
Autonomic Configuration of HyperDex via Analytical
Modelling

Nuno Diegues, Muhammet Orazov, João Paiva, Luís Rodrigues, Paolo Romano
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

{nmld, muhammet.orazov, joao.paiva, ler, paolo.romano}@tecnico.ulisboa.pt

ABSTRACT
HyperDex is a recent multi-dimensional key-value store that
allows efficient search for objects using their secondary at-
tributes. However, the advantage of supporting complex
queries comes at the cost of a complex configuration. In this
paper we address the problem of automating the configura-
tion of this sort of novel key-value stores. We first show that
a misconfiguration may significantly affect the performance
of such systems. We then derive a performance model that
provides key insights on the behaviour of HyperDex. Based
on this model, we derive a technique to automatically and
dynamically select the best HyperDex configuration.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management; Sys-
tems; Distributed Databases

Keywords
Autonomic Configuration; Key-Value Store; Multi-dimensional;
Analytical Modelling; HyperDex

1. INTRODUCTION
Key-value data stores, often so called NoSQL storage sys-

tems (in opposition to classic databases), are widely used
as a fundamental building block for large scale distributed
systems. For scalability and performance reasons, most key-
value stores adopt simplistic interfaces, in which objects
are only accessible through a single key. BigTable [2], Dy-
namo [5], and Cassandra [11] are examples of such systems.

Yet, querying/accessing objects solely by their primary
key is rather restrictive. Consider a website for booking
hotel rooms: it is easy to conceive that the system must
support searches for hotels in a given location and price.
It is therefore imperative to support the search for the ob-
jects, which represent the hotels, by other attributes rather
than their primary keys. Recently, several proposals have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

used mappings to multi-dimensional spaces both in key-
value stores and peer-to-peer systems[7, 8]. Among these,
HyperDex [7] owns a unique set of characteristics that makes
it a very appealing solution to the problem. The main idea of
HyperDex is to use hyperspace hashing, an extension of con-
sistent hashing [9]. Briefly, an object with a set of attributes
A is mapped to an Euclidean space with |A| dimensions (i.e.,
its cardinality) by hashing the values of its attributes, and
interpreting it as a vector of coordinates.

HyperDex provides a rich API with support for searches
on any object’s attributes, also called partial searches. By
leveraging on hyperspace hashing, HyperDex can handle
partial searches very efficiently. On the other hand, main-
taining indexes does introduce additional costs on the exe-
cution of inserts and updates; hence, they should be used
wisely. HyperDex allows the programmer to configure the
Euclidean space according to the requirements of the tar-
get application. Unfortunately, it is far from obvious which
configurations provide best results. As we shall see, mis-
configurations that are likely to occur with non-expert users
may affect drastically the performance of the system, with
differences in performance up to 47× (measured in our ex-
periments). One of the key challenges is that the number of
possible configurations grows exponentially with the num-
ber of attributes considered, making exhaustive testing a
tedious or often impossible task. On top of this, the un-
derlying mechanisms and implementation of HyperDex are
complex, which makes any attempt to identify the best con-
figuration for each workload a daunting task. This motivates
the main claim of this paper, which is to develop techniques
that support the auto-configuration of HyperDex.

In this paper we study hyperspace hashing in detail, and
in particular the inner-workings of HyperDex, both from an
analytical as well as experimental perspectives. We present
two contributions with the objective of autonomically max-
imizing HyperDex’s performance for a given workload and
deployment setting: 1) a predictive model of HyperDex’s
performance that obtains an average accuracy of 92%; and 2)
an architecture that takes advantage of the previous contri-
bution and allows HyperDex to adapt to the current system
workload and self-configure to maximize its performance.

Section 2 presents an in-depth description of HyperDex.
Using this knowledge, in Section 3 we derive an analytical
model of HyperDex, which is then validated in Section 4. In
Section 5, we present the architecture of our solution for au-
tomatically configuring HyperDex and evaluate its accuracy
against that of a set of heuristics. In Section 6, we overview
the related work. Finally, Section 7 concludes the paper.

city

Paris h1h2 h4h5
h6

(a) Subspace 〈city〉.
price

city

120

Paris h2
h1 h4

h5

h6

(b) Subspace 〈city, price〉.

Figure 1: Two different configurations.

2. OVERVIEW OF HYPERDEX
One of the main goals of HyperDex is to support efficient

partial searches by secondary attributes, mainly by reducing
substantially the number of servers involved in each query.
The main idea is to use hyperspace hashing, in which the
system can deterministically calculate the smallest set of
servers that may contain data matching a given query.

2.1 Hyperspace Hashing in HyperDex
Consider that the objects to be stored have N distinct at-

tributes. An hyperspace in HyperDex is an Euclidean space
with N dimensions, such that each dimension i is associated
with an attribute Ai ∈ {A1, ...,AN }. Hyperspace hashing
maps an object in the hyperspace by applying a hashing
function to the value of each attribute Ai of the object.
In this way, we obtain a vector of N coordinates that cor-
respond to the point in the hyperspace where the object
is located. The hyperspace is partitioned in multiple dis-
joint regions that are assigned to servers. A directory keeps
the mapping among regions and servers, such that the right
nodes can be contacted when a query or update is executed.

In the description above, we assumed that the key-value
store uses a single hyperspace, with as many dimensions as
the attributes of the objects. Unfortunately, the volume
of an hyperspace grows exponentially with each additional
attribute. As a result of this growth, partial searches be-
come increasingly prone to contact regions (and correspond-
ing servers) that contain no relevant data for the search.
To address this problem, HyperDex allows the system to
be configured using multiple hyperspaces, called subspaces,
each with a number of dimensions smaller than N .

The possibility of using multiple subspaces increases the
complexity of configuring HyperDex: the programmer has
to define the set of subspaces (denoted by S), and for each
subspace Si ∈ S, which attributes 〈A1, ...,Ak〉 to be used.
This can be illustrated resorting to the example of the hotel
database briefly mentioned before. Each hotel is an object
with various attributes, such as the primary key (name), cat-
egory, price, address fields, among others. In Figs. 1a and 1b
we show two possible subspaces with the corresponding re-
gions (distributed to servers) and some points representing
hotels. Considering a query for hotels in Paris: using the
subspace of Fig. 1a it is necessary to contact only 1 region,
whereas in Fig. 1b it is necessary to contact 3. If the query
also specifies an additional requirement of price 120, only
one region is contacted in both cases. Note that, indepen-
dently of the number of dimensions of a subspace, the strat-

0

1

2

3

4

5

6

7

read-heavy balanced write-heavy

th
ro

u
g

h
p

u
t

(1
0

0
0

 o
p

s
 /

 s
)

workloads

hyperspace

47x

subspaces

27x

8x

Figure 2: Performance of HyperDex with an hyperspace
against a configuration with subspaces.

egy adopted in HyperDex is to divide each dimension of a
subspace such that the total number of regions per subspace
is close to a predefined value R.

In Fig. 2 we present a particularly interesting experiment,
illustrating the impact of the configuration of HyperDex on
its performance: by configuring it with a single hyperspace,
or with the best (albeit complex) combination of subspaces,
the performance may be improved from 8× to 47× depend-
ing on the ratio of queries and updates. We discuss the
reasons underlying this difference in performance when pre-
senting our analytical model in Section 3. Unfortunately,
as we shall see, it is not trivial to manually decide on the
best configuration, for which reason this process should be
automatized. In order to understand how HyperDex can be
configured, we need to delve into its operation.

2.2 Search Operation
We first describe how queries are processed in HyperDex.

We define a search query Q as the set of attributes that
the query accesses (and respective values). In the general
case, to execute a query it is necessary to send a message
to the servers responsible for the regions touched by the
query. The number of servers contacted varies according
to the subspace chosen and the specification (partial, or
complete) of the query with regard to the dimensions of
the subspace; for instance, in the example Fig. 1b, a search
Q = 〈city = Paris, price = 120〉 results in contacting only
one region, but in a query forQ = 〈city = Paris〉 in the sub-
space 〈city, price〉 all three regions are contacted. In order
to obtain the best throughput possible, HyperDex always
executes a query on the subspace Si ∈ S which yields the
minimum number of regions. Note that HyperDex maintains
a full copy of each object in each configured subspace.

2.3 Update Operation
Finally, we describe how updates are processed in Hyper-

Dex. First the object is searched, using a subspace that has
the primary key as the single dimension (this subspace must
exist in every HyperDex configuration). Then, since a full
copy of the object is stored in each sub-space, all copies need
to be updated. For fault-tolerance, K = f + 1 copies may
be maintained in each subspace.

To coordinate the update, HyperDex uses chain replica-
tion [16]. HyperDex organizes the replication chains using
a technique called “value-dependent chaining”, in which the
chain of an object depends on the values of its attributes.
Whenever an attribute is updated, the position of the object
may change, which causes additional servers to participate

Primary
Key

K = 1

K = 2

K = 3

<city, price> <city, stars>

(a) Update of 〈tel〉.

Primary
Key

K = 1

K = 2

K = 3

<city, price> <city, stars>

old new

(b) Update of 〈stars, tel〉.

Figure 3: The chain of servers resulting from two different
update operations in the same configuration of HyperDex.

in the chain. Fig. 3 shows two examples of replication chains
for different updates. Consider the update U = 〈tel〉, mean-
ing that it changes the telephone of a given hotel, shown in
Fig. 3a. In this case 3 replicas have to be updated for each
subspace. In Fig. 3b, the update U = 〈stars, tel〉 addition-
ally changes the stars of the given hotel. This results in a
more complex chain because the attribute stars is present in
a dimension of one subspace. By changing its value, the ho-
tel changes its position in the subspace 〈city, stars〉, which
may cause it to move from one region (old) to another (new):
the old server deletes it from its storage while the new one
has to insert it (in subsequent operations the replication
chain will no longer involve the servers of the old sub-chain).

3. MODELLING HYPERDEX
Based on the insights of the previous section on the inner

workings of HyperDex, we now derive an analytical model
that captures its performance. In the following we assume
scenarios with peak throughput, meaning the servers’ pro-
cessors are fully utilized and the network resources are not
restraining the performance. In deployments where the net-
work is the bottleneck, the configuration becomes trivial,
as the optimal solution consists in using as few servers as
possible, based on the storage capacity of the nodes.

3.1 Modelling Searches
In situations of peak throughput, the cost of searching

in HyperDex is proportional to the number of regions con-
tacted. Consider a generic search query Qi.

Observation 1. The worst possible performance for a search
Qi happens whenever @Si∈S : Qi ∩ Si 6= ∅.

Rationale. Since no subspace contains (at least) one at-
tribute being searched, then the query must contact R re-
gions (i.e., all) in some subspace. The subspace chosen is
irrelevant, because all regions should be evenly split among
servers in all subspaces. Hence, Qi will be received and pro-
cessed by all nodes, over all data stored locally, leading to
the worst possible performance. ut

Observation 2. Every configuration where ∃Si∈S : Si ⊆ Qi

leads to the optimal performance when searching for Qi.

Rationale. Since there are O objects scattered uniformly
amongR regions, then each region contains O

R objects. Each
attribute in Si is also contained in Qi, meaning that the
search defines values for all coordinates of Si. Consequently,
the set of coordinates results in a point in the subspace,
which is contained in a single region. Thus the search only
contacts one region, whose server processes O

R objects. ut

Observation 3. For any subspace Si ∈ S and search query
Qi, the expected number of contacted regions by Qi is:

CRexp(Qi) =
|Si|
√
R

|E|
such that: E = Si \ Qi (1)

Rationale. The set E represents all the attributes present
in subspace Si but not defined by the partial search Qi.
For each of those undefined attributes, all the regions along
that dimension will be contacted. Generally, to ensure a
total number of regions R, each subspace dimension is split
in |Si|

√
R partitions. As a result, the number of regions

contacted is the product of this number of partitions |E|
times, as that is the number of dimensions not defined by
the query — they can be seen as extra, or unnecessary for
the query. ut

We can now estimate the cost of a given search. This is
proportional to the product of the number of regions con-
tacted (given by Equation (1)) by the number of objects in
each region. To obtain an absolute estimation of throughput
we consider a factor β, which is a constant cost associated
with processing a single item and dependant on the hardware
configuration of the evaluated system. Then, the expected
throughput of a search query Qi that uses some subspace Si
is obtained by:

T exp(Qi) =
1

cost(Qi)
, cost(Qi) =

|Si|
√
R

|E|
× OR × β (2)

We finally consider workloads where there may exist sev-
eral search queries Q, and each query Qi occurs with some
likelihood pi. Naturally, the sum of all probabilities adds to
1. We can then define the query set QS as composed by all
Qi. This way we can predict the throughput of the system
through the weighted combination of costs (Equation (2)):

T exp(Qs) =
1

|QS |∑
i=0

(cost(Qi)× pi)

(3)

3.2 Modelling Updates
From the description of updates in HyperDex we predict

a cost proportional to the length of the replication chain
involved in the operation.

Observation 4. The cost of an update is proportional to
the length of the chain replication involved in the operation,
i.e., length(Qi) = K(1 + |N |+ 2|M|).

Rationale. There is always a part of the chain proportional
to the product of the number of subspaces (|S|) and the
replication degree (K). It is also necessary to account for the
primary key subspace (not included in S). For instance, the
length of chain in Fig. 3a is (1 + |S|)×K = (1 + 2)× 3 = 9.

In the general case, we have to admit that attributes of
subspaces are modified, as shown in Fig. 3b. In this case
there are additional servers in the chain — the subspaces
that are modified lead to two sub-chains instead of just one.
Thus, we define S = N ∪M, where N = {∀Si∈S : Qi ∩Si =
∅} and M = {∀Si∈S : Qi ∩ Si 6= ∅}. ut

Yet, this approach considers that every server performs
a similar effort. To obtain a precise estimation, we must
carefully assess the amount of processing associated with
the update.

Observation 5. The cost of an update has to be weighted
by a corrective factor α.

Rationale. Indeed, there are differences in the processing
of an update Qi, according to whether it changes an at-
tribute mapped to a subspace, or not. Using the example in
Fig. 3b, a subspace that is not modified merely needs to up-
date the local copy of the object, using a local overwrite
operation. Conversely, a subspace that is modified creates
two sub-chains, where the old servers must locally invoke a
delete operation and the new servers must invoke a write
operation. In fact, we assessed that the overwrite opera-
tion is less expensive as this operation never causes the local
index to be re-balanced. Consequently, we introduce a cor-
rective factor α to account for this difference. This factor is
proportional to the number of subspaces that are modified,
i.e., |M|. Similarly to β, this factor α is dependant on the
hardware configuration and HyperDex implementation, and
must be estimated from a running system. ut

As pointed out earlier, an update always conveys a fetch
operation to obtain the object (by its primary key), which
corresponds to an additional server. Finally, we also con-
sider a parameter Tmax to capture the maximum through-
put achievable by the hardware deployment in study. This
parameter can be easily obtained with a scenario where
length(Qi) = 1, e.g. by modifying an object in a simple
hyperspace containing only the key subspace:

T exp(Qi) =
Tmax

1 +K(1 + |N |+ 2α|M|) (4)

3.3 Modelling Hybrid Workloads
When the workload contains diverse types of operations,

the achievable performance can be estimated with a linear
combination of the costs of each operation, weighted by its
likelihood probability (analogously to Equation (3)).

3.4 Discussion
The important aspects to retain about these models are

that the cost of the search operation is proportional to the
number of regions matched by the query, whereas the cost
of an update increases with the length of the chain involved
in the operation. This creates two conflicting forces: on one
hand, the number of different regions (and hence of different
servers) to query can be decreased by including additional
subspaces; conversely, the throughput of updates decreases
with an increase on the number of subspaces.

4. ASSESSING THE MODEL ACCURACY
To assess the accuracy of our model, we used a real data

set about hotels in the USA. The workload then follows

two synthetic patterns representative of a real operating
application. Each workload is composed of searches and
updates with three variants: read-heavy (RH), with 90%
searches and 10% updates; a balanced configuration (BAL);
and write-heavy (WH) with 90% updates.

Workload A: Simulates situations where users frequently
perform very specific searches. The searches are composed
by 4 classes of searches, with increasing probability and with
increasing number of attributes specified. There are two up-
dates with equal probability, which alter the two attributes
which are neither the most frequent nor the least frequently
searched for.

Workload B: Simulates situations where users most fre-
quently perform very broad searches. So, the searches are
composed by the same 4 classes of searches as workload A,
but with the inverse order of likelihoods, such that the query
with a single attribute is the most common one. The up-
dates simulate an environment where one of the attributes
is frequently updated (e.g. the “price” attribute), and a set
of other attributes is less frequently updated in the same
query (e.g. the address, telephone number and zip code).

4.1 Parameter Estimation
Every test was executed with 9 servers in a private cluster,

connected through Gigabit Ethernet. The coordinator ran
in a dedicated machine, and the other 8 servers processed
client requests. We used an environment very similar to that
of [7]: one client process in each of the 8 servers, and each
client executing 32 threads.

Recall that our model includes three parameters that de-
pend on the hardware configuration. After estimated, these
can be used in our model, independently of the workload to
be assessed. For space constraints, we only briefly explain
the process of estimating the parameters. We used simple
scenarios, easily synthesized, to estimate the parameters for
our test environment. Naturally, this simplicity has an ef-
fect on the final error when applying our model to complex
workloads. Yet, for instance, we verified that using only 24
executions (in part repeated), of 2 minutes each, was suffi-
cient to estimate α with only 6.5% error with regard to a
perfect estimation.

4.2 Accuracy of the Model
To assess the accuracy of our model, we tested workloads

A and B with a sample of all possible configurations given
the 4 attributes that are queried and modified. This sample
was obtained by ordering all possible configurations accord-
ing to throughput estimation of our model, selecting the 5
top configurations, and selecting 5 other configurations ran-
domly from the remaining ones. In Figure 4, we show the
estimated throughput against the measured throughput for
the sampled configurations and for all workloads. Ideally, if
the throughputs were all estimated perfectly, all points in
the graph would be placed on the diagonal line. Therefore,
these results show that our system predicts the performance
quite accurately, given that the average error is of only 9%
with a standard deviation of 7%.

5. AUTO-CONFIGURING HYPERDEX
In this section we use the model to estimate the best con-

figuration for the given workload. The objective is to have
HyperDex autonomically react to the current workload and

0 1 2 3 4 5 6 7 8
Predicted Throughput (1000 ops/s)

0

1

2

3

4

5

6

7

8

R
e
a
l
T
h
ro

u
g
h
p
u
t

(1
0

0
0
 o

p
s/

s)

A-RH
A-BAL
A-WH

B-RH
B-BAL
B-WH

Figure 4: Model accuracy.

self-configure without the intervention of the programmer or
the application administrator.

5.1 Architecture of the system
Our solution is composed by three main modules: the

Analyser, the Oracle and the Configurator. We briefly de-
scribe each of these components below.

- The Analyser runs on each server and monitors the sys-
tem to generate a profile of operations Qi and their fre-
quency pi. The several individual profiles are then aggre-
gated to build the profile of the workload. To allow the sys-
tem to adapt to changes in the workload profile, the Analyser
runs periodically, building a new profile for every period.

- The Oracle is a centralized component which determines
the best configuration for the workload. We consider two
different classes of Oracles, namely: i) oracles that work
based on heuristics and, ii) an oracle that operates using
the analytical model described before.

- The Configurator is in charge of applying the changes
to HyperDex. This involves changing the hyperspace config-
uration according to the best configuration derived by the
Oracle.

5.2 Oracles
Oracle Based on Heuristics: We consider the follow-

ing heuristics: no-subspace, hyperspace, and dominant. No-
subspace is similar to a common key-value store, and pro-
vides just a baseline configuration, used for comparison. The
hyperspace heuristic parses the workload profile and collects
all attributes that are currently accessed; it then proposes a
configuration that uses all those attributes. The dominant
heuristic parses the workload profile and picks the most com-
monly searched attribute; it then proposes a single subspace
with that attribute.
Oracle Based on the Analytical Model: This Or-

acle uses the predictive analytical model described in Sec-
tion 3 to determine the best configuration for the workload.
For that, it generates all possible configurations, queries the
model for each of them, and ranks them according to the es-
timated performance. It then selects the configuration which
is ranked highest for that workload. This oracle is labeled
as “automatic” in the plots.

5.3 Evaluation
We first compare the performance of the different Oracles.

The results in Fig. 5 show how the configuration selected

0

1

2

3

4

5

6

7

A-RH A-BAL A-WH B-RH B-BAL B-WH

th
ro

u
g

h
p

u
t

(1
0

0
0

 o
p

s
 /

 s
)

workload

no-subspace
dominant

hyperspace
automatic

Figure 5: Performance of different oracles.

by our model always results in the best performance. The
difference in performance, when comparing with the heuris-
tics, is of one to two orders of magnitude. The complexity
of the workloads’ queries challenges the dominant heuristic
performance; still, it is 4.95× better (on average) than no-
subspace. The hyperspace heuristic explores the fact that the
workload is highly varied to achieve 2.39× higher through-
put than dominant. Still, our automatic oracle is able to
obtain considerable improvements: it is approximately 10×
better than hyperspace; 25× better than dominant subspace;
and 126× better than no-subspace.

In addition to this, we have conducted further benchmark-
ing to assess the ranking function implemented by the oracle
based on the analytical model: Table 1 captures the differ-
ence between the ranking of configurations estimated by our
model and the ranking that results from executing the con-
figurations in the real system. To measure this difference we
use a standard metric relying on Kendall’s τ coefficient [10]
to assess the agreement between the two rankings. This co-
efficient varies in the interval [0, 1] where the accuracy is
better when closer to 1. The results indicate that there is a
high correlation between the rankings predicted by our sys-
tem and the real rankings. We have also counted the number
of pairs of elements which have a different relative ordering
in the two rankings, and then multiply this distance by the
relative difference in throughput between the two elements.
We represent this adjusted distance by τ , where it is better
to be close to 0 (i.e., the ranking was correctly predicted, or
if not, the errors do not affect the throughput). Most ranks
have a distance of 0; among the 60 classified configurations,
only 4 have τ over 2%; and none is above 14%. Thus, al-
though our model is not perfect in estimating throughputs,
the errors do not significantly affect the accuracy of the sys-
tem. Finally, we highlight that the automatic oracle was
able to correctly identify the optimal configuration in 5 of
the 6 workloads in Figure 5 — to assess this, we had to man-
ually analyze the possible configurations for each workload.
In the single case where the automatic choice was subopti-
mal (B-RH), the selected configuration was the second best,

workload τ coef avg τ dist max τ dist

A-RH 0.83 0.012 0.112
A-BAL 0.94 0.002 0.017
A-WH 0.88 0.017 0.139
B-RH 0.72 0.016 0.105

B-BAL 0.94 0.001 0.012
B-WH 0.88 0.008 0.049

Table 1: Difference between estimated and real ranking.

and it only yielded a loss of 6% performance when compared
with a perfect prediction.

6. RELATED WORK
Key-Value stores [2, 5, 11] provide highly scalable and

performing alternatives to store data [12, 2]. To achieve
this, they are typically based on consistent hashing [9]. To
provide richer semantics than simple operations based on
the key of the object, traditional approaches either flood
the network with queries [3], or insert the object multiple
times in the system, one for each attribute (or keyword) of
the object [13, 1]. Both strategies are particularly inefficient
due to the redundancy involved. To reduce the number of
servers contacted, other approaches make use of space filling
curves [14]. Unlike HyperDex [7], these approaches do not
scale with the number of dimensions: the curve becomes
increasingly meaningless (hence preserving less and less lo-
cality), the more attributes the space has. HyperDex, on
the other hand, avoids this problem by creating multiple
subspaces, which, as we argue on this paper, must be con-
figured correctly to be taken advantage of.

The idea of generating a predictive model of a key-value
store in order to decide on its best configuration is not a new
one. Works such as [15, 4, 6] apply this concept to control
elastic scaling to adapt to dynamic workloads while avoiding
manual configuration. In fact, similarly to our solution, the
work by Cruz et al. [4] also considers how the data partition-
ing by nodes affects the throughput of the system. All these
works are however directed at auto-configuring elastic scal-
ing on “traditional” key-value stores, whereas ours is aimed
at configuring the dimensions on a multi-dimensional one.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented the problem of effectively tak-

ing advantage of the new generation of multi-dimensional
NoSQL data stores. Subtle changes in the configuration pro-
cess were shown to lead to drastic performance loss, which
motivates the automatization of the process. For that, we
claim that using a predictive model provides accurate enough
results to allow us to obtain the optimal configuration for a
given workload. We have shown that this approach can pre-
dict the system throughput with an average accuracy of 92%.
In addition to that, we compared it with several (mostly
static) heuristics. Our solution yielded improvements of up
to two orders of magnitude in the throughput of the system,
without requiring any administrator intervention.

Since our model for search queries relies only on the num-
ber of regions matched, it is applicable to all multi-dimen-
sional key-value stores based on partitioning spaces com-
posed by several attributes, in particular those based on
space-filling curves [14]. On the other hand, predicting the
throughput of update operations is tied with the existence of
value-dependent chaining and subspaces, concepts that are
currently only used on HyperDex, but that we expect to see
in many future multi-dimensional key-value stores.

As future work, we intend to improve the accuracy of our
throughput estimations by employing more complex tech-
niques such as queue theory to model the effect of concurrent
operations in the servers. In order to improve the run-time
costs of our system, we also intend to include mechanisms to
select configurations based on the cost-benefit ratio between
predicted performance and the cost of reconfiguration.

Acknowledgments
This work was partially supported by Fundação para a Ciên-
cia e Tecnologia (FCT) via INESC-ID multi-annual funding
through the PIDDAC Program fund grant, under projects
PEst-OE/EEI/LA0021/2013 and CMU-PT/ELE/0030/2009.

8. REFERENCES
[1] A. Bharambe, M. Agrawal, and S. Seshan. Mercury:

supporting scalable multi-attribute range queries. In
Proceedings of SIGCOMM, pages 353–366, 2004.

[2] F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[3] Y. Chawathe et al. Making gnutella-like p2p systems
scalable. In Proceedings of SIGCOMM, 2003.

[4] F. Cruz et al. MeT: workload aware elasticity for
NoSQL. In Proceedings of EuroSys, 2013.

[5] G. DeCandia et al. Dynamo: amazon’s highly
available key-value store. In Proceedings of the
Symposium on Operating Systems Principles, SOSP,
pages 205–220, 2007.

[6] D. Didona, P. Romano, S. Peluso, and F. Quaglia.
Transactional auto scaler: elastic scaling of in-memory
transactional data grids. In Proceedings of the
International Conference on Autonomic Computing,
ICAC, pages 125–134, 2012.

[7] R. Escriva, B. Wong, and E. Sirer. Hyperdex: a
distributed, searchable key-value store. In Proceedings
SIGCOMM, pages 25–36, 2012.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One
torus to rule them all: multi-dimensional queries in
p2p systems. In Proceedings of the Workshop on the
Web and Databases, WebDB, pages 19–24, 2004.

[9] D. Karger et al. Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on
the world wide web. In Proceedings of STOC’97, 1997.

[10] M. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2), 1938.

[11] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[12] S. Peluso et al. When scalability meets consistency:
Genuine multiversion update-serializable partial data
replication. In Proceedings of the International
Conference on Distributed Computing Systems,
ICDCS, pages 455–465, 2012.

[13] P. Reynolds and A. Vahdat. Efficient peer-to-peer
keyword searching. In Proceedings of the International
Conference on Middleware, pages 21–40, 2003.

[14] C. Schmidt and M. Parashar. Enabling flexible queries
with guarantees in p2p systems. Internet Computing,
IEEE, 8(3):19–26, 2004.

[15] B. Trushkowsky et al. The scads director: scaling a
distributed storage system under stringent
performance requirements. In Proceedings of the
Conference on File and Storage Technologies, FAST,
pages 1–12, 2011.

[16] R. van Renesse and F. Schneider. Chain replication for
supporting high throughput and availability. In
Proceedings of OSDI’04, 2004.

	Introduction
	Overview of HyperDex
	Hyperspace Hashing in HyperDex
	Search Operation
	Update Operation

	Modelling HyperDex
	Modelling Searches
	Modelling Updates
	Modelling Hybrid Workloads
	Discussion

	Assessing the Model Accuracy
	Parameter Estimation
	Accuracy of the Model

	Auto-Configuring HyperDex
	Architecture of the system
	Oracles
	Evaluation

	Related Work
	Conclusions and Future Work
	References

