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ABSTRACT
This paper presents Q-OPT, a system for automatically tuning the
configuration of quorum systems in strongly consistent Software
Defined Storage (SDS) systems. Q-OPT is able to assign differ-
ent quorum systems to different items and can be used in a large
variety of settings, including systems supporting multiple tenants
with different profiles, single tenant systems running applications
with different requirements, or systems running a single applica-
tion that exhibits non-uniform access patterns to data. Q-OPT sup-
ports automatic and dynamic reconfiguration, using a combination
of complementary techniques, including top-k analysis to prioritise
quorum adaptation, machine learning to determine the best quorum
configuration, and a non-blocking quorum reconfiguration proto-
col that preserves consistency during reconfiguration. Q-OPT has
been implemented as an extension to one of the most popular open-
source SDS, namely Openstack’s Swift.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed databases; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Distributed systems

General Terms
Algorithms, Management, Performance
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1. INTRODUCTION
The advent of the cloud computing and of the software-defined

data center paradigm have led to a drastic change to the way mod-
ern storage systems are engineered and managed. Modern cloud
storage systems typically consist of a large number of commodity
hardware components; this distributed storage infrastructure is vir-
tualized and exposed as a service that can be provided to a single
complex application, to multiple applications (that may or may not
share data), or even to different customers with different require-
ments. Furthermore, with the emergence of the software-defined
storage (SDS) model, sharing is supported by an interface that al-
lows applications to quickly provision data storage (e.g., key-value
stores[24] and personal file storages[14]) and to specify high level
Service Level Agreements (SLAs) on performance, fault-tolerance,
consistency, and durability.

Among the various mechanisms that are orchestrated by a SDS
system (e.g., deduplication, security, backup and provisioning), repli-
cation is probably one of the most critical, given that fault-tolerance,
and data availability, are fundamental requirements for most appli-
cations. Quorum systems are one of the most popular replication
strategies in cloud-oriented/software-defined storage systems.

In a quorum-based system[21], the execution of a read or write
operation on a data item requires to contact some subset, called a
quorum, of the set of nodes that replicate that item [24, 11]. The
choice of the size of the quorums used when executing a read or
a write operation is one fundamental factor, affecting not only the
consistency guarantees provided by the system, but also its per-
formance and reliability. Quorum systems have several desirable
properties that make them appealing: different choices of quorums
can offer different consistency guaranties and, even for a given con-
sistency level such as strong consistency, different quorum config-
urations may be selected, making the system highly tunable. Un-
fortunately, selecting the right quorum system is a non-trivial task.
Given a consistency criteria, the number of quorum systems that
can satisfy that criteria can be large, and different quorum systems
provide different performance for different workloads.

Furthermore, different tenants, applications, or even a single ap-
plication, may access different data items using distinct read/write
ratios, and these access patterns are likely to change in time. For
instance, a study on the utilization of Dropbox [14] provides con-
crete evidence of the existence of multiple and complex user pat-
terns, where some users switch between periods characterized by
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write-intensive workloads and periods characterized by read-inten-
sive, or even read-only, workloads (for instance, when users com-
mute from office to home). Optimizing the configuration for several
data-items is a complex, costly and error-prone task, which calls
for automatic solutions that can react quickly to dynamic changes
in the workloads.

This paper tackles this problem by proposing Q-OPT, a self-
tuning system that, depending on the workload, dynamically ad-
justs the read and write quorum sizes of different items with the
objective of maximizing a user-defined Key Performance Indicator,
such as throughput or latency. Pursuing this goal requires tackling
three main challenges: i) preserving the scalability of the system,
by avoiding consuming too many resources with system monitoring
or meta-data; ii) building accurate predictors for identifying the op-
timal configuration of the quorum sizes given the current workload;
iii) designing mechanisms supporting the non-blocking reconfigu-
ration of the quorum system, while preserving consistency during
the transitioning between configurations.

Q-OPT copes with the scalability challenge by relying on
lightweight, probabilistic top-k analysis to identify a restricted set
composed by the mostly frequently accessed items. For this set
of items, Q-OPT determines the optimal quorum size with a per-
item granularity, whereas it adopts a coarse tuning granularity for
the vast majority of infrequently accessed items, for which a com-
mon quorum configuration is used. Automatic tuning is performed
by relying on state of the art machine learning (ML) techniques (a
decision-tree classifier based on the C5.0 algorithm[34]), which are
used to distil a predictive model for the expected optimal configu-
rations of the read and write quorum sizes. This model is fed with
a compact set of workload characteristics, which can be gathered
efficiently via non-intrusive monitoring techniques. Consistency
during the transition phases between different quorum configura-
tions is preserved by means of a two-phase coordination algorithm,
which allows the storage system to process incoming requests in a
non-blocking fashion, i.e., while the reconfiguration is in process.

We integrated Q-OPT with Openstack’s Swift1, a popular open
source SDS system. Our experimental data shows that the correct
tuning of the quorum size can impact performance by up to 5x
when using popular benchmarks, including YCSB[8]. We evaluate
Q-OPT with more than 170 workloads and show that it achieves
a throughput that is only slightly lower than when using the opti-
mal configuration, incurring negligible throughput penalties during
reconfigurations in most of the scenarios.

The remainder of this paper is structured as follows. Section 2
provides background on quorum systems and experimental data
motivating the relevance of the problem tackled in this paper. Sec-
tion 3 overviews Q-OPT. Sections 4, 5, and 6 provide a detailed
description of the key components of Q-OPT. The experimental
evaluation of Q-OPT is provided in Section 7. Finally, Section 8
discusses related work and Section 9 concludes the paper.

2. BACKGROUND AND MOTIVATIONS

2.1 Background on Quorums
Quorum systems are the cornerstone of a large number of tech-

niques that address distributed coordination problems in fault-
prone environments, including mutual exclusion, transaction pro-
cessing, and byzantine fault-tolerance [19, 13, 24, 21, 27].

A strict quorum system (also called a coterie) is a collection of
sets such that any two sets, called quorums, intersect [15]. In many
distributed storage systems a further refinement of this approach is
1
http://swift.openstack.org/

employed, in which quorums are divided into read-quorums and
write-quorums, such that any read-quorum intersects any write-
quorum (additionally, depending on the update protocol, in some
cases any two write-quorums may also be required to intersect).

There is a significant body of research that focused on which cri-
teria should be used to select a “good” quorum configuration, which
studied the trade-off between load, availability, and probe complex-
ity [30, 33]. In practice, existing cloud-oriented storage systems,
such as Dynamo [11], Cassandra [24] or OpenStack’s Swift, opt
for a simple, yet lightweight approach, according to which:
• each data item is replicated over a fixed set of storage nodes N,

where N is a user configurable parameter (often called replica-
tion degree) that is typically much lower than the total number
of the storage nodes in the system.

• users are asked to specify the sizes of the read and write quo-
rums, denoted, respectively, as R and W . In order to guarantee
strong consistency (i.e., the strictness of the quorums) these sys-
tems require that R+W > N.

• write and read requests issued by clients are handled by a proxy,
i.e., a logical component that may be co-located with the client
process or with some storage node. Proxies forward the read,
resp. write, operation to a quorum of replicas, according to the
current quorum configuration (i.e., reads are forwarded to R
replicas and writes to W replicas). For load balancing, repli-
cas are selected using a hash on the proxy identifier. A proxy
considers the operation complete after having received the tar-
get R, resp. W , replies. If, after a timeout period, some replies
are missing, the request is sent to the remaining replicas until
the desired quorum is ensured (this fallback procedure, occurs
rarely, mainly when failures happen).

• for read operations, after collecting the quorum of replies, a
proxy selects the most recent value among the ones returned by
the storage nodes. For write operations, storage nodes acknowl-
edge the proxy but discard any write request that is “older” than
the latest write operation that they have already acknowledged.
These solutions assume that write operations are totally ordered,
which is typically achieved either using globally synchronized
clocks [26] or using a combination of causal ordering and proxy
identifiers (to order concurrent requests), e.g., based on vector
clocks [25] with commutative merge functions [11].
This scheme minimizes the load imposed on the system for find-

ing a live read/write quorum in the good case given that, typically,
the selected quorum of replicas that are contacted first are alive and
do reply; only if faults occur, the requests need to be forwarded to
all replicas. Further, thanks to the strictness property of the quorum
system, and given the assumption on the total ordering of the write
operations, this scheme guarantees that a read operation running
solo (i.e., without concurrent write operations) returns the value
produced by the last completed write operation.

Finally, the ability to tune the choice of the values of R and W
opens the possibility to optimize the configuration of the quorum
system to better match the workload characteristics, as we further
discuss more in detail in the following section.

2.2 Impact of the Read/write Quorum Sizes
In this section we present the results of an experimental study

aimed at quantifying the impact on performance of using different
read and write quorum sizes in OpenStack Swift, a popular SDS
solution. Before presenting the results, we briefly describe the ex-
perimental platform and methodology that we used.
Swift overview. Swift is the reference SDS of the OpenStack
framework, a popular open source cloud (PaaS) platform. Swift
is an object-oriented data store, and exposes a REST-ful API via
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Figure 1: OpenStack’s Swift Architecture.
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Figure 2: Normalized throughput of the studied workloads.

a set of proxy processes, which serve as intermediaries between
the clients and the back-end storage nodes, as illustrated in Fig-
ure 1. As typical in many SDS systems, Swift allows users to de-
fine a wide range of static policies to isolate data (e.g., belonging
to different tenants), as well as to control the replication strategies
(e.g., total number of replicas of an object, and size of read/write
quorums) and the mapping among objects and their physical loca-
tion. In our experiments, we set the replication degree to 5 and use
the default distribution policy that scatters object replicas randomly
across the storage nodes (while enforcing that replicas of the same
object are placed on different nodes).
Test-bed. The experimental test-bed used to gather the experimen-
tal results presented in the paper is a private cloud comprising a
set of virtual machines (VMs) deployed over a cluster of 20 phys-
ical machines (1 VM per physical machine). The physical ma-
chines are connected via a Gigabit switch and each is equipped
with 8 cores, 40 GB of RAM and 2x SATA 15K RPM hard drives
(HDs). We allocate 10 VMs for the storage nodes, 5 VMs to serve
as proxy nodes, and 5 VMs to emulate clients, i.e., to inject work-
load. Each client VM is statically associated with a different proxy
node and runs 10 threads that generate a closed workload (i.e., a
thread injects a new operation only after having received a reply
for the previously submitted operation) with zero think time. Each
storage VM runs Ubuntu 12.04, and is equipped with 2 (virtual)
cores, 100GB disk and 9GB of RAM memory. On the other hand,
each proxy and client VM is equipped with 8 (virtual) cores, 10GB
disk and 16GB of RAM memory. In this motivating experiment we
have used a single tenant and a workload where all objects are ac-
cessed with the same profile. In the evaluation of the full system we
consider more complex scenarios with skewed non-uniform work-
loads.
Results. We start by considering 3 different workloads that are rep-
resentative of different application scenarios. Specifically, we con-
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Figure 3: Optimal write quorum size vs write percentage.

sider two of the workloads specified by the well known YCSB [8]
benchmark (noted Workload A and B), which are representative of
scenarios in which the SDS is used, respectively, to store the state
of users’ sessions in a web application, and to add/retrieve tags to a
collection of photos. The former has a balanced ratio between read
and write operations, the latter has a read-dominated workload in
which 95% of the generated operations are read accesses. We also
consider a third workload, which is representative of scenario in
which the SDS is used as a backup service (noted Workload C). In
this case, 99% of the accesses are write operations. Note that such
write-intensive workloads are frequent in the context of personal
file storage applications, as in these systems a significant fraction
of users exhibits an upload-only access pattern [14].

Figure 2 shows the throughput of the system (successful oper-
ations per second) normalized with respect to the best read/write
quorum configuration for each workload. These results were ob-
tained using one proxy node and 10 clients. The results clearly
show that when increasing the size of the predominant operation
quorum, the number of served operations decreases: configurations
favouring smaller read quorums will achieve a higher through-
put in read-dominated workloads, such as Workload B, and vice-
versa, configurations favouring smaller write quorums achieve a
higher throughput in write-dominated workloads, such as Work-
load C. Mixed workloads such as Workload A, with 50% read and
50% write operations, perform better with more balanced quorums,
favouring slightly reading from less replicas because read opera-
tions are faster than write operations (as these need to write to disk).

In order to assess to what extent the relation between the per-
centage of writes in the workload and the optimal write quorum size
may be captured by some linear dependency, we tested approx. 170
workloads, obtained by varying the percentage of read/write oper-
ations, the average object size, and using 10 clients per proxy. In
Figure 3 we show a scatter plot contrasting, for each tested work-
load, the optimal write quorum size and the corresponding write
percentage. The experimental data clearly highlights the lack of a
clear linear correlation between these two variables, and has mo-
tivated our choice of employing black-box modelling techniques
(i.e., decision trees) capable of inferring more complex, non-linear
dependencies between the characteristics of a workload and its op-
timal quorum configuration.

3. Q-OPT OVERVIEW
Q-OPT is designed to operate with a SDS that adheres to the ar-

chitectural organization discussed in Section 2, namely: its external
interface is represented by a set of proxy agents, and its data is dis-
tributed over a set of storage nodes. We denote the set of proxies by
Π = {p1, . . . , pP}, and the set of storage nodes by Σ = {s1, . . . ,sS}.
In fact proxies and storage nodes are logical process which may be
in practice mapped to a set of physical nodes using different strate-



gies (e.g., proxies and storage nodes may reside in two disjoint sets
of nodes, or each storage node may host a proxy). We assume that
nodes may crash according to the fail-stop (non-byzantine) model.
Furthermore, we assume that the system is asynchronous, but aug-
mented with unreliable failure detectors which encapsulate all the
synchrony assumptions of the system. Communication channels
are assumed to be reliable, therefore each message is eventually
delivered unless either the sender or the receiver crashes during the
transmission. We also assume that communication channels are
FIFO ordered, that is if a process p sends messages m1 and m2 to
a process q then q cannot receive m2 before m1.

As illustrated in Figure 4, Q-OPT is composed of three main
components: the Autonomic Manager, the Reconfiguration Man-
ager, and the Oracle, that we briefly introduce below.

The Autonomic Manager is responsible for orchestrating the self-
tuning process of the system. To this end, it gathers workload infor-
mation from the proxy processes, and triggers reconfigurations of
the quorum system. The optimization logic of the Autonomic Man-
ager is aimed at maximizing/minimizing a target KPI (like through-
put or latency), while keeping into account user defined constraints
on the minimum/maximum sizes of the read and write quorums.
This allows, for instance, for accommodating fault-tolerance re-
quirements that impose that each write operation to contact at least
k > 1 replicas. The Autonomic Manager is prepared to collect
statistics for different data items and to assign different quorums
to different objects. However, for scalability issues, we avoid to
collect individual statistics for all objects. In fact, Q-OPT makes
a fine grain optimization for the objects mostly accessed, and that
consume the largest fraction of the system resources and then treats
in bulk all objects that are in the tail of the access distribution.

More precisely, Q-OPT starts to perform multiple rounds of fine-
grain optimization, that works as follows. In each round, a top-k
analysis is performed to i) identify the (next) top-k objects that have
not been optimized yet, and ii) monitors the access to the top-k ob-
jects (identified in the previous round) and extract their read-write
profile. Then, the read/write quorum for those objects is optimized
(see more detail below). At the end of each round, the changes
are applied and the effect of these, on the system performance, is
checked. If the average performance improvement over the last γ

rounds is above a predefined threshold θ , a new round of fine-grain
optimization is performed (for the next top-k objects). When the
improvement achieved with the fine-grain optimization is below the
threshold, the fine-grain optimization of the system is considered to
be terminated. At this point, the system uses the average informa-
tion collected for the remaining objects (which are on the tail of the
access frequency distribution) and a read/write quorum is selected
for all those objects based on their aggregated profile.

For optimizing the access to a given data item (or to an aggre-
gated set of data items), the Autonomic Manager relies on an Or-
acle that encapsulates a black-box machine-learning based predic-
tor that is responsible for determining the best quorum, given the
workload of the monitored SDS application.

Finally, the Reconfiguration Manager coordinates a non-
blocking reconfiguration protocol that aims at altering the
read/write quorum size used by the proxies for a given data item.
The reconfiguration is non-blocking in the sense that it does not
require halting the processing of read/write operations during the
transition phase from the old to the new configuration, even in pres-
ence of faults affecting some proxies and/or the Reconfiguration
Manager. The reconfiguration protocol is oblivious to the specific
quorum-based protocol used to replicate data in the SDS (which
may, e.g., provide the semantics of regular or atomic register[18]),
but it guarantees that at any time (i.e., before, during, and after the
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Figure 4: Architectural overview.

reconfiguration process) the quorum used by a read operation inter-
sects with the write quorum of concurrent write operations, or, in
absence of concurrent writes, of the last completed write operation.

A detailed description of each of these three components is pro-
vided in the following sections. Note that, for convenience of con-
ciseness, in the remaining of the paper we describe the three com-
ponents above as if they have centralized, non fault-tolerant, im-
plementations. However, standard replication techniques, such as
state-machine replication [18, 38, 5], can be used to derive fault-
tolerant implementations of any of these components, such that
they not become single points of failure in the system.

4. QUORUM OPTIMIZATION
Three key components are involved in the quorum optimization

process: the proxies, the autonomic manager, and the oracle.
The Autonomic Manager is responsible for determining when to

trigger a quorum reconfiguration. The pseudo code executed at the
Autonomic Manager side is depicted in Algorithm 1. It executes
the following tasks:

It first starts a new round by broadcasting the new round identi-
fier, r, to all the proxies (line 5). Each proxy pi then replies with
(line 7):
• topKr

i : A set of new “hotspots” objects that, according to the
proxy’s local accesses, should be optimized in the next round
to obtain larger benefits. In order to be able to identify the
“hotspots” on each proxy with low overhead, Q-OPT adopts
a state of the art stream analysis algorithm [28] that permits to
track the top-k most frequent items of a stream in an approxi-
mate, but very efficient manner.
• statsTopKr−1

i : The ratio of write accesses and the size for each
of the objects resulting in the top-k analysis of the previous
round.

• statsTailKr−1
i : Aggregate workload characteristics (see Sec-

tion 6 for detailed information on the traced workload charac-
teristics) for the objects whose quorum size has not been in-
dividually optimized, i.e., the objects in the tail of the access
distribution.
• thi: The throughput achieved by the proxy during the last round.

Once the information sent by the proxies is gathered and merged
(line 8 and 9), the merged statistics of the previous round is fed as
input features to the Oracle (line 10), that outputs a prediction (line
11) of the quorum to use for each object in the top-k set (see details
in Section 6). In the current prototype, the Oracle only outputs the
size W of the write quorum and the size R of the read quorum is de-
rived automatically based on the system’s replication degree, i.e.,
R = N−W +1. If the output of the Oracle is different from the cur-
rent quorum system for that object, a reconfiguration is triggered.
In this case, the Autonomic Manager interacts with the Reconfig-
uration Manager (lines 12 and 13), which is in charge of orches-
trating the coordination among proxy and storage nodes and adapt



1 int r=0; // Round identifier
2 // Fine-grain round-based optimization.
3 do
4 r=r+1;
5 broadcast [NEWROUND, r] to Π;
6 ∀pi ∈Π :
7 wait received [ROUNDSTATS, r, topKr

i , statsTopKr−1
i ,

statsTailr−1
i , thr−1

i ] from pi ∨ suspect(pi);
8 statsTopKr−1=merge(statsTopKr−1

1 , .., statsTopKr−1
P );

9 topKr=merge(topKr
1,. . .,topKr

P);
10 send [NEWSTATS, r, statsTopKr−1] to ORACLE;
11 wait received [NEWQUORUMS, r, quorumsTopKr−1]

from ORACLE;
12 send [FINEREC, r, 〈topKr−1, quorumsTopKr−1〉] to RM;
13 wait received [ACKREC, r] from RM;
14 broadcast [NEWTOPK, r, topKr] to Π;
15 thr−1=aggregateThroughput(thr−1

1 ,. . ., thr−1
P ) ;

16 ∆th(γ) = throughput increase over last γ rounds.;

17 while ∆th(γ) ≥ θ

18 // Tail optimization.
19 statsTailr−1=merge(statsTailr−1

1 , ..,statsTailr−1
P );

20 send [TAILSTATS, statsTailr−1] to ORACLE;
21 wait received [TAILQUORUM, quorumTailr−1] from

ORACLE;
22 send [COARSEREC, quorumTailr−1] to RM;
23 wait received [ACKREC, r] from RM;

Algorithm 1: Autonomic Manager pseudo-code.

the current quorum configuration for the top-k objects identified in
the previous round. Otherwise, if the current configuration is still
valid, no reconfiguration is triggered. As a final step of a fine-grain
optimization round, the Autonomic Manager broadcast the current
top-k set to the proxies. Thus, each proxy can start monitoring the
objects that belong to the current top-k set in the next round.

At the end of each round, the Autonomic Manager, based on
the average throughput improvements achieved during the last γ

rounds, decides whether to keep optimizing individual objects in a
fine-grain manner or to stop. When the gains obtained with the fine-
grain optimization of individual “hotspot” objects becomes negli-
gible (i.e., lower than a tunable threshold θ ), a final optimization
step to tune the quorum configurations used to access the remaining
objects, i.e., the objects that fall in the tail of the access distribution.
These objects are treated as bulk (lines 19 - 22): the same read/write
quorum is assigned to all the objects in the tail of the access distri-
bution based on its aggregate workload characterization.

The frequency with which the Autonomic Manager cycle is exe-
cuted is regulated by a classical trade-off for any autonomic system:
the more often the Autonomic Manager queries the machine learn-
ing model, the faster it reacts to workload changes. However, it
also increases the risk to trigger unnecessary configuration changes
upon the occurrence of momentary spikes that do not reflect a sus-
tained change in the workload. In our current prototype we use a
simple approach based on a moving average over a window time
of 30 seconds, which has proven successful with all the workloads
we experimented with. As with any other autonomic system, in
our implementation there is also a trade-off between how fast one
reacts to changes and the stability of the resulting system. In the
current prototype, we simple use a fixed “quarantine” period after
each reconfiguration, to ensure that the results of the previous adap-

tation stabilise before new adaptations are evaluated. Of course, the
system may be made more robust by introducing techniques to fil-
ter out outliers [20], detect statistically relevant shifts of system’s
metrics [32], or predict future workload trends [22].

5. RECONFIGURATION MANAGER
The Reconfiguration Manager (subsequently denoted RM) ex-

ecutes the required coordination among proxy and server nodes
in order to allow them to alter the sizes of read and write quo-
rums without endangering neither, consistency, nor availability dur-
ing reconfigurations. This coordination enforced by Q-OPT is de-
signed to preserve the following property, which is at the basis of
all quorum systems that provide strong consistency:

Dynamic Quorum Consistency. The quorum used by a read op-
eration intersects with the write quorum of any concurrent write
operation, and, if no concurrent write operation exists, with the
quorum used by the last completed write operation.

where two operations o1, o2 are concurrent if at the time in which a
proxy starts processing o2, the processing of o1 by a (possibly dif-
ferent) proxy has not been finalized yet (or vice-versa). The avail-
ability of a SDS system, on the other hand, is preserved by ensuring
that read/write operations can be executed in a non-blocking fash-
ion during the reconfiguration phase, even despite the crash of (a
subset of) proxy and storage nodes.

As mentioned the RM supports both per-object as well as global
(valid across all objects in the SDS) changes of the quorum config-
urations. To simplify presentation, we first introduce the protocol
for the simpler scenario of global quorum reconfigurations. We dis-
cuss how the reconfiguration protocol can be extended to support
per-object granularity in Section 5.4.

5.1 Algorithm Overview
There are three different type of components involved in the ex-

ecution of the reconfiguration algorithm: the storage nodes, the
proxy nodes, and the RM. The purpose of the reconfiguration al-
gorithm is to change the quorum configuration, i.e., the size of the
read write quorums, used by the proxy servers.

The algorithm is coordinated by the RM. When the RM runs the
configuration algorithm we say that the RM installs a new quo-
rum system. We denote the quorum system being used when the
reconfiguration is started as the old quorum and the quorum sys-
tem that is installed when the reconfiguration is concluded the new
quorum. Old and new write and read quorums are denoted, respec-
tively, as oldW, oldR, newW, and newR. Each quorum is associated
with an epoch number, a sequentially serial number that is incre-
mented by the RM when some proxy is suspected to have crashed
during a reconfiguration. We also assume that storage nodes main-
tain a variable, called currentEpoch, which stores the epoch number
of the last quorum that has been installed by the RM. As it will be
explained below, during the execution of the reconfiguration algo-
rithm, proxy nodes use a special transition quorum, that is sized to
guarantee intersection with both the old and new quorums.

We assume a fail stop-model (no recovery) for proxies and stor-
age nodes, and that at least one proxy is correct. As for the storage
nodes, in order to ensure the termination of read and write opera-
tions in the new and old quorum configuration, it is necessary to
assume that the number of correct replicas is at least max(oldR,
oldW, newR, newW). For ease of presentation, we assume that the
sets Σ and Π are static, i.e. nodes are not added to these sets, nor
are they removed even after a crash. In order to cope with dynamic
groups, one may use group membership techniques, e.g. [4], which
are orthogonal to this work.
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1 int epNo=0; // Epoch identifier
2 int cfNo=0; // Configuration round identifier
3 int curR=1, curW=N; // Sizes of the read and write quorums
4 // Any initialization value s.t. curR+curW>N is acceptable.
5 changeConfiguration(int newR, int newW)
6 wait canReconfig;
7 canReconfig = FALSE;
8 cfNo++;
9 broadcast [NEWQ, epNo, cfNo, newR, newW ] to Π;

10 ∀pi ∈Π :
11 wait received [ACKNEWQ, epNo] from pi ∨

suspect(pi);
12 if ∃pi : suspect(pi) then
13 tranR=max(curR,newR); tranW=max(curW,newW);
14 epochChange(max(curR,curW),tranR,tranW);
15 broadcast [CONFIRM, epNo, newR, newW ] to Π;
16 ∀pi ∈Π :
17 wait received [ACKCONFIRM, epNo] from pi ∨

suspect(pi);
18 if ∃pi : suspect(pi) then
19 epochChange(max(newR,newW),newR,newW);
20 curR=newR; curW=newW;
21 canReconfig = TRUE;
22 epochChange(int epochQ, int newR, int newW)
23 epNo++;
24 broadcast [NEWEP,epNo,cfNo,newR, newW ] to Σ;
25 wait received [ACKNEWEP, epNo] from epochQ si ∈ Σ;

Algorithm 2: Reconfiguration Manager pseudo-code.

We assume that the RM never fails — as mentioned before, stan-
dard techniques may be used to derive a fault-tolerant implemen-
tation of the RM — and that it is equipped with an eventually per-
fect failure detection service [6] that provides, possibly erroneous,
indications on whether any of the proxy nodes has crashed. An
eventually perfect failure detector ensures strong completeness, i.e.,
all faulty proxy processes are eventually suspected, and eventual
strong accuracy, i.e., there is a time after which no correct proxy
process is ever suspected by the RM. The reconfiguration algorithm
is indulgent [17], in the sense that in presence of false failure suspi-
cions only the liveness of read/write operations can be endangered
(as we will see they may be forced to re-execute), but neither the
safety of the quorum system (i.e., the Dynamic Quorum Consis-
tency property), nor the termination of the reconfiguration phase
can be compromised by the occurrence of false failure suspicions.
The failure detection service is encapsulated in the suspect prim-
itive, which takes as input a process identifier pi ∈ Π and returns
true or false depending on whether pi is suspected to have crashed
or not. Note that proxy servers are not required to detect the failure
of storage servers nor vice-versa.

In absence of faults, the RM executes a two-phase reconfigura-
tion protocol with the proxy servers, which can be roughly summa-
rized as follows. In the first phase, the RM informs all proxies that
a reconfiguration must be executed and instructs them to i) start us-
ing the transition quorum instead of the old quorum, and ii) wait till
all the pending operations issued using the old quorum have com-
pleted. When all proxies reply, the RM starts the second phase, in
which it informs all proxies that it is safe to start using the new
quorum configuration.

This mechanism guarantees that the quorums used by read/write
operations issued concurrently to the quorum reconfiguration inter-
sect. However, one needs to address also the scenario in which a
read operation is issued on an object that was last written in one
of the previous quorum configurations, i.e., before the installation
of the current quorum. In fact, if an object were to be last writ-
ten using a write quorum, say oldW, smaller than the one used in

1 int lEpNo=0; // Epoch identifier
2 int lCfNo=0; // Configuration round identifier
3 set Q={}; // list of cfNo along with respective read/write

quorum sizes
4 int curR=1, curW=N; // Sizes of the read and write quorums
5 // Any initialization value s.t. curR+curW>N is acceptable.
6 upon received [NEWQ, epNo, cfNo, newR, newW ] from

RM
7 if lEpNo≤epNo then
8 lEpNo=epNo;
9 lCfNo=cfNo;

10 Q=Q ∪ < cfNo,newR,newW > ;
11 int oldR=curR; int oldW=curW;
12 // new read/writes processed using transition quorum
13 tranR=max(oldR,newR); tranW=max(oldW,newW);
14 wait until all pending reads/writes issued using the

old quorum complete;
15 send [ACKNEWQ, epNo ] to RM;
16 upon received [CONFIRM, epNo, newR, newW ] from RM
17 if lEpNo≤epNo then
18 lEpNo=epNo;
19 curR=newR; curW=newW;
20 send [ACKCONFIRM, epNo ] to RM;

Algorithm 3: Proxy pseudo-code (quorum reconfiguration).

the current configuration, then the current read quorum may not
intersect with oldW. Hence, an obsolete version may be returned,
violating safety. We detect this scenario by storing along with the
object’s metadata also a logical timestamp, c f No, that identifies
the quorum configuration used when the object was last written. If
the version returned using the current read quorum was created in
a previous quorum configuration having identifier c f No, the proxy
repeats the read using the largest read quorum used in any configu-
ration installed since c f No (in case such read quorum is larger than
the current one).

Since failure detection is not perfect, in order to ensure liveness
the two-phase quorum reconfiguration protocol has to advance even
if it cannot be guaranteed that all proxies have updated their quo-
rum configuration. To this end, the RM triggers an epoch change
on the back-end storage nodes, in order to guarantee that the oper-
ations issued by any unresponsive proxy (which may be using an
outdated quorum configuration) are preventively discarded to pre-
serve safety.

5.2 Quorum Reconfiguration Algorithm
The pseudo code for the reconfiguration algorithm executed at

the Replication Manager side is depicted in Algorithm 2. The re-
configuration can be triggered by either the Autonomic Manager, or
by a human system administrator, by invoking the changeConfigu-
ration method and passing as arguments the new sizes for the read
and write quorums, newQ and WriteQ. Multiple reconfigurations
are executed in sequence: a new reconfiguration is only started by
the RM after the previous reconfiguration concludes.

Failure-free scenario. To start a reconfiguration, the RM broad-
casts a NEWQ message to all proxy nodes. Next, the RM waits till
it has received an ACKNEWQ message from every proxy that is
not suspected to have crashed.

Upon receipt of a NEWQ message, see Algorithm 3, a proxy
changes the quorum configuration used for its future read/write
operations by using a transition quorum, whose read, respec-
tively write, quorum size is equal to the maximum of the read, re-
spectively write, quorum size in the old and new configurations.
This ensures that the transition read (tranR), resp. write (tranW),
quorum intersects with the write, resp. read, quorums of both the
old and new configurations. Before replying back to the RM with
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an ACKNEWQ message, the proxy waits until any “pending” op-
erations it had issued using the old quorum completed.

If no proxy is suspected to have crashed, a CONFIRM message
is broadcast to the proxy processes, in order to instruct them to
switch to the new quorum configuration. Next, the RM waits for
a ACKCONFIRM reply from all the non-suspected proxy nodes.
Finally, it flags that the reconfiguration has finished, which allow
for accepting new reconfigurations requests.

The pseudo-code for the management of read and write opera-
tions at the proxy nodes is shown in Alg. 4 and Alg. 5. As already
mentioned, in case a read operation is issued, the proxies need to
check whether the version returned using the current read quorum
was created by a write that used a write quorum smaller than the
one currently in use. To this end, proxies maintain a set Q contain-
ing all quorum configurations installed so far2 by the Autonomic
Manager. If the version returned using the current read quorum
was created in configuration c f No, the proxy uses set Q to deter-
mine the value of the largest read quorum used in any configuration
since c f No till the current one. If this read quorum, noted oldR
(see line 17 of Alg. 4), is larger than the current one, the read is
repeated using oldR. Further, the value is written back using the
current (larger) write quorum. Note that re-writing the object is
not necessary for correctness. This write can be performed asyn-
chronously, after returning the result to the client, and is meant to
spare the cost of using a larger read quorum when serving future
reads for the same object.

Coping with failure suspicions. In case the RM suspects some
proxy while waiting for an ACKNEWQ or an ACKCONFIRM mes-
sage, the RM ensures that any operation running with an obsolete
configurations is prevented from completing. To this end, the RM
relies on the notion of epochs. Epochs are uniquely identified and
totally ordered using a scalar timestamp, which is incremented by
the RM whenever it suspects the failure of a proxy at lines 11 and
16 of Alg. 2. In this case, after increasing the epoch number, the
RM broadcasts the NEWEP message to the storage nodes. This
message includes 1) the new epoch identifier, and 2) the configura-
tion of the transition quorum or of the new quorum, depending on
whether the epoch change was triggered at the end of the first or of
the second phase.

Next, the RM waits for acknowledgements from an epoch-
change quorum, whose size is determined in order to guarantee
that it intersects with the read and write quorums of any of the con-
figurations in which the proxies may be executing. Specifically, if
the epoch change is triggered at the end of the first phase, the size
of the epoch-change quorum is set equal to the maximum between
the size of the read and write quorums in the old configuration. It is
instead set equal to the maximum between the size of the read and
write quorums of the new configuration, if the epoch change is trig-
gered at the end of the second phase. As we shall discuss more in
detail in Section 5.3, this guarantees that the epoch change quorum
intersects with the read and write quorums of any operation issued
by nodes that may be lagging behind, and not have updated their
quorum configuration yet.

When a storage node (see Alg. 6) receives an NEWEP mes-
sage tagged with an epoch identifier larger than its local epoch
timestamp, it updates its local timestamp and rejects any future
write/read operation tagged with a lower epoch timestamp. It then
replies back to the RM with an ACKNEWEP message. When-
ever an an operation issued by a proxy in an old epoch is rejected,
the storage node does not process the operation and replies with a

2In practice, the set Q can be immediately pruned whenever the
maximum read quorum is installed.

1 upon received [Read, oId] from client c
2 while true do
3 broadcast [Read, oId, curEpNo] to Σ;
4 wait received [ReadReply, oId, val, ts, W] from

Σ
′ ⊆ Σ s.t. |Σ′|=curR ∨ ([NACK, epNo,newR, newW ]
∧epNo> lE pNo);

5 if received [NACK, epNo, cfNo, newR, newW ] then
6 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
7 Q=Q ∪ < cfNo,newR,newW > ;
8 continue; // re-transmit in the new epoch
9 v= select the value with the freshest timestamp;

10 // Set of read quorums since v.cfNo till lCfNo;
11 S = {Ri :< qi,Ri, ·>∈Q ∧v.c f No≤ qi ≤ lC f No};
12 if max(S)≤curR then
13 // safe to use cur. read quorum
14 send [ReadReply, oId, v] to client c;
15 else
16 // compute read quorum when v was created.
17 int oldR=max(S);
18 // obtain a total of oldR replies.
19 wait received [ReadReply, oId, val, ts] from

Σ
′ ⊆ Σ s.t. |Σ′|=oldR ∨ ( [NACK, epNo,newR,

newW ] ∧epNo> lE pNo);
20 if received [NACK, epNo, cfNo, newR, newW ]

then
21 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
22 Q=Q ∪ < cfNo,newR,newW > ;
23 continue; // re-transmit in the new epoch
24 v= select the value with the freshest timestamp;
25 send [ReadReply, oId, v] to client c;
26 // write v using the current quorum
27 write(v,oId,v.ts);
28 break;
29 end

Algorithm 4: Proxy pseudo-code (read logic).

NACK message, in which it specifies the current epoch number and
the quorum configuration of this epoch.

Upon receiving a NACK message (see Algs. 4 and 5), the proxy
node is informed of the existence of a newer epoch, along with the
associated quorum configuration. Hence, it accordingly updates
its local knowledge (i.e., its epoch and read/write quorum sizes),
and re-executes the operation using the new epoch number and the
updated quorum configuration.

5.3 Correctness Arguments
Safety. We need to show that the quorum used by a read operation
intersects with the write quorum of any concurrent write operation,
and, if no concurrent write operation exists, that a read quorum
intersects with the quorum used by the last completed write oper-
ation. We denote with oldR, oldW, newR, newW and tranR, tranW
the read and write quorums used, respectively in the initial, new
and transition phase.

As already mentioned, since tranR=max(oldR,newR) and tranW
=max(oldW,newW), the read, resp. write, quorums used during the
transition phase intersect necessarily with the write, resp. read, quo-
rums in both the new and old phases. Hence, safety is preserved for
operations issued using the transition quorums.

In absence of failure suspicions, if any proxy process starts using
the new quorum, the protocol guarantees that there is no pending
concurrent operation running with the old quorum. It remains to
discuss the case in which a read operation uses the new quorum
size and there are no concurrent write operations. If the version
returned using the current read quorum, say v, was created in the
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1 upon received [Write, oId, value] from client c
2 write (val, oId, getTimestamp());
3 send [WriteReply, oId] to client c;
4 write(value v, objId oid, timestamp ts)
5 while true do
6 broadcast [Write, oId, val, ts, curEpNo] to Σ;
7 wait received [WriteReply, oId] from Σ

′ ⊆ Σ s.t.
|Σ′|=curW ∨ ([NACK, epNo,newR, newW ]
∧epNo> lE pNo);

8 if received [NACK, epNo, cfNo, newR, newW ] then
9 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
10 Q=Q ∪ < cfNo,newR,newW > ;
11 continue; // re-transmit in the new epoch
12 break;
13 end

Algorithm 5: Proxy pseudo-code (write logic).

1 int lEpNo=0; // Epoch identifier
2 int lCfNo=0; // Configuration round identifier
3 int curR=1, curW=N; //Sizes of the read and write quorums
4 // Any initialization value s.t. curR+curW>N is acceptable.
5 upon received [NEWEP,epNo, cfNo, newR, newW ] from

RM
6 if epNo ≥lEpNo then
7 lEpNo=epNo;
8 lCfNo=cfNo;
9 curR=newR; curW=newW;

10 send [ACKNEWEP, epNo] to Reconfiguration
Manager;

11 upon received [Read, epNo, . . .] or [Write, epNo, . . .] from
πi ∈Π

12 if epNo <lEpNo then
13 send [NACK, epNo, cfNo, newR, newW ] to pi;
14 else
15 process read/write operation normally;
16 if operation is a write then
17 store lCfNo in the version metadata cfNo;
18 else
19 piggyback cfNo to the ReadReply message;
20 end
21 end

Algorithm 6: Storage node pseudo-code.

current quorum configuration, then the last created version is neces-
sarily returned. Let us now analyze the case in which the last write
was performed using a previous quorum configuration with times-
tamp c f No. In this case the proxy repeats the read with the largest
read quorum of any configuration installed since c f No. This read
quorum is guaranteed to intersect with any write operation issued
since the creation of v. Hence, the read is guaranteed to return the
latest value written by any non-concurrent write operation.

If the RM suspects a node, either at the end of first or of the
second phase of the reconfiguration protocol, an epoch change is
triggered. This ensures that the storage nodes commit to reject the
operations issued in the previous epoch. The values of epochQ are
chosen large enough to guarantee intersection of the epoch change
quorum with the quorum used by any operation of a node that may
be lagging behind, and may not have updated his quorum configu-
ration as requested by the RM. This in its turn guarantees that the
operation will gather at least a NACK, and will be re-executed in the
new epoch. At the end of phase 1 epochQ is set to max(oldR,oldW),
as the proxy may be executing using either the old quorum or the
transition quorum. In fact, the transition quorum is guaranteed to
intersect with a quorum of size epocQ=max(oldR,oldW) by con-
struction; also, a quorum of size epocQ=max(oldR,oldW) neces-

sarily intersects with both oldR and oldW. Since at the end of phase
2 epochQ, the proxies may be using either the new quorum or the
transition quorum, the epoch change quorum is set to max(newR,
newW) for analogous reasons.

Liveness. We start by showing that if a changeConfiguration is
triggered at the RM, it eventually terminates.

In absence of failure suspicions, the first and second phase of
the reconfiguration protocol complete since: i) we assume reliable
channels; ii) the wait conditions at lines 11 and 16 of Alg. 2 even-
tually complete since we assume that the number of correct storage
nodes is max(oldR,oldW,newR,newW); iii) no other blocking prim-
itives are executed.

By the strong completeness accuracy of failure detection, if a
process is faulty, it will be eventually suspected. This ensures that
the waits at lines 12 and 17 of Alg. 2 will eventually unblock if
some proxy fails. This is true clearly even if some proxy is falsely
suspected to have crashed. In either case, an epoch change will be
triggered at the end of phase 1 and/or phase 2. The epoch change
phase is non-blocking, given our assumption on the number of cor-
rect storage nodes.

Let us now show that if a correct proxy node pi receives a NEWQ
message with a new quorum configuration newR, newW, it eventu-
ally installs the new configuration. As discussed above, the corre-
sponding instance of the reconfiguration protocol eventually termi-
nates, possibly triggering an epoch change. If no epoch change is
triggered, eventually pi receives a CONFIRM message by the RM
and installs the new quorum. If an epoch change is triggered, there
are 2 cases: i) pi can either receive the CONFIRM message by the
RM, or ii) it receives a NACK from a storage node while executing
a read or write operation. In both cases, pi installs the new quorum
(line 19 of Alg. 3, lines 6 and 20 of Alg. 4, and line 10 of Alg. 5).

Finally let us analyze the termination of read and write opera-
tions. Since we are assuming the availability of both the old and
new quorum configurations, in absence of failure suspicions/epoch
changes the read/write quorums are eventually gathered. Also the
read/write quorums do not contain any NACK message and the
read/write operations complete without retrying. In presence of
failure suspicions, the reconfiguration protocol can trigger up to
two epoch changes that may cause pending operations to be re-
executed twice. However, at each re-execution, upon receiving a
NACK message (lines 4-5 of Alg. 4 and 8-9 of Alg. 5), the proxy
learns the new quorum configuration and updates it epoch number.
In order to ensure the eventual successful termination of read/write
operations, we need therefore to assume either that i) the faulty
nodes are eventually removed from the system, which eventually
causes the RM not to suspect any proxy, or that ii) the time inter-
val between two subsequent quorum reconfigurations is sufficiently
long to allow operations to execute successfully in the most recent
epoch, possibly after a finite number of re-executions.

5.4 Per-object Quorum Reconfiguration
As discussed, the above presented protocol allows for altering

the quorum size used by the entire data store. However, extending
the above presented protocol to allow for tuning independently the
quorum sizes used to access different objects in the data store is
relatively straightforward.

In particular, during the initial, round based optimization phase
described in Section 4, the RM is provided with a set of object iden-
tifiers and with their corresponding new quorum configurations.
The RM forwards this information to the proxies via the NewQ
message. The proxy servers, in their turn, shall store the mapping
between the specified object identifiers and the corresponding write
quorums, and use this information whenever they are serving a read
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or a write operation. Note that, in our prototype, we store this map-
ping in main memory, as only a reduced set of “hotspots” is individ-
ually optimized. This simple mechanism allows the proxy servers
to determine the new and old quorum sizes to use on a per object
basis. Also, when a fine-grain quorum reconfiguration is requested
that only affects a set of data items D, the proxy should wait only, in
the first phase of the reconfiguration algorithm, for the completion
of any pending operation (using the old quorum) targeting some of
the items in D.

Any (read/write) access to objects whose quorum size has not
been individually optimized can use a common, global quorum
configuration and be treated exactly as shown in Section 5.2.

6. THE ORACLE
The Oracle is responsible for determining the best quorum con-

figuration for the current workload conditions. We cast the selec-
tion of the optimal quorum configuration as a classification prob-
lem [29], in which one is provided with a set of input metrics (also
called features) describing the current state of the system and is
required to determine, as output, a value from a discrete domain
(i.e., the best performing quorum configuration among a finite set
in our case). In Q-OPT we rely on black-box machine learning
techniques to automatically infer a predictive model of the optimal
quorum configuration.

To this end, Q-OPT exploits the C5.0 algorithm [34]. C5.0
builds a decision-tree classification model in an initial, off-line
training phase during which a greedy heuristic is used to partition,
at each level of the tree, the training dataset according to the input
feature that maximizes information gain. The output model is a
decision-tree that classifies the training cases according to a com-
pact (human-readable) rule-set, which can then be used to classify
(decide the best quorum strategy) future scenarios.

The accuracy achievable by any machine learning technique is
well known to be strictly dependant on the selection of appropri-
ate input features [29]. In Q-OPT we selected a restricted set of
workload characterization metrics ~W that can be measured using
lightweight, non-intrusive monitoring mechanisms, and which cap-
ture both the proxies’ and the storage nodes’ current capacity to
serve each type of request. The input features include: number of
read and write operation requests received, execution time of read
and write operations, number of read and write operations that were
successfully served, percentage of read operations, average sizes of
the read and written objects, number of proxy and storage nodes.

In order to build a training set for the classification model, Q-
OPT relies on an off-line training phase during which we test a
heterogeneous set of synthetic workloads and measure a reference
KPI of the system (e.g., throughput or response time) when using
different read/write quorum configurations. The training set is then
composed by tuples of the form 〈curW, ~W ,bestW 〉, where curW
is the write quorum configuration used while executing workload
~W . bestW is the best performing write quorum configuration for
~W and the target class for the classification problem.

This model construction methodology allows us to accommodate
in a simple way also for application-dependant constraints on the
quorum sizes, e.g. imposing a minimum value for the size for the
write quorums for fault-tolerance purposes. To this end, it suffices
to restrict the tuples in the training set to include only admissible
values of both curW and bestW . More in detail, tuples using illegal
values of curW are discarded from the training set. Tuples that
use legal values of curW and whose optimal quorum configuration,
bestW , violates some application-dependant constraint are retained
in the training set, but their bestW value is replaced with the best
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Figure 5: Oracle’s misclassification rate and % throughput
loss.
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performing among the feasible write quorum configurations.

7. EVALUATION
This section presents the results of an experimental study aimed

at assessing three main aspects: the accuracy of the ML-based Ora-
cle; the effectiveness of Q-OPT in automatically tuning the quorum
configuration in presence of complex workloads; and the efficiency
of the quorum reconfiguration algorithm.

7.1 Accuracy of the Oracle
In order to assess the accuracy of the Oracle, we consider the

same set of 170 workloads used in Figure 3 (Section 2). Figure 5
reports the misclassification rate and throughput loss (w.r.t. the op-
timal solution) when we vary the size of the training set, using the
rest of available data as test set. The results are obtained as the
average of 200 runs, in which we fed the C5.0 with different (and
disjoint) randomly selected test and training sets. The results show
that the ML-based oracle achieves very high accuracy, i.e. misclas-
sification rate lower than 10% and throughput loss lower than 5%,
if we use as little as the 40% of the collected data set as training
set. Interestingly, the throughput loss is normally less than half
of the misclassification rate: in fact, in most of the misclassified
workloads, the quorum configuration selected by the oracle yields
performance levels that are quite close to the optimum.

Figure 6 provides an alternative perspective on our data set. It re-
ports the cumulative distribution functions of the accuracy achieved
by our predictor with different training set sizes, and contrasting
them with the normalized performances using all possible config-
urations for each considered workload. The plot highlights that
the choice of the quorum configuration has a striking effect on Q-
OPT’s performance: in about 20% of the workloads, the selection
of the third best quorum configuration is 40% slower than the opti-
mal one; in the worst case, the plot also shows that the worst (i.e.,
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Figure 7: Oracle’s misclassification rate when varying the set
of features used.

the 5-th best) choice of the quorum configuration can be even more
that 5x slower than the optimal for some workloads.

Figure 7 allows us to asses to what extent the selection of the fea-
tures used to generate the ML-based models impacts the model’s
accuracy. We used five different configurations for this experiment,
from A to E. Each configuration progressively adds extra features,
including previous configuration features. As the plot shows, the
configuration A, which only includes the percentage of write trans-
actions as feature, achieves poor accuracy, generating a misclassi-
fication rate of around 35%. This result confirms the relevance of
using a multi-variate model, capable of keeping into account ad-
ditional factors besides the write percentage (as suggested also by
the plot in Figure 2. Indeed, the plot clearly shows that, as we in-
clude among the provided features also the object size (Conf. B)
and throughput (Conf. C) the misclassification rate gets consider-
ably reduced. However, adding additional features (e.g., conf. D
and E, which include statistics on the latencies perceived by get
and put operations) does not benefit accuracy, but, on the contrary,
can lead to overfitting [29] phenomena that can ultimately have a
detrimental effect on the learner’s accuracy.

Finally, in Table 1, we report the accuracy achieved by the con-
sidered learner when using the, so called, boosting technique. The
boosting approach consists in training a chain of N learners, where
the learner in position i is trained to learn how to correct the er-
rors produced by the chain of learners in position 1,2,. . .,i. This
technique has been frequently reported to yield significant accuracy
improvements when used with weak learners. Our experiments do
confirm the benefits of this technique, although the relative gains in
accuracy are, at least for the considered data set, not so relevant to
justify its additional computational overheads.

7.2 Reconfiguration Overhead
Q-OPT uses a two-phase quorum reconfiguration protocol whose

latency is affected by the number of pending operations each proxy
has to finish before completing the first phase of the protocol. Thus,
we expect to observe an increase in latency as the number of clients
issuing concurrent operations increases. Figure 8 shows the quo-
rum reconfiguration latency in absence of faults varying the num-

Figure 8: Reconfiguration latency vs system load.
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Figure 9: Evaluating the overheads associated with the bulk
reconfiguration of the quorum size. Write quorum is increased
from 1 to 5 in presence of a read-dominated workload.

ber of clients from 15 to 150 (i.e., close to system’s saturation that
we estimate at around 165 clients). In this and in the following ex-
periments we used object sizes uniformly distributed in the [10KB
- 50KB] range. As expected, the results show a correlation between
the latency of the reconfiguration and the request’s arrival rate;
however, the reconfiguration latency remains, in all the tested sce-
narios, lower than 15 milliseconds, which confirms the efficiency
of the proposed reconfiguration strategy.

Finally, Figure 9 focuses on evaluating the performance of the
lazy write-back procedure encompassed by the quorum reconfig-
uration protocol. Recall that this happens when a read operation
gathers a quorum of replies that reveals that the last write applied
to the read object has been performed using a smaller write quorum
than the one currently used. In this case, the read operation is forced
to wait for additional replies before returning to the client, and it
has to write back the data item using the new (larger) write quorum.
The experiment whose results are shown in Figure 9 is focused pre-
cisely on evaluating the overhead associated with these additional
writes. To this end we considered a worst-case scenario in which:
i) the system is heavily loaded, ii) data items are accessed with a
uniform distribution, and iii) the write quorum increases from 1 to 5
while the application is running a read-dominated (95%) workload.
At the beginning of the experiment we trigger the bulk reconfigu-
ration (i.e., for the entire set of 20K data items in the SDS) of the
quorum and report throughput over time. The plot shows that, even
in such a worst case scenario, the throughput loss due to the ad-
ditional writes performed when reading an object for the first time
using the new quorum is limited to around 12%. Indeed, we ar-
gue that it would be possible to further reduce the overheads due to
this write back process by reducing the frequency with which write
backs are issued and batching writes to amortize their cost. This
would imply a trade-off between the time to complete the reconfig-
uration phase and the overhead incurred while this is in progress.

7.3 System Performance
Finally, Figure 10 evaluates the effectiveness of Q-OPT over

time when faced with complex workloads. We consider the fol-
lowing baseline configurations. R1W5, R3W3 and R1W5 are static
configurations that force the system to use the same quorum for
all the objects. AllBest uses the optimal quorum for each of the
objects. Finally, Top10% uses the optimal quorum for each of the
10% most accessed objects. Notice that AllBest and Top10% are
unachievable configurations in practice since it would require pre-
cise pre-knowledge about the workloads of each object.

In the experiment we combine two workloads, a read intensive
(95% of reads) and a write intensive (95% of writes) one, each
representing a different tenant. This means that each workload ac-



10% Training 50% Training 90% Training
unboosted boosted unboosted boosted unboosted boosted

Avg. Misclassification (%) 15 14 9 7 6 5
Avg. Distance from optimal (%) 4.6 4 2.2 1.6 1.6 0.9
Avg. Distance when misclassified (%) 14.1 12.9 10.9 9.5 9.5 7.6

Table 1: Impact of boosting in the Oracle’s performance when varying the training set size.
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Figure 10: Q-OPT performance in comparison to other config-
urations.

cesses a non-overlapping set of objects. After 40 minutes, we swap
the type of workload. Therefore, the read intensive workload be-
comes write intensive and viceversa. The idea is to observe how
Q-OPT reacts to changes in the workloads. For this experiment,
Q-OPT runs a fine-grain optimization round every minute. After
20 minutes, the fine-grain optimization phase ends and Q-OPT op-
timizes the remaining objects in bulk (i.e., using a single, homo-
geneous quorum configuration). After the swapping (minute 40),
Q-OPT starts again the fine-grain optimization phase and contin-
ues behaving as described for the first 40 minutes.

Q-OPT behaves as expected. During the first 20 minutes the
throughput grows as the fine-grain optimization rounds advance,
getting close to the Top10% baseline right before optimizing the
tail. Once the tail is optimized (after minute 20), the throughput
keeps growing even beyond the Top10% line and getting closer to
the AllBest configuration. The Top10% configuration does not opti-
mize the tail; therefore, it is expected that Q-OPT outperforms it, at
least slightly. As expected, the plot shows that the performance of
Q-OPT matches closely that of the optimal configurations. These
results confirm the accuracy of Q-OPT’s Oracle and highlight that
the overheads introduced by the supports for adaptivity are very
reduced. After swapping the workloads, Q-OPT experiences a no-
ticeable decrement in the performance since it has to start the opti-
mization from scratch.

Furthermore, the figure shows that none of the static config-
urations achieves a throughput comparable to Q-OPT’s. In the
worst case, the R1W5 configuration is more than 2x slower than
Q-OPT during stable periods. Even for the best static configuration
(R5W1), Q-OPT still achieves around 45% higher throughput.

8. RELATED WORK
Several works have explored the idea of selectively relaxing con-

sistency in cloud storages[36, 7, 23, 3] in order to minimize the
probability of violating SLAs defined on KPIs like throughput or
latency. Techniques include dynamically selecting which servers
should serve incoming requests[36], sizing quorums in order to en-

sure probabilistic bounded staleness[3] and adapting the concur-
rency control mechanism to the criticality of managed data[3]. Un-
like these solutions, Q-OPT aims at ensuring strong consistency (by
enforcing strictness of the quorum system used to replicate data)
at the minimum cost, i.e. by automatically identifying the optimal
quorum configuration given the current application’s workload.

Our work is also related to the literature on the specification of
adaptation policies [35, 2] which provide an infrastructure to allow
experts (such as programmers or system administrators) to control
the adaptation policies of a complex system by means of different
types of rules’ system, and on ML techniques to automate the de-
termination of the adaptation policy [12, 37, 31]. Q-OPT falls in
the latter class of systems, and relies on decision-tree classifiers to
infer automatically the adaptation policy of a strict quorum system.

Q-OPT has relations also with our previous works[10, 9] in
which we tackled the problem of dynamically adapting the repli-
cation protocol used by in-memory transactional systems, also
exploiting black-box machine learning techniques. However,
quorum-based distributed storage systems have significant differ-
ences with respect to the platforms considered in our prior work,
e.g. partial vs full replication, in-memory vs durable storage, single
object operations vs transactions. As such, Q-OPT needs not only
to cope with different algorithmic challenges to support reconfig-
uration. It also requires to reformulate the ML-based optimization
problem, e.g. to account for the existence of constraints on the
minimum number of replicas of each object.

The quorum reconfiguration algorithm integrated in Q-OPT has
relations with the vast body of literature on dynamic quorum sys-
tems[13, 19] and of reconfiguration of atomic storage systems[16,
1]. These works target a different, and more complex problem that
the one tackled by the reconfiguration algorithm proposed in Sec-
tion 5: they allow to redefine at run-time which nodes should be
included in a quorum system in a dynamic environments in which
nodes may join or leave the system. On the other hand, the concern
of our proposal is to enforce agreement among the set of proxy
nodes (which is typically disjoint from the set of storage nodes) on
the sizes of the read and write quorums to use when interacting with
the storage nodes. A key difference with respect to these techniques
is that our work decouples the problem of group membership (del-
egating it to some external service[18]) from that of quorum opti-
mization (the focus of our work). Not only this separation of con-
cerns leads to a significant reduction of complexity, it allows also
for modularly deploying our solution on off-the-shelf SDS/cloud
storage systems (like Swift or Cassandra) in a non-intrusive fash-
ion, i.e. with minimal changes to the existing infrastructure.

9. CONCLUSIONS
This paper tackled the problem of automating the tuning of read/

write quorum configuration in distributed storage systems, a prob-
lem that is particularly relevant given the emergence of the soft-
ware defined storage paradigm. The proposed solution, which we
called Q-OPT, leverages ML techniques to automate the identifica-
tion of the optimal quorum configurations given the current appli-
cation’s workload, and on a reconfiguration mechanism that allows
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non-blocking processing even during quorum reconfigurations. Q-
OPT’s optimization phase first focuses on optimizing the most ac-
cessed objects in a fine-grain manner. Then, it ends by assigning
the same quorum for all the objects in the tail of the access distri-
bution based on their aggregated profile. We integrated Q-OPT in
a popular, open-source software defined storage and conducted an
extensive experimental evaluation, which highlighted both the ac-
curacy of its ML-based predictive model and the efficiency of its
quorum reconfiguration algorithm.
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