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Abstract—This paper presents PROMPT , a PeRfOrmance
Model for Partially replicated in-memory Transactional cloud
stores. PROMPT combines white box Analytical Modelling and
Machine Learning techniques, with the goal of achieving the best
of the two methodologies: low training times, high extrapolation
power, and portability across heterogeneous cloud infrastructures.
We validate PROMPT via an extensive experimental study based
on a popular open-source transactional in-memory data store
(Red Hat’s Infinispan), industry-standard benchmarks, and de-
ployments on both public and private cloud infrastructures.

I. INTRODUCTION

The advent of the Cloud Computing paradigm has empow-
ered programmers with the ability to scale out their applica-
tions easily to hundreds of nodes, fostering research in the area
of highly scalable, elastic distributed data platforms. Modern
cloud storage systems, often denoted as NoSQL, explore new
trade-offs in the design space of distributed data stores in order
to maximize scalability. NoSQL data stores typically adopt
less expressive data models than the classic relational one, and
opt for simpler, yet more scalable, paradigms, as in key-value
stores [1]–[3]. In order to enhance performance, and remove
logging to stable storage from the critical path of execution,
these systems typically maintain data fully in-memory and rely
on replication to ensure fault-tolerance and data durability.

Regarding data replication, in large scale systems the
reference approach consists in replicating data on a number of
nodes that is typically much lower than the global scale of the
platform: this is in contrast with classic full replication mecha-
nisms, which quickly incur prohibitive updates dissemination
costs as the scale of the system grows. As for consistency,
first generation of NoSQL stores [3] embraced very weak
consistency models, like eventual consistency. However, the
inherent complexity of building applications on top of weakly
consistent systems has been recently recognized by some of
the pioneers of eventual consistency [4], and motivated several
works providing stronger consistency guarantees [2,5]–[7].

On the other hand, these systems can exhibit non-linear
scalability trends [8]–[10] due to factors related to contention
on both physical (e.g., CPU and network) and logical resources
(transactions’ conflicts), which challenge existing performance
modelling methodologies for distributed transactional plat-
forms [9,11]. The lack of accurate performance prediction
models for such a relevant class of cloud data stores represents
a major impairment for the development of automatic QoS-
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oriented provisioning schemes, which are essential to take
maximum advantage of the utility computing paradigm.

This paper tackles this timely and relevant issue by in-
troducing PROMPT , a novel performance model for partially
replicated transactional key-value stores. PROMPT combines
Analytical Modelling and Machine Learning techniques, with
the goal of achieving the best of the two methodologies: low
training times, high extrapolation power, and portability across
heterogeneous cloud infrastructures.

PROMPT relies on white box Analytical Modelling (AM)
to capture data contention dynamics, and on black box Ma-
chine Learning (ML) techniques to infer performance models
of the underlying network infrastructure. The use of black
box statistical techniques allows the applicability of PROMPT
also in public cloud scenarios in which very limited or no
information is provided on the topology of the network infras-
tructure over which the data store is deployed (hence inhibiting
the development of detailed white box models). The joint
usage of an analytical model for data contention, on the other
hand, allows to accurately predict the scalability trends of a
broad range of transactional workloads, and to support what-
if analysis across a large number of workload’s parameters.
Further, it makes it possible to reduce the dimensionality of
the features space of the ML component of PROMPT , and,
consequently, its training time.

This work makes three main contributions:

• we introduce an analytical model that captures the effects
of data locality on throughput and data contention, as well
as shifts of data locality due to changes of the platform’s
scale. The model considers data distribution schemes that are
widely employed in modern NoSQL stores, like those based
on consistent hashing [12];
• we present the analytical model of the concurrency control
and replication schemes of a popular open-source NoSQL in-
memory transactional store, i.e., Infinispan by Red Hat [2],
which combines highly scalable techniques, such as partial
replication schemes and commit-time locking strategies;
• in order to enhance the accuracy of the ML-based network
model, we introduce and evaluate the idea of using multi-
ple specialized learners trained on disjoint data sets, each
capturing radically different workload/deployment scenarios.
This technique is particularly relevant for the case of partially
replicated data stores, in which even minor changes of the
data replication degree can lead to strong non-linearity in the
latency of network-bound operations.

We demonstrate the viability of our proposal via an ex-
tensive evaluation study using both a private and public cloud
infrastructure, and relying on popular benchmarks generating



strongly heterogeneous workloads.

The structure of this paper is the following: in Sec. II
we discuss related work; Sec. III overviews the concurrency
control and replication schemes considered in this work; in
Sec. IV we describe the proposed performance model; Sec. V
presents the model validation; Sec. VI concludes the paper.

II. RELATED WORK

The body of literature on transactional systems is quite
broad, and a number of analytical and simulative performace
models have been proposed, both for centralized and dis-
tributed architectures [13]. Nevertheless, these works typically
rely on assumptions on the workload or on simplifications
that can hinder their accuracy in real environments. These
include: uniform data access patterns [14,15] or detailed a-
priori knowledge of the distribution of access to data [8,16]–
[18]; extreme replication policies, i.e., full [19,20] or no
replication [21]; scale-independent probabilities of accessing
remote data [22] — which do not match the dynamics in-
duced by popular distribution policies like consistent hashing;
constant communication delays [9,19] or detailed knowledge
of the underlying network topology/protocols [13,23,24].

Unlike these solutions, the analytical model of PROMPT
captures the shift in data locality as the size of the system
changes and relies on an abstraction that concisely allows
to encompass (and characterize at runtime) non-uniform data
access patterns. Moreover, it exploits ML techniques to predict
response time of network-bound operations, which makes it
applicable also in complex cloud environments.

Our work is also related to techniques for resource pro-
visioning in multi-tier systems. Existing solutions in this
area [25]–[28] do not take into account contention on data,
targeting mainly CPU-bound applications, even though they
also consider the database tier. Moreover, they neglect the
effect of data distribution/replication, which have a major
impact on the performance of partially replicated data stores.

Other approaches [11,29] rely exclusively on ML tech-
niques to predict the performance of distributed data-centric
systems. However, ML techniques have typically a reduced
extrapolation power with respect to analytical models, thus
making their adoption cumbersome to perform what-if analy-
sis [8]. By restricting the scope of black box modelling exclu-
sively to the network dynamics, and offloading to an analytical
model the prediction of the effects of data contention/locality,
PROMPT allows for significantly reducing ML training time,
as we will discuss more in detail in Sec. V.

The closest work to the presented approach is Transactional
Auto Scaler (TAS) [20], which introduced a performance
model for a fully replicated transactional key-value store. Sim-
ilarly to PROMPT , TAS relies on the synergistic use of AM
and ML for predicting, respectively, the impact on performance
of data contention and distributed transaction synchronization.
However, building accurate performance models for partially
replicated transactional data stores requires tackling a number
of additional challenges concerning both the development
of the analytical data contention model and the black box
network model. The former needs to take into account the
intertwined effects of replication degree and data locality on

data contention. Moreover, the concurrency control scheme
modeled in [20] is based on an encounter-time locking scheme,
whereas in this paper we consider a more scalable commit-
time locking scheme [2]. On the other hand, in a partially
replicated system, the ML-based network performance model
grows in complexity for a twofold reason: i) in addition to the
latency of the commit phase, it is also necessary to predict the
one associated with the fetching of data maintained on remote
nodes, and ii) the performance of the network layer is affected
by a larger number of factors (e.g., replication degree, size of
objects retrieved remotely, and number of nodes involved in the
commit phase), which lead to an increase of the dimensionality
of the features space over which the ML needs to be trained.

III. MODEL OF THE TARGET SYSTEM

PROMPT targets partially replicated in-memory transac-
tional key-value stores. These systems typically rely on de-
terministic functions, such as consistent hashing [12], which
allow for: i) determining the location of any data item in the
system using a local lookup function, avoiding the costs of
accessing remote lookup/directory services; ii) spreading data
(including hot-spots) evenly across the nodes of the system,
achieving good balancing both in terms of load and storage
consumption; iii) minimizing the number of data redistributed
in the platform upon joins/leaves of nodes.

A crucial parameter of any partially replicated data store is
the, so called, replication degree, which determines how many
nodes of the system replicate each datum. In fact, the tuning of
this parameter has a strong impact both on the probability that
a transaction accesses a datum not stored by the node where
it is executed, as well as on the number of nodes to contact in
order to commit update transactions.

Regarding concurrency control and data replication,
PROMPT considers the protocols employed by Infinispan [2],
a popular open-source in-memory transactional key-value store
that is widely employed in a number of Red Hat products, in-
cluding JBoss AS, namely one of the most popular J2EE open-
source application servers, and deployed in a large number of
application domains (from e-commerce, to telecommunication
and finance). Given that PROMPT employs a white box
analytical model for capturing the effects of data contention, in
the following we provide an overview of the main mechanisms
used by Infinispan to ensure transactional consistency.

Like other NoSQL platforms [3,30], Infinispan sacrifices
consistency in order to enhance scalability, and, despite provid-
ing transactional semantics, it ensures a weaker isolation crite-
rion than classic serializability, namely Repeatable Read [31].
Infinispan implements a non-serializable variant of the multi-
version concurrency control algorithm, which never blocks or
aborts any transaction upon a read operation, allowing read-
only transactions to commit locally, without requiring any
inter-node synchronization. Upon commit of an update trans-
action, instead, a variant of the Two Phase Commit protocol
(2PC) is executed, in order to ensure that the transaction’s
updates are atomically applied on all replicas (also called
cohorts) that store data modified by the transaction. More in
detail, Infinispan associates (by means of a deterministic hash
function) a, so called, primary owner node with each data
item. Upon commit of an update transaction, the transaction



originator first tries to acquire the locks for the written items
it is primary owner of. If no conflict arises, then acquisition of
the remaining locks is attempted on the other relevant primary
owner nodes. If such lock acquisition phase is successful on all
nodes, the transaction originator commits locally and broad-
casts a commit message, in order to apply the transaction’s
modifications on the remote nodes; otherwise it broadcasts an
abort message and the transaction is rolled back. Note that,
although locks are acquired only on the primary owner nodes,
all the nodes that store a replica of written data items are
contacted at prepare-time. This allows the implementation of
schemes aimed at enabling the recoverability of a transaction
in case of a failure of primary owners during the prepare phase.

Deadlocks are detected using a simple, user-tunable, time-
out based approach. In this paper, we consider the scenario in
which the timeout on deadlock detection is set to 0 in order
to achieve deadlock freedom.

IV. PERFORMANCE MODEL

This section describes the performance prediction method-
ology employed by PROMPT . As already discussed, PROMPT
uses AM and ML in synergy. Specifically, AM is employed to
capture the effect of data and CPU contention, whereas ML is
used to forecast response time of network-bound operations.

We present the AM component of PROMPT in Sec. IV-A,
and the ML one in Sec. IV-B. Finally, in Sec. IV-C, we describe
how the AM and ML are coupled, and how the model is solved
to obtain different performance metrics.

A. Analytical Model of Data Contention

Our analytical model relies on Average Value Approxima-
tion [32] to forecast the probability of transaction commit, the
mean transaction duration, and achievable throughput. The aim
of the model is to support what-if analysis on the application’s
performance when changing parameters such as the scale
(number of nodes and possibly number of threads) and the
replication degree, or shifts of workload characteristics, such
as changes of the transactions’ data access patterns or of the
transactional mix.

The model considers the number of nodes in the system
(noted N), the number of threads processing transactions at
each node (θ ) and the replication degree of data items (r)
as input parameters. For the sake of simplicity, the nodes are
assumed to be homogeneous in terms of computational power
and RAM, and the model distinguishes only two classes of
transactions, namely read-only and update transactions. As we
focus on in-memory data stores, we assume that the data set
maintained at each node fits fully in RAM, and we do not
model interactions with persistent storage systems.

We consider an open system in which transactions arrive
according to a Poisson process with rate λtx, evenly distributed
across all nodes in the system. We note %w the percentage of
update transactions, which perform, on average, NUP

g read and
Nw update operations on distinct data items; read-only trans-
actions, which compose the other 1−%w of the transactional
mix, read, on average NRO

g distinct data items.

The model relies on two sets of assumptions. The first
concerns the independence of data accesses and re-executions

of transactions. More precisely, we assume that each read or
written datum is chosen independently from each other; also,
once a transaction is restarted upon experiencing an abort, it
is indistinguishable from a transaction that joins the system
for the first time. The second kind of assumption concerns the
mapping of data replicas onto nodes of the system, and the
data locality exhibited by transactions. The model relies on
the definition of a primary owner function PO(N,r) that, given
the number of nodes in the system and the replication degree,
determines what is the probability that a transaction originated
on a node ν accesses a datum for which ν is primary owner.
We assume that the r− 1 non-primary replicas of a datum
are scattered across the system uniformly at random. Hence,
assuming that ν is not the primary replica for a data item x,
the probability that ν is a non-primary owner replica of x is
l = r−1

N−1 . Thus, the probability that a transaction originated on
node ν accesses a datum stored by ν is:

L (N,r) = PO(N,r)+(1−PO(N,r))l

To simplify notation, in the following we write simply PO
and L , omitting the arguments N and r. We further assume
that whenever a transaction originated on a node ν accesses
a datum x for which ν is not primary owner, any other node
has the same probability 1

N−1 of being primary owner of x.

Although the model encompasses the possibility for some
data items to be more frequently accessed than others, it
assumes that data hot spots are evenly distributed across nodes
of the system. Note that this assumption is not unrealistic,
as load balancing and data hot-spot avoidance are among
the key advantages of the data distribution policies (e.g.,
consistent hashing [12]) that are typically employed by modern
distributed NoSQL stores [1]–[3]. Overall, this assumption,
along with the one on the uniformity of the transactional arrival
rate, allows us to consider all nodes as evenly loaded.

Finally, we assume that the system is stable and ergodic:
this means that all the parameters are defined to be either long-
run averages or steady-state quantities; also, this implies that
the transactions arrival rate does not exceed the service rate.

Execution times. We describe the analytical model of
PROMPT in a top-down fashion: we start by showing how
response times for read-only and update transactions are com-
puted. It should be noted that the equations in this section
assume the knowledge of the execution time of the various
transactions’ phases and of the expected number of aborts
experienced by transactions, which will be derived later.

Read-only transactions’ execution time. As discussed in Sec.
III, read-only transactions do not acquire locks, thus never
incurring in aborts, and not requiring validation phases. There-
fore, their response time, noted RRO

L , is simply determined as
the sum of the time spent to i) initialize the transaction (Rbeg),
ii) perform read operations (Rg), iii) execute the business logic
of the transaction RRO

B , and iv) commit (RRO
com):

RRO
L = Rbeg +RRO

B +NRO
g Rg +RRO

com

where Rg is computed as the average cost of performing a
local read (Rg

L), and a remote one (Rg
R):

Rg = L Rg
L +(1−L )(Rg

L +Rg
R)



The cost for a remote get is the sum of a local computation
(Rg

L) and of the latency for retrieving the remote datum (Rγ

R).

Update transactions’ execution time. Unlike read-only trans-
actions, update transactions can abort while acquiring locks
during the final validation phase. The response time of an
update transaction is, thus, given by the sum of the response
time of a successful execution plus the time spent in previous
aborted executions.

We denote as RUP
L the local execution time of an update

transaction whose average business logic duration is RUP
B and

that executes, on average, NR read operations and Nw write
operations. Noting Rp the response time of a put operation
(which is executed locally even if the updated datum is
remote), we have:

RUP
L = Rbeg +RUP

B +NUP
g Rg +NwRp

Further, we note i) Rwb the time needed to locally perform the
write-back phase of updated data, ii) Rdec the time to send the
commit or abort decision to the remote nodes, iii) Rprep

L the
time it takes to perform the local locks acquisition, and iv)
Rprep the response time to complete the remote prepare phase
of the two-phase commit. Note that a transaction coordinator
always waits for all the cohorts’ replies, thus the latter cost is
considered independent from the final outcome (abort/commit)
of the transaction. Finally, we note Rroll

L the execution time of
a rollback executed locally.

Hence, a run of an update transaction that successfully
completes its execution (RUP

C ) has a response time given by:

RUP
C = RUP

L +Rprep
L +Rprep +Rwb +Rdec

At commit time, a transaction can fail either when acquiring
locks for which the node is primary owner or, if the local
validation is successful, on a remote node during prepare phase
of 2PC. In the first case, the response time is given by:

RUP
AL = RUP

L +Rprep
L +Rroll

L

while, in the second case, it is:

RUP
AR = RUP

L +Rprep
L +Rprep +Rroll

L +Rdec

Note that we consider the time to complete, either success-
fully or aborting, the sequence of lock acquisitions/releases
during the prepare phase as independent from the number of
updated data items. This assumption is justifiable considering
that transactions immediately abort upon conflict. Also, in a
distributed data platform, the time for successfully acquiring a
lock (without waiting) is significantly lower than the entire
transaction duration, which is typically dominated by the
latency of inter-node communication.

Finally, we note NAR the number of expected aborts due
to lock conflicts arising during the remote validation phase;
for each of the transaction executions that reach the remote
validation phase (NAR of which are unsuccessful, plus a final,
successful one) we note NAL the number of aborts due to
lock contention arising on the local node. Therefore, the total
response time of an update transaction (RUP) is computed as:

RUP = NAR(RUP
AR +NALRUP

AL )+NALRUP
AL +RUP

C

Data contention model. In order to obtain the expected num-
ber of aborts for an update transactions, we need to compute
the lock conflict probability. To this end, like in previous works
(e.g., [14,15,20]), each lock is modeled as an independent
M/G/1 server: a lock is acquired at a rate λlock and the average
service time to complete a request, Th, is the lock hold time,
namely the time since the lock acquisition and until its release.
Note that, in general, a transaction can hold more than one lock
at a single time and, as we shall see, hold times for locks taken
by the same transaction are correlated: such characteristics
violate the independence assumption for the aforementioned
server. We opt, nevertheless, for this simplifying assumption
in order to ease the tractability of the model. By exploiting this
assumption, the probability that a transaction incurs contention
when trying to acquire a lock is computed as the utilization of
the corresponding server. Such metric is defined as the fraction
of time that a server is busy serving a request [33] and, in our
case, it is computed as U = λlockTh (assuming λlock ·Th ≤ 1).

On its turn, λlock depends on the application’s data access
pattern: if every datum was equally likely to be accessed
in a data-set of cardinality D, then, noting Λlock the total
locks acquisition rate, we would have λlock =

Λlock
D . However,

this uniformity assumption does not hold in general, as data
access distributions are often skewed. Unfortunately, a full
characterization of an application’s data access pattern requires
an extensive and costly profiling phase, typically performed of-
fline [8]. In order to address this issue, PROMPT relies on the
abstraction of the Application Contention Factor (ACF) [20],
a metric that allows to succinctly characterize the skew of
a data access pattern. The ACF is a scalar value that is
inferred from the application behavior, with minimal profiling,
and represents the inverse of the cardinality of an equivalent
database that, under a uniform data access pattern, would yield
to the measured contention probability. Namely, noting Plock
the lock contention probability:

ACF =
Plock

ΛlockTh
(1)

Previous work [20] has shown that, under the hypotheses
described in Sec. IV-A, the ACF can be considered an invariant
of the application’s workload. Therefore, it can be exploited by
PROMPT to speculate about the performance of the applica-
tion when deployed over a different number of nodes, or when
changing the replication degree in the platform. Moreover,
given that its computation relies only on the profiling of
average values, it is very lightweight to compute online, thus
allowing the adoption of PROMPT also in presence of time
varying data access patterns.

Abort Probabilities Computation. When a transaction T tries
to acquire a lock on node ν , it can conflict both with local
and remote transactions. Since a lock can be held by only one
transaction at any given time and there is no lock waiting, the
events of contending with a local transaction and with a remote
one are disjoint. Thus, the lock contention probability (noted
Plock) is expressed as the sum of these probabilities (noted
resp. PL,lock and PR,lock):

Plock = PL,lock +PR,lock (2)

In the model, we only consider conflicts arising on a node
ν between T and any other transaction that successfully



completes the lock acquisition phase on ν . In fact, a transaction
releases all the locks it holds on a node upon detecting a
conflict on that node. Hence, we consider negligible the hold
time of the locks owned by an aborting transaction up to the
occurrence of the conflict.

For this reason, when computing the contention proba-
bility Plock for a lock on node ν , we consider four kinds
of transactions: i) local transactions that commit; ii) local
transactions that abort during the remote validation phase; iii)
remote transactions that commit; iv) remote transactions that
successfully complete the locks acquisition phase on a node
ν , but abort on another node ν ′. Hence:

PL,lock ≈ PC
L,lock +PA

L,lock = N ·ACF(λC
L,lockTC

Lh +λ
A
L,lockT A

Lh)

PR,lock ≈ PC
R,lock +PA

R,lock = N ·ACF(λC
R,lockTC

Rh +λ
A
R,lockT A

Rh)

where we use the subscript L, resp. R, to denote local,
resp. remote, transactions, and added the superscript C, resp. A,
to denote committing, resp. aborting, transactions. These last
equations are specializations of Eq. 1; however, here, the ACF
is multiplied by the total number of nodes in the system. This
is because, as we shall show shortly, the locks acquisition rates
used in the previous equations refer to the node where the lock
is requested. Given that, by hypothesis, each node stores the
same amount of data and data hot spots are evenly spread
across N nodes, the “per node” equivalent uniform dataset
cardinality is (N ·ACF)−1.

The locks acquisition rate on a node for each of the four
classes is computed as the product of the transactions arrival
rate λ for that class in the whole system and of the expected
number of locks Nlock acquired by a transaction of that class
on a specific node, i.e.:

λ
C
L,lock = λ

UP
Ltx NC

L,lock, λ
A
L,lock = NARλ

UP
Ltx NA

L,lock

λ
C
R,lock = λ

UP
Rtx NC

R,lock, λ
A
R,lock = NARλ

UP
Rtx NA

R,lock

where we noted λUP
L , resp. λUP

R , the global arrival rate of local,
resp. remote, update transactions, which can be computed as:

λ
UP
Ltx =

λ%w
N

, λ
UP
Rtx = (N−1)λUP

Ltx

Let us now show how to compute the per class expected
number of locks acquired on a node. To this end, however,
we shall first introduce the following set of probabilities: i)
PLL(i), i.e., the probability that exactly i locks are acquired on
the local node of a transaction; ii) PA(i), i.e., the probability of
aborting while trying to acquire i locks on a node; iii) Pcom, i.e.,
the probability of successfully committing a transaction; iv)
PAR, i.e., the probability of successfully acquiring all the local
locks and aborting during the two-phase commit. Exploiting
the assumption that data are accessed independently, we can
compute these probabilities as follows:

PLL(i) =
(

Nw

i

)
Pi

O(1−PO)
Nw−i

Pa(i) = 1− (1−Plock)
i, Pcom = 1−Pa(Nw)

PAR =
Nw

∑
i=0

PLL(i)(1−Pa(i))Pa(Nw− i)

The last probability has been computed as a weighted sum
of the probability of requesting i local locks, acquiring all of
them locally, and failing in acquiring at least one of the Nw− i
remote locks (with i ranging from 0 to Nw).

From these equations we can obtain other intermediate
probabilities that can be used to compute the expected number
of acquired locks on a node per transaction type. For a local
transaction T originated on node ν , we note i) P(NL,lock = i|C)
the probability that T acquires i locks on ν , provided that it
commits; ii) P(NR,lock = i|C) the probability that T acquires
i locks on a remote node ν ′, provided that it commits; iii)
P(NL,lock = i|AR) the probability that T acquires i locks on
ν , provided that it remotely aborts; iv) P(NR,lock = i|AR) the
probability that T successfully acquires all the i locks that it
requires on a remote node ν ′, provided that it aborts remotely
(i.e., on some other remote node). By using Bayes’ theorem,
we compute these probabilities as follows:

P(NL,lock = i|C) = PLL(i), P(NR,lock = i|C) =
Nw−i

∑
j=0

P†
L ( j, i,Nw)

P(NL,lock = i|AR) =
PLL(i)(1−Pa(i))Pa(Nw− i)

PAR

P(NR,lock = i|AR) =
∑

Nw−i−1
j=0 P†

L ( j, i,Nw)P
†
A( j, i,Nw)

PAR
(3)

In the last equations, we denoted as P†
L (i, j,k) the probability

that T acquires i locks locally, j locks on a node ν ′ and k− i− j
locks on other remote nodes; as P†

A(i, j,k) the probability
of successfully acquiring the i locally requested locks and
the j locks requested on a remote node ν ′, while failing
to acquire the remaining k − i− j locks on other remote
nodes. Exploiting the hypothesis of independent accesses to
data, we can compute the former probability as a multinomial
distribution, i.e.:

P†
L (i, j,k)=

k!
i! j!(k− i− j)!

Pi
O(

1−PO

N−1
) j(

(1−PO)(N−2)
N−1

)k−i− j

and the latter as:

P†
A(i, j,k) = (1−Pa(i+ j))Pa(k− i− j)

From these sets of probabilities we can finally compute the
expected number of locks acquired on a node by the different
transactions kinds, namely:

NC
L,lock =

Nw

∑
i=1

iP(NL,lock = i|C), NA
L,lock =

Nw

∑
i=1

iP(NL,lock = i|AR)

NC
R,lock =

Nw

∑
i=1

iP(NR,lock = i|C), NA
R,lock =

Nw−1

∑
i=1

iP(NR,lock = i|AR)

We can now compute the transactions’ lock hold times.
Local transactions hold locks during the whole prepare phase
and release them before sending the final commit/rollback
message. As already mentioned, the transaction coordinator
waits for all the cohorts’ replies, regardless of the outcome
of the distributed commit phase. Remote transactions, on
the other hand, hold locks for the time necessary to send
back to the coordinator their vote and to receive the final
commit/rollback message. In the model, in order to simplify



the analysis, we consider this last latency comparable to the
latency experienced by the coordinator to complete the prepare
phase. Moreover, we consider negligible the impact that the
lock acquisition/release phase has on hold time (as compared
to distributed the commit latency). Thus:

TC
L,H = T A

L,H = TC
R,H = T A

R,H = Rprep

Finally, we are able to obtain the expected number of aborts
experienced locally and remotely by a transaction, noted,
respectively, NAL and NAR, which we introduced in Sec. IV-A.
By leveraging on the hypothesis that a retrying transaction is
indistinguishable from a transaction that enters the system for
the first time, we have NAL = PAL

1−PAL
and NAR = PAR

1−PAR
, with

PAL = ∑
Nw
i=1 PLL(i)Pa(i).

Remote nodes involved in 2PC. We now derive the average
number of remote nodes contacted during the 2PC (noted
NR), given that a transaction does not abort while acquiring
local locks. We compute NR as the product of the number of
remote nodes, N−1, and the probability (noted P(R≥ 1|¬LA))
that a remote node replicates at least one datum written
by the transaction, given that the transaction does not abort
locally prior to starting 2PC. We obtain this probability by
marginalizing over the distribution of the number of acquired
local locks given that the transaction does not abort locally:

P(R≥ 1|¬LA) =
Nw

∑
i=0

P(R≥ 1∧NL,lock = i|¬LA)

For the law of total probability, this can be rewritten as

P(R≥ 1|¬LA) =
Nw

∑
i=0

P(R≥ 1|¬LA∧NL,lock = i)P(NL,lock = i|¬LA)

We note P(NL,lock = i|¬LA) the probability that a transaction
has requested i local locks given that it has reached the
distributed prepare phase, i.e.:

P(NL,lock = i|¬LA) =
PLL(i)(1−Pa(i))

PAL

Note that P(R ≥ 1|¬LA∧NL,lock = i) = P(R ≥ 1|NL,lock = i)
because the fact that a node replicates at least one datum
is independent from the outcome of the transaction and only
depends on the number i of local locks.

We now obtain the probability that a remote node replicates
a datum written by the local node. In the case the local node is
primary owner for a datum, this probability coincides with l.
If the local node is not primary owner of the datum, there
are two cases: the local node replicates the datum, which
yields a probability l2, or does not replicate it, which yields
a probability (1−l)r

N−1 . We note P(R|¬PO) the sum of these two
probabilities, i.e., P(R|¬PO) = l2 + (1−l)r

N−1 . Overall, when the
local node writes i items, for which it is primary owner,
and Nw− i remote ones, the probability that a remote node
replicates at least one of such items is

P(R|NL,lock = i) = 1− (1− l)i(1−P(R|¬PO))
Nw−i

Thus, the expected number of remote nodes being contacted
upon a prepare phase, given the prepare phase is reached, is:

NR = (N−1)
Nw

∑
i=0

P(R|NL,lock = i)P(NL,lock = i|¬LA)

CPU contention model. Like in previous models [15,20], we
model the CPU of the nodes of the platform as a M/M/K
multi-class queue with FCFS discipline, where K is the number
of cores per CPU. The CPU serves five classes of jobs: read-
only (LRO) and local update (LUP) transactions, requests for
serving remote gets (RRG) and remote update transactions that
commit (RCUP) or abort (RAUP). Denoting as Di, resp. λi, the
service demand, resp. the arrival rate, of jobs belonging to
class i, one can compute the CPU utilization, ρ , as:

ρ =
λ RO

L DRO
L +λUP

L DUP
L +λUP

RA DUP
RA +λUP

RC DUP
RC +λ RG

R DRG
R

K
Then, defining

α =
KρK

K!(1−ρ)
, β =

K−1

∑
i=1

Kρ i

i!
, γ = 1+

α

K(α +β )(1−ρ)

we have that the CPU response time Ri corresponding to a job
with demand Di, without taking into account the latency of
network-bound operations, is given by Ri = γDi.

Let us now derive the CPU demands and arrival rates for
the classes. We note Dg

L the CPU demand of a local read, Dp

the CPU demand of a put operation, and Dγ

R the CPU demand
to retrieve a remote datum. Hence, for read-only transactions,
we have:

DRO
L = Dbeg +DRO

B +
Nr

∑
i=1

[L Dg
L +(1−L )(Dg

L +Dγ

R)]+DRO
com

λ
RO =

(1−%w)λtx

N
The CPU demand of a local update transaction is given by
the service time of a successful run (DUP

LC ) plus the CPU time
spent in locally or remotely aborted runs (noted, respectively,
DUP

LLA and DUP
LRA). Defining DUP

LL the CPU demand of the local
execution of an update transaction, we have

DUP = DUP
LC +NRA(DUP

LRA +NLADUP
LLA)+NLADUP

LLA +DUP
com

We compute the contributes in the former equation as follows:

DUP
LL = Dbeg +DUP

B +NwDp +
NR

∑
i=1

[L Dg
L +(1−L )(Dg

L +Dγ

R)]

DUP
LC = DUP

LL +Dprep
L +Dprep +Dwb +Ddec

DUP
LLA = DUP

LL +Dprep
L +Drol

L

DUP
LRA = DUP

LL +Dprep
L +Dprep +Drol

L +Ddec

where we adopted the following notation for CPU demands:
Dprep

L for the local validation phase; Dprep for executing the
distributed prepare phase; Dwb for the write-back; Ddec for
broadcasting the decision about a transaction’s outcome; Drol

L
for performing a rollback locally. Likewise, the CPU demand
for remote transactions is computed as:

DUP
R = Dprep

R +Dcom
R +NAR(D

prep
R +Drol

R )

where Dprep
R , Dcom

R and Drol
R are, respectively, the CPU demands



of remote prepare, commit and rollback operations. The
arrival rate of local update transactions, λUP

L , is equal to λUP
Ltx ,

which has already been obtained in the previous section. The
arrival rate of remote transactions being validated on a node
ν , instead, is obtained as the product of the global arrival rate
of remote transactions and the probability that ν is primary
owner for at least one lock. As before, we have to compute
this probability for the case of remote committing and aborting
transactions. The former is computed as:

P(NR,lock ≥ 1|C) =
Nw

∑
i=1

P(NR,lock = i|C)

In order to obtain the latter one (noted P(ÑR,lock ≥ 1|AR)), we
first obtain the probability that a remotely aborting transaction
requests i locks on a remote node:

P(ÑR,lock = i|AR) =
∑

Nw−i
j=0 P†

L ( j, i,Nw)P
†
A( j,0,Nw)

PAR

Note that this probability differs from Eq. 3, as here we do
not require that a transaction successfully acquires all the
locks it requests on a node. Then, similarly to the committing
transaction’s case, we have:

P(ÑR
R,lock ≥ 1|AR) =

Nw

∑
i=1

P(ÑR,lock = i|AR)

Hence, we compute the arrival rates of remote transactions to
a node as:

λ
UP
RC = λ

UP
Rtx P(NR

R,locks≥ 1|C), λ
UP
RA = λ

UP
Rtx NARP(NR

R,locks≥ 1|AR)

Finally, we compute the average arrival rate or remote
requests, each having a CPU demand equal to DRG

R :

λ
R
G =

1−L

N−1
(
λ

RO
L Nr +λ

UP
Rtx NR(NAR +NAL(NAR +1))

)
B. Machine Learning-based Model of Network Latency

Developing a white box network communication model
capable of accurately predicting the response time of network-
bound operations in complex applications, deployed over virtu-
alized cloud infrastructures is a very challenging task. First, in
this type of infrastructures, little or no knowledge is available
about the underlying network topology, hardware infrastructure
and virtualization software overhead: this affects the possi-
bility of measuring resource demands accurately, and makes
the analytical derivation of response times cumbersome [34].
Moreover, complex applications’ software stack typically lies
on top of group communication toolkits that provide several
inter-process synchronization services (like failure detection,
group membership, remote procedure calls) the configuration
and the internal design of this layer also affect performance in
a way that is hard to predict [35].

For these reasons, PROMPT relies on ML to predict the
latency of network-bound operations, i.e., of the remote get
(Rγ

R), prepare (Rprep), and final decision phases (Rdec). As
we shall see in Sec. V, after experimenting with several ML
tools we opted for employing Cubist1, a Decision Tree (DT)

1https://www.rulequest.com/cubist-info.html

regressor that approximates multivariate functions by means
of piece-wise linear approximations.

In order to build an initial knowledge base to train the
machine learner, PROMPT relies on a suite of synthetic
benchmarks that generate heterogeneous transactional work-
loads in terms of mean size of messages, CPU utilization
and network load. The set of input features that we provide
as input to Cubist characterizes the workload from the point
of view of network utilization, as dynamics relevant to data
contention are captured by the white box model that we
described in the previous section. Specifically, for each of
the three predicted network latencies we build an independent
ML-based model, based on the following features: number
of nodes in the system, average number of nodes contacted
during the 2PC, average size of the messages exchanged in
remote interactions (i.e., prepare and remote gets), the rate
at which these interactions occur, CPU utilization, number of
active threads on each node. Moreover, given that Cubist only
exploits linear approximations in the leaves of the decision
tree, we widen the set of input features by providing also
metrics that are obtained as product of these basic features and
that we know from analytical network communication models
to be highly correlated with the response time of network-
bound operations (e.g., the throughput, in byte per second, of
sent and received messages) [13,21].

The training set can be built by gathering measurements
of the above metrics while deploying the benchmark using
different values for the platform scale and the data replication
degree. However, at query time, some of the features are not
known, as they depend on the (sought after) performance of
the application in the target configuration (e.g., prepares per
second). We address this problem by exploiting the availability
of a complementary white box model of the system’s perfor-
mance to obtain an estimate of the value of such features in
the target configuration. Only thanks to this coupling the ML
is able to deliver high accuracy in its prediction: in fact, the
AM is able to provide in input to the ML features that are
highly correlated with the output and that may be impossible
to obtain from direct measurements.

C. Model Resolution

From the analysis carried out in previous sections, it is clear
that there are some interdependencies among the CPU, network
and data contention models: the CPU and network response
times are influenced by the lock contention probability, which
depends on the lock hold times, which, on their turn, depend
on network and CPU response times. This cyclic dependency
is solved through a fixed point recursion on the value of Plock.
On the first iteration, it is set to 0; the value in input at
iteration i is computed by applying Eq. 2 to metrics obtained
at iteration i−1; this process ends when the relative difference
between values computed on two consecutive iterations falls
under a threshold (1% in our model) and typically converges
in a few iterations. It is out of the scope of this paper to
demonstrate the convergence of this iterative solution method,
which has been adopted to solve several previous performance
models of concurrency control protocols (see, e.g, [15,19,36]);
as in previous studies, we have empirically observed that it
always converges in a few iterations, provided that the input
assignment defines a stable system.
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Fig. 1: Single and multi-model validation for different MLs

The AM and the ML models are similarly intertwined. The
AM takes as input parameters the response time of network-
bound operations. These are output by the ML, which in turn
requires the estimate of several features by the AM itself. This
dependency is broken in the following way. At the beginning of
each step of the aforementioned fixed point recursive scheme,
the AM computes the values needed by the ML, as a function
of the input abort probability. Then, taking such values as
features, the ML outputs the predictions for network-bound
operations’ response time, which are finally exploited by the
AM to compute the transactions’ response time.

D. Predicted KPIs

We have shown so far how the PROMPT’ performance
models are able to predict transactions’ response time, abort
probability and latency of network-bound operations. We now
show how the model can be also exploited to obtain an approx-
imation for the closed-system throughput, i.e., the throughput
delivered by the application when deployed over a set of N
nodes having each θ active threads that process transactions
with zero think time.

This metric can be computed by exploiting Little’s law [37]
in an iterative fashion: at each iteration, the closed-system
throughput is obtained starting from the average transactions’
response time [15,20]. This process typically completes in a
few iterative steps, except for high contention scenarios, which
may yield to convergence problems. This is a typical issue that
arises when adopting such a recursive resolution algorithm
for analytical models of transactional systems [15]. To cope
with such an issue, PROMPT implements a fallback solving
algorithm that spans, at a given granularity (10 tx/sec in our
settings), all possible arrival rate values within a configurable
interval. This algorithm returns the solution which minimizes
the error between the input arrival rate an the output closed
system throughput. This guarantees convergence to the desired
accuracy (1% in our case) in a bounded number of steps.

V. EVALUATION

In this section we report the results of an experimental
study aimed at evaluating the accuracy of PROMPT . Before
presenting the results, we describe the workloads and the
experimental platforms that we used in the study.

Experimental Platforms. The experimental test-bed for our
study consists of a private and a public cloud infrastructure.
The Virtual Machines (VMs) deployed over both clouds are
equipped with 1 Virtual CPU (VCPU) and 2GBs of RAM;
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Fig. 2: Rprep predictions on different virtualized infrastructures

each VM runs a Fedora 17 Linux distribution with 3.3.4-
5.fc17.x86 64 kernel. The private cloud consists of 140 VMs
deployed over a cluster composed by 18 physical servers
equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)
processors and 32 GB of RAM and interconnected via a
private Gigabit Ethernet. The employed virtualization software
is Openstack Folsom. The public cloud consists of 100 VMs,
deployed over the FutureGrid India infrastructure [38,39],
which exploits the Openstack Havana virtualization software.
The validation is performed using Infinispan 5.2.

Workloads. To validate the proposed model, we rely on YCSB
[40], the de facto standard benchmark for key-value stores. In
order to stress both the white box and black box models of
PROMPT , we encapsulate the logic of the YCSB workloads
into transactions, and focus our study on YSCB workloads that
contain mixes of read-only and update transactions. Specifi-
cally, we consider, as baselines, YCSB workloads A, B and
F: workload A has a mix of 50/50 reads and writes; workload
B contains a 95/5 reads/update mix; in workload F records
are first read and then modified within a transaction. In order
to evaluate the accuracy of PROMPT in predicting a wider
set of transactional workloads, we included, in our evaluation,
variants of the aforementioned workloads, in which we vary
the number of performed operations.

Finally, we consider two data access patterns: zipfian and
hot-spot. In the first one, the popularity of data items follows a
zipfian distribution (with YCSB’s zipfian constant set to 0.7);
in the second one, 99% of the data requests are issued against
the 1% of the whole data set. We will refer to a workload
using the notation N-D-P-I, where: N refers to the original
workload’s YCSB notation [40]; D is the number of distinct
data items that are read by a read-only transaction; for update
transactions, it is the number of distinct data items that are
written (for the F workload, which exhibits a read-modify-
write pattern, data are both read and written); P encodes the
data access pattern (Z stands for zipfian, H for hot-spot);
finally, I specifies the cloud infrastructure over which the
benchmark has been run (PC stands for private cloud, FG for
FutureGrid). A workload generator is deployed on each node
and consists of one thread that injects requests against the
collocated Infinispan instance, in closed loop.

For all the experiments, the data platform is populated with
500000 keys and data are scattered across nodes according
to Infinispan’s default consistent hash function. This choice
results in setting PO = 1

N in the model, with N being the number
of nodes in the system.
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Fig. 3: PROMPT’s accuracy for different workloads (r = 2)

ML choice and validation. Previous solutions relying on
black box modeling of the network interactions in distributed
data platforms only cope with the case of full data replica-
tion [20,35]. Extending these solutions to encompass also par-
tial replication was not straightforward. In fact, the replication
degree affects other input features for the ML model in a
strongly non-linear fashion. For instance, for small values of
the replication degree, small shifts of this parameter typically
lead to large changes of the arrival rate of the remote gets.
Conversely, when close to full replication, the remote gets’
arrival rate drops slowly to 0.

To avoid deriving a single ML-based model over a single
strongly non-linear dataset, we partition the training set so as to
isolate samples in the parameters’ space corresponding to the
case of “extreme” replication policies, i.e., full replication and
data partitioning (corresponding to replication degree N and 1).
This solution is related in spirit to the well known technique of
boosting (and to leveraging algorithms in general) [41], which
consists into iteratively combining several weak learners to
obtain a stronger learner. In our solution, the weak learners
are trained on disjoint training sets, in order to increase their
predictive power in a reduced portion of the parameters’ space,
in which the relations between input and output are subject to
more linear, and hence more easily deductible, dynamics. In
order to assess the impact of the proposed approach with a
wide set of machine learners, we tested it with Cubist and with
several other ML techniques included in the Weka [42] suite,
namely MultiLayerPerceptron (based on Neural Networks),
SmoReg (based on Support Vector Machines) and M5Rules
(a DT regressor like Cubist) [41].

The results of our tests are shown in Fig. 1, which reports
the accuracy in terms of median and 90-th percentile of
the prediction for the Rprep feature for the private cloud
deployment, when using the single model (S) or the “multi-
model” obtained by training the learners on disjoint data-sets
(M). We do not present the results relevant to impact of this
technique on the accuracy of the models for other features
(e.g., Rγ

R) and for the FutureGrid infrastructure, as they are
similar to the presented ones. In Fig. 2, we show instead the
scatter plots contrasting the predicted vs the actual values of
Rprep feature, on our private cloud and on FutureGrid, obtained
using 10 folds cross-validation.

Global validation. We now show the accuracy achievable by
PROMPT when exploiting jointly its analytical and ML-based
models. Specifically, we will assess the accuracy of PROMPT
in predicting the closed-system throughput and the abort rate
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Fig. 4: PROMPT’s accuracy while varying r (B-5-H-PC)

of the aforementioned YCSB workloads while varying the
number of nodes in the system, the replication degree and the
underlying cloud infrastructure.

We show, in Fig. 3, the accuracy of PROMPT in predicting
the performance achieved with workloads characterized by
very different scalability trends (with a replication degree fixed
to 2). The model is able to predict that workloads A/F-1-
Z-PC are network bound, and that their abort probability is
negligible. Analogously, PROMPT is able to predict that data
contention is what limits the scalability of workloads B-5-H-
PC and A-5-H-FG, leading the system to thrash as the degree
of concurrency in the system grows.

Next, we evaluate how PROMPT is able to predict the per-
formance of an application when changing replication degree
and scale. To this end we show in Fig. 4 the throughput and
commit probability for workload F-5-H-PC while varying the
scale and the replication degree. It is possible to see that a
higher replication degree is better for small deployments (up
to 15 nodes): in fact, though it yields, on average, a higher
number of nodes to be contacted at prepare time, it reduces (or
eliminates, in the case of full replication) the generation rate of
remote get operations, whose cost is dominant at small scales
for this workload. As the size of the system grows, however,
the latency of the distributed commit phase at high replication
degree becomes the dominant cost, and yields higher lock hold
times that result into higher data contention; hence, a lower
replication degree yields better performance. As shown in
Fig. 4, PROMPT is able to quantitatively capture the effect
of the shift of replication degree and scale on performance,
suggesting the viability of our proposal not only for resource
provisioning, but also for the self-tuning of distributed trans-
actional in-memory platforms.

Next, we compare our proposal with approaches relying
purely on ML. We select as competitors the same ML tools that
we experimented with when building the black box network
model. We define a training and a test set: the former consists
of the same knowledge base that we use to build the network
model of PROMPT; the latter is composed by the considered
YCSB workloads. We compare the accuracy of PROMPT over
all the workloads in the test set with the accuracy of the
ML techniques when progressively trained with additional,
randomly selected, portions of the training set. Specifically we
iteratively select at random the 20%, 40%, 60% and 80% of
the test set, we remove the relevant samples from it, and we
add them to the training set of the MLs (but not of PROMPT).
The MLs are, hence, trained with the updated training set and
they are evaluated over the remaining test set.
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Fig. 5 reports the result of this evaluation, where each bar
is the average of ten runs. As expectable, the mean relative
error of the MLs decreases as more samples are added to
the training set. However, the accuracy of PROMPT with
the original training set is still twice as high as the one
achieved by the best performing learner trained with the
80% of additional training set (12% vs 25%). This highlights
that the hybrid modelling technique employed in PROMPT
can produce reliable predictions requiring a smaller training
set (and hence a lower training time) than pure ML-based
approaches, even outperforming them in terms of accuracy.

VI. CONCLUSION

In this paper, we have proposed PROMPT , a performance
forecasting model for partially replicated in-memory trans-
actional stores. By relying on the joint usage of Analytical
Modelling and Machine Learning, PROMPT achieves high
accuracy also with applications exhibiting diverse scalability
trends, as well as portability across heterogeneous virtualized
infrastructures. We assessed PROMPT’s accuracy through an
extensive experimental evaluation based on the YCSB bench-
mark, and using both private and public Cloud infrastructures.
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