
On the Energy and Performance of Commodity Hardware
Transactional Memory

Nuno Diegues
INESC-ID / Instituto Superior

Técnico, Univ. of Lisbon
nmld@tecnico.ulisboa.pt

Paolo Romano
INESC-ID / Instituto Superior

Técnico, Univ. of Lisbon
romano@inesc-id.pt

Luís Rodrigues
INESC-ID / Instituto Superior

Técnico, Univ. of Lisbon
ler@tecnico.ulisboa.pt

ABSTRACT
The advent of multi-core architectures has brought concur-
rent programming to the forefront of software development.
In this context, Transactional Memory (TM) has gained in-
creasing popularity as a simpler, attractive alternative to
traditional lock-based synchronization. The recent integra-
tion of Hardware TM (HTM) in the last generation of Intel
commodity processors turned TM into a mainstream tech-
nology, raising a number of questions on its future and that
of concurrent programming.

To evaluate the potential impact of Intel’s HTM, we con-
ducted the largest study on TM to date, comparing different
locking techniques, hardware and software TMs, as well as
different combinations of these mechanisms, from the dual
perspective of performance and power consumption. As a
result we perform a workload characterization, to help pro-
grammers better exploit the currently available TM facili-
ties, and identify important research directions.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques - Concurrent
Programming

Keywords
Transactional Memory; Performance Evaluation; Energy

1. INTRODUCTION
For many years, locking has represented the de-facto stan-

dard approach to synchronization in concurrent applications.
However, its inherent complexity and error-proneness mo-
tivated the research for alternatives. Transactional Mem-
ory (TM) is an appealing alternative in which programmers
are required only to identify which code blocks should run
atomically, and not how concurrent accesses to shared state
should be synchronized to enforce isolation (as with locks).
The TM is then responsible for guaranteeing correctness, by
aborting transactions that would generate unsafe histories.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
ACM 978-1-4503-2789-3/14/06.
http://dx.doi.org/10.1145/2591971.2592030 .

Over the last decade a large body of TM research focused
on software-based implementations (STM) due to their ease
of prototyping [1]. Unlike hardware-based implementations,
however, STM needs to instrument reads and writes, to
trace conflicts at run-time between concurrent transactions.
These instrumentation costs can, in certain scenarios, intro-
duce large overheads and hinder performance. HTM sup-
port, which has recently been commercialized in commodity
processors [3], avoids that problem by relying on the cache
coherence protocol of the processor. On the downside, com-
modity HTMs have architectural restrictions that may limit
their practical ability to efficiently deal with some workloads.

The advent of commodity HTM raises a number of ques-
tions concerning the future of TM and concurrent program-
ming: how competitive are available HTMs when compared
with state of the art STMs? Will the achievable performance
be sufficiently alluring to make TM mainstream? What role
will STM play now that HTMs are widely available? How
limiting are the architectural restrictions of existing HTMs?

2. COMPARATIVE STUDY
In this work we contribute to answer the previous ques-

tions by conducting the largest study to date on TM-based
synchronization. We compare, from the twofold perspective
of performance and energy-efficiency, a range of synchroniza-
tion mechanisms: 6 lock approaches with different granular-
ities; 4 STMs; HTM (using Intel TSX); and 2 Hybrid TMs
(HyTM) that use STM and HTM mechanisms in synergy.
In the following we summarize some of our results; details
can be found in an extended version of the paper [2].

Pros and Cons for HTM: We found that in STAMP, a
standard benchmark suite for TM, we tested 560 different
scenarios and identified three categories of applications in
which HTM exhibits different performance (Table 1). Per-
formance of HTM is highly dependent on the memory ac-
cess patterns on the L1 cache, and long running transac-
tions can lead to frequent cache capacity exceptions and
spurious aborts. As such, HTM is the best approach only
in Kmeans and SSCA2, which have short transactions in-
terleaved with large non-transactional code blocks. When
transaction-intensity is medium, HTM is only the best choice
for a limited degree of parallelism, and it is generally better
on the energy side than on the performance side. The impact
of its hardware limitations is highlighted by several STAMP
benchmarks that generate long transactions, in which HTM
is outperformed by both locking and STM solutions. By also
considering the synchronization of a concurrent Hash-Map
and a RedBlack-Tree, HTM clearly unveiled its effectiveness



Table 1: Summary of results according to workload charac-
terization in the STAMP suite, showing the strategies that
achieve highest performance, and least energy consumption
(note that t = number of threads). Transaction intensity,
split in three categories, also shows the percentage of time
spent in transactional mode in the application.

TxIntensity (%) Speedup Least Energy

kmeans low (7) HTM HTM
ssca2 low (17) HTM HTM

intruder medium (33)
HTM ≤ 4t HTM ≤ 5t
STM ≥ 5t STM ≥ 6t

vacation medium (89)
HTM ≤ 2t HTM ≤ 4t
STM ≥ 3t STM ≥ 5t

genome high (97) STM STM
yada high (99) STM STM

labyrinth high (100) STM STM

in scenarios with small transactions, in which it is competi-
tive with fine-grained locking (see Fig. 1 for a sample of the
workloads). Tests with Memcached (a popular in-memory
caching system) confirmed that HTM performed as good as
fine locks (4% less performance).

STM is still competitive: Our experiments also show that
STM is a robust all-around solution. Among the 4 STMs,
there was always one performing best than HTM in 5 out of
the 7 STAMP benchmarks. In concurrent data-structures
STM is competitive, or even the best, in workloads with
many updates (see Fig. 1 for an example). On the other
hand, STM has a larger energy consumption. Although
STM was initially proposed as a prototyping alternative
to actual hardware implementations of TM, its evolution
throughout a decade of intense research has resulted in sev-
eral highly-optimized mechanisms, achieving performance
comparable to that of fine-grained locking. This does not
mean that STMs embody a perfect solution; instead, these
results highlight the current limitations of HTM support,
which make STM still a very competitive solution.

3. RESEARCH DIRECTIONS
The results of our study unveil a number of critical is-

sues related with HTM performance and allow for identify-
ing several research problems, whose timely solution could
significantly enhance the chances for HTM to turn into a
mainstream paradigm for parallel programming:

HyTMs: still a mismatch? The results for HyTM do
not live up to the expectation of obtaining the best out of
both STMs and HTM. Across our 10 benchmarks and var-
ious workloads, HyTMs were never the best solution, and
were only competitive in 2 benchmarks. The problem is the
mechanisms currently employed for allowing the coexistence
of HTM and STM induce overheads in terms of additional
spurious aborts. This motivates research in the design of
support for non-transactional memory accesses from trans-
actions to allow more efficient synergies of HTM and STM.

Complexity of HTM tuning. HTM performance can be
significantly affected by the settings of several parameters
and mechanisms. Without proper tuning, Intel TSX yields
an average throughput loss of 72% and of 89% in energy con-

0.0

2.0

4.0

6.0

8.0

2 4 6 8

S
pe

ed
up

(a) Hash-Map 10% (speedup).

0.0

1.0

2.0

3.0

4.0

2 4 6 8

(b) RB-Tree 90% (speedup).

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8

E
ne

rg
y 

(1
00

0*
J)

threads

(c) Hash-Map 10% (energy).

0.2

0.4

0.6

2 4 6 8
threads

HTM
Fine-Locks

STM

(d) RB-Tree 90% (energy).

Figure 1: Concurrent collections with varying % of updates.

sumption. Also, the optimal configuration of these parame-
ters can significantly vary depending on the characteristics
of the application’s workload. These findings urge for novel
approaches capable of removing from programmers the bur-
den of manually tuning HTM parameters, and instead dele-
gating this task to middleware or compiler based solutions.

Relevance of selective instrumentation. Both TSX, as
well as current GCC’s library for STM, basically trace every
memory access performed within a transaction. This causes
significant increases of the transaction footprint’s size, am-
plifying the instrumentation overheads in STM, and the
chances of incurring in capacity exceptions in HTM. These
results motivate research on cross-layer mechanisms, both at
compiler and hardware level, to achieve selective instrumen-
tation in a way that is both convenient for the programmer
and efficiently implementable in hardware.

4. ACKNOWLEDGMENTS
This work was supported by PEst-OE/EEI/LA0021/2013

from Fundação para a Ciência e Tecnologia, and by the
GreenTM project (EXPL/EEI-ESS/0361/2013).

5. REFERENCES
[1] N. Diegues and P. Romano. Time-warp: Lightweight

abort minimization in transactional memory. In
Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
PPoPP ’14, pages 167–178, 2014.

[2] N. Diegues, P. Romano, and L. Rodrigues. The moment
of truth: virtues and limitations of commodity
Hardware Transactional Memory. Technical Report
RT/29/2013, INESC-ID Lisboa, December 2013.

[3] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar.
Performance evaluation of intel transactional
synchronization extensions for high-performance
computing. In Proceedings of International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’13, pages 1–19, 2013.


