
Virtues and Limitations of Commodity
Hardware Transactional Memory

Nuno Diegues, Paolo Romano, Luís Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{nmld, paolo.romano, ler}@tecnico.ulisboa.pt

ABSTRACT
Over the last years Transactional Memory (TM) gained grow-
ing popularity as a simpler, attractive alternative to classic
lock-based synchronization schemes. Recently, the TM land-
scape has been profoundly changed by the integration of
Hardware TM (HTM) in Intel commodity processors, rais-
ing a number of questions on the future of TM.

We seek answers to these questions by conducting the
largest study on TM to date, comparing different locking
techniques, hardware and software TMs, as well as different
combinations of these mechanisms, from the dual perspec-
tive of performance and power consumption.

Our study sheds a mix of light and shadows on currently
available commodity HTM: on one hand, we identify work-
loads in which HTM clearly outperforms any alternative syn-
chronization mechanism; on the other hand, we show that
current HTM implementations suffer of restrictions that nar-
row the scope in which these can be more effective than state
of the art software solutions. Thanks to the results of our
study, we identify a number of compelling research problems
in the areas of TM design, compilers and self-tuning.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques - Concurrent
Programming

Keywords
Empirical Study; Synchronization Techniques; Transactional
Memory; Performance; Energy Efficiency

1. INTRODUCTION
The advent of multi-core architectures has brought con-

current programming to the forefront of software develop-
ment. For many years, locking has represented the de-facto
standard approach to synchronization in concurrent applica-
tions. However, the inherent complexity and error-proneness
of fine-grained locking [32] has motivated intense research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628080 .

on alternative methodologies aimed at making parallel pro-
gramming accessible to the mass of software developers.

Transactional Memory (TM) [27] is one of the most promi-
nent proposals in this sense. With the TM abstraction, pro-
grammers are required only to identify which code blocks
should run atomically, and not how concurrent accesses to
shared state should be synchronized (as with locks). The
TM is then responsible for guaranteeing correctness by abort-
ing transactions that would generate unsafe histories.

Over the last decade a large body of TM research focused
on software-based implementations (STM) (e.g. [13, 17]).
Unlike hardware implementations, however, STM requires
software instrumentation of read and write memory accesses
to trace conflicts between concurrent transactions. This in-
strumentation can, in certain scenarios, introduce large over-
heads and hinder performance with respect to conventional
fine-grained locking [5]. HTM support is thus desirable, but
its absence from commodity processors caused most research
to be evaluated solely on simulators (e.g. [25]) — the only
notorious exception being the Rock processor [12], which
was never commercialized. Recently, the maturing of TM
research led to a breakthrough that changed drastically this
scenario: two major market players, IBM and Intel, intro-
duced HTM support in their latest processors [37, 3, 36],
targeting, respectively, HPC and commodity systems. This
represents a significant milestone for TM, mainly due to the
predictable widespread availability of Intel Haswell proces-
sors, which bring HTM support to millions of systems rang-
ing from high-end servers to common laptops.

The advent of HTM in commodity processors raises a
number of questions concerning the future of TM and con-
current programming: how competitive are available HTMs
when compared with state of the art STMs? Will the per-
formance of HTM be sufficiently alluring to turn TM into a
mainstream programming paradigm? What role will STM
play now that HTM is so widely available? How limiting are
the architectural restrictions of existing HTM designs?

In this paper we seek an answer to these questions by
conducting the largest study on TM-based synchronization
to date. We compare, from the twofold perspective of per-
formance and energy-efficiency, a range of synchronization
mechanisms: 6 lock based approaches with different gran-
ularities; 4 state of the art STMs; Intel TSX’s implemen-
tation of HTM; and 2 Hybrid TMs (HyTM) that use STM
and HTM mechanisms in synergy. We study highly hetero-
geneous applications, encompassing 1) STAMP, a de-facto
standard suite of benchmarks for TM, 2) Memcached [35], a
popular in-memory caching system that was recently ported

to use TM, and 3) concurrent data structures that are widely
used as building blocks of parallel applications (yet, hard to
parallelize efficiently). The results of our study allow us to
draw two main conclusions:

Lights and shadows for HTM: Approaches based on TSX
yielded outstanding performance in workloads characterized
by small transactions, such as concurrent data structures
and Memcached, but only with two of the STAMP bench-
marks. TSX performance is strongly dependent on the ac-
cess patterns to L1 cache, and long running transactions
can lead to frequent cache capacity exceptions and spurious
aborts. When transaction-intensity is medium, TSX is only
the best choice for a limited degree of parallelism, and it is
generally better on the energy side than on the performance
side. The impact of its hardware limitations are highlighted
by several STAMP benchmarks that generate long transac-
tions, and in which TSX is outperformed by both locking
and STM solutions. On the other hand, TSX shines as a
synchronization primitive for concurrent data structures, for
which it is by far the best choice in all considered workloads,
with speed-ups up to 3.3× over the best alternative scheme.

STM is still competitive: Our study also shows that STM
is quite competitive as an all-around solution across bench-
marks, workloads, and parallelism degrees. Although STM
was initially proposed as a prototyping alternative to actual
hardware implementations of TM, its evolution throughout
a decade of intense research has resulted in several highly-
optimized mechanisms, which achieve performance compa-
rable to that of fine-grained locking. This does not mean
that STMs embody a perfect solution; instead, this result
highlights the current limitations of HTM support, which
make of STM still the most robust solution to date.

Further, the results of our study unveil a number of critical
issues related with HTM performance and allow for identify-
ing several research problems, whose timely solution could
significantly enhance the chances for HTM to turn into a
mainstream paradigm for concurrent programming:

HyTMs: a missed opportunity? The outcome of our
study for what concerns the efficiency of HyTMs, when em-
ployed in conjunction with Intel’s TSX, is rather grim. The
mechanisms currently adopted to support the simultane-
ous coexistence of HTM and STM induce high overheads
in terms of additional spurious aborts. Our study highlights
that these costs make HyTM generally less efficient than so-
lutions based purely on STM or TSX+locking. This moti-
vates further research in the design of architectural supports
(e.g., non-transactional memory accesses from transactions)
capable of exploiting the potential synergies of HyTMs.

Complexity of HTM tuning. HTM performance can be
significantly affected by the settings of several parameters
and mechanisms. Without proper tuning, TSX suffer av-
erage throughput losses of 72% and of 89% in power con-
sumption. Also, the optimal configuration of these parame-
ters can vary significantly, depending on the characteristics
of the workload. These findings urge for novel approaches
capable of removing from the shoulders of programmers the
burden of manually tuning HTM, by delegating this task to
run-time or compiler based solutions.

Relevance of selective instrumentation. Both TSX and
GCC library for STM trace every memory access performed
within a transaction. We show that this can cause signifi-

cant increases of the transaction footprint’s size, amplifying
the instrumentation overheads in STM, and the chances of
incurring in capacity exceptions in HTM. These results mo-
tivate research on cross-layer mechanisms operating at the
compiler and at the hardware level, aimed to achieve selec-
tive instrumentation in a way that is both convenient for the
programmer and efficiently implementable in hardware.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 overviews the synchroniza-
tion mechanisms considered in the study. Section 4 describes
our methodology, after which Section 5 presents preliminary
experiments aimed at tuning properly TSX. We then present
our study in Sections 6-7. In Section 8 we identify several
research questions suggested by the findings of our study.
Finally, Section 9 concludes the paper.

2. RELATED WORK
Transactional Memory was initially proposed as an exten-

sion to multi-processors’ cache coherence protocols [27]. Due
to the difficulty of rapid prototyping in hardware environ-
ments, researchers resorted to STMs to advance the state of
the art [18, 17, 16, 14]. Simultaneously, hardware-based im-
plementations have also been proposed, whose designs were
validated using simulators [25].

The concern for both performance and power consump-
tion metrics has been only marginally explored in the scope
of TM, and mostly relying on simulation studies that did not
target Intel’s architecture (whose internals are only partially
disclosed). In both [21, 20] the authors assess the behaviour
of different HTM implementations via simulation (the lat-
ter focusing on embedded systems). The approach was also
taken by [2], where the power consumption of one STM was
studied via simulation. More recently, [22] studied both
power consumption and performance in a non-simulated en-
vironment. Yet, this work considered a restricted set of syn-
chronization alternatives focusing mainly on one STM.

As already mentioned, both Intel [37] and IBM [3, 36] have
integrated HTM in their processors. IBM processors target
high performance computing infra-structures that are not
expected to be used in commodity systems. In this work,
we focus on the former (by Intel), for which our results show
aspects and insights that were not highlighted by Intel’s pa-
per [37]. Before the recent release of Intel Haswell proces-
sors, researchers had already proposed some theoretical im-
provements to best-effort HTMs [1, 30]. We integrate these
mechanisms in our HTM-based runtimes, and evaluate them
for the first time using an actual HTM implementation.

Traditional lock-based synchronization techniques have been
thoroughly studied throughout decades. In [19], the authors
show that the power consumption of locking primitives can
be improved by exploring a trade-off between processor deep
sleeping states, frequency downsizing and busy waiting. We
highlight a recent work [10], which studied the impact in
performance of different lock designs and hardware archi-
tectures (without however considering TM).

Our work is also related to the body of literature on per-
formance modeling of TMs, which have relied on methodolo-
gies such as analytical modeling [11, 26], as well as machine
learning [34]. These proposals were applied to self-tune var-
ious TM parameters, and our results clearly indicate the
potentiality and importance of this line of research also in
the scope of HTM.

3. SYNCHRONIZATION MECHANISMS
CONSIDERED IN THE STUDY

In this comparative study we considered the several syn-
chronization mechanisms listed in Table 1:

Locks — Decades of research on lock-based synchroniza-
tion have resulted in a plethora of different implementations,
many times trading off subtle changes with great impact
in performance. We consider 6 different lock implementa-
tions [10] and both coarse and fine-grained strategies. Con-
trarily to the other approaches we used, fine-grained locking
requires a per-application lock allocation strategy, which is
a non-generalizable and error-prone task [32].

STM — With STM, reads and writes to shared memory
(inside atomic blocks) are instrumented to detect conflicts
between transactions. This instrumentation induces over-
heads that can have a detrimental impact on the efficiency
of STMs. Yet, much research has been devoted over the last
years to reduce STM’s overheads. For our study we selected
four state of the art STMs, which are representative of dif-
ferent choices in the design space of TM. These include an
STM optimized for validations at commit-time (TL2 [13]);
to maximize performance at low thread counts (NOrec [7]);
in high contention scenarios (SwissTM [17]); and to mini-
mize instrumentation costs (TinySTM [18]).

HTM — HTM implements a concurrency control scheme
in hardware, avoiding the overheads of STM instrumenta-
tion. In our study we consider Intel TSX’s implementation
of HTM, which is integrated in the family of Intel commod-
ity processors (Haswell). One fundamental design principle
of TSX (and in general of HTM) is its best-effort nature: one
cannot depend exclusively on TSX to synchronize accesses to
data, since a transaction is not guaranteed to commit, even
in absence of contention. Briefly, TSX uses the L1 cache to
buffer transactional writes, and relies on the cache coherence
protocol to detect conflicts. A plausible reason for a transac-
tion to fail in hardware is because its data footprint exceeds
the L1 capacity. Hardware transactions are also subject to
abort due to reasons like page faults and system calls.

As a result, a fallback software synchronization mecha-
nism must be provided to ensure progress in case a transac-
tion cannot be committed with HTM. The software fallback
mechanism must co-operate with the hardware in order to
ensure correctness. As we shall see, the mechanisms used to
coordinate the execution of the fallback mechanism have a
crucial impact on the performance of TSX. The simplest ap-
proach, as suggested by Intel’s optimization manual, is to use
a single lock to protect atomic blocks (we call it TSX-GL).
When a hardware transaction aborts, it has the alternative
to acquire the global lock instead. To ensure a correct in-
terplay with the fallback, hardware transactions must read
the lock as free to guarantee correctness; the transactional
semantics will guarantee that the transaction commits only
when there is no ongoing fallback execution.

An obvious extension of this idea is to use fine-grained
locks (TSX-FL). As the TM abstraction is motivated by the
need of relieving programmers from the complexity of de-
signing locking schemes, the usage of fine-grained locks as a
fallback for HTM sounds somewhat contradictory. However,
this choice allows us to assess to what extent a simplistic fall-
back (using a single lock) can hinder parallelism. Also, fine-
grained locks may be automatically crafted, to some extent,
by using recent techniques based on static analysis [29].

Table 1: Mechanisms used for synchronization in
our study.

Mechanism Description

Locks
Coarse/fine-grained locking [10]: TTAS, Spin,

RW (pthreads), MCS, CLH, Ticket
STMs TL2 [13], TinySTM [18], SwissTM [17], NOrec [7]
HTMs TSX-GL [37] (global lock), TSX-FL (fine locks)
HyTMs TSX-TL2 [30], TSX-NOrec [8]

HyTM — Another mechanism proposed in the literature
is to use an STM as fallback for HTM, also known as Hy-
brid TM (HyTM). Its main advantage is to allow concur-
rent execution of hardware transactions and software ones,
used in the fallback. However, during their concurrent ex-
ecution, both software and hardware transactions have to
play along in order to preserve correctness. In our study we
considered two state of the art Hybrid TM proposals [30, 8],
which are evaluated for the first time on a commodity HTM.
We exploit the idea of reduced hardware transactions: nor-
mally transactions execute mainly in hardware, with a pure
software fallback; the idea of these HyTMs is to have an
intermediary mode where the software fallback still relies
partially on hardware speculations to boost performance,
namely during the commit in the fallback.

4. METHODOLOGY AND TESTBED
We consider in our study several parallel applications us-

ing atomic blocks for synchronization. First we use the
STAMP suite, a popular set of benchmarks for TM [4], en-
compassing 8 applications representative of various domains
that generate highly heterogeneous workload domains. We
excluded the Bayes application given its non-deterministic
executions, and used standard parameters for each appli-
cation. STAMP contains manually instrumented reads and
writes inside atomic blocks to invoke the STM-based syn-
chronization. Naturally, this is not relevant for the case of
pure HTM approaches. We shall additionally present results
for compiler based instrumentation in Section 8.

We also consider a red-black tree and a hashmap, as exam-
ples of concurrent data structures, which represent impor-
tant building blocks of parallel applications and that have
two interesting characteristics: they are very hard to paral-
lelize efficiently using locking schemes, and are challenging
for STMs given that they generate extremely short transac-
tions that suffer from relatively large instrumentation over-
heads. Finally, we also used a recent TM-based porting of
the popular Memcached [35], an in-memory cache, widely
used for instance at Facebook [31].

Each experiment is the average of 20 executions. We use
the geometric mean whenever we show an average of nor-
malized results. We often show speedup results, which are
relative to the performance of sequential, non-instrumented
executions, unless stated otherwise. The reported measure-
ments of power consumption were obtained via the Intel
RAPL [9] facility and are restricted to the processor and
memory subsystems. Recent studies ([23, 24]) show that
the model used by Intel RAPL estimates quite accurately
the power consumption, when compared to a power meter
attached to the machine.

Our machine is equipped with an Intel Haswell Xeon E3-
1275 3.5GHz processor and 32GB RAM. This choice is dic-

tated by the requirement of using a processor equipped with
TSX, which is limited for now to 4 cores (and 8 hyper-
threads). We always pin threads to physical cores in a
round-robin fashion; for instance, 4 threads will be allocated
uniformly, one per core. As a result, hyper-threading is only
used when 5 or more threads are used. We used GCC 4.8.1
with all compiler optimizations enabled and Ubuntu 12.04.

5. TUNING TSX FALLBACK PATH
Before comparing the considered synchronization mecha-

nisms, we conduct a set of preliminary experiments evalu-
ating several alternative configurations of the coupling be-
tween TSX and its fallback. As we shall see, this can have
significant impact on TSX’s efficiency. The settings iden-
tified thanks to this preliminary study will be adopted in
the remainder of the paper to ensure that the comparison is
performed using an appropriately tuned HTM.

We begin in Section 5.1 by comparing the performance
and energy efficiency when using six locks implementations
to implement the fallback mechanism of TSX. This shall al-
low us to narrow down the multitude of combinations of TSX
and lock implementations assessed in our study. Next, in
Section 5.2, we optimize TSX-GL with a recently proposed
technique [1] aimed at reducing spurious hardware aborts.
This shall provide some insights about its actual practical
effectiveness, as it was never evaluated before. Lastly, we in-
vestigate when it is best to give up on hardware and trigger
the fallback path, in Section 5.3.

5.1 The Impact of Locks on the Fallback
The simpler way to use TSX is by relying on very coarse-

grained locks on the fallback, or simply a single one. We
considered the six lock listed in Table 1, to be used in the
fallback. These implementations are representative of differ-
ent design choices, and our goal is to understand if there is
some implementation that consistently performs above the
average across all parallelism degrees and benchmarks.

Table 2 shows the performance of TSX given the backing
lock implementation used in the fallback path. We show
the average overhead with respect to the best performing
lock in each experiment, considering both time to complete
the benchmark as well as power consumed. The reported
overhead is the average across all STAMP benchmarks and
thread counts (1 to 8). Using this metric, we can see that
the Ticket, MCS and CLH locks perform best.

For each benchmark and thread count, we additionally
sorted the considered lock implementations according to ei-
ther their performance or power consumption, determining

Table 2: Overhead (%) of each lock (as fallback of
TSX) with respect to the optimal choice in each ex-
ecution.

- Performance Power
Lock Overhead (%) Rank Overhead (%) Rank

Ticket 1.0 1.75 1.1 1.75
MCS 2.4 2.62 1.2 2.25
CLH 2.9 3.62 2.4 3.38
RW 14.2 4.89 17.4 3.88

TTAS 15.2 5.00 17.4 4.88
Spin 16.4 5.00 17.5 4.88

in this way their rank for that benchmark/configuration.
This shows that no lock implementation is always the best
or worse. However, we can see that the Ticket lock is con-
sistently ranked higher, for which reason we shall rely on it
from now on whenever we require locking (both standalone,
or in the fallback of TSX).

5.2 Improving the Single-lock Fallback
The recommended fallback mechanism for TSX relies on

a global lock (as explained in Section 3). In this section
we evaluate for the first time on TSX the efficiency of an
alternative technique proposed to reduce the situations un-
der which best-effort HTMs have to follow this pessimistic
fallback path [1].

The idea is that it may not be safe for transactions to ex-
ecute speculatively in hardware if, at the same time, some
transaction is executing pessimistically after acquiring the
global lock. A pessimistic execution cannot restart, and
hence its accesses must be consistent when faced with con-
currency. For this reason, TSX’s usage guide points out
that the lock has to be read as being free during the course
of a hardware transaction. Then any transaction that ac-
tivates the fallback path has to first acquire the lock, and
cause every hardware transaction to abort. This can cause
a chain effect, also known as lemming effect [12], where the
aborted hardware transactions also try to acquire the lock,
preventing hardware speculation from ever resuming.

In [1], the authors use an auxiliary lock to prevent the
lemming effect. The idea is to guard the global lock acqui-
sition by another lock. Aborted hardware transactions have
to acquire this auxiliary lock before restarting speculation,
which effectively serializes them. However, this auxiliary
lock is not added to the read-set of hardware transactions,
which avoids aborting concurrent hardware transactions. If
this procedure is attempted some times before actually giv-
ing up and acquiring the global lock, then the chain reaction
effect can be avoided: the auxiliary lock serves as a manager
preventing hardware aborts from continuously acquiring the
fallback lock and preventing hardware speculations.

In Table 3 we compare TSX using the auxiliary lock against
a single-lock (TSX-GL). For this, we report values for time,
energy, and Energy Delay Product (EDP), normalized with
respect to TSX-GL (analogously to traditional speedup met-
rics). We report the average across either benchmarks or
threads. Naturally, we can see that there is no difference
with 1 thread because there is no concurrency and hence no
problem resuming speculative execution. But beyond that,
and in particular at larger concurrency levels, this technique

Table 3: Normalized performance of auxiliary
lock [1] over TSX-GL across benchmarks and
threads (higher is better).

Avg across Benchmarks Avg across Threads
time energy edp time energy edp

genome 1.58 1.6 2.54 1 1.00 1.00 1.01
intruder 1.80 1.95 3.52 2 1.08 1.06 1.14
kmeans 1.20 1.17 1.40 3 1.14 1.12 1.28

labyrinth 1.01 1.01 1.01 4 1.29 1.26 1.62
ssca2 1.00 1.00 1.00 5 1.26 1.25 1.57

vacation 1.52 1.48 2.25 6 1.26 1.23 1.55
yada 0.96 0.96 0.92 8 1.26 1.23 1.55

helps consistently to improve the EDP. Some benchmarks do
not show any difference because there are very little aborts
(SSCA2) or TSX is not able to execute speculatively most of
the time (Labyrinth). Yada’s workload is conflict-intensive,
for which reason the non-optimized approach is slightly bet-
ter due to its inherent pessimism in following the fallback
path — that pays off since the high conflict probability lim-
its the effectiveness of optimistic transactions.

5.3 Retry Policy for the Fallback
Given that TSX must always have a fallback due to its

best-effort nature, an important decision is when to trigger
that path. Upon a transaction abort, TSX provides an error
code that informs about the reason of the abort. An abort
due to a capacity exception is typically a good reason to
trigger the fallback path. However, hardware transactions
may abort for various micro-architectural conditions that are
less deterministically prone to happen upon transaction re-
execution, and even capacity exceptions may not always be
deterministic. Also, of course, transactions may abort due
to data contention. In these situations one may aggressively
trigger the fallback, or opt to insist on using HTM.

As we will shall discuss in more detail in Section 8, the op-
timal choice of the retry policy can vary significantly across
workloads and degrees of parallelism. As it is impractical to
assume that the retry policy is ad-hoc tuned by program-
mers for each and single workload/application, we set the
number of retries to 5, which is the configuration reported
to deliver best all-around performance with TSX [37, 28] (a
result that we have confirmed with TSX-GL on our testbed).
For the HyTMs, 4 times was found to be the best number
of retries on average.

6. STAMP BENCHMARK SUITE
In this section we rely on the STAMP benchmark suite to

assess the efficiency of all the synchronization mechanisms
listed in Section 3, namely HTM, STMs, HyTMs, and lock-
ing. In the following, we shall always include the TSX opti-
mizations discussed in the previous section.

We start by summarizing our results in Table 4. There,
we list the STAMP benchmarks sorted by two important
characteristics of their workloads: the contention level be-
tween transactions, and the percentage of the workload that
is transactional. We then identify the mechanism that takes
the least time to complete and which one consumes the least
power, given the averaged results across threads.

This summarized perspective allows to highlight an in-
teresting fact. It is possible to distinguish three categories
in which TSX behaves differently, according to the transac-

tion’s characteristics. Kmeans and SSCA2 represent work-
loads with small transactions, medium frequency and low
contention; here, TSX-GL performs consistently better than
the alternatives across all threads. Intruder and Vacation
exhibit medium profiles for what concerns the time spent
in transactions and contention; in these cases, TSX-GL re-
sults in the best performing solution using up to 4, resp. 2,
threads, and the most energy efficient up to 5, resp. 4,
threads. Finally, the other benchmarks spend almost all
the time in transactions, encompassing both low and high
contention scenarios. In these settings, TinySTM emerges
as the most robust solution, both from the perspective of
energy and performance.

This analysis allows to draw a set of guidelines to select
which synchronization to use, at least when considering ap-
plications having analogous characteristics to those included
in the STAMP suite. TSX-GL is desirable when transactions
are small, generate low/medium contention, and the appli-
cation does not spend all the time executing transactions.
When contention increases, or the frequency of transactions
is high, TSX-GL is competitive up to a medium degree of
parallelism. In the remaining cases, STM is often the best
choice, even when compared with fine-grained locking. The
considered HyTMs perform poorly compared to the alterna-
tives, never clearly outperforming the competing schemes in
any benchmark. In Sections 6.1-6.2 we present our experi-
ments with STAMP. We will consider additional benchmarks
and fine-grained locks in Section 7.

6.1 Performance Study
In Fig. 1 we show, for each benchmark and while varying

the parallelism level, the speedup of all the considered syn-
chronization schemes (with the exception of schemes based
on fine-grained locking, which shall be presented in Sec-
tion 7) with respect to a sequential, non-instrumented exe-
cution, and the power consumption during the execution (in
Kilo Joules). This allows us to discuss in detail the differ-
ences between the mechanisms in different workloads.

Kmeans: This benchmark yields the biggest gap in perfor-
mance between a TSX variant and STMs. Namely, TSX-GL
reaches 3.5× speedup over a sequential execution, beating
every other alternative both performance-wise and in terms
of energy-efficiency. An interesting trend concerning energy-
efficiency is that the power consumption with TSX (and, to
some extent, also for all other synchronization schemes but
GL) tends to slightly decrease as the parallelism level grows,
which is a symptom of efficient utilization of the available
architecture resources achievable using TM-based solutions.
If we consider TSX-TL2 and TSX-NOrec, they are still com-

Table 4: Summary of results according to the workload characterization of the STAMP suite (xt = number
of threads).

Time in Tx (%) Contention Best Performing Least Power Consumption

kmeans low (7) low TSX-GL TSX-GL
ssca2 low (17) low TSX-GL TSX-GL

intruder medium (33) high TSX-GL ≤ 4t; TinySTM ≥ 5t TSX-GL ≤ 5t; TinySTM ≥ 6t
vacation high (89) low TSX-GL ≤ 2t; TinySTM ≥ 3t TSX-GL ≤ 4t; TinySTM ≥ 5t
genome high (97) low TinySTM TinySTM

yada high (99) medium SwissTM TinySTM
labyrinth high (100) high STMs (except TL2) STMs (except TL2)

petitive and better than the corresponding STMs, but they
are far from TSX-GL in both metrics. It is worth noticing
that the small and rare atomic blocks of this benchmark al-
low the GL approach to scale up to 3 threads. This explains
the considerable success of TSX-GL in this benchmark, as
a transaction that resorts to the GL is still able to run con-
currently with other threads that are not under an atomic
block at that time.

SSCA2: This benchmark shows a similar trend between
TSX variants, but with the significant difference that all
STM approaches scale better as the degree of parallelism in-
creases. Here, TSX-GL is only slightly better than the best
STM, and this is consistent across all the thread counts.
Also interestingly, TSX-TL2 improves little and fares rather
bad on the energy side. This, however, is not the case for
TL2 or TSX on their own, and as such is an artefact of
the hybrid implementation integration. Finally, the reduced
time within atomic blocks still allows the GL approach to
scale up to 2 threads, which justifies the advantage of TSX-
GL. However, this effect is smaller than in Kmeans, which
also matches the fact that TSX-GL achieves less improve-
ments over other approaches.

Intruder: Here TSX-NOrec (and TSX-GL to some extent)
are competitive and even better (until 5 threads) than the
best STMs (except for TL2). Since TL2 performs poorly in
this benchmark, this also drags TSX-TL2 behind in both
metrics. Interestingly, both TL2 and TSX-TL2 improve
slightly performance with more threads, but TL2 consumes
more power whereas TSX-TL2 slightly decreases it.

Vacation: Once again we see that the performance of TSX-
TL2 is quite disappointing, as indeed TL2 itself performs
poorly in this scenario. As we shall see throughout this
study, TL2 is by far the worst STM among those considered,
which is a result of having a similar algorithmic and syn-
chronization complexity to that of SwissTM and TinySTM,
while detecting conflicts lazily at commit-time. This results
in TL2 doing useless work more often, whereas SwissTM
and TinySTM restart the speculation faster when reacting
to conflicts. On the other hand, NOrec is simpler, both in
algorithmic as well as synchronization terms, reducing its
instrumentation overheads and maximizing its performance
at low thread counts. With regard to the other approaches,
TSX-GL and TSX-NOrec are competitive with STMs until
4 threads. At higher parallelism degrees, their performance
degrades due to contention on L1 caches caused by hyper-

threading. Analogous results are achieved for what regards
power consumption. It is interesting to note that TSX-GL
performs worse than TSX-NOrec at 8 threads, but the two
consume approximately the same power. This is a result of
the power savings that are achievable with the lock acquisi-
tion in TSX-GL.

Genome: In the three last benchmarks we have either
transaction-heavy or high-contention workloads, character-
ized by large transaction foot-prints. These conditions are
clearly a much more favourable playground for STMs. In
this case, we see a clear (and consistent across benchmarks)
distinction between TL2 and NOrec, as these two lag behind
in both metrics particularly at higher thread counts. Inter-
estingly, we can see that TSX-TL2 performs best among the
TSX variants at a higher concurrency degree, which is a sin-
gularity among all benchmarks. This benchmark also shows
a clear trend when the 5th thread is used: all approaches
stabilize (or even decrease) performance at that point, due
to hyper-threading. Interestingly, this effect is not so notice-
able on the energy side, as STM approaches are still able to
reduce the power consumed as parallelism increases. This
highlights an interesting trade-off of hyper-threading: it al-
lows sub-linear speed-ups only, but it also consumes little
additional power. This fact is favourable to STMs, as TSX
approaches generate more transactional aborts when hyper-
threading is used, due the higher contention on the L1 cache.

Yada: This benchmark shows one scenario where TSX-GL
performs poorly, with slowdowns above 3 threads. HyTMs
follow closely their fallback STMs’ performance, as TSX is
not able to succeed. This is also a case where TinySTM and
SwissTM perform better than the other two STMs. This
benchmark presents no surprises in the energy-efficiency,
whose trends are highly correlated with the performance.

Labyrinth: Here we see STMs performing best and very
alike each other. TSX-GL does not improve with thread
count, simply because most transactions exceed the hard-
ware cache capacity and, as such, eventually follow the fall-
back path which is a sequential bottleneck given the GL.
For this reason, TSX-TL2 and TSX-NOrec obtain some im-
provements, exactly because the fallback allows for concur-
rency, contrarily to the global lock on TSX-GL. This sce-
nario highlights, however, that HyTMs are capped by either
TSX or the fallback STM — as such, it is dubious whether
they are practical (at least when used with TSX), or if it

Table 5: Transactional abort rate (%). For STM we show the lowest and highest values obtained (across all
considered STMs).

benchmark kmeans ssca2 intruder vacation genome yada labyrinth

1 thread

STM 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0
TSX-GL 0 0 7 49 11 46 95
TSX-TL2 0 0 36 94 35 19 53

TSX-NOrec 0 0 4 40 6 19 53

4 threads

STM 10 - 34 0 - 0 0 - 0 0 - 6 1 - 51 5 - 58 4 - 13
TSX-GL 26 0 22 69 31 48 100
TSX-TL2 50 74 74 100 45 84 60

TSX-NOrec 31 46 29 66 17 31 55

8 threads

STM 25 - 54 0 - 0 3 - 57 0 - 10 0 - 1 7 - 65 8 - 23
TSX-GL 42 1 33 72 48 47 100
TSX-TL2 60 99 92 100 53 92 69

TSX-NOrec 44 88 62 99 69 39 60

1.0

2.0

3.0

2 4 6 8

sp
ee

du
p

(a) Speedup in Kmeans.

0.5

1.0

1.5

2.0

2 4 6 8

(b) Speedup in SSCA2.

0.0

2.0

4.0

2 4 6 8

(c) Speedup in Intruder.

0.0

1.0

2.0

3.0

2 4 6 8

(d) Speedup in Vacation.

0.03

0.06

0.09

0.12

2 4 6 8

en
er

gy
 (1

00
0

*
J)

(e) Energy in Kmeans.

0.2

0.4

0.6

2 4 6 8

(f) Energy in SSCA2.

0.2

0.6

1.0

2 4 6 8

(g) Energy in Intruder.

0.3

0.6

0.9

1.2

2 4 6 8

(h) Energy in Vacation.

1.0

3.0

5.0

2 4 6 8

sp
ee

du
p

(i) Speedup in Genome.

0.0

1.0

2.0

2 4 6 8

(j) Speedup in Yada.

1.0

2.0

3.0

4.0

2 4 6 8

(k) Speedup in Labyrinth.

GL
TSX-GL

TL2
TSX-TL2

NOrec
TSX-NOrec

SwissTM
TinySTM

0.05

0.10

0.15

0.20

2 4 6 8

en
er

gy
 (1

00
0

*
J)

(m) Energy in Genome.

0.2

0.4

0.6

2 4 6 8

(n) Energy in Yada.

1.0

2.0

3.0

2 4 6 8

(o) Energy in Labyrinth.

Figure 1: Speedup (relative to non-instrumented sequential execution) and Energy Consumption (in Kilo
Joules) when varying the number of threads (horizontal axis) in all the STAMP benchmarks

would be preferable to adaptively employ the most promis-
ing technique (TSX-GL or an STM) based on the workload.

6.2 Insights on TM Efficiency
In this section we shed some additional light on the fac-

tors dictating the trends observed in the experiments. To
this end, in Table 5 we report the average abort rate across
benchmarks and threads for each speculative mechanism.
This represents the percentage of speculations that do not
complete. Since there are four STMs under evaluation, we
show the minimum and maximum abort rates among them
— typically the smallest abort rate belongs to TinySTM and
SwissTM, whereas TL2 yields the maximum abort rate.

Once again, we structure the table considering the differ-
ent categories of workloads. As we move right (more con-
tended or transaction-intensive workloads) and down (higher
degree of parallelism), TSX approaches increase abort rates,
which causes the loss of efficiency shown in the previous sec-
tion. These results highlight that TSX has non-negligible
aborts in many occasions where STMs abort very little.

In Fig. 2 we consider four different benchmarks, repre-
sentative of scenarios that allow to derive insights on the
efficiency of the considered TSX variants. In those plots
we present a breakdown of the reasons motivating trans-
actional aborts, for each TSX mechanism. We distinguish
aborts caused by exceeding the capacity of L1 cache; micro-

0

20

40

60

80

100
%

 o
f t

ra
ns

ac
tio

ns
 a

bo
rte

d

TSX-GL TSX-TL2 TSX-NOrec

2
th

re
ad

4
th

re
ad

s 8
th

re
ad

s

capacity
architectural

conflict
interaction

(a) Kmeans.

0

20

40

60

80

100

TSX-GL TSX-TL2 TSX-NOrec

(b) Yada.

0

20

40

60

80

100

TSX-GL TSX-TL2 TSX-NOrec

(c) Labyrinth.

0

20

40

60

80

100

TSX-GL TSX-TL2 TSX-NOrec

(d) SSCA2.

Figure 2: Breakdown of reasons causing transactional aborts for TSX variants.

architectural instructions or states forbidden by TSX, such
as some system calls; data contention resulting in conflicts;
and interaction between TSX and the fallback paths, such
as checking if the GL is free in TSX-GL or more complex
logic in the case of HyTMs.

Kmeans’ breakdown shows that, as expected, as concur-
rency increases, also abort rates increase due mainly to data
conflicts. It is worth mentioning that Kmeans is the bench-
mark with the least average aborts for TSX variants. Half of
the aborts are due to conflicts, whereas the rest is motivated
by a non-negligible percentage of aborts due to architectural
instructions. This is something intrinsic to TSX, which is
common throughout different benchmarks. The fact that
these aborts occur less often in this benchmark allows TSX
to obtain the most favourable results among all benchmarks.

In Yada and Labyrinth, instead, the workloads are much
more transaction-intensive with non-negligible conflict rates.
On top of this, the capacity of L1 caches is often exceeded
by the hardware transactions (this is particularly visible in
Labyrinth, where this phenomena dominates the aborts).
This explains why the TSX variants followed up closely the
performance of their fallbacks (with some constant over-
head). HyTMs have a reduced abort rate because the fall-
back’s software transactions are also taken into account in
these statistics, on top of the hardware transactions — since
software transactions have little aborts due to the uncon-
tended workload, they amortize the overall abort rate. In
TSX-GL, instead, the fallback executes non-speculatively
due to the global lock, so we only count statistics for the
hardware transactions there.

Finally, SSCA2 shows a completely different scenario, in
which TSX-GL generates almost no aborts (in line with
STMs’ behaviour), whereas HyTMs have enormous abort
rates, dominated by the interaction with the fallback path.

This motivates to better understand the usage of the fall-
back path in the HyTMs. Table 6 shows the percentage
of transactions that were executed in the fallback (i.e., not
purely in hardware). We also show the percentage of trans-
actions in the fallback that are able to execute in a fast
mode, i.e., a mode in which the transaction executes in soft-
ware but the commit is boosted by using a reduced hardware
transaction [30] (as explained in Section 3). For every ta-
ble cell we show the percentage corresponding to 1 and 8
threads. Overall, the percentages vary linearly from 1 to 8
threads, for which reason we omit the intermediate values.

We start by highlighting in SSCA2 how both HyTMs are
able to execute purely in hardware with 1 thread (they trig-

ger the fallback < 1% of the transactions). However, a
higher thread count typically results in executing in the fall-
back mode almost all the time, which matches the idea con-
veyed by Fig. 2(d). In particular, for this benchmark, the
ability to rely on hardware to speed up the software fallback
path is reduced from above 90% to 14% or even less.

These results for HyTMs show that TSX-TL2 triggers the
fallback more often, and is able to execute in the fast mode
less frequently than TSX-NOrec. This justifies the advan-
tage of TSX-NOrec, which fared better across all bench-
marks in Section 6: TSX-NOrec executes the fallback soft-
ware transactions in fast mode for most of the time. The
reason is that the much simpler design of NOrec allows for
a much easier integration with TSX in a HyTM.

Ideally one may want to also rely on more scalable STMs,
like TinySTM or SwissTM, in the fallback of TSX. However,
due to the higher complexity of their algorithms, coupling
them efficiently with HTM is a challenging task, and, in fact,
we are not aware of any proposal in this sense in literature.

Finally, it has been pointed out in [8] that, in order to
support efficient HyTMs, it is desirable to have hardware
support for selective non-transactional memory accesses in
the scope of transactions. Such a feature is not currently
supported in TSX, whereas its inclusion was, e.g., planned
in AMD’s HTM proposal [6] (which was never commercial-
ized). Hence, an interesting research direction suggested by
this study is to investigate the impact of supporting non-
transactional accesses, not only in terms of performance and
energy, but also in terms of architectural intrusiveness.

Table 6: Rate (%) of triggering the fallback on
HyTMs and of executing it in fast mode. Inter-
vals of values are shown, ranging from 1 (lower) to
8 threads (upper bound).

TSX-TL2 TSX-NOrec
fallback Fast fallback Fast

kmeans < 1 - 77 92 - 32 < 1 - 78 100 - 23
ssca2 < 1 - 99 91 - 2 < 1 - 86 95 - 14

intruder 33 - 88 98 - 39 3 - 55 100 - 52
vacation 94 - 100 43 - 3 38 - 99 100 - 89
genome 50 - 100 97 - 71 6 - 67 100 - 94

yada 18 - 78 50 - 34 17 - 32 99 - 82
labyrinth 58 - 100 14 - 2 54 - 98 10 - 3

7. BENCHMARKS USING FINE-GRAINED
LOCKING

Most of the STAMP benchmarks have an irregular na-
ture, which makes it very challenging to derive fine-grained
locking schemes. In this section we focus on benchmarks
for which it is possible to use (possibly very complex) fine-
grained locking approaches. We start, in Section 7.1, by fo-
cusing on a subset of three STAMP benchmarks, for which
we could craft an ad-hoc fine grained locking strategy. We
then present results for Memcached in Section 7.2 and for
two concurrent data structures in Section 7.3.

7.1 Fine-grained Locking in STAMP
As already mentioned, implementing a fine-grained lock-

ing strategy is a complex task for most of the STAMP bench-
marks. We were, however, able to devise fine-grained lock-
ing strategies for three of the STAMP benchmarks, whose
results we report in Fig. 3. Besides fine-grained locks (FL),
we also show results for TSX-FL, which combines hardware
transactions with a fallback path that relies on FL. Natu-
rally, the combination of both schemes in TSX-FL requires
hardware transactions to read all necessary locks as being
free. We then compare these two approaches with TSX-GL
and TinySTM, which were the best mechanisms in our pre-
vious experiments, and remove the others to improve the
readability of the plots.

TSX-FL presents one advantage over TSX-GL, in that the
fallback path allows for threads to proceed in parallel if they
require different locks (which is highly likely if there is little
data contention). However, this has the drawback that more
locks have to be checked (during speculative executions) or
acquired (during the fallback executions). Hence, there is a
clear trade-off that is subtle and difficult to manage.

Recall that Kmeans and SSCA2 were the two benchmarks
with workload characteristics more amenable to TSX-GL.
This is justified by the low frequency of activation of the
fallback path. As such, TSX-GL incurs minimal overhead
thanks to the hardware speculation and to the avoidance of
any software-based instrumentation. Therefore, it is not a
surprise that fine-grained locking is of no advantage in this
scenario: each lock acquisition represents a synchronization
point, whereas for TSX-GL there exists only explicit syn-
chronization at the hardware level when a transaction at-
tempts to commit. Note, however, that FL is consistently
better than the best STM (TinySTM). This fact is even
more relevant from the energy perspective, where the gap
between FL and TinySTM is larger. Since the TSX fallback
is not triggered often, then TSX-FL goes through the ad-
ditional verifications over more locks that are useless most
of the time (to ensure a correct integration of the fallback
with hardware transactions), which explains its lower per-
formance in this kind of workload.

In SSCA2 we see a different behaviour as both TSX vari-
ants perform quite similarly. This is explained by the fact
that the fine-grained scheme is not very efficient: its locks are
relatively coarse, which induces unnecessary serialization.
This has the side-effect of making TSX-FL competitive with
TSX-GL, because both have a similar effort in checking the
locks in the speculative executions to ensure correct integra-
tion with the fallback. Notice how the FL scheme still per-
forms better than GL, which is a consequence of the higher
degrees of parallelism achievable by reducing lock granular-
ity. This confirms an expectable trade-off concerning lock

1.0

2.0

3.0

2 4 6 8

sp
ee

du
p

(a) Speedup in Kmeans.

0.02

0.04

0.06

0.08

2 4 6 8

en
er

gy
 (1

00
0

*
J)

(b) Energy in Kmeans.

0.5

1.0

1.5

2.0

2 4 6 8

sp
ee

du
p

(c) Speedup in SSCA2.

0.1

0.3

0.5

2 4 6 8

en
er

gy
 (1

00
0

*
J)

(d) Energy in SSCA2.

0.0

2.0

4.0

2 4 6 8

sp
ee

du
p

(e) Speedup in Intruder.

0.2

0.3

0.4

0.5

0.6

2 4 6 8

en
er

gy
 (1

00
0

*
J)

(f) Energy in Intruder.

TSX-GL

FL

TSX-FL

TinySTM

GL Strategy 103∗ Operations/sec

GL 223
TSX-GL 467

FL 501
TSX-FL 481
TinySTM 329

(h) Throughput in Memcached.

Figure 3: Experiment similar to that in Fig. 1, but
instead using fine-grained locking and Memcached.

granularity: the more fine-grained, the best the fallback per-
forms; however this can have an impact on the performance
of the speculative executions as we saw for Kmeans.

Finally, Intruder spends a large fraction of time within
atomic blocks. As already discussed, this workload is more
advantageous for STMs than for TSX. It is not surprising to
see that TSX-GL is no longer the most competitive choice
(although it still fares best until 3 threads). The interesting
fact is that this kind of workload is more beneficial for FL.
With more threads, TinySTM degrades its scalability, and
is surpassed by FL. From an energy perspective, it is even
clearer that FL is the best choice comparing to TinySTM,
as it is almost always consuming less energy. TSX-FL suf-
fers from the overheads of checking additional locks, until
3 threads, for which reason it is not as good as TSX-GL.
However, at that point TSX triggers the fallback more of-
ten, which justifies the use of fine locks and allows TSX-FL
to perform substantially better than TSX-GL. On the en-
ergy side, TSX-FL is closer to TinySTM, following the trend
of STMs that often fare worse on the energy side to obtain
comparative levels of performance to the other approaches.

7.2 Memcached
Memcached is a popular distributed object caching sys-

tem [31]. In this study, we rely on a recent TM-based port-
ing [35], and use the original Memcached as the basis for FL.
We used the memslap tool, configuring the workload with
95% gets and 5% puts, 8 threads and a concurrency of 256.

In Memcached it is not really possible to measure, for ref-
erence purposes, the performance of a sequential execution,
because there is always concurrency due to the existence of
a pool of maintenance threads. Hence, we present the peak
throughput obtained using the maximum number of avail-
able hardware threads (see Fig. 3(h)). The results show
that FL has the best performance, but TSX-GL is only 7%
behind. This is a significant achievement as the effort to de-
vise such fine-grained locks is considerably higher than using
TSX-GL. Also, since FL is quite optimized, it is expectable
that TSX-FL is not able to extract any further parallelism.
Interestingly, with this benchmark, TinySTM is not compet-
itive because the instrumentation overheads are amplified by
the short and uncontended transactions.

7.3 Concurrent Data Structures
We now consider two concurrent data structures, namely

a red-black tree and a hashmap, which represent particularly
relevant use cases for TM given the complexity of designing
efficient fine-grained locking strategies for these scenarios.

Fig. 4 shows two different scenarios: we consider a small
hashmap (512 buckets) with only 10% transactions perform-
ing writes (the rest are lookup operations), and a large red-
black tree (1 million items) with 90% transactions perform-
ing updates. In the former case, TSX-GL achieves perfect
linear scalability, which is a consequence of its negligible
overheads and of the very reduced abort rate. With larger
transactions, the gains achievable by TSX tend to diminish,
although it still remains a very competitive solutions.

Table 4(e) shows a spectrum of workloads in red-black
tree, by considering the normalized EDP of TSX-GL against
the best alternative in each experiment. For this, we vary
the size of the tree and the percentage of write transactions.
The trend is clear in this table: TSX behaves best with light
workloads, and looses advantage when transactions become
larger or write-intensive. This confirms the results of the
analysis that we performed for STAMP, given that, also in
this case, TSX shines most when atomic blocks have little
duration and the workload is not fully transactional.

8. RESEARCH DIRECTIONS SUGGESTED
BY OUR STUDY

We now identify some relevant research directions that
emerged from the analysis of our experimental study:

• The overall performance of the tested HyTM solutions is
quite disappointing. These findings contradict the simula-
tion results published in several previous works, e.g., [30].
Our analysis suggest that the root cause of the problem is
related to the inefficiency of the mechanisms used to cou-
ple hardware and software transactions, which is generat-
ing a large number of spurious aborts. However, further
research is due in order to understand what can be done
to address such a problem. An interesting research ques-
tion, in this sense, is whether the availability of support for
enabling non-transactional memory accesses while executing
hardware-assisted atomic blocks could indeed allow for more

0.0

2.0

4.0

6.0

8.0

2 4 6 8

S
pe

ed
up

(a) Hashmap 10% writes.

0.0

1.0

2.0

3.0

4.0

2 4 6 8

(b) RB Tree 90% writes.

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8

E
ne

rg
y

(1
00

0*
J)

threads

(c) Hashmap 10% writes.

0.2

0.4

0.6

2 4 6 8

threads

GL
TSX-GL

FL
TSX-FL

TinySTM

(d) RB Tree 90% writes.

size and % of writes 10% 50% 90%

27 elements 3.30 1.79 1.21
214 elements 2.96 1.58 1.11
221 elements 1.86 1.33 1.06

(e) Normalized EDP of the best alternative to TSX-GL in
Red-black Tree (higher is favourable to TSX-GL).

Figure 4: Data Structures varying contention level.

efficient interplay between HTM and STM (which has been
assumed by other works in the area of HyTM, e.g. [33]). A
related research question is how to support such a feature
while minimizing the disruptiveness of the changes required
at the hardware level — an aspect that cannot be overlooked
given the complexity of modern processor architectures.

• As mentioned in Section 5.3, the performance of TSX is
significantly affected by the retry policy (e.g., the settings
of the number of retries upon abort, and the choice of how
to react to capacity aborts). While in our study we used
the configuration that performed best on average, as shown
in Table 7, significant speedups (up to 80%) with regard to
the configuration used in our study can be achieved by ad-
hoc tuning the retry policy for the specific workload — even
more could be achieved by considering the specific concur-
rency degree as well. Unfortunately, this is a tedious and
error prone task that is not desirable to delegate to pro-
grammers. Hence, these findings highlight the relevance of
devising solutions for adaptively tuning these parameters
in an automated manner. The key challenge is how to do
it with minimal overhead, given that the cost imposed by
self-tuning approaches targeting STMs (based on complex
machine-learning [34] or analytical models [11]) is going to
be strongly amplified in HTM settings because there exists
no instrumentation as in STMs. In the light of these find-
ings, we have concurrently obtained some initial results with
regard to this research direction [15].

• Our study has used (selective) manual instrumentation
when considering both STMs and HyTMs, i.e. only the rel-
evant subset of memory locations accessed in atomic blocks
have been traced. As an alternative, one could rely on the
compiler to automatically instrument atomic blocks with
calls to the TM runtime. The plots in Fig. 5, which were

Table 7: Improvement of configuring TSX-GL for
each workload compared to the single configuration
used in our study.

Speedup %
k
m
ea
n
s

ss
ca
2

in
tr
u
d
er

va
ca
ti
on

ge
n
om

e

ya
d
a

la
b
y
ri
n
th

4 threads 12 7 20 36 12 13 2
8 threads 5 8 80 21 2 55 39

obtained using the C++ TM extension integrated in GCC
4.8.2, show that non-selective instrumentations can impact
performance by approximately 20% when using TinySTM.
This is a consequence of the increase of the transaction foot-
print (up to 3x larger with SSCA2) caused by the “blind’
instrumentation performed by GCC.

Not only these results unveil the possibility of optimiza-
tions in existing compiler’s support for STM, but also pro-
vide an additional compelling motivation to incorporate sup-
port for selective instrumentation in HTM. Indeed, we have
shown that capacity exceptions are one of the key sources of
aborts with HTM. Hence, techniques capable of achieving
noticeable reductions of the transactions’ footprint are ex-
pected to strongly benefit HTM’s performance. These con-
siderations open interesting research avenues investigating
cross-layer mechanisms operating at the compiler and archi-
tectural level, and aimed at supporting selective instrumen-
tation in a way that is both convenient for the program-
mer (i.e., possibly fully transparent) and sufficiently non-
intrusive to simplify integration in existing architectures.

9. CONCLUSIONS
This paper analyzed extensively the performance and en-

ergy efficiency of several state of the art TM systems. We
compared different TM solutions (software, hardware and
combinations thereof) among each other and against lock
based systems. Our study demonstrates that the recent
HTM implementation by Intel can strongly outperform any
other synchronization alternative in a set of relevant work-
loads. On the other hand, it also identified some critical
limitations of Intel TSX, and highlighted the robustness of
state of the art STMs. These software implementations
achieve performance competitive with fine-grained locking,
and outperform HTM in workloads encompassing long and
contention-prone transactions.

Furthermore we have shown that the performance of Hy-
brid TM, when used in combination with TSX, is normally
quite disappointing; we determined that the root cause of
this surprising result lies in the inefficiency of the mecha-
nisms used to couple software and hardware transactions.
Finally, our study allowed to identify a set of compelling
research questions, which, we believe, should be timely ad-
dressed to increase the chances of turning HTM into a main-
stream paradigm for parallel programming.

Acknowledgements: We thank Konrad Lai, Ravi Rajwar
and Richard Yoo from Intel for the insightful discussions
about TSX during the conduct of this research.

This work was supported by funds from Fundação para
a Ciência e Tecnologia under PEst-OE/EEI/LA0021/2013
and by GreenTM EXPL/EEI-ESS/0361/2013.

0.3

0.6

0.9

1.2

1.5

2 4 6 8

sp
ee

du
p

TinySTM
TinySTM (GCC)

(a) Kmeans.

0.6

1.0

1.4

1.8

2 4 6 8

(b) SSCA2.

Figure 5: Impact of GCC instrumentation.

10. REFERENCES

[1] Y. Afek, A. Levy, and A. Morrison. Programming
with hardware lock elision. In Proc. of Principles and
Practice of Parallel Programming, PPoPP, pages
295–296, 2013.

[2] A. Baldassin, F. Klein, G. Araujo, R. Azevedo, and
P. Centoducatte. Characterizing the Energy
Consumption of Software Transactional Memory.
IEEE Comput. Archit. Lett., 8(2):56–59, July 2009.

[3] H. Cain et al. Robust architectural support for
transactional memory in the power architecture. In
Proc. of International Symposium on Computer
Architecture, ISCA, pages 225–236, 2013.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford Transactional
Applications for Multi-Processing. In Proc. of
International Symposium on Workload
Characterization, IISWC, pages 35–46, 2008.

[5] C. Cascaval et al. Software Transactional Memory:
Why Is It Only a Research Toy? Queue,
6(5):40:46–40:58, Sept. 2008.

[6] D. Christie et al. Evaluation of AMD’s Advanced
Synchronization Facility Within a Complete
Transactional Memory Stack. In Proc. of EuroSys,
pages 27–40, 2010.

[7] L. Dalessandro, M. Spear, and M. Scott. NOrec:
streamlining STM by abolishing ownership records. In
Proc. of Principles and Practice of Parallel
Programming, PPoPP, pages 67–78, 2010.

[8] L. Dalessandro et al. Hybrid NOrec: a case study in
the effectiveness of best effort hardware transactional
memory. In Proc. of Architectural Support for
Programming Languages and Operating Systems,
ASPLOS, pages 39–52, 2011.

[9] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and
C. Le. RAPL: memory power estimation and capping.
In Proc. of International Symposium on Low power
Electronics and Design, ISLPED, pages 189–194, 2010.

[10] T. David, R. Guerraoui, and V. Trigonakis.
Everything you always wanted to know about
synchronization but were afraid to ask. In Proc. of
Symposium on Operating Systems Principles, SOSP,
pages 33–48, 2013.

[11] P. Di Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and
P. Romano. On the analytical modeling of concurrency
control algorithms for software transactional
memories: The case of commit-time-locking. Perform.
Eval., 69(5):187–205, May 2012.

[12] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
Experience with a Commercial Hardware
Transactional Memory Implementation. In Proc. of
Architectural Support for Programming Languages and
Operating Systems, ASPLOS, pages 157–168, 2012.

[13] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In Proc. of International Symposium on
Distributed Computing, DISC, pages 194–208, 2006.

[14] N. Diegues and J. Cachopo. Practical Parallel Nesting
for Software Transactional Memory. In Proceedings of
International Symposium on Distributed Computing,
DISC, pages 149–163, 2013.

[15] N. Diegues and P. Romano. Self-Tuning Intel
Transactional Synchronization Extensions. In Proc. of
International Conference on Autonomic Computing,
ICAC, 2014.

[16] N. Diegues and P. Romano. Time-Warp: Lightweight
Abort Minimization in Transactional Memory. In
Proc. of Principles and Practice of Parallel
Programming, PPoPP, pages 167–178, 2014.

[17] A. Dragojević, R. Guerraoui, and M. Kapalka.
Stretching transactional memory. In Proc. of
Programming Language Design and Implementation,
PLDI, pages 155–165, 2009.

[18] P. Felber, C. Fetzer, and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In Proc. of Principles and
Practice of Parallel Programming, PPoPP, pages
237–246, 2008.

[19] C. Ferri, R. I. Bahar, M. Loghi, and M. Poncino.
Energy-optimal Synchronization Primitives for
Single-chip Multi-processors. In Proc. of Great Lakes
Symposium on VLSI, GLSVLSI, pages 141–144, 2009.

[20] C. Ferri, S. Wood, T. Moreshet, R. Iris Bahar, and
M. Herlihy. Embedded-TM: Energy and
complexity-effective hardware transactional memory
for embedded multicore systems. J. Parallel Distrib.
Comput., 70(10):1042–1052, Oct. 2010.

[21] E. Gaona, R. Titos, J. Fernandez, and M. Acacio. On
the design of energy-efficient hardware transactional
memory systems. Concurrency and Computation:
Practice and Experience, 25(6):862–880, 2013.

[22] A. Gautham, K. Korgaonkar, P. Slpsk,
S. Balachandran, and K. Veezhinathan. The
implications of shared data synchronization techniques
on multi-core energy efficiency. In Proc. of
Power-Aware Computing and Systems, HotPower,
pages 1–6, 2012.

[23] D. Hackenberg et al. Power measurement techniques
on standard compute nodes: A quantitative
comparison. In Proc. of the International Symposium
on Performance Analysis of Systems and Software,
ISPASS, pages 194–204, 2013.

[24] M. Hähnel, B. Döbel, M. Völp, and H. Härtig.
Measuring Energy Consumption for Short Code Paths
Using RAPL. SIGMETRICS Performance Evaluation
Review, 40(3):13–17, Jan. 2012.

[25] L. Hammond et al. Transactional Memory Coherence
and Consistency. In Proc. of International Symposium
on Computer Architecture, ISCA, pages 102–113, 2004.

[26] A. Heindl and G. Pokam. An Analytic Framework for
Performance Modeling of Software Transactional
Memory. Comput. Netw., 53(8):1202–1214, June 2009.

[27] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proc. of the International Symposium on Computer
Architecture, ISCA, pages 289–300, 1993.

[28] T. Karnagel et al. Improving In-Memory Database
Index Performance with Intel TSX. In Proc. of
International Symposium on High Performance
Computer Architecture, HPCA, 2014.

[29] S. Mannarswamy, D. Chakrabarti, K. Rajan, and
S. Saraswati. Compiler aided selective lock assignment
for improving the performance of software
transactional memory. In Proc. of Principles and
Practice of Parallel Programming, PPoPP, pages
37–46, 2010.

[30] A. Matveev and N. Shavit. Reduced hardware
transactions: a new approach to hybrid transactional
memory. In Proc. of the Symposium on Parallelism in
Algorithms and Architectures, SPAA, pages 11–22,
2013.

[31] R. Nishtala et al. Scaling Memcache at Facebook. In
Proc. of Conference on Networked Systems Design and
Implementation, NSDI, pages 385–398, 2013.

[32] V. Pankratius and A.-R. Adl-Tabatabai. A Study of
Transactional Memory vs. Locks in Practice. In Proc.
of Symposium on Parallelism in Algorithms and
Architectures, SPAA, pages 43–52, 2011.

[33] T. Riegel, P. Marlier, M. Nowack, P. Felber, and
C. Fetzer. Optimizing Hybrid Transactional Memory:
The Importance of Nonspeculative Operations. In
Proc. of the Symposium on Parallelism in Algorithms
and Architectures, SPAA, pages 53–64, 2011.

[34] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia.
Machine Learning-Based Self-Adjusting Concurrency
in Software Transactional Memory Systems. In Proc.
of Modeling, Analysis Simulation of Computer and
Telecommunication Systems, MASCOTS, pages
278–285, 2012.

[35] M. Spear, T. Vyas, and Y. Ruan, Wenjia Liu.
Transactionalizing Legacy Code: An Experience
Report Using GCC and Memcached. In Proceedings of
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, pages
398–412, 2014.

[36] A. Wang et al. Evaluation of Blue Gene/Q hardware
support for transactional memories. In Proc. of
Parallel Architectures and Compilation Techniques,
PACT, pages 127–136, 2012.

[37] R. Yoo, C. Hughes, K. Lai, and R. Rajwar.
Performance Evaluation of Intel Transactional
Synchronization Extensions for High-Performance
Computing. In Proc. of High Performance Computing,
Networking, Storage, and Analysis, SC, pages 1–11,
2013.

