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Abstract—State-machine replication (SMR) is a fundamental
technique to implement fault-tolerant services. Recently, various
works have aimed at enhancing the scalability of SMR by
exploiting partial replication techniques. By sharding the state
machine across disjoint partitions, and replicating each partition
over independent groups of processes, a Partially Replicated State
Machine (PRSM) can process operations that involve a single
partition by only requiring synchronization among the replicas
of that partition — achieving higher scalability than SMR.

Unfortunately, though, existing PRSM rely on inefficient mech-
anisms to coordinate the execution of multi-partition operations,
which either impose global coordination across all nodes in the
system or require inter-partition synchronization on the critical
path of execution of operations. As such, performance and
scalability of existing PRSM systems is severely hindered in the
presence of even a small fraction of multi-partition operations.

This paper tackles this issue by presenting Genepi, a PRSM
protocol that introduces a novel, highly efficient mechanism for
regulating the execution of multi-partition operations.

We show via an experimental evaluation based on both
synthetic benchmarks and TPC-C that Genepi can achieve up to
5.5× of throughput gain over existing PRSM systems, with only
negligible latency overhead at low load.

I. INTRODUCTION

State-machine replication (SMR) is a well-known approach
to implement fault-tolerant services. In a nutshell, SMR relies
on consensus protocols [1] for replicas to agree, in a fault-
tolerant way, on the set and common order of operations to be
executed. Next, operations can be executed independently at
each replica. As long as operations are deterministic (which
is required by SMR), replicas will traverse the same sequence
of states and thus reach the same final state. Nevertheless, a
main limitation of classical SMR is that, it requires all replicas
to host the full state and execute all operations that may alter
the system’s state. Consequently, the maximum rate at which
update operations can be processed in SMR-based systems is
limited by the computation capacity of a single replica, which
is inherently non-scalable.

In order to tackle this scalability limitation, several recent
works [2], [3], [4] have proposed to extend the basic SMR
model to support partial replication, yielding what we call
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a Partially Replicated State Machine (PRSM). The idea is
to shard the system’s state across multiple partitions, and
to replicate each partition over a different group of nodes.
This allows to execute single partition operations (SPOs),
i.e., operations that manipulate the state residing in a sin-
gle partition, in an efficient and scalable way, namely by
involving exclusively the replicas of that partition. Operations
that span multiple partitions, or, more briefly, multi-partition
operations (MPOs), though require additional synchronization:
the replicas of all the target partitions of an MPO need in
fact to establish a common agreement on how to order that
MPO with respect to all the other operations that access
these partitions. Unfortunately, the additional synchronization
schemes required by current PRSM protocols [4], [2], [3]
incur significant overhead, which can cripple throughput even
in workloads that contain a very limited number of MPOs:
as we will show, the peak throughput of a popular PRSM
system [3] drops by about 80% in presence of even just 10%
MPOs (§VI-E).

The reason underlying such a harsh performance impact is
that existing PRSM schemes regulate the execution of MPOs
either i) via non-scalable coordination mechanisms that involve
all the nodes in the system (including nodes not involved
by any MPO) [4], [2], whose overheads become unbearable
in large scale systems, or ii) by imposing additional inter-
partition synchronization along the critical path of MPOs’
processing [3], thus inherently limiting the peak throughput
achieved by each partition.

This paper proposes Genepi, a novel PRSM protocol that
tackles the above mentioned limitations of existing systems by
introducing an innovative consensus primitive. The design of
Genepi is based on two key ideas:
• i) removing the inter-partition coordination required by

MPOs from the critical path of execution of any operation
in the system: in a nutshell, this is achieved by scheduling
the execution of MPOs “in the future”, i.e., postponing
their execution by a duration comparable to the time
necessary to execute, in background, an inter-partition
protocol aimed at agreeing on a common execution order.
While this latency is normally negligible in terms of
user-perceived latency, the removal of any inter-partition
synchronization from the critical path of execution of op-
erations at each node has a profound (beneficial) impact
on throughput.

• ii) maximizing the scalability of the MPO synchroniza-978-1-5386-1465-5/17/$31.00 c©2017 IEEE



tion mechanism: Genepi pursues this goal by introducing
Scraper (Scalable consensus for partial replication), a
novel, fault-tolerant distributed agreement scheme, in-
spired by Skeen’s total order multicast algorithm [5].
Analogously to Skeen’s algorithm, Scraper ensures a
property that is crucial for scalability: a partition is
involved in Scraper algorithm for an MPO only if it is
actually involved by that partition — a property called
minimality or also genuineness in the context of total
order multicast algorithms [6].

We evaluate our protocol via both synthetic benchmarks and
TPC-C. The experimental evaluation shows that Genepi can
achieve up to 5.5× of throughput gain over existing PRSM
systems, with negligible latency overhead at low load.

The remainder of the paper is organized as follows. §II
reports the related work of Genepi. §III describes our system
and data model. §IV and §V detail the Genepi protocol as
well as the Scraper consensus abstraction. We describe the
experimental evaluation of Genepi in §VI, and conclude the
paper in §VII.

II. RELATED WORK

a) State-machine replication: State-machine replication
is a well-known technique to build fault-tolerant systems [7],
[8], [9]. In its original definition, SMR assumes that an
application, abstracted as a deterministic state machine, is
fully replicated across all the nodes of the system. Replicas
first agree on a common, total order of execution of opera-
tions. Next, operations are executed by all replicas according
to the agreed order. Various work has been proposed to
optimize the ordering phase or processing phase of SMR.
SMR’s ordering phase relies on consensus protocols, e.g.,
Paxos [1], another fundamental, long studied problem, for
which a plethora of optimizations have been proposed in
the literature. Some works [10], [11], [12] propose to only
totally-order conflicting requests and avoid synchronization
costs for commutative operations. Other works [13], [14]
optimistically deliver and execute operations before their order
is finalized, such that latency is reduced if the final order
matches the optimistically guessed order. These optimizations
tackle orthogonal problems, and could indeed be integrated
with Genepi — which has in consensus/total order a key
building block. Other works aimed at enhancing the efficiency
with which replicas exploit local computational resource, e.g.,
multi-cores processors. In [8], the authors propose to organize
replicas in multiple modules executing independent tasks, such
as receiving and batching messages. Although operations are
still sequentially executed by a single thread, this approach
enhances throughput by parallelizing the execution of all other
tasks. Instead, [9] exploits application semantics to allow
executing commutative operations in parallel. These works
also tackle distinct problems from those addressed by Genepi,
and the mechanisms they propose could be integrated with it.

b) Partially-replicated state machine: Recently, several
works [2], [3], [4] have explored the idea of building a PRSM.
By partitioning the state of an application, these approaches

allow SPOs to be ordered and executed only by the replicas of
the target partition. As the number of replicas of each partition
is typically much smaller than the total number of partitions
in the system (a few copies vs hundreds or thousands of
partitions), PRSM has a much higher scalability potential than
plain SMR. Nonetheless, as already mentioned, existing PRSM
systems incur severe overheads when processing operations
that span multiple partitions (MPOs).

The PRSM system proposed by Marandi et al. [2], for
instance, requires that every MPO is totally ordered and then
broadcast to all the nodes in the system, independently of
whether they are actually involved in the processing of MPOs.
This global-scale coordination mechanisms are inherently non-
scalable and, as such, are at odds with one of the key
motivations at the basis of PRSM: overcome the scalability
limitations of classic SMR.

Analogous considerations apply to Calvin [4]: in this case,
the execution of MPOs is synchronized via a, which we call,
scatter phase that requires all the partitions within each logical
replica of the system to agree on the set of MPOs to include in
the next batch of operations to be processed. In large scale sys-
tems, Calvin’s scatter phase introduces significant overhead,
forcing partitions to synchronize even though there exists no
MPO that involves them. Further, the latency introduced by the
scatter phase sits on the critical path of execution of the current
batch of operations to be processed, which limits the rate at
which globally operations can be processed in the system.

S-SMR [3] builds on a more scalable coordination primitive,
atomic multicast [15], [5], to regulate the execution of both
SPOs and MPOs. However, it imposes the exchange of sig-
naling messages among all the partitions involved by an MPO
m, blocking the execution of any operation serialized after
m until the signaling phase for m is completed. Also in this
case, the inter-partition synchronization lies on the critical path
of execution of operations, limiting throughput. Further, the
need for using of atomic multicast for both SPOs and MPOs
imposes a non-negligible overhead with respect to the case
of plain SMR: in fact, atomic multicast is known to be more
expensive than consensus, and SMR can order all operations
using solely consensus.

Unlike all the above systems, Genepi executes any MPO
synchronization activity as a background process, fully over-
lapped with the processing of operations. Further, Genepi
synchronizes MPOs via a highly scalable consensus protocol,
which requires the participation exclusively of the partitions
that are actually involved in the processing of MPOs. Finally,
Genepi’s design ensures that SPOs can be executed after
having been ordered via a plain consensus protocol involving
solely the replicas of their target partition, restricting the use
of additional distributed coordination schemes only to MPOs.

c) Atomic multicast protocols: The MPO synchroniza-
tion scheme employed by Genepi, which we called Scraper,
is inspired by Skeen’s total order multicast algorithm and to
the subsequent, fault-tolerant versions that were proposed in
the literature [15]. Similarly to Skeen’s algorithm, Scraper
aims to ensure that if two processes/partitions are involved



by the recipients of two messages/MPOs, say m1,m2, both
processes/partitions deliver/execute them in the same order.
Unlike Skeen’s algorithm, though, Scraper allows processes
to establish a lower bound on when a given MPO should be
processed — a property that is key to support Genepi’s idea
of scheduling the execution of MPOs in the future, in order
to overlap their synchronization and operation processing.

III. SYSTEM AND DATA MODEL

We consider a distributed system consisting of a set of
interconnected processes S = {s1, ..., sn}. A process may fail
by crashing, but it does not experience arbitrary faults, i.e.,
Byzantine faults do not occur. Set S is logically subdivided
into P disjoint groups of processes, S1, ..., Sp, where P is
the number of data shards, or partitions, of the whole data
set. All processes of a group replicate the same partition, and
we assume partitions to be disjoint, namely, the intersection
of data items in any pair of partitions is the empty set.

Clients interact with the system by submitting operations,
along with any necessary input parameter. Each operation is
a sequence of actions, which either reads or writes a data
item or performs deterministic computations. We say that a
partition is involved by an operation, if the operation reads
or writes any data item belonging to that partition. If an
operation only involves a single partition during its execution,
it is called as a single-partition operation (SPO); respectively,
an operation that involves more than one partition is named
as an multi-partition operation (MPO). If an MPO’s involved
partitions need to exchange data to execute it, we name this
type of MPOs as dependent MPOs; otherwise, we call it as
independent MPOs. An example of the former is an MPO that
reads two data items of two partitions, and sets the values of
both to the sum of both; the latter can be an MPO that blindly
updates data items of multiple partitions. As in typical PRSM
systems [4], [3], we assume having an approximation about
the set, possibly a superset, of the partitions that an operation
will involve. Though, we do not assume knowing a-priori the
exact data items to be accessed.

Finally, Genepi targets linearizability. A system is lineariz-
able if there is a way to reorder the client operations in a
sequence that (i) respects the semantics of the operations, as
defined in their sequential specifications, and (ii) respects the
real-time ordering of commands across all clients [16], i.e.,
if an operation completes before the invocation of another
operation in real time, then the second operation should be
ordered after the first one.

Communication primitives A process relies on the use of
multi-instance consensus to reliably replicate states within its
replication group. The consensus is defined by the primitives
C-PROPOSE(v, r) and C-DECIDE(v, r), where v is an arbitrary
value and r is an instance number. Consensus guarantees that
(i) if a process decides v then some process proposed v (uni-
form integrity); (ii) no two processes decide different values
(uniform agreement); and (iii) if one or more correct processes
propose a value then eventually some value is decided by all
correct processes (termination). We assume that the system

provides sufficient guarantees to implement consensus, e.g.,
an asynchronous system equipped with an eventually perfect
failure detector oracle and in which a majority of process in
each group is correct (does not crash).

One-to-one communication uses primitives SEND(p,m) and
RECEIVE(m), where m is a message and p is the process m
is addressed to. If sender and receiver are correct, then every
message sent is eventually received. Further, a process can
address a message to processes of a group, using reliable
multicast primitives. Processes use R-MULTICAST(g,m) to
reliably send a message m to all processes in group g,
and message m is delivered at the destinations with R-
DELIVER(m). Reliable multicast has the following properties:
(i) if a correct process reliable-multicasts m to g, then every
correct process of group g reliable-delivers m (validity); (ii) If
a correct process reliable-delivers m, then every correct pro-
cess in its replication group reliable-delivers m (agreement);
(iii) for any message m, every process p in g reliable-delivers
m at most once, and only if some process of its group has
reliable-multicast m previously (integrity).

IV. GENEPI

Like in classic, i.e., fully replicated, SMR, Genepi operates
according to an order-then-execute paradigm: Genepi operates
in rounds, and, in each round, processes first execute an
agreement protocol to agree on which operations shall be
included in that round; then operations are actually executed.

However, since Genepi targets a partial replication model,
it departs from the classic SMR approach in one fundamental
aspect. In order to take full advantage of the scalability
potential of partial replication, Genepi ensures a key property,
which goes under the name of genuineness [17], [18], [19]
(or minimality [6]) in the literature: Genepi involves a process
in the ordering and execution phases of an operation only if
that operation requires accessing any of the data partitions
maintained by that process.

Genepi also departs from existing PRSM for what concerns
the management of MPOs. As already discussed, in fact, co-
ordinating the execution of MPOs is inherently more complex
and expensive than for the case of SPOs and the mechanisms
used by existing PRSM solutions to regulate the execution
of MPO impose additional latency on the critical path of
execution not only of MPOs but also of SPOs.

In order to avoid this issue, Genepi exploits a simple,
but effective idea: scheduling the execution of SPOs in the
present execution round, while postponing the execution of
MPOs to future execution rounds. By moving the execution
of MPOs to future execution rounds, Genepi trades off the
latency perceived by MPOs, in order to enhance the global
system throughput in two ways: i) by decoupling the execution
of SPOs and MPOs, to ensure that the slower ordering phase
incurred by MPOs does not hinder the execution of SPOs;
ii) by overlapping the ordering phase of MPOs with the
execution of other operations (both SPOs and previously
received MPOs), to minimize the chance that a replica has to



halt processing operations as it is still waiting for completing
the ordering phase of some MPOs.

Genepi pursues these goals by leveraging a new abstraction,
which we called Scraper. Scraper exposes a consensus-like
interface that allows replicas to specify lower bounds on the
rounds in which MPOs and SPOs are to be scheduled and
to reach agreement on which operations each round should
ultimately include. In fact, the Scraper abstraction allows for
greatly simplifying the design of Genepi, by decoupling, in a
modular way, the problem of estimating the earliest round in
which MPOs should be scheduled from the problem of how to
design a scalable and fault-tolerant consensus protocol (whose
complexity is encapsulated by Scraper).

In the following, we first detail the specification of the
Scraper abstraction (§IV-A) and how it is used by Genepi
to implement a scalable PRSM (§IV-B). Next, we present a
protocol that implements the Scraper abstraction (§IV-C).

A. Scraper specification

Scraper provides a consensus-like interface designed to meet
the needs of PRSMs and exposes two primitives:
• S-PROPOSE(SPOs, rSPO,MPOs, rMPO) allows pro-
cesses to input a set of SPOs and a set of MPOs, and the
corresponding rounds in which they propose to execute such
operations.
• S-DECIDE(OPs, round) notifies which set of operations,
OPs, are to be included in a given round.

The properties guaranteed by Scraper are specified below:
• Operation-Integrity: if an operation op is decided, it

must have been proposed. Also, a process p decides an
operation op at most once and only if p is involved by
op.

• Round-Integrity: a process decides for a round at most
once, and only if some process has proposed for that
round.

• Uniform agreement: no two processes decide the same
operation in different rounds.

• Monotonicity: if an operation is proposed in round r, it
can only be decided in a round r′ s.t. r′ >= r

• Minimality: if a correct process p sends or receives a
message in order to decide on an operation op, then p is
involved by op.

• Round termination: if a correct process proposes for a
given round, it eventually decides for that round.

• Operation termination: if a correct process proposes an
operation op, then op is eventually decided by all the
correct processes involved by op.

We note that the above specification defines an abstraction
that stands at a middle ground between consensus and atomic
multicast.

On the one hand, the propose/decide interfaces exposed by
Scraper resemble the ones offered by multi-instance consensus
protocols (like Multi-paxos [20]); further, the Uniform agree-
ment, Round termination and Operation termination properties
embed typical safety and liveness properties of multi-instance
consensus protocols.

On the other hand, analogously to atomic multicast, Scraper
ensures that a process decides an operation only if that oper-
ation involves the manipulation of a data partition hosted by
that process (Integrity). In fact, Scraper reinforces this property
via the Minimality guarantee, which prevents processes not
involved in an operation to participate at all, by exchanging
any message, in the decision process for that operation.
Scraper’s minimality property is, in fact, an adaptation of an
homonymous property defined by Guerraoui and Schiper [6]
for atomic multicast, which is also sometimes referred to
as genuineness in partial replication schemes, and is crucial
to materialize the scalability potential of partially replicated
systems.

Overall, differently from Consensus, Scraper’s abstraction
targets a partially replicated system and, as such, allows
different processes (replicating different partitions) to decide
different operations in a given round. Unlike Atomic multicast,
though, it allows processes to exert control on the order with
which different operations (i.e., SPOs and MPOs) should be
decided — whereas Atomic multicast provides no means for
an application to intentionally postpone the delivery of specific
messages.

A final note for the Monotonicity property, which guarantees
that operations are decided either in the round in which they
were proposed, or in future rounds. This property allows pro-
cesses that have already decided for round r, and that receive
(e.g., due to system’s asynchrony) proposals for including
some operation op in a round r′ ≤ r, to include op in a
round r′′ > r. Such a flexibility is necessary to ensure that
the decision on which operations to include in a round can
be achieved without having necessarily heard from all the
processes in the system — a crucial property not only for
scalability purposes, but also for fault-tolerance.

B. Genepi’s execution

Algorithm 1 reports the pseudo-code of the Genepi protocol.
Processes periodically batch, each α time units, (e.g., typical
α values are 5-10 msecs) the SPOs and MPOs received from
local clients1 and invoke the S-PROPOSE primitive to sched-
ule the SPOs’ execution in the current round (identified by
prop round in the pseudo-code) and MPO’s execution in the
future by δ rounds. The rationale underlying this mechanism
is the following: reaching agreement on SPOs involves solely
an intra-group synchronization, which is faster than the inter-
group synchronization required by MPOs. Thus, on the one
hand, scheduling SPOs for execution in the current round is
optimal for latency; on the other hand, by scheduling MPOs
for a “sufficiently-large” future round, Genepi can effectively
remove from the critical path of execution the latency of
the MPOs’ synchronization: in fact, provided that the MPOs’
synchronization takes less than δ · α, the synchronization for
the MPOs scheduled for round r+δ (which can run in parallel
with processing of rounds r, r + 1, . . . , r + δ) will be already

1If a process receives an operation that does not involve its local partition,
it asynchronously sends this operation to any of its involved partition to be
batched.



determined by the time round r + δ starts.We will further
discuss how to choose a suitable value of δ in §V-A.

Next, processes wait for operations for the current round
to be agreed upon via the S-DECIDE (line 13), and deter-
ministically order them. This aims to ensure that MPOs in
the same round will be executed by all involved partitions
in the same order. We assume a single threaded-execution
model2, in which processes execute operations sequentially:
if an action of an operation is a deterministic computation,
a process directly executes it; if an action is an update, a
process only applies the update if this action updates a local
key; read actions, though, may require communication among
partitions. For instance, an operation may read two data items
in two partitions, and set the values of both to their sum,
which requires cross-partition communication. To handle this
case, when a partition of an MPO reads a local data item,
it multicasts this data item to all other involved partitions;
accordingly, if a partition reads a non-local data item, it
waits until it receives the needed data item from some other
partitions.

In order to ensure linearizability, Genepi relies on an addi-
tional mechanism, which aims at synchronizing the execution
of independent operations, which, we recall, can be processed
independently at any process. Fig. 1a illustrates the anomaly
that would arise if independent operations were allowed to
externalize a reply as soon as they had completed processing
at a process. In this example, c2 completes before c3 starts,
so c2 should be ordered before c3. However, c2 reads from c1
and c3 misses the update of c1.

Genepi tackles this problem via the following signaling
mechanism: when a process starts executing an independent
MPO it notifies all the involved partitions; when it completes
processing an independent MPO, it does not immediately
externalize the corresponding reply to the client, but waits until
the operation has been signaled by all the involved partitions.
Also, any operation op ordered after an independent MPO
mpo can be immediately processed, but its reply must also
be postponed until the reply of mpo has been externalized
to its client. This is achieved by inserting all the replies in
a queue (reply queue), and delivering a reply only when
the corresponding operation is the first in queue and, if the
operation is an independent MPO and it has already been
signaled by every partition (lines 13-29).

Referring to the example in Fig. 1a, this mechanism ensures
that px notifies the clients of c1 and c2 only after having
received the signal for c1 by py. This way, c2 and c3 overlap
their execution in real-time, becoming concurrent operations
and safeguarding linearizability.

We name this technique “delayed reply”, as it delays the
notification of replies to clients, without, however, blocking

2This is done to simplify presentation. Supporting multi-threaded execution
in Genepi would require adopting a deterministic concurrency control scheme
in order to ensure that processes serialize operations in an order compliant
with the one established by Genepi. Several solutions exist in the literature,
e.g., [21], [4], [14], which could be integrated with Genepi to relax this
assumption.
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(a) Linearizability violation: c2 reads from c1, c3 misses updates of c1, but c3
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(b) Delayed reply: px executes c1 and c2, but only replies to clients when c1 has
been started everywhere.

Fig. 1: Linearizability violation and delayed reply.

processing of operations — unlike the signaling scheme used
in S-SMR [3] (see §II and §VI). We note that dependent MPOs
do not need to explicitly send signal among partitions (line 15):
partitions need to exchange data when executing a dependent
MPO, which already achieves the effect of signaling.

C. Scraper

Algorithm 2 reports the pseudo-code of the proposed im-
plementation of Scraper. To simplify presentation, the pseudo-
code relies on the assumption (met by Genepi) that if a
client invokes the S-PROPOSE primitive N times, it passes as
input parameters for rSPO and rMPO the values [0,1,. . . ,N]
[δ,1+δ,. . .,N+δ], respectively.

Upon the invocation of S-PROPOSE at a process p, p
executes an instance of an intra-group consensus aimed to
i) exchange (and merge) the SPOs and MPOs locally input
via S-PROPOSE at each process in the group, and ii) make
sure that the process group agrees, in a fault-tolerant way,
on the resulting set of merged operations. More in detail,
when S-PROPOSE is invoked with rSPO

l as input parameter,
p uses a consensus instance that is uniquely identified by the
tuple 〈O, rSPO

l 〉, where O denotes the sequence of consensus
instances used to replicate intra-group operations. Note that we
are assuming that the consensus primitive, in this case, merges
the sets of SPOs and MPOs proposed by each process and
that, in case processes propose different values for rMPO

l (the
round in which to schedule their MPOs), consensus outputs
the maximum value among all the proposals that it includes
in its C-DECIDE event. We do not explicitly model this in the
pseudo-code to simplify presentation.



Algorithm 1: Genepi execution
1 Algorithm variables
2 prop round: the next round a leader should propose.
3 exec round: the next round a process should execute.
4 reply queue: a FIFO queue storing pending operations to be replied.

Each entry is in the form of {operation, signals to receive}.
5 Initialization:
6 exec round ← 0; prop round ← 0
7 initialize reply queue as an empty queue

8 // Batch operations and Scraper-propose them
9 upon new batch of 〈SPOs,MPOs〉 ready

10 S-PROPOSE(prop round, SPOs, prop round+δ, MPOs)
11 prop round ← prop round + 1

12 // Execute decided operations
13 upon S-DECIDE(round, decided ops) and round = exec round
14 for op ∈ sort(decided ops)
15 if op.is mpo() and op.is independent()
16 for p ∈ op.partitions
17 R-MULTICAST(p, {signal, op})
18 process(op)
19 reply queue.append(op, op.partitions - 1)
20 exec round ← exec round + 1

21 upon deliver({signal, op})
22 //reduce by one the signal counter of op in reply queue
23 reply queue.getOp(op).signal()
24 while !reply queue.empty()
25 {check op, remain signal} ← reply queue.head()
26 if remain signal = 0
27 reply(check op)
28 reply queue.dequeue()
29 else break

Next, p checks whether any of the operations that were
locally input via S-PROPOSE were omitted in the set of oper-
ations decided for the corresponding consensus instance. This
could happen, e.g., if p was suspected to have crashed and the
consensus implementation timed out waiting for p’s proposals.
In this case, p must S-PROPOSE again the missing operations
in some future round, in order to guarantee that these are
eventually decided by Scraper. To this end, p determines (e.g.,
by broadcasting a query within the process group, which we
omit in the pseudo-code for simplicity) what is the smallest
consensus instance of type 〈O, c〉 for which its group has not
yet run consensus, and S-PROPOSE the missing SPOs/MPOs
for round c/c+ δ, respectively.

At this point the group has already established which SPOs
will be included in round rSPO

l . However, it is still necessary
to ensure that all the process groups involved in the locally
received MPOs agree on the round in which these MPOs
should be included. This responsibility is taken on by the
group leader, which coordinates an inter-partition agreement
algorithm that is similar in spirit to a fault-tolerant version
of the Skeen’s multicast algorithm presented in [6], [5] and
works as follows:
1) The group leader sends a request message to the leaders
of all the partitions involved by the MPOs gathered by its
group. These messages are tagged with a unique identifier3 and

3These are obtained via the getID(roundID) primitive, which ensures that
any process in the same group will deterministically obtain the same unique
identifier if it passes as input parameter the same rounID value.

specifying the target scheduling round for its MPOs (rMPO).
Note that to ensure minimality, MPOs are only sent to their
involved partitions (lines 17-19).
2) Group leaders wait for a small timeout value, β4, to gather
request messages from other partitions’ leaders and store
them in the reqs set. Next, before replying to the received
request messages, each leader replicates within its group,
using consensus instance 〈R, rSPO

l 〉, the received requests
along with rMPO, namely the round in which its group had
previously agreed, via consensus instance 〈O, rSPO

l 〉, to order
its own MPOs. This step is done for fault-tolerance, as it
ensures that if the leader is suspected (possibly falsely) to
have crashed, any other process attempting to fail-over will
deterministically behave like the original leader would in the
following step (lines 20-24).
3) Next, leaders reply to the received request messages,
sending back a vote message specifying as vote round the
maximum between the value proposed by the sender of the
request message and rMPO. As it will be clearer shortly, this
is aimed to ensure that if a process has already triggered an S-
DECIDE for a round r, it will necessarily specify a vote round
that is larger than r in any vote message it may ever send.
For each vote message that a leader sends, it also adds a
corresponding entry in a local queue, opQ. More in detail,
in this queue it adds a tuple containing the unique request
identifier, the corresponding vote round and operations and
a state value set to prepared (P) (lines 25-28).
4) Each leader gathers vote messages from all the involved
partitions and computes the maximum among all the received
round values (final round, line 30): this will be the identifier
of the round in which these MPOs will be eventually S-
decided. Next, the coordinator notifies the involved partitions
by sending back a decision message.
5) When a leader receives a decision message, it updates
the round number of the corresponding entry in opQ and sets
its state from pending (P) to decided (D, line 34).
6) The MPOs to be included in a given round rD are de-
termined by the leader of each group, when the following
two conditions are met: i) the SPOs for the round rD have
already been determined (line 36) and ii) in the queue there
are either no entries for round rD (meaning that this round
will not include any MPO, lines 38-42) or that all the entries
for rD are in a decided state (and in this case these entries will
contain all the MPOs to be decided in round rD by this process
group, lines 43-45). Note that the first condition implies that
the process group has already agreed, via consensus instance
〈O, rD〉, to reply to any future incoming request messages
with a vote round=rMPO > rD5. Hence, once this first
condition is met, it is impossible that any process in the group
will ever include in opQ any entry with a round smaller than or

4β should be chosen slightly larger than the inter-group communication
latency, to allow the leaders of different partitions to mutually exchange their
request messages.

5Recall that we are assuming that when applications invoke S-PROPOSE,
they always request to schedule MPOs in a future round w.r.t. SPOs, i.e.,
rMPO
l > rSPO

l .



Algorithm 2: Scraper execution
1 Algorithm variables
2 rD : the next round to decide
3 round spos: a map containing SPOs for each round
4 opQ: a queue storing pending/decided (P/D) MPOs, with entries in the

form of < id, round number, operations, state >. Entries are in
ascending order by their round number.

5 Initialization:
6 roundD ←0
7 initialize opQ as an empty queue, round spos as empty map

8 upon S-PROPOSE(SPOsl, rSPO
l , MPOsl, rMPO

l )
9 C-PROPOSE([SPOsl, MPOsl, rMPO

l ], 〈O, rSPO
l 〉)

10 wait C-DECIDE([SPOs, MPOs, rMPO], 〈O, rSPO
l 〉)

11 if any proposed SPOs or MPOs is not included in C-Decide
12 discover what is smallest consensus instance, 〈O, c〉, that is
13 still undecided by the process group
14 S-PROPOSE([missedSPOs, c, missedMPOs, c+ δ], c)
15 round spos.put(rSPO

l , SPOs)
16 if process is leader
17 for p ∈ MPOs.partitions()
18 OPs ← {ops∈MPOs∧p ∈MPOs.partitions()}
19 send(p.leader, [request, getID(rSPO

l ), rMPO , OPs])
20 wait for a timeout β to gather incoming request messages
21 buffer the received request messages in the set reqs
22 // replicate the received requests within the group
23 C-PROPOSE([reqs], 〈R, rSPO

l 〉)
24 wait C-DECIDE([reqs’],〈R, rSPO

l 〉)
25 for m=[req id, min round, OPs] in reqs’
26 vote round ← max(min round, rMPO)
27 opQ.add(red id,vote round, OPs, P)
28 send(m.sender(), [vote, req id, vote round])

29 upon receive [vote, req id, round] from all involved partitions
30 final round ← max. round received from any partition
31 for p ∈ all involved partitions
32 send(p.leader, [decision, req id, final round])

33 upon receive [decision, req id, final round]
34 opQ.updateById(req id, final round, D)

35 // SPOs for rD have been already decided
36 upon round spos.get(rD)6= ⊥∧ process p is leader
37 if opQ.first.round=rD

38 // wait until all pending MPOs for rD have been decided
39 wait (∀op∈ opQ.getByRound(rD):op.state= D)
40 decided mpos ← Union of all MPOs in opQ for round rD

41 R-MULTICAST(p.partition, [mpos, rD , decided mpos])
42 opQ.removeAllEntriesByRound(rD)
43 else // opQ.first.round>rD
44 // No MPOs are to be included in this round
45 R-MULTICAST(p.partition, [mpos, rD , ∅])
46 rD ← rD+1

47 upon R-DELIVER([mpos, round, MPOs]) ∧ round spos.get(round)6= ⊥
48 trigger S-DECIDE(i, round, round spos.get(round) ∪ MPOs)

equal to rD. As a consequence, as soon as the second condition
becomes true, the set of decided entries for rD in opQ can no
longer vary, and can be safely delivered.
7) As a final step, when a leader determines the set of MPOs
to be included in round rD, it informs via a reliable multicast
primitive all the members of its groups via a mpos message.
This ensures that eventually all processes in the same group
will trigger a S-DECIDE event for round rD.

V. DISCUSSION

This section discusses how far in the future should MPOs
be scheduled to maximize throughput, without unnecessarily

hindering latency (§V-A) and the fault-tolerance of Genepi.

A. Choosing δ

In §IV-B we anticipated that, in order to effectively remove
the latency of the inter-group synchronization required by
MPOs (lMPO) from the critical path of execution of the
system, the MPOs gathered at round r should be scheduled
in a future round r + δ such that δ · α > lMPO (recall that
α is the batching period in Genepi). This condition, in fact,
ensures that by the time round r + δ starts, the MPOs to be
included in that round will have already been determined.

By analyzing the Scraper algorithm proposed in the previous
section, we can now define more accurate indications on
how δ should be tuned. Let us denote the average one-
hop inter-group communication latency as li, the latency to
run consensus within a group as lc, and the latency of an
intra-group reliable multicast as lrm. The expected latency to
complete the synchronization phase for MPOs of Algorithm 2,
can then be expressed as:

lMPO = 3 ∗ li + 2 · lc + β + lrm

which accounts for the latency of 3 inter-group communication
steps (to send request, vote and decision messages),
two intra-group consensus instances (Alg.2, lines 9-10 and
23-24), the timeout β (Alg. 2, line 20) and the final reliable
broadcast.

In order to avoid imposing any delay to S-DECIDE for a
given round r (Alg. 2, line 47), it is actually sufficient that
the MPOs synchronization for round r ends by the time the
SPO synchronization for round r is completed, which can be
estimated as the time to execute an intra-group consensus (lc).
Keeping this into account we have: lMPO > δ · α+ lc.

Overall, an appropriate value for δ should satisfy:

(δ − 1) ∗ α ≤ 3 ∗ li + β + lc + lrm ≤ δ ∗ α (1)

B. Fault-tolerance

The use of consensus in Genepi ensures that each group
acts as a single, highly-available logical process. Indeed, to
simplify reasoning on fault-tolerance, it is possible to see
the two consensus instances 〈O, c〉, 〈R, c〉 used in each round
c to replicate, respectively, batched operations and voted
requests, as two write-once registers (wo-registers) [22]. As
its name suggests, a wo-register can only be written once
even if multiple processes concurrently try to write to it, and
all subsequent writes return the first written value; reads to
an empty wo-register returns the initial empty value, while
reading a written wo-register returns the last written value.

In case the current leader is suspected to have failed, a new
group leader can be elected to perform fail-over. The newly
elected leader can recover the state of batched operations
and voted requests via the corresponding wo-registers, and
accordingly initiate ordering requests for undecided batched
operations and/or reply to votes that have been replicated but
not yet replied. This is safe even in case the original leader
was actually correct, i.e., it was subject of a false failure
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Fig. 2: Comparing Genepi and Calvin while varying the scale of the system and the MPOs (Micro benchmark).

suspicion. In fact, even in the presence of multiple concurrent
leaders, the wo-register abstraction guarantees that they will
necessarily synchronize their state before externalizing any
output. The only issue that has to be accounted for, in such
a scenario, is that multiple leaders may concurrently initiate
the ordering requests of the same operations. However, as each
ordering request is tagged by a deterministic unique id (§IV-C),
duplicate requests can easily be filtered out, thus making the
ordering process idempotent.

VI. EVALUATION

This section reports the results of an experimental study
aimed at quantifying the relative performance achievable by
Genepi when compared to state of art PRSM protocols. We
start by describing the implementation of the various protocols
we evaluate, then we detail the experimental setup. Finally, we
present evaluation results.

A. Implementation

In this study, we shall consider three protocols: Calvin [4],
Genepi and a variant of Genepi, which we called Genepi-DE
(delayed execution).

For Calvin we used the publicly available open source
C++ implementation6, which we used also as starting point
to develop Genepi and Scraper. Genepi-DE allows us to
compare the performance of Genepi’s delayed reply signaling
mechanism and of the signaling mechanism proposed in S-
SMR [3], which we call delayed execution. As the name
suggests, the S-SMR signaling scheme prevents new opera-
tions to be processed, while there is still some pending MPO
— where Genepi’s signaling mechanism only postpones the
notification of replies to clients, but never prevents process
from processing operations. The choice of implementing S-
SMR’s signaling scheme on top of Genepi allows us to
compare the synchronization mechanisms of Genepi and S-
SMR in a fairer, and more focused, way, since: i) Genepi,
just like Calvin, is implemented in C++, whereas the only
available implementation of S-SMR is in Java; ii) S-SMR’s
implementation relies on an implementation of atomic mul-
ticast (based on Multi-ring Paxos [23]) that, unlike Scraper,
does not ensure the minimality/genuineness property. These
implementation differences are quite substantial and, as such,

6https://github.com/yaledb/calvin

would not allow to perform a fair, direct comparison between
S-SMR and Genepi.

B. Experimental setup

Deployment and parameters Our experiment was conducted
in the Grid’5000 testbed7. We used machines of the ‘suno’
cluster from the Sophia site. Each machine is equipped with
two Intel Xeon E5520 CPU, each hosting 4 cores. Each
machine has 32 GB of memory and has two Gigabit Ethernet
cards. In the experiments we used 5, 10, 20 and 40 nodes.
According to our measurement, the average round-trip time
between nodes in the cluster is 0.4 ms. Due to hardware
resource constraints, we do not enable replication in the
experiment; instead, each node logically acts as a highly
available partition, and for each replication request (due to C-
PROPOSE invocation of consensus), we inject 3ms of delay to
simulate the latency of consensus. We use 5ms as the duration
to batch operations in Genepi (α) and 0.8 ms for the β timeout.
We set δ = 2, which is the recommended value obtained using
Eq. 1 and assuming li=0.4, lc=3 and lrm = 0.4. This means,
that MPOs are scheduled to be executed two rounds in the
future of the current one.

Workloads The evaluation is based on two benchmarks:
the TPC-C benchmark [24] and a micro benchmark. The
TPC-C benchmark consists of five types of transactions
(i.e. operations): New-Order (45%), Payment (43%), Delivery
(4%), Order-Status (4%) and Stock-Level (4%). Of these five
transactions, New-Order, Payment and Delivery are update
transactions and the last two are read-only transactions. The
New-Order transaction accesses a single partition with 90%
probability and two partitions with 10% probability, and
Payment accesses one partition with 85% probability and
two partitions with 15% probability; the other three types of
transactions always access a single partition. On average, 10%
of transactions are distributed transactions, i.e., MPOs.

We also designed a micro benchmark that allows us to have
precise control over different workload parameters. Unless
otherwise specified, each operation reads and updates 10 keys.
If an operation is an SPO, it accesses all 10 keys from a single
partition; if an operation is an MPO, the number of keys to

7https://www.grid5000.fr/
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Fig. 3: Comparing Genepi and Calvin while varying the scale of the
system (TPC-C).

access per partition is calculated as 10/number of involved
partitions.

All the results represent the average of at least three runs.

C. Scalability

This experiment compares the scalability of Genepi and
Calvin. We do not evaluate Genepi-DE in these experiments,
since Genepi-DE differs from Genepi only in the handling of
independent operations, and the workloads considered here do
not include independent MPOs.

First, we consider the micro benchmark. We vary two
parameters: the scale of the systems (5, 10, 20 and 40 nodes)
and the percentage of MPOs (1%, 10% and 50%). The number
of partitions an MPO accesses is fixed to two (we evaluate
the impact of this parameter later, in Section VI-D). For
all workloads in Fig. 2, Genepi is able to achieve higher
peak throughput. Essentially, this is because Genepi orders
MPOs using Scraper, which is able to (usually) totally overlap
the ordering of MPOs with the processing of operations.
Conversely, Calvin’s ordering phase for MPOs lies on the
critical path of operation processing, which can greatly hamper
throughput. Note that this advantage is amplified when a
system has larger scale, i.e. a larger number of nodes, as
the duration of Calvin’s ordering phase tends to have higher
latency due to higher chance of incurring abnormally large
message delays or stragglers. For workloads with 1% of
MPOs in Fig. 2, Genepi achieves 38%, 47%, 57% and 83%
throughput gains over Calvin, with 5, 10, 20 and 40 nodes in
the system respectively. However, even though the throughput
of Genepi is significantly higher than Calvin for workloads
with 1% and 10% of MPOs, the improvement is not prominent
for workloads with 50% of MPOs, where both systems achieve
a relatively low throughput. In fact, recall that the execution
of dependent MPOs requires involved partitions to exchange
messages, i.e., to synchronize, which is dramatically slower
than the execution of SPOs. As such, for the workload with
50% of dependent MPOs, the bottleneck in both systems is
represented by the execution of MPOs.

Next, we evaluate both systems using the TPC-C bench-
mark. We vary the scale of the system and use the transaction
mix described in §VI-B. Similar to the previous experiment,
Fig. 3 shows that Genepi consistently achieves higher peak
throughput than Calvin, and the relative improvement in-
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Fig. 4: Comparing Genepi and Calvin while varying the %MPOs
and no. of involved partitions.

creases with the scale of the system: with 5, 10, 20 and 40
nodes, Genepi achieves 18%, 21%, 34% and 45% of through-
put gain over Calvin. This experiments confirms that Genepi
can deliver substantial throughput gains also in presence of
complex, realistic workloads.

Finally, in these two experiments, we observe that, with
Genepi, the average latency of MPOs is about 10ms
(7ms∼14ms) higher than SPOs: we argue that this is a small
price to pay, which is hardly noticeable in typical scenarios
(especially considering that the actual user-perceived latency
includes, in practice, also the network latency between the
client and the system, which is not considered here.), in order
to enable much larger gains in terms of system’s throughput.

D. Multi-partition operations

While the previous experiment has shown that Genepi
achieves better performance than Calvin in workloads where
MPOs access small number of partitions, in this experiment we
are interested in assessing how the two protocols perform when
MPOs access a larger number of partitions. We fix the scale of
the system to ten nodes and vary the percentage of MPOs (1%,
10%, 50%) and the number of partitions an MPO involves (2,
5 and 10). Also, in this case, MPOs are all dependent.

Figure 4 shows that while Genepi provides higher through-
put and lower latency than Calvin in most cases, it provides
high latency when the workload has high percentage (50%)
of MPOs and MPOs access large number of partitions (5 or
10). Essentially, because of these two characteristics, Scraper
has to involve large number of nodes to order MPOs almost
for each round, similar to Calvin which has to synchronize
all nodes at each round. Furthermore, as Scraper requires
more communication steps than Calvin to order messages, this
makes the overall ordering latency of Scraper to be larger than
Calvin. Nevertheless, we argue that the combination of these
two cases are rare in practical applications, which (like TPC-
C) normally strive to minimize the frequency of MPOs by
optimizing the data partitioning scheme [25], [26], [27].

E. Signaling mechanism for independent MPOs

Finally, we evaluate the performance of Genepi and Genepi-
DE when handling workloads with independent MPOs, which
update keys (instead of first reading and then updating them,
as in the previous experiments) from multiple partitions.
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To achieve linearizability, Genepi employs the delayed re-
ply technique, while Genepi-DE employs S-SMR’s signaling
mechanism, which delays the execution of operations while
waiting to gather signals for independent MPOs.

Figure 5 shows that the throughput of Genepi-DE drops dra-
matically even for a small proportion of independent MPOs, as
we had anticipated in §I: when MPOs involve two partitions,
a workload with 10% of MPOs achieves 50% less throughput
than a workload with 1% of MPOs; this is even aggravated for
workloads where MPOs involve ten partitions, where a work-
load with 10% MPOs achieves almost 80% less throughput
than the workload with 1% MPOs. By delaying reply rather
than delaying the execution of operations, the performance of
Genepi is much more stable even with increasing number of
MPOs: for the above two cases, the performance of Genepi
only drops by 4% and 47%, respectively. This allows Genepi
to achieve significant performance gains over Genepi-DE,
namely up to 5.5× higher throughput for workloads with 50%
of MPOs accessing two partitions.

VII. CONCLUSION

In this paper, we propose Genepi, a novel PRSM protocol
that efficiently coordinates the execution of multi-partition
operations. This is achieved by pursuing two key ideas: (i)
removing the inter-partition coordination required by MPOs
from the critical path of execution of any operation in the
system, and (ii) maximizing the scalability of the MPO
synchronization mechanism, by leveraging on a novel, fault-
tolerant distributed agreement scheme, called Scraper.

Via an experimental study, based on both synthetic bench-
marks and TPC-C, we show that Genepi achieves significant
throughput gain over state of the art PRSM systems, at the
cost of a negligible latency overhead for MPOs.
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