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Abstract—This paper addresses the problem of self-tuning the
parallelism degree in Transactional Memory (TM) systems that
support parallel nesting (PN-TM). This problem has been long
investigated for TMs not supporting nesting, but, to the best of
our knowledge, has never been studied in the context of PN-
TMs. Indeed, the problem complexity is inherently exacerbated
in PN-TMs, since these require to identify the optimal parallelism
degree not only for top-level transactions but also for nested sub-
transactions. The increase of the problem dimensionality raises
new challenges (e.g., increase of the search space, and prone-
ness to suffer from local maxima), which are unsatisfactorily
addressed by self-tuning solutions conceived for flat nesting TMs.

We tackle these challenges by proposing AUTOPN, an on-
line self-tuning system that combines model-driven learning
techniques with localized search heuristics in order to pursue
a twofold goal: i) enhance convergence speed by identifying the
most promising region of the search space via model-driven
techniques, while ii) increasing robustness against modeling
errors, via a final local search phase aimed at refining the
model’s prediction. We further address the problem of tuning the
duration of the monitoring windows used to collect feedback on
the system’s performance, by introducing novel, domain-specific,
mechanisms aimed to strike an optimal trade-off between latency
and accuracy of the self-tuning process.

We integrated AUTOPN with a state of the art PN-TM
(JVSTM) and evaluated it via an extensive experimental study.
The results of this study highlight that AUTOPN can achieve
gains of up to 45× in terms of increased accuracy and 4×
faster convergence speed, when compared with several on-line
optimization techniques (gradient descent, simulated annealing
and genetic algorithm), some of which were already successfully
used in the context of flat nesting TMs.

I. INTRODUCTION

Transactional Memory (TM) has emerged as an attractive
paradigm to tackle one of the key sources of the complexity
of parallel programming, i.e., designing fine-grained locking
schemes aimed to ensure correct and scalable synchronization
among concurrent threads. By exploiting the familiar abstrac-
tion of atomic transactions as a first-class synchronization
construct, TM only requires programmers to identify which
portions of code are to be executed atomically. This allows for
encapsulating the complexity of how to ensure atomicity, by
relying on system libraries or middleware layers that conceal
efficient concurrency control schemes, possibly implemented
via dedicated hardware supports [1].

Whether based on pure software implementations (STM) or
on hybrid designs that combine best-effort hardware support
for TM with software fall-back paths, several works have
shown that TM can deliver competitive performance with
complex, ad-hoc designed fine-grained lock schemes in a

wide range of workloads [2]–[4]. However, a particularly
challenging scenario for TMs is when workloads contain
a large portion of long-running transactions. Indeed, long-
running transactions suffer from long windows of vulnerability
(i.e., the interval of time during which the transaction can be
subject to conflicts with other transactions and abort), which
makes them prone to prohibitively high abort rates.

A possible path to tackle the performance issues caused by
long transactions is to reduce the number of concurrent trans-
actions, while dividing these fewer transactions into smaller,
nested sub-transactions to run in parallel in the available
idle cores — thus, reducing the execution time/vulnerability
window of the original top-level transactions. This approach
has received significant attention in the literature, with a
number of proposals aimed to extend TM implementations
to support parallel nesting with low overheads [5]–[10].

Unfortunately, though, fully exploiting the potential of PN-
STM requires tackling a nontrivial problem that did not
arise in TMs not supporting parallel nesting: identifying the
right balance between inter-transaction and intra-transaction
parallelism. Specifically, given a set n of available cores, in a
PN-STM it is necessary to decide how many root (or top-level)
transactions are allowed to be simultaneously active (t), and
how many should be allocated to child (or nested) transactions
(c) within each top-level transaction.

In CPU-intensive applications, as it is typically the case
for TM environments, one should choose t and c such that
the system is not oversubscribed, (i.e., t × c ≤ n). In
platforms where t and c can be sufficiently high, there will
be many possible configurations that avoid over-subscription:
the search space grows in fact quadratically with respect to
the problem of tuning the parallelism degree in TMs not
supporting parallel nesting, which has been subject of intense
study in the literature [11]–[15].

Identifying the optimal configuration in the resulting bi-
dimensional search space is far from trivial. Among the differ-
ent configurations, it is necessary to decide whether to favor
higher root parallelism while reducing nested parallelism, or
vice-versa. This depends on complex, workload-dependent
interferences between root and child transactions that lead to
contention and, therefore, conflicts; as well as on the overheads
of spawning and maintaining nested transactions. Further, in
contention-prone workloads, it is also not guaranteed that the
optimal solution is the one that maximizes core utilization.

Fig. 1a illustrates this optimization problem by presenting
the throughput of a porting of the TPC-C benchmark executing
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(a) Throughput of a TPC-C porting.
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Fig. 1. Performance of different configurations of inter- and intra-transaction
concurrency in a PN-STM.

on a PN-STM environment (JVSTM [5]), when varying t
and c. For this particular workload, configuration (20,2), i.e.,
20 top-level transactions, each with 2 nested transactions,
will generate the best throughput, where the total number of
cores in the system is 48. Furthermore, the throughput of the
best configuration is 9× higher than the throughput of the
worst, which is configuration (1,1), and 2× to 3× higher than
that of most of the remaining configurations. Also, the best
configuration for a given workload may be the worst for a
different application, as illustrated in Fig. 1b. Additionally,
see Section VII-A, the static configuration that performs best
on average across multiple workloads can be up to 3× away
from optimum in some cases.

This is, to the best of our knowledge, the first paper to
address the problem of self-tuning the parallelism degree in
PN-TM and propose a novel self-tuning mechanism, called
AUTOPN (Automatic Parallel-Nesting). Due to the large search
space of parallel-nested configurations, the key feature of
AUTOPN is its ability to quickly prune regions in the search
space of that are unlikely to contain useful configurations.
As we show later, AUTOPN dramatically outperforms popular
search heuristics (like gradient descent, simulated annealing,
or genetic algorithms [14], [16]–[18]), which, in contrast to
AUTOPN, tend to get trapped in local optima or avoid local
optima at the cost of a large number of random searches.

In contrast, AUTOPN employs a novel combination of
model-driven and local-search techniques to find optimal con-
figurations by only searching a small subset of the search
space, accurately and reactively. Since AUTOPN requires no
initial off-line training, it spares the cost of having to bootstrap
an initial knowledge base representative of the target applica-

tion and architectural environment.
Overall, this paper makes the following contributions:
1. For an effective pruning of the search space of parallel-

nested configurations, AUTOPN leverages an innovative design
of an online learning approach tailored to PN-TM by combin-
ing model-driven and local-search techniques. In our approach,
the exploration is driven by a regression model based on
the lightweight M5P decision tree algorithm [19], which
uses the feedback gathered during previous explorations. The
output of this regression model drives a Sequential Model-
based Bayesian Optimization process [20], which exploits the
Expected Improvement (EI) theory in order to: (1) identify the
most promising configurations to explore and (2) determine
when to stop exploring (stopping criterion). Finally, the model-
driven exploration phase is complemented by a refinement
phase, using a local search based on a simple hill-climbing
strategy.

2. Since the above mechanism is highly sensitive to a
proper tuning of the duration of the feedback-monitoring
windows, we propose a novel, PN-TM-specific, adaptive sam-
pling heuristics to address this key configuration issue. Our
heuristics aim at an optimal trade-off between measurement
accuracy, reactiveness and convergence speed.

3. We integrated AUTOPN with JVSTM [5], [21], a state
of the art Java library implementing a lock-free multi-version
PN-STM. This allowed us to experimentally evaluate the pro-
posed solution using both synthetic and standard benchmarks
(Vacation of the STAMP benchmark suite [22] and a porting
of the TPC-C benchmark) and compared AUTOPN versus
five different general purpose online self-tuning approaches.
On average, AUTOPN reaches stability 4× faster than its
counterparts and converges to solutions that are, on average,
less than 1% away from optimum.

II. RELATED WORK

A number of proposals [11], [15], [23] regarding self-tuning
in the context of TM focus on the parallelism degree, i.e.
the number of top-level concurrent threads, but, to the best
of our knowledge, they all consider TM systems that do not
support parallel nesting. Some of these solutions are based on
analytical white box models that can be used to automate the
decision. The work by Di Sanzo et al. [23], for instance, relies
on an analytical model to predict the performance of various
STM algorithms. Castro et al. [24] also proposed an analytical
model of TM systems but focused on capturing the perfor-
mance dynamics of hardware based implementations. These
modeling tools could be used to estimate the performance of
STM applications when using different numbers of top-level
threads. However, they fall short in the context of PN-TMs,
where it is crucial to identify the right balance between inter-
transaction and intra-transaction parallelism.

Alternatively, other authors have proposed solutions based
on black-box approaches, which resort to offline-trained ma-
chine learning techniques, such as artificial neural networks
[25]. Rughetti et al. use machine-learning methods to adjust
concurrency level in STM [13] as well as HTM [11]. In a



follow-up work, these pure black-box techniques were com-
bined with an analytical model to reduce the training time [12].
These works do not target PN-TM systems either. Additionally,
since these solutions require offline training, they pose some
practical challenges as they need to be pre-deployed on the
target architecture in order to gather a training set that can be
considered representative of the possible application dynamics
on the target platform. We avoid this issue by relying purely
on online learning techniques.

Some works propose solutions based on online learning
approaches or customized heuristics. Didona et al. [14] use
hill climbing to tune the concurrency level in STM. F2C2-
STM adjusts the parallelism degree according to the target
performance being profiled [26]. However, none of the above-
mentioned proposals target PN-TMs. Nonetheless, we do
evaluate in Section VII several online learning strategies.
Some of these techniques have been successfully employed
in TMs not supporting parallel nesting; our work highlights
their limitations when employed in PN-TM systems.

Auto-PN builds on recent advances in the area of Sequential
Model-based Bayesian Optimization (SMBO), which, in its
turn, finds its roots in the statistics literature on experi-
mental design [27] and has been recently extended to cope
with the optimization of complex software systems, including
databases [28], SAT solvers [20] and big data frameworks [29].
Our work makes novel contributions in this area by spe-
cializing SMBO to the domain of PN-TM systems by i)
investigating the use of carefully selected, domain-specific set
of initial points; ii) proposing the use of a modeling technique
(bagged decision-trees, each trained over only 2 dimensions)
that is lightweight enough to be used at run-time with limited
overhead, iii) introducing domain-specific techniques to seek a
trade-off between monitoring accuracy and system’s reactivity;
iv) combining SMBO and hill climbing, whereas the two
approaches are normally considered as alternative.

Our work is also related to the broader literature in the
area of self-tuning for TM, which has investigated the dy-
namic adaptation of orthogonal problems. These include:
tuning the number of locks internally maintained by a STM
implementation [30]; identifying the optimal retry strategy
in presence of different abort types in HTM systems [16];
defining the thread mapping policy in STM systems deployed
on multi-socket/NUMA machines [31]. There are also propos-
als for adapting between different synchronization systems,
e.g., switching between HTM, STM and lock-based [32], or
between different TM implementations [3], [33].

III. PROBLEM DEFINITION

In this section, we first present some background informa-
tion on PN-STM systems and introduce the abstract model
of a PN-STM system that is considered by AUTOPN. Using
this model, we propose a mathematical formalization of the
problem of self-tuning the parallelism degree in PN-TMs.

A. PN-TM: Background and System Model

Let us start by introducing some base terminology related
to the nested transaction model [34]: A transaction is either

top-level, which is managed as a conventional non-nested
transaction, or is nested within a (parent) top-level transaction.
This nesting generates trees of transactions, which are denoted
using family relationship terminology, such as parent, child,
ancestor, descendant, sibling, etc. In this model, only transac-
tions with no active children can access data; such accesses
are either reads or writes to memory.

In the TM domain, various nesting models have been
considered, defining different admissible behaviors regarding
the concurrent execution of nested transactions [6]. A first
distinction can be seen between flat (or linear) and parallel
nesting, where the former supports only a single thread of
execution in a transactional nest (i.e., it disallows concurrency
within a transaction) and the latter allows actual concurrency
among a parent and its children transactions. Another distinc-
tion regards the semantics associated with the commits of a
nested transaction, which can be made applied at the “top-
level” (i.e., made visible to other nests) either immediately
(open nesting model) or only upon commit of it top-level
transaction (closed nesting model).

The self-tuning scheme presented in this work is based on
a black-box approach and, therefore, makes no assumptions
on the commit semantics of nested transactions. As a matter
of fact, AUTOPN is currently integrated with a PN-STM
supporting the closed nesting model (JVSTM [5]), but it could
be seamless applied also to open nested PN-STMs. Indeed,
we consider an abstract model of a PN-STM, which assumes
the following policy regarding how threads are allocated to
top-level and nested transactions: top-level transactions are
executed by a first set of threads, T ; child transactions (of
any family) share a disjoint set of threads P . Further, we
assume that the PN-STM can alter the cardinality of sets
T and P at run-time. Finally, we assume that the PN-STM
system can be queried to obtain the measurement of some
target key performance indicator (e.g., throughput) achieved
in the current system’s configuration.

This abstract model maps to various possible implementa-
tions, although, in typical PN-STM systems [5], [8], top-level
transactions are often executed directly by application-level
threads, whereas child transactions are executed by a shared
thread pool that is under the direct control of the PN-STM
run-time (in order to minimize the overheads associated with
the activation of child transactions).

B. Problem Formulation

In general, in a PN-TM program, each of top-level transac-
tion may generate arbitrary deep trees of nested transactions,
where each nested transaction may spawn a different number
of child transactions. The shape of a transaction tree can also
be dependent on the transaction type and on its inputs.

In the light of these considerations, one may be tempted to
define the problem of tuning the degree of parallelism in PN-
STM systems as aimed to identify the optimal (performance-
wise) number of concurrent child transactions that should
be executed for each parent transaction, at any depth of the
tree, and for each different transaction type and input class.
Although one may be allured by the generality of such a



formulation, it is also easy to see that the corresponding
problem’s dimensionality is theoretically unbounded, and may
thus make the problem intractable in practice.

In this paper, we take a pragmatical approach, which
leverages on practical considerations to reduce the problem’s
dimensionality and allow its tractability in realistic settings.

Observation 1: Transaction trees are normally shallow. The
first observation that we make is that the PN-TM workloads
considered so far in the literature [5], [8], [9] tend to generate
very shallow, although potentially quite fat, trees. We argue
that this is due to the fact that, in order to actually benefit
from the use of parallel nesting, the tasks to be parallelized
have to be sufficiently coarse in order to outweigh the over-
heads incurred for synchronizing the parallel execution child
transactions. However, as we descend at greater depths in
the tree, the task granularity tends to decrease exponentially,
and, as such, also the probability of being able to effectively
parallelize them.

Observation 2: Oversubscription should be avoided. A
second pragmatical consideration is that in CPU-intensive
workloads, such as those typically targeted by PN-TM, it is
pointless to oversubscribe the available physical cores (or hard-
ware threads, if simultaneous multi-threading is supported),
i.e., it is desirable to ensure that the number of concurrent
threads never exceeds the number n of physical cores.

Observation 3: Allocation of resources to top-level trans-
actions should be fair. Finally, in most of the workloads that
we are aware of, both in the flat and parallel nesting TM
model [22], [35], the top-level transactions are executed with
the same probability by any of the top-level threads in T .
Hence, it is in general desirable to ensure a fair allocation
of resources to top-level threads, i.e., each top-level thread
should have the possibility to activate the same number of
concurrent nested transactions. Achieving this goal, while still
avoiding oversubscription, implies that each top-level thread
can execute concurrently at most n/|T | nested transactions.

Overall, the above considerations lead us to propose a more
pragmatic problem formulation that considers a two dimen-
sional search space S = {t×c : t, c ∈ Z+∧ t×c ≤ n}, where
t denotes the number of concurrent top-level transactions, c the
number of concurrent nested transactions in each transaction
tree, and n the total number of cores in the system. Denoting
with f : S → R the unknown function that maps the space of
admissible configurations to their performance (quantified via
some target Key Performance Indicator, i.e., KPI), the problem
consists in identifying the configuration opt ∈ S that optimizes
f , i.e., maximizes or minimizes it depending on the target KPI.
In the following, we will consider the problem of maximizing
throughput (committed transactions per second), as target KPI.

IV. ARCHITECTURAL OVERVIEW OF AUTOPN
Figure 2 illustrates the high-level architecture of AUTOPN.

AUTOPN has been integrated with JVSTM [5], a Java-based
multi-versioned PN-STM supporting closed nesting. JVSTM
was extended with three new modules, namely, the optimizer,
the actuator, and the monitor.

PN-STM
(JVSTM)

KPI
monitor

Actuator
Optimizer

Application

Fig. 2. High level architecture of AUTOPN

The optimizer, described in Section V, aims to identify the
optimal degree of parallelism for a given application workload.
This component drives the exploration of the solution space
by gathering feedback on the quality of the explored config-
urations via the KPI monitor, and requesting adjustments of
the current degree of parallelism to the actuator. We based
the implementation of the optimizer on Weka, an open source
machine learning workbench in Java [36].

The actuator, described in Section VI, is the module in
charge of steering the dynamic reconfiguration process of the
degree of parallelism of JVSTM-based applications.

The monitor, described in Section VI, is responsible for
gathering on-line measurements of relevant key performance
indicators (KPIs) of the PN-STM system. As already men-
tioned, in the following we will focus on the problem of
maximizing throughput, although AUTOPN could be used to
optimize different metrics (e.g., latency or abort rate). The key
challenge in the design of this component consists in gathering
measurements in a both accurate and timely way, so as to
maximize not only the accuracy but also the reactivity of the
self-tuning process.

V. OPTIMIZER

Figure 3 illustrates the self-tuning process that is coor-
dinated by the optimizer module. The optimizer leverages
two complementary methodological approaches: i) an initial
model-driven exploration phase, which relies on the Sequential
Model-based Bayesian Optimization (SMBO) framework [37]
and on decision tree-based regression models [19]; ii) a final
localized search based on hill-climbing. The rationale under-
lying this approach is to take the best of the two approaches
(i and ii) in order to compensate for each other’s drawbacks.

By steering the initial exploration using model-driven tech-
niques, AUTOPN aims at building a global view of the
unknown function, f , that maps the configuration space (S)
to system’s performance (e.g., throughput). This approach
allows to quickly discard large regions of the search space that
are unlikely to contain high-quality solutions. Model-based
techniques, however, are inherently approximated (being based
on approximate models built based on partial knowledge of
S) and, although they are normally effective in identifying at
broad strokes the quality of macro-regions of the search space,
they tend to suffer from long-sightedness, i.e., they have low
accuracy in predicting the quality of solutions in nearby search
regions. This makes model-based techniques prone to quickly
identify solutions that are in the proximity of global maxima,
but fail to detect higher quality solutions in their proximity.

Local search heuristics, conversely, can suffer from short-
sightedness, in the sense that they get trapped easily in local
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Fig. 3. Illustrating the self-tuning process coordinated by the optimizer.

maxima, and, as we will show in Section VII, tend to exhibit
poor accuracy when used alone. Conversely, in AUTOPN,
we use a localized search, based on hill-climbing, only after
having concluded the model-driven optimization phase. This
way, we activate the local search starting from a high-quality
configuration, which we strive to further refine via a final hill-
climbing phase that addresses long-sightedness of the model.

A. Initial sampling

Any black-box model-driven approach requires a collection
of initial samples of the configuration space aimed to construct
an initial knowledge base/training set to build the model. The
most common approach to determine the initial training set
consists in using a randomized, uniform sampling policy. The
key advantage of this approach is its simplicity and generality.

In AUTOPN, we depart from this conventional design and
exploit domain knowledge to define a biased sampling strategy
that aims at promoting the construction of models able to
capture the global trends of f based on a small number of
configurations. The key intuition is to force the deterministic
exploration of 9 configurations that lie on the three boundary
regions of S illustrated in Figure 4. The rationale underlying
this strategy is to assess the workload’s sensitivity to small
variations of the inter-/intra-transaction parallelism in prox-
imity of three “pivot” configurations, which correspond to
three extreme settings of inter-/intra-transaction concurrency,
namely: i) using only a thread to execute top-level transactions
and disabling parallel nesting, i.e., (1,1); ii) allocating all
hardware resources to top-level transactions and disabling
parallel nesting, i.e., (n,1), iii) running top level transactions
sequentially and allocating available cores to execute nested
transactions concurrently, i.e., (1,n).

In Sec. VII we will show that this biased, domain-specific,
sampling strategy allows for building initial training sets of
higher quality than generic approaches based on uniform
random sampling.

B. SMBO-driven Optimization

SMBO is a strategy for optimizing an unknown function
f : D → R, whose estimation can only be obtained through
the observation of sampled values. It operates as follows: (i)
evaluate the target function f at n initial points x1 . . . xn and
create a training set S with the resulting 〈xi, f(xi)〉 pairs; (ii)
fit a probabilistic model M over S; (iii) use an acquisition
function a(M,S) → D to determine the next point xm; iv)
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Fig. 4. Biased sampling strategy of the initially explored configurations.

evaluate the function at xm and accordingly update M ; v)
repeat steps (ii) to iv) until a stopping criterion is satisfied.
Acquisition function. SMBO can be coupled with different
acquisition functions, and we use Expected Improvement
(EI) [37].

EI selects the next point to sample based on the predicted
gain with respect to the currently known optimal configuration,
while keeping into account the possible uncertainty in that
prediction. More formally, considering without loss of
generality a maximization problem, let De be the set of
evaluation points collected so far, Du the set of possible
points to evaluate in D and xmax = arg maxx∈De

f(x). Then
the positive improvement function I over f(xmax) associated
with sampling a point x is I(x) = max{f(x)− f(xmax), 0}.
Since f has not been evaluated on x, I(x) is not known a
priori; however, one can use the model M , trained over past
observations, to predict the expected value for the positive
improvement:

EI(x) = E[I(x)] =
∫ ∞

f(xmax)
(c− fxmax )pM (c|x)dc

where pM (c|x) denotes the probability density function that
the model M associates with possible outcomes of the evalu-
ation of f at point x [37]. This formulation associates a high
EI value either with points that are predicted by the model to
have a high mean value or with points for which the model is
uncertain about (i.e., they have high predicted variance).

By using the EI as acquisition function for SMBO, one
achieves the effect of balancing exploitation and exploration:
on the one hand, the model’s confidence is exploited to sample
the function at points that are likely to correspond to maxima;
on the other hand, by exploring regions for which the model is
uncertain, one provides the model with valuable information
and iteratively shrink uncertainty zones.
Computing pM (c|x). Like in other previous works that ap-
plied SMBO [37], in order to ensure tractability, we assume
pM (c|x) to have a Gaussian distribution ∼ N(µx, σ

2
x). This

allows computing EI in closed form:

E[I(x)] = (µx−fmax)Φ(
µx − fmax

σx
)+σφ(

µx − fmax

σx
) (1)

where Φ and φ represent, respectively, the probability density
function and cumulative distribution function of a standard
Normal distribution.

In order to estimate µx, σ
2
x in Eq. 1, AUTOPN relies on

an ensemble (i.e., a set) of black-box regressors, based on



the M5P algorithm [19] (described next). More in detail, the
AUTOPN builds a bagging ensemble [37] of k M5P-based
learners, each trained with a random subset (obtained via
uniform sampling with replacement) of the whole training set.
µx and σ2

x are computed, respectively, as the average and
variance of the predictions of the ensemble of learners. We
use a set of 10 bagged learners in AUTOPN, which we found
to be sufficiently large to generate sufficient model diversity
while incurring negligible overheads (§ VII-E).
Model construction. As mentioned, AUTOPN relies on M5P-
based models to predict the performance of unexplored config-
urations. The M5P algorithm allows for constructing decision-
tree based regressors that maintain on their leaves a mul-
tivariate linear model, allowing for approximating arbitrary
functions by means of piece-wise linear models.

One may include a broad range of different metrics (or
features) in the training set that is fed to the M5P regressor
(e.g., abort rate, reads vs. writes ratio, etc). The larger the
number of metrics, the larger the potential to provide the model
with additional information and enhance its predictive power;
larger feature spaces, though, require exponentially larger data
sets (the, so-called, curse of dimensionality problem [37]) and
accordingly larger computational costs.

In AUTOPN we address this trade-off by using a minimalis-
tic feature space defined solely over t× c, i.e., the training set
fed to M5P is composed of tuples 〈t, c〉 → KPI(t, c). This
choice is based on the following rationale:
1. In AUTOPN, we want to be able to use models based
on the knowledge of a very small, online explored, number
of configurations. Furthermore, the SMBO phase can still be
corrected by the final hill-climbing-based search. These two
observations allow us to use simpler models, which can be
trained with fewer data and at a reduced computation cost, in
the SMBO phase.
2. In AUTOPN, we wish to update (re-train) the ensemble
of M5P learners, and accordingly query them to obtain, in
an online fashion, updated predictions of unknown config-
urations; ideally, this should occur whenever new samples
become available. Decision tree algorithms are known for their
relatively high computational efficiency (compared, e.g., to
popular regressors like ANN [25]). Yet, in order to minimize
the costs related to training/querying online the models, it is
clearly desirable to use simple models.

As a consequence of this design decision, AUTOPN builds a
different model for each workload, and it does not attempt to
detect similarities with previously optimized workloads (unlike
other self-tuning schemes do [11]). Besides reducing model
complexity and instrumentation overheads, this choice has the
key pragmatical advantage of allowing AUTOPN to operate
fully online, which avoids the complexity and cost of gather-
ing, offline, a training-set containing workloads representative
of the target application and platform.
Stopping criterion. The EI framework provides us with a
natural framework also to construct a model-driven criterion
to stop exploration and settle with the best configuration
encountered so far. More in detail, AUTOPN concludes the

SMBO optimization phase as soon as the EI falls below
a threshold (typical values are 1%-10%). We evaluate the
effectiveness of this policy in § VII-C.
Dynamic workloads. The presented design assumes that,
throughout the optimization process, the application’s work-
load does not vary, so that the KPIs of the explored con-
figurations can be compared in a meaningful way. We argue
that this assumption is realistic, since, as we will show in
Section VII, AUTOPN normally requires exploring only a very
small number of configurations. Indeed, this assumption holds
true for all the benchmarks we considered in Section VII,
which are representative of realistic PN-TM applications.

Yet, AUTOPN can easily be extended to cope with dy-
namically shifting workloads (again, under the assumption
that the workloads vary slow enough to ensure convergence
of the optimization process), by coupling it with a change
detector (e.g., based on the CUSUM algorithm [38]). This
would allow for identifying statistically relevant alteration of
the workload characteristics (e.g., sudden throughput changes)
and, accordingly, activate a new self-tuning process.

VI. KPI MONITOR AND ACTUATOR

KPI Monitor. As mentioned, the key challenge addressed
by the KPI monitor is to strike a trade-off between accu-
rate and responsive measurements. In order to achieve good
measurement’s accuracy, the general practice in the TM self-
tuning domain is to use conservative measurements intervals,
statically defined on the basis of either a fixed time period
or having collected a given number of relevant events, i.e.,
commits of top-level transactions. None of these solutions
are robust and generic, though. Policies based on monitoring
windows of fixed time, e.g., [26], require a careful tuning that
is strongly workload-dependent. For instance, the throughput
of different TM applications can easily vary by 6 or more
orders of magnitudes, from a few to millions of committed
transactions per second. Using conservative values, in order to
ensure good accuracy as with low-throughput workloads, can
severely hinder the reactivity of the whole self-tuning process
with high-throughput workloads, especially if the applications
being optimized last for relatively short periods. The use
of aggressive values may, conversely, lead to feeding the
optimizer with erroneous information, and hinder its predictive
capabilities.

Policies based on gathering a fixed number of commits,
e.g., [14], conversely, are vulnerable when the system adopts
a “bad” (performance-wise) configuration, e.g., where transac-
tions starve due to excessively high contention levels, failing
to commit or committing at a very slow rate. We shall illustrate
the limitations of these static policies in Section VII-D.

In AUTOPN we address this problem by using an adaptive
policy that can automatically adjust the monitoring frequency
in a robust and workload independent way. This adaptive
policy is based on two complementary mechanisms.

The first mechanism is based on the idea estimating the
statistical uncertainty associated with the current throughput
measurement on the basis of the coefficient of variation (CV).
More precisely, we evaluate throughput upon each commit



event since the beginning of the monitoring window (time
t = 0). Denoting as time(i) the time elapsed since the
beginning of the measurement window and the occurrence
of the i-th commit, the throughput upon the i-th commit,
T (i) is simply i/time(i). We then use as an estimate of the
accuracy of the measurement after i commits the CV of T (i),
i.e., CV (T (i)) = std dev({T1,...,Ti})

avg({T1,...,Ti}) . Typical CV values used
in engineering to express high confidence span in the range
[1%,10%]. As we will see in Section VII-D, 10% represents
a robust value in the context of PN-TM systems.

The second mechanism is based on an adaptive time-out
mechanism and is aimed at avoiding that the monitoring
system gets stuck for an arbitrarily long time in a “bad” config-
uration. The intuition here is to use the throughput of the (1,1)
configuration, corresponding to a single-threaded/sequential
configuration, as a way to automatically establish a (workload-
dependent) threshold that we then use to decide whether to
time out the monitoring interval. Denoting with T (1, 1) the
throughput of the (1,1) configuration (which, recall, is always
included in the initially sampled configurations), we can esti-
mate the average time to experience a commit event in the (1,1)
configuration as 1/T (1, 1). Waiting longer than such a time
interval without witnessing any commit event suggests that
the current one is likely to be a low-quality configuration —
especially considering that PN-TM workloads are expected to
scale, so the throughput in the (1,1) configuration is typically
much lower than in the optimal configuration. Given that the
quality of this configuration is very likely to be very far away
from optimum, we argue that it is indeed pointless, for self-
tuning purposes, to spend the further time to achieve high
accuracy in its measurement.

Based on these domain-specific insights, we use 1/T (1, 1)
as conservative time-out value, after which we terminate the
measuring interval, even if the CV-based estimator cannot
confirm the measurement’s stability, yet.
Actuator. The actuator relies on two complementary mecha-
nisms to dynamically adapt the parallelism degree of a PN-
STM application. On the one hand, we seek to achieve total
transparency for applications (e.g., legacy ones), in order to
allow their optimization without requiring any modification to
their source-code. This is achieved by intercepting the calls
to begin and commit/abort transactions (both top-level and
nested) and ensuring, via the use of semaphores, that the num-
ber of concurrent top-level transactions/nested transactions per
tree is at any point in time less than allowed by the current
configuration. On the other hand, we allow applications to take
advantage of the knowledge on their optimal degree of inter-
/intra-concurrency by exposing this information via an ad-hoc
API. This information can be used, for instance, to optimize
the different data partitioning schemes.

VII. EXPERIMENTAL STUDY

In this section, we evaluate experimentally AUTOPN, seek-
ing answers to the following key questions: i) how does the op-
timization process employed by AUTOPN fare compared with
the alternative, online learning approaches (Section VII-B)?;

ii) how relevant are the domain-specific optimizations inte-
grated in the design of AUTOPN? In particular, how effective
is the proposed biased sampling strategy for the initial con-
figurations (Section VII-C) and the adaptive policy used by
the KPI monitor (Section VII-D)?; iii) what is the overhead
caused by AUTOPN’s self-tuning process and to what extent
does it interfere with the performance of TM applications
(Section VII-E)?

All the experimental data was gathered by deploying AU-
TOPN on a machine equipped with four AMD Opteron 6168
processors (48 cores total), 128GB of RAM, Linux 2.6.32 and
an OpenJDK 64-bit Server 1.7.0 (build 19.0-b03) JVM.

A. Benchmarks and baseline algorithms.

In the following, we will consider 10 workloads, gener-
ated via 3 different benchmarks, which are representative
of different application domains and have heterogeneous
characteristics. In particular, we considered two well-known
benchmarks, TPC-C and Vacation of the STAMP benchmark’s
suite [22], which were adopted, by previous works, to operate
in a PN-STM environment [5]. We use these benchmarks to
generate 3 workloads each, characterized by low/medium/high
degrees of contention. We further developed a synthetic micro-
benchmarks, called Array, in which we use nested transac-
tions to parallelize the access of top-level transactions to a
large, shared array of integers. We use Array to generate
4 workloads, in which transactions scan the entire array
and change respectively none, 0.01%, 50% and 90% of the
array’s elements. It should be noted that the best average
configuration over all the workloads (i.e., 24 top level and 2
nested transactions) has an average Distance From Optimum
of 21.8%, its 90-th percentile is 2.56× worse than optimum
and, in the worst case (Array high contention) 3.22× slower.

We consider the following five baseline algorithms: i)
random search, which selects a configuration uniformly at
random; ii) grid search, which explores the bi-dimensional
search space by progressively sweeping first c (child trans-
actions) and then t (top-level transactions); iii) a plain hill-
climbing (HC) algorithm that starts from a randomly selected
point; iv) Simulated Annealing (SA) [17], a probabilistic
algorithm inspired by the thermodynamics of metals, which
extends the hill-climbing algorithm by forcing it to pick a sub-
optimal neighbour with a probability that decays over time,
analogously to how electrons’ speeds decay over time in a
metal after an initial heating; v) Genetic Algorithms (GA), a
family of search heuristics inspired by biological evolution in
nature. GA encodes candidate solutions (i.e., configurations in
our case) via bit strings, denoted as chromosomes. Solutions
are selected via an evolution process, which identifies the best
solutions (called elites) in the current generation, and proba-
bilistically applies mutations (random flips of chromosomes’
bits ) and crossovers (swapping segments of the chromosome’s
between elites).

SA and, in particular, GA, require tuning a relatively large
number of meta-parameters in order to be properly used: the
cooling rate and initial temperature, for SA, the population
size, chromosome encoding function, the rate of elitism,
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Fig. 5. Evaluating the effectiveness of AUTOPN’s optimization scheme.

crossover, and mutation, among others, for GA. In order to
ensure the proper configuration of these meta-parameters, we
used 10-fold cross-validation combined with grid-search to
compare, offline, the performance of these methods when
using different settings of these meta-parameters and identify
their most robust parametrization across the whole set of
workloads.

For the random and grid search heuristics, we stop explo-
ration when the last 5 explorations do not improve more than
10%. This is to provide a fair comparison with AUTOPN when
using EI less than 10% as a stopping criterion.

B. Comparison with the baselines

Figure 5 reports the accuracy, evaluated in terms of distance
from optimum (expressed in %), over time, of the baselines
mentioned above, AUTOPN and a variant of AUTOPN that
skips the final, hill-climbing-based local search.

In this experiment, we feed the optimizers with off-line
collected traces, obtained by evaluating exhaustively every
configuration in the solution space (which encompasses 198
configurations, given that we use as target system a machine
equipped with 48 cores). Each configuration was tested 10
times, using runs lasting 10 minutes. This choice allows us to
decouple the problem of obtaining timely, but accurate, KPI
measurements, which we will address in Section VII-D, from
that of building effective optimization policies, which we can
compare using fair and reproducible inputs.

The plots in Figure 5 report the average (left) and 90-
th percentile of the distance from optimum across all the
workloads. To account for the non-determinism of the opti-
mization process, we repeat each workload 10 times for all
the optimization algorithms. The plots clearly highlight that
purely local search heuristics, like HC, fall easily in local
optima when faced with PN-STM workloads, and are even
worse than simple random search. This result is relevant,
considering that hill-climbing has been used with success in
the past to optimize STM systems that do not support parallel
nesting. The use of random deviations from the local gradient,
used by SA, only mildly ameliorates the problem. Among the
considered baselines, GA is definitely the best performing one,
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converging eventually at around 8% from global optimum.
Yet, we observe that GA is also quite disappointing in terms
of convergence speed, exploring on average around 30% of
the whole search space before stabilizing. We argue that,
compared to HC and SA, GA promotes a broader search in the
solution space, which eventually pays off, but that is also “data
greedy”, probably due to its preponderant random nature.

These experimental results clearly highlight the superiority
of AUTOPN’s optimizer vs all the baseline solutions, in terms
of both convergence speed and quality of the final config-
uration: on average, AUTOPN achieves 1% distance from
optimum, while exploring 3× fewer configurations than the
best baseline (GA).

Finally, this plot allows us to quantify the accuracy gains
stemming from the use of the final refinement phase: with as
few as a handful additional explorations, the final localized
search reduces the distance from optimum from 5% to 1%
on average, and from 10% to 2% on the 90-th percentile; a
remarkable increase, in relative terms.

C. Initial sampling strategy and stop condition

We now focus on assessing the efficacy of the mechanisms
employed by AUTOPN’s optimizer to i) build the initial
knowledge base for the SMBO-driven optimization, and ii)
establish the completion of the SMBO process.

We start by comparing the accuracy achievable by the
SMBO phase when using as initial sampling policy either i) 3,
5, 7 and 9 configurations selected uniformly at random, or ii)
the proposed biased scheme, but selecting a smaller number of
configurations, namely 3, 5, 71. We disable the hill-climbing
based search phase, to focus solely on the SMBO phase, and
use AUTOPN’s default stopping policy (EI<10%).

The Initial Sampling in Figure 6 shows two main trends: i)
at parity of explored configurations, the biased sampling policy
achieves, on average, better accuracy than a uniform random
sampling scheme but only when it includes all the 9 points
at the boundary of the solution space; ii) there is a major

1When using 3 configurations, we only include the three pivots, i.e.,
{(1,1),(n,1),(1,n)}. With 5 configurations, we also include {(n-1,1),(1,n-1)},
and with 7 also {(2,1),(1,2)}



boost in accuracy when passing from 7 to 9 configurations
in the biased sampling policy. Overall, these results confirm
the effectiveness of AUTOPN’s biased sampling scheme, and
suggest that renouncing to sample any of the 9 boundary
configurations tends to make it much less effective.

In the Stop Condition of Figure 6, we evaluate the stop
condition logic employed by AUTOPN, when using different
threshold values for the EI (1% and 10%), a heuristic (no-
improvement) that stops exploration if the observed perfor-
mance has not improved over the last K steps (we use
K=5 as an illustration), hybrid heuristics resulting from the
combination of EI and no-improvement, as well as an stopping
condition (stubborn) that blocks exploration only when the
optimal configuration has been found. The stubborn condition
is, in fact, an ideal stop condition that cannot be implemented
in practice, since the optimum is not known a priori.

The analysis of the results for stubborn reveals an interesting
fact: it is much more effective to complete the SMBO phase
as soon as we have identified good enough solutions, which
is what EI does, than striving to achieve perfect accuracy,
like stubborn does. This suggests that model-based techniques,
due to their inherently approximate nature, are effective in
identifying approximate solutions, but tend to blunder when
they are forced to operate at a resolution that is beyond
their actual reach. Local search techniques are much more
efficient at this, as seen in Figure 5. The plot also confirms
the superiority of the EI-based stopping condition versus the
simpler no-improvement heuristic as well as versus the more
sophisticated hybrid schemes.

D. KPI monitoring

We now move to evaluate the KPI monitoring technique
used by AUTOPN. We start by considering two experiments
that highlight the relevance and complexity of the problem.

In Figure 7a we consider a live deployment of AUTOPN,
in which we execute two workloads of the Array micro
benchmark, generating, respectively, low and high throughput
rates. We consider a simple strategy that uses a monitoring
window of a statically configured duration, which we vary on
the x-axis across three orders of magnitude (from 20 msecs to
40 secs), giving AUTOPN enough time to fully complete its
optimization process and report the distance from the optimum
of the final solution it identified. The plot clearly shows that
different workloads require different tunings: values as low as
0.1 seconds can be used for the high-throughput workloads to
achieve 10% accuracy, whereas 30× larger intervals must be
used to achieve similar accuracy with the other workload.

Figure 7b considers a more challenging, yet realistic sce-
nario, of short-running applications: in this case, the faster
is the KPI monitor in providing accurate feedback to the
optimizer, the smaller the time spent exploring suboptimal
configurations and the larger the average throughput for the run
(reported on the y-axis). In this case, using overly conservative
values can, as expectable, cripple performance severely, thus,
amplifying the complexity of tuning the duration of the
measurement window.
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Fig. 7. Evaluating the effectiveness of AUTOPN’s monitoring scheme.

Finally, in Figure 7c, we contrast the performance of the
adaptive monitoring policy employed in AUTOPN with: i)
two variants which, instead of using the CV-based policy to
detect measurement’s stability, wait to track, resp. 10 and 30,
commits (WPNOC10, WPNOC30), but that use AUTOPN’s
adaptive timeout policy (adapt-TO); iii) a policy that only
waits to track 30 commits (WPNOC30). On the x-axis, we
vary the workloads and their duration; on the y-axis we report
the distance from the optimum of the configuration identified
by AUTOPN, normalized w.r.t. to the best configuration iden-
tified using an (optimally tuned) monitoring scheme based on
static measurements intervals. By the plot, we observe that
AUTOPN’s adaptive policy is, overall, the one to deliver the
most consistent results across the considered workloads.

E. Overhead assessment

Finally, we quantify the overhead of the proposed opti-
mization scheme. In order to isolate the self-tuning costs, we
enable monitoring (using the proposed adaptive mechanism)
and request the tuning algorithm to update and query its
ensemble of models (based on trace-driven feedback). In
the meanwhile, we inhibit the actuator from applying any
configuration change. Thus, we pay the costs of self-tuning
without benefiting from it. We consider an Array workload
that generates no contention and scales up to all the available
cores and configure the system to operate since the start in
the optimal configuration. This way, we can estimate an upper



bound on the overhead of AUTOPN’s optimization scheme.
Our experiments reported a negligible drop in throughput that
is, on average, less than 2%, confirming the practicality of the
proposed solution.

VIII. CONCLUSION AND FUTURE WORK

This paper addresses, for the first time in the literature, the
problem of optimizing the degree of inter- and intra-transaction
parallelism in PN-TMs. We tackle this problem by proposing
AUTOPN, an on-line self-tuning system that combines model-
driven learning and localized search heuristics to achieve the
best of the two approaches. We evaluate AUTOPN via an
exhaustive experimental study, showing that AUTOPN reaches
stability 4× faster than its counterparts, converging to solu-
tions that are, on average, less than 1% away from optimum.

While AUTOPN focuses on homogeneous workloads, an in-
terest research question that could be addressed by future work
is how to tackle workloads comprised of heterogeneous types
of parallel-nested transactions. Given its black box nature,
we argue that would be relatively straightforward to extend
AUTOPN to support this problem of higher-dimensionality,
by modeling the search space as a set of distinct (tk, ck)
pairs for each type of top-level transaction, k. It is unclear,
though, whether its efficiency would still remain acceptable
when faced with such a larger search space.

Another research line suggested by our work is how to
incorporate information on the noisiness of sampled data (e.g.,
measured in terms of coefficient of variation) in the modeling
phase. This is in contrast with the current AUTOPN’s approach,
in which data is fed to the model only after having ensured
that the corresponding measurement is statistically meaningful
(or irrelevant for the optimization’s purposes).
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