbitrary code in futures that can be executed within the
context of atomic transactions.

A number of recent proposals advocate TM as an attractive
paradigm for exploiting fine-grained nested parallelism. In a
nested-parallel mode, each transaction is allowed to spawn
sub-transactions that run in parallel. Most proposals in this
direction consider nesting fine-grained parallel transactions
in the context of traditional fork-join constructs [19]–[23].
Among these, the one whose design shares the major sim-
ilarities with our proposed solution is JVSTM [9]. In fact,
both JVSTM and JTF target the Java programming language
and use a multi-version based concurrency control scheme.
Yet, JTF’s concurrency control provides stringent semantics
regarding the commit order of futures, whereas JVSTM (and
parallel nesting in general) does not impose any restrictions
on the serialization order of sub-transactions. We refer to our
recent work [24] for a broader discussion on possible seman-
tics of transactional futures, as well as a comparison between
the types of concurrent computations that can be supported
via transactional futures and parallel nested transactions.

While appealing in theory, programming in a nested-parallel
fashion using TM, when compared to flat-parallel program-
ming, introduces new challenges that programmers must be
aware of in order to build correct and efficient programs. The
nested-parallel model is substantially more complex than the
flat one, making it a cumbersome and error-prone program-
ming model for the average programmer [25]. Furthermore, as
we discuss earlier in the paper, supporting fine-grained trans-
actional nesting with future introduces additional challenges
that are far from trivial and simply do not exist in the context
of fork-join nested parallelism.

VII. CONCLUSION

This paper investigated how to combine two powerful ab-
stractions for concurrent programming, Transactional Memory
(TM) and futures, by introducing the notion of transactional
futures. Transactional futures allows programmers to leverage
futures to coordinate the execution of parallel tasks, and trans-
actions to synchronize accesses to shared data. The semantics
of transactional futures are conceived with the objective of
preserving the intuitiveness and ease of use of TM: the results
produced by the parallel execution of transactional futures
are always consistent with those that one would obtain by
executing the futures sequentially.

Besides introducing the transactional future abstraction, we
presented also JTF, a Java-based implementation of trans-
actional futures. The core of JTF is an innovative concur-

rency control algorithm, which strives to maximize parallelism
by using multi-versioning techniques, while enforcing strong
guarantees regarding the serialization order of futures.

We evaluated JTF by using synthetic benchmarks as well
as two popular benchmarks for TM and database systems.
The experimental results show that the use of futures allows
not only to untap parallelism within transactions, but also to
reduce the cost of conflicts among top-level transactions in
high contention workloads.
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