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ABSTRACT
Scheduling concurrent transactions to minimize contention
is a well known technique in the Transactional Memory
(TM) literature, which was largely investigated in the con-
text of software TMs. However, the recent advent of Hard-
ware Transactional Memory (HTM), and its inherently re-
stricted nature, pose new technical challenges that prevent
the adoption of existing schedulers: unlike software imple-
mentations of TM, existing HTMs provide no information
on which data item or contending transaction caused abort.

We propose Seer, a scheduler that addresses precisely this
restriction of HTM by leveraging on an on-line probabilis-
tic inference technique that identifies the most likely conflict
relations, and establishes a dynamic locking scheme to seri-
alize transactions in a fine-grained manner. Our evaluation
shows that Seer improves the performance of the Intel TSX
HTM by up to 2.5⇥, and by 62% on average, in TM bench-
marks with 8 threads. These performance gains are not only
a consequence of the reduced aborts, but also of the reduced
activation of the HTM’s pessimistic fall-back path.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques - Concurrent
Programming

Keywords
Hardware Transactional Memory; Best-E↵ort; Scheduling

1. INTRODUCTION
Context. Transactional Memory (TM) [16] emerged over
the last decade as an attractive alternative to lock-based syn-
chronization. Contrarily to lock-based approaches, in which
programmers identify shared data and specify how to syn-
chronize concurrent accesses to it, the TM paradigm requires
only to identify which portions of the code have to execute
atomically, and not how atomicity should be achieved.
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The simplicity and potential of TM has motivated many
advances in software prototypes (STMs both in shared mem-
ory, e.g. [14, 12, 7, 9] and distributed systems, e.g. [17, 22])
as well as in hardware. Our focus is on Hardware imple-
mentations of Transactional Memory (HTM), which have
recently entered the realm of mainstream computing since
Intel shipped its first HTM — Transactional Synchroniza-
tion Extensions (TSX) [27] — in its commodity processors.

Problem. Due to the speculative nature of TM, transac-
tions are likely to be restarted and aborted multiple times
in conflict prone workloads. This has motivated a large body
of research on scheduling techniques, whose key idea is to se-
rialize the execution of transactions that are known to gen-
erate frequent aborts. However, most of existing scheduling
techniques were designed to operate with software imple-
mentations of TM (STM), and rely on specific support pro-
vided by the STM to gather knowledge on the conflicts that
occurred between transactions. Typically, upon a transac-
tion abort, the STM library can report back to the scheduler
which specific memory access and concurrent transaction
dictated the abort. This is illustrated in Figure 1, where we
depict transaction T1 aborting due to a read-write conflict
with a concurrent transaction T2. An STM library is able
to report this precise information back to a TM scheduler.

With the adoption of HTMs such as Intel TSX, however,
we lose much of this ability. When a hardware transaction
is aborted, the feedback is limited and insu�cient to pin-
point which transaction caused the abort. As shown in [10],
and exemplified in Figure 1, these HTMs merely distinguish
between a conflict and other abort causes (e.g., exceeding
hardware bu↵ers). For this reason, schedulers for STMs
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Figure 1: Two transactions causing a conflict. The
information returned by the TM varies depending
on its nature: STMs are able to precisely identify
the source of the abort, whereas commodity HTMs
provide only a coarse categorization of the abort.



fall short because they rely on precise information, whereas
HTMs are only capable of providing imprecise information.

Contributions. In this work we introduce Seer, the first
scheduler (to the best of our knowledge) to address the HTM
restrictions discussed above. The key idea of our proposal is
to gather statistics to detect, in a lightweight but possibly
imprecise way, the set of concurrently active transactions
upon abort and commit events. This information is used as
input for an on-line inference technique that uses probabilis-
tic arguments to identify conflict patterns between di↵erent
atomic blocks of the program in a reliable way, despite the
imprecise nature of the input statistics. The final step con-
sists in exploiting probabilistic knowledge on the existence of
conflict relations to synthesize a fine-grained, dynamic (i.e.,
possibly varying over time) locking scheme that serializes
“su�ciently” conflict-prone transactions.

A noteworthy feature of Seer is that it relies on reinforce-
ment learning techniques to self-tune the parameters of the
probabilistic inference model. To this end, Seer relies on
a stochastic hill-climbing technique that explores the con-
figuration space of the model’s parameter, while gathering
feedback at run-time about the application running and ac-
cordingly adjusting the granularity of the locking scheme.
Indeed, an appealing characteristic of this dynamically in-
ferred locking scheme is that it does not need to be perfect
(e.g., it can su↵er of false negatives) in capturing conflicts
between atomic blocks of the application, since correctness
for transactions is still enforced by the underlying HTM.

Seer includes also an additional novel mechanism that is
designed to address another performance pathology of ex-
isting HTM systems: when multiple hardware threads are
concurrently active on the same physical core, the likelihood
of incurring in aborts due to capacity exceptions can grow
to such an extent that it cripples performance. This is a
direct consequence of the fact that the information used by
the HTM concurrency control algorithm is entirely stored in
the CPU caches, which may be shared by hardware threads
running on the same core. Seer copes with this issue by
introducing a simple, yet e↵ective abstraction, the core lock,
which serializes the execution of hardware threads that share
the same core when capacity exceptions are detected.

Besides reducing aborts due to conflicts on data items,
Seer achieves also a drastic reduction of the frequency of
activation of the pessimistic software fall-back path of the
HTM system. In fact, in order to ensure the eventual success
of transactions that may fail deterministically using HTM,
after a limited number of attempts using hardware transac-
tions, transactions are executed pessimistically using a fall-
back path that uses a software-based synchronization mech-
anism — typically, a single-global lock [27, 18]. By reducing
the number of retries necessary to commit a transaction,
our proposal also contributes to reducing the frequency of
activation of the software fall-back, whose sequential nature
is known to hamper HTM performance [27, 18, 15]. Over-
all, our experimental study shows that, by applying Seer to
standard TM benchmarks, one can obtain gains up to 2.5⇥
and average speed-ups of 62% at 8 threads.
This paper is organized as follows. Section 2 surveys the

state of the art in TM schedulers and identifies the key fac-
tors that make our proposal novel. Then, in Section 3, we
provide an overview of our solution. We present the details
of our Seer implementation in Section 4. Finally, we evalu-
ate our proposal in Section 5 and conclude in Section 6.

2. RELATED WORK
Roughly speaking, the objective of a TM scheduler is to

decide when it is best to execute a transaction, possibly
deciding to serialize concurrent transactions based on their
likelihood of contending with each other, with the ultimate
goal of maximizing performance (typically throughput).

Most of the existing schedulers target STM systems, which
are assumed to be able to provide precise information on
the conflicts that caused the abort of a transaction. This is
the case for CAR-STM [11] and Steal-On-Abort [3], where
there are N serialization queues (one for each thread), and
an aborting transaction T

i

is placed in the queue of T
j

that
caused its abort. The idea is that T

i

is serialized after T

j

because it shall be executed by the thread currently running
T

j

, with which it conflicted. Both these schedulers were
proposed in the scope of STMs, which were extended to
obtain the required precise information on aborts.

Steal-On-Abort, although initially implemented in soft-
ware, was later also proposed for an HTM simulator [2].
However, this work assumed hardware extensions to sup-
port enqueuing the serialized transactions in each core of
the processor. The current expectation is that manufactur-
ers, such as Intel and IBM, will be quite resistant to changes
in the hardware due to its complexity [18] . Hence, it is par-
ticularly relevant to devise a scheduling solution for current
HTMs: one that operates in absence of accurate information
on the conflict patterns among transactions, like Seer does.

More recently, ProPS [24] followed a similar approach to
the ones above but, instead, focused on long running trans-
actions: each abort event is used to accumulate a contention
probability between every pair of transaction types (i.e.,
atomic blocks); whenever a transaction T is about to start, it
may have to wait in case there is an atomic block being exe-
cuted in a concurrent transaction that is expected to conflict
with T with high probability. This approach also requires
precise information to guide the scheduling decision, which
is not the case for HTMs such as Intel’s TSX. Shrink [13]
acts in a similar way to ProPS, but it is additionally fed
with past history of transactions’ read- and write-sets: as-
suming there is some data accesses locality between transac-
tions’ restarts, the scheduler uses this information to predict
conflicts that would happen if the transaction were allowed
to run against current concurrent transactions. Such fine-
grained information is not available in HTMs, and could only
be made available via additional software instrumentation,
yielding considerable overheads.

TxLinux [25] and SER [19] both changed the Linux sched-
uler to be transaction-aware, the di↵erence being that the
former was integrated in a simulated HTM called MetaTM
and the latter was fully in software. Similarly to the other
works, these proposals also require precise information.

Contrarily the schedulers above, ATS [26] is the only solu-
tion that works with imprecise information, i.e., coping with
the lack of knowledge on which pairs of transactions conflict
during their execution. ATS maintains a contention factor in
each thread, updated when transactions abort and commit,
such that a single lock is acquired when contention exceeds
a specified threshold. This simple approach is agnostic of
the atomic blocks being executed, as the whole problem is
subsumed by a single contention factor. The positive side is
that it works with currently available HTMs. In fact, this
is the de facto technique used with commodity HTMs due
to their best-e↵ort nature: because no transaction is guar-



Scheduler SW HW
Imprecise

Fine-Grained
Information

ATS [26] X X X �

CAR-STM [11] X � � X
Shrink [13] X � � X
ProPS [24] X � � X
SER [19] X � � X

TxLinux [25] � X � X
SOA [3, 2] X X � X

Seer � 4 4 4

Table 1: Comparison of TM schedulers in terms
of: regulating an STM and/or HTM, working with-
out precise information on which transaction caused
the abort, and whether it uses multiple fine-grained
locks to schedule transactions’ execution. Seer, our
proposal, is the only scheduler that provides all the
following properties: 1) works with HTM; 2) does
not require precise feedback on aborts; and 3) and
adopts a fine-grained serialization mechanism.

anteed to commit, a software fall-back must be provided to
ensure progress; the single lock fall-back that is typically
used [27, 18, 20, 15] is, in essence, akin to ATS. Since ATS
relies on a single contention factor and one lock for serial-
ization, it alternates between serializing all transactions or
letting them all execute concurrently; hence, that is why we
characterize it as a a coarse-grained scheduler.

We summarize the above state of the art in Table 1. We
can see that our contribution Seer is unique by being ap-
plicable to commodity HTMs (i.e., it works with imprecise
input) and allowing to serialize multiple transactions con-
currently in a fine-grained manner (i.e., it does not have a
single lock for serialization, as ATS does).

Finally, recent works [8, 4] have investigated the use of on-
line profiling and optimization techniques in a similar spirit
to what Seer does, but for a di↵erent, complementary pur-
pose: decide the best software fall-back and retry policies.

3. OVERVIEW OF THE SOLUTION
Schedulers for TM systems, independently of their soft-

ware or hardware nature, benefit particularly from the avail-
ability of fine-grained precise information about what causes
the abort of a transaction. This means that if we are running
a transaction for an atomic block of our program, and we
know that it aborted due to a concurrent transaction execut-
ing another specific atomic block, then it is best to schedule
them in a way that prevents their concurrent execution.

Having access to such information is typically trivial in
STMs. However, mainstream HTMs provide little to no
feedback with respect to this matter. In particular for Intel
TSX (and also for IBM’s HTMs), upon the abort of a hard-
ware transaction, it is possible to know only a rough cate-
gorization: for instance, whether it was a data conflict; or
whether the space available for the read- or write-set bu↵ers
in the hardware caches was exhausted; or whether there was
an interrupt that caused a context switch or a ring transi-
tion. As such, no information is given about which transac-
tion was the cause for the abort. This is the challenge that
prevents existing schedulers from being e↵ectively applicable
to existing HTMs.

The high level idea of our solution is to take a probabilis-
tic approach. While we do not know what exactly causes
a transaction T

i

to abort, because the HTM provides no
such information, we can try to infer the answer by observ-
ing enough times which transactions were active when T

i

aborted. By repeating this observation over time, we can
gather probabilistic knowledge on the likelihood of conflicts
between pairs of transactions. This knowledge can then be
exploited to decide, when a transaction starts, whether to
schedule it or not depending on the conflict probabilities
with the currently active transactions.

The probabilistic inference mechanism of Seer is based
on three key ideas: (1) we continuously collect on-line in-
formation about the transactions concurrently active upon
commit and abort events, by means of a lightweight,
synchronization-free monitoring mechanism; (2) we period-
ically analyze this information and estimate probabilities of
aborting/committing in the presence of other specific trans-
actions; and (3) this information is used to periodically de-
vise a fine-grained locking-scheme, whose locks are acquired
upon the start of a transaction and allow for serializing the
execution of conflict prone-pairs of transactions (without
blocking other transactions not likely to incur any conflict).

Figure 2 portraits the life-cycle of transactions within our
scheduler. The objective of this life-cycle is to populate a
global table that reifies the automatically inferred locking
scheme. Seer uses one lock for each transaction in the tar-
get application (identified in the columns). Each row i of the
table specifies the locks that transaction T

i

should acquire,
indicating that T

i

conflicts often with the transactions asso-
ciated with these locks, and that these transactions should
not be executed concurrently. We associate each atomic
block in the application source code to a di↵erent transac-
tion T

i

: this way, we seek to serialize transactions with a fine
granularity, contrarily to other approaches that work with
HTM and that use a single lock for serialization [26].

To understand how to reach that objective, we begin by
describing the life-cycle of Seer. In step 1 , a transaction
T3 is about to be executed on core C1. Before doing so, it
acquires the locks defined by Seer in a global table: in this
case, lock L1. Then, it announces that C1 is executing T3

in the list of active transactions in step 2 . Step 7 shows
that transactions are removed from that list when they are
finished.

By acquiring lock L1 in the lock table, this means that
transaction T3 was deemed to contend with T1. Although
instances of T1 do not acquire lock L1, because they do not
contend with ‘themselves’, they do co-operate with contend-
ing transactions (such as T2 and T3) by waiting for their
completion, before starting executing, if lock L1 is found to
be taken. In general:

1. A transaction T

x

waits for its lock L

x

to be free before
proceeding, which serves to respect our scheduling policy.

2. It locks L

y

if it contends with T

y

(we allow x = y, in
which case T

x

contends with instances of itself).

We are left with describing how the locking scheme is gen-
erated. Step 3 illustrates that, upon a commit or abort of
a transaction T

n

running on core C
n

, the active transactions
list is scanned and the transactions found there are incre-
mented in two per-thread matrices, namely commitStats and
abortStats, which are stored as thread-local variables (step
4 ). An entry x, y in commitStats (resp. abortStats) tracks
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Figure 2: Overview of Seer. The idea is to assess the probability of conflicts between transactions, without
requiring precise information by the HTM. To do so, transactions are announced right before they are
executed on a given core, and then this information is scanned upon commits and aborts, to compensate for
the lack of feedback from the HTM. While not totally accurate, this information allows to probabilistically
infer the relevant conflict patterns among transactions over time, and then to produce a dynamic locking
scheme that serves to schedule transactions (by preventing some transactions from running concurrently).

the frequency of commit (resp. abort) events for transaction
T

x

, in which T

y

was found to be running (in the active trans-
actions list), after the commit (resp. abort) of T

x

Consider
for instance that T1 only conflicts often with T3. Such fact
is unknown beforehand and our approach aims to infer it in
run-time: as we gather statistics, over time, recurrent events
emerge and become identifiable using probabilistic inference.

Periodically, these statistics are merged, across all per-
core’s matrices, into two global matrices in step 5 . These
are used to calculate and update the locking scheme to re-
duce aborts of transactions. The intuition is to use the in-
formation about how often T

x

committed and aborted in the
presence of each di↵erent transaction. The challenge in do-
ing so is to identify, among all captured conflicts, which ones
occur frequently enough to benefit from throttling down con-
currency. The ability to extract these decisions using solely
the imprecise information provided by commodity HTMs is
what makes Seer novel with respect to other schedulers.

As a result, we are able to periodically generate a dy-
namic locking scheme, as depicted in step 6 . As explained
above, these locks are used to serialize transactions with

a fine granularity. This is a key feature that allows Seer
to yield substantial performance improvements as we later
show in Section 5. Another noteworthy feature of Seer is
that it works in a completely transparent fashion to the pro-
grammer. We require only minimalist compiler support, by
enumerating the atomic blocks in the program, and passing
their unique identifier (one per source code atomic block)
into the TM library calls. The scheduler itself is imple-
mented in the TM library that regulates the software fall-
back management. Further, Seer fully automates the tun-
ing of internal parameters in the probabilistic inference, via
a self-optimization mechanism that is driven by the feedback
gathered at run-time on the throughput of the TM system.

Finally, Seer introduces the abstraction of core locks, i.e.,
locks that prevent the concurrent execution of multiple hard-
ware threads on the same physical core. The idea of core
locks is based on the observation that, in workloads charac-
terized by frequent transactions with non-minimal memory
footprints, the likelihood of capacity aborts in the HTM is
exacerbated when multiple threads are allowed to execute
freely, as they contend for the shared caches of the core.

Variable Description

thread Per-thread structure to hold metadata during the execution of a transaction.
sgl Single-global lock used in the software fall-back path of the HTM.

activeTxs Global array where threads announce the transactions they are executing.

commitStats
Global matrix where, each line for transaction T

i

, reports the transactions that
were concurrently running whenever T

i

committed. This matrix is periodically
built by summing the per-core equivalent matrices kept in each thread variable.

abortStats Similar to commitStats, but for abort statistics.
executions Array with total number of executions (commits and aborts) of each transaction.

locksToAcquire
Global matrix where each line corresponds to a transaction and the columns

define the locks that should be acquired for the transaction according to Seer.
txLocks Global array of locks, one per transaction (i.e., atomic block) of the program.
coreLocks Global array of locks, one per core of the processor.

Table 2: Characterization of the data-structures used in Seer. Some of these are visible in the high-level
overview in Figure 2, whereas the rest is used in Algorithms 1-5.



4. DETAILED ALGORITHM
We now present the detailed description of Seer. We

report the data-structures used by Seer in Table 2, most of
which were already presented in the overview.

Conventional HTM usage. We start by describing the
basic software mechanisms that govern HTM transactions
and the fall-back path, in which Seer is implanted. We
highlight lines associated with the conventional HTM mech-
anisms with a 4 (other lines belong to Seer). We begin
with the START procedure, in Alg. 1, where a transaction
txId is initiated by a given thread.

The START procedure implements a retry loop to try
to execute a hardware transaction, up to some threshold
(MAX_ATTEMPTS), resorting to a fall-back path in case the
threshold is reached (in line 20). Note that the function to
begin a hardware transaction, xbegin() (in line 9), returns
a status that normally represents that the transaction has
started, i.e., the predicate in line 10 evaluates to true. Oth-
erwise, this status indicates a coarse categorization of the
abort. Note that an aborted hardware transaction trans-
parently jumps back, and returns from this function, akin
to the setjmp/longjmp mechanism used in C/C++.

Seer Algorithm. We now discuss the various mechanisms
that augment this conventional procedure: i) transactions
are announced to other cores (see line 5), ii) aborts are reg-
istered in the per-core statistics (see line 16), and iii) locks
are used to induce fine-grained serialization between con-
tending transactions (see lines 8 and 23). We present each
part next.

The END procedure is presented in Alg. 2 where we finish
the hardware transaction, or release the global lock, depend-
ing on the path taken in START. In case the transaction was
successfully committed via a hardware transaction, we add
this information to our per-core statistics in line 28, and

Algorithm 1 Seer algorithm.

1: START(thread, txId)
2: thread.core  current-core() . thread is bound to core
3: thread.acquiredTxLocks  false
4: thread.acquiredCoreLock  false
5: activeTxs[thread.core]  txId
64 attempts  MAX_ATTEMPTS
74 begin: . used to jump to and re-attempt with HTM
8: WAIT-Seer-LOCKS(thread, txId)
94 htmStatus  xbegin()
104 if htmStatus = _XBEGIN_STARTED
114 if is-locked(sgl) . ensure correctness with fall-back
124 xabort()
134 else
144 return . hw transaction enabled, proceed to tx
154 . hw transaction aborted, handle before restarting
16: REGISTER-ABORT(thread, txId)
174 attempts  attempts - 1
184 if attempts = 0 . give up on HTM, fall-back to lock
19: RELEASE-Seer-LOCKS(thread, txId)
204 acquire-lock(sgl) . SW fall-back with a single lock
214 return . SW fall-back path taken, proceed to tx
224 . before re-attempting, trigger our scheduler Seer
23: ACQUIRE-Seer-LOCKS(thread, txId, htmStatus)
244 goto begin

possibly release locks acquired by our scheduler in line 29.
Finally, we remove the transaction from the activeTxs list.

The procedures for registering aborts and commits are
shown in Alg. 3. The idea is to scan the activeTxs list
and to increase the frequency of the transactions found
there, in the row corresponding to the transaction that has
aborted/committed (identified by txId). This is the mecha-
nism that we use to infer information about conflicts, and to
compensate for the lack of feedback from the HTM about the
pairs of conflicting transactions. In general, this collection of
statistics may not be completely accurate, and could su↵er of
both false positives and false negatives. Seer copes with this
uncertainty using probabilistic inference techniques, whose
details we shall discuss shortly.

Notice that the aforementioned statistics are maintained
per-core, i.e., in a private fashion. Furthermore, the ac-
tiveTxs list ends up being a set of single-writer multi-reader
registers; we do not place any synchronization when access-
ing the list, with the intent of keeping it lightweight.

The procedures for lock management, according to our
scheduler, are defined in Alg. 4. We use two types of locks:

1. txLocks: one per transaction of the application, to se-
rialize contending transactions according to the probabilities
(line 48) that we describe later (in Alg. 5). Our scheduler
may dictate that a transaction acquires some of these locks
only when the transaction has spent most of its attempts in
hardware transactions — it has one left — as a last resort
measure to obtain progress before triggering the global lock
in the fall-back.

2. coreLocks: one per physical core of the processor,
to reduce capacity aborts, which are amplified due to hard-
ware threads that share the private caches of a physical core.
These caches are small and limit the size of hardware trans-
actions, more so if shared among several. Hence, we acquire
the coreLock when a capacity abort is detected (line 45).

Furthermore, we also introduce a contention avoidance
technique, which imposes waiting before starting a transac-

Algorithm 2 Seer algorithm.

25: END(thread, txId)
264 if xtest() . returns true if inside a HW transaction
274 xend() . tries to commit the HW transaction
28: REGISTER-COMMIT(thread, txId)
29: RELEASE-Seer-LOCKS(thread, txId)
304 else
314 release-lock(sgl) . executed with lock-based fall-back
32: activeTxs[thread.core]  ?

Algorithm 3 Seer algorithm.

33: REGISTER-ABORT(thread, txId)
34: thread.executions[txId]++
35: for all i = 0 until activeTxs.length
36: if i 6= thread.core ^ activeTxs[i] 6= ?
37: thread.abortStats[txId][activeTxs[i]]++

38: REGISTER-COMMIT(thread, txId)
39: thread.executions[txId]++
40: for all i = 0 until activeTxs.length
41: if i 6= thread.core ^ activeTxs[i] 6= ?
42: thread.commitStats[txId][activeTxs[i]]++



Algorithm 4 Seer algorithm.

43: ACQUIRE-Seer-LOCKS(thread, txId, htmStatus)
44: if htmStatus & _XABORT_CAPACITY ^ ¬thread.acquiredCoreLock
45: acquire-lock(coreLocks[thread.core % PHYSICAL_CORES]) . adapted to the topology of hyper-threads in Intel processors
46: thread.acquiredCoreLock  true
47: if attempts = 1
48: ACQUIRE-TX-LOCKS(txId) . acquire locks specified in row locksToAcquire[txId]
49: thread.acquiredTxLocks  true

50: WAIT-Seer-LOCKS(thread, txId)
51: if is-locked(sgl) . avoid starting hardware transactions if the fall-back is in use
52: if thread.core = 0 . only one thread updates the serialization locks
53: UPDATE-Seer-LOCKS() . exploit the wait time to run Seer
54: if enough-samples() then stochastic-hill-climbing(T h1, T h2) . periodically adapt the parameters used in Alg 5
55: wait while is-locked(sgl) . wait here instead of aborting in line 12
56: . if some other thread is owning these Seer locks, cooperate with it and wait
57: wait while ¬thread.acquiredTxLocks ^ is-locked(txLocks[txId])
58: wait while ¬thread.acquiredCoreLock ^ is-locked(coreLocks[thread.core])

59: RELEASE-Seer-LOCKS(thread, txId)
60: if thread.acquiredTxLocks
61: RELEASE-TX-LOCKS(txId)
62: if thread.acquiredCoreLock
63: release-lock(coreLocks[thread.core])

Algorithm 5 Seer algorithm.

65: UPDATE-Seer-LOCKS()
66: for all x 2 A . A is the set of txs in the application source code
67: ⌘  avg

��
P(x aborts | xky), 8y2 A

 �

68: �

2  var
��

P(x aborts | xky), 8y2 A
 �

69: for all y 2 A . determine if y is likely to contend with x
70: . 1st condition checks whether abort events of x, in which y is seen running concurrently, are common enough
71: . 2nd condition checks if y is among the txs that, when executed concurrently with x, most likely contend with x
72: if (P(x aborts \ xky) > T h1 ^ P(x aborts | xky)> T h2-th percentile of a Gaussian N (⌘,�2) )
73: locksToAcquire[x]  y . contending txs take each other’s locks when they abort
74: locksToAcquire[y]  x . recall that a tx also waits for its own tx-lock to be free (line 57)
75: . sort all locks in each row of locksToAcquire, and swap the old matrix by the new one (using an indirection pointer)

tion (in line 8). This is presented in WAIT-Seer-LOCKS,
in Alg. 4, where there are two main ideas. First, we use
a known technique to avoid the lemming e↵ect [6]. The
problem is that hardware transactions quickly exhaust their
budget of attempts when the fall-back lock is taken and tend
to execute mostly in the fall-back as a consequence. To re-
duce this chance, a transaction waits if the global lock is
taken, as otherwise it would likely abort in line 12.

The second idea behind WAIT-Seer-LOCKS is to also
wait in case the txLock and/or coreLock are taken by an-
other thread (lines 57 and 58). The intuition is that, even
though this thread may not have had aborts that lead it to
acquire locks, it is beneficial if it co-operates with concurrent
threads that have taken the locks, giving them a chance to
complete without conflicting. Doing so is instrumental for
the meaningfulness of the locking scheme that we present
next while avoiding a transaction to having to pessimisti-
cally always acquire the lock of its transaction.

We also opportunistically take the chance to update the
locking scheme of Seer in line 53, instead of having the
thread waiting idle for the global lock to be released. We
specifically do this in one designated thread to avoid syn-

chronization. Furthermore, we have an active transactions
list with as many slots as threads in the program, making
each entry of the list a single-writer multi-reader register.

The procedure to acquire the transaction locks simply goes
over the row locksToAcquire[txId] and acquires each lock. All
rows are sorted consistently by the periodic update, hence
this procedure acquires them in that order to avoid dead-
locks. We also optimize this procedure to acquire the locks
with a hardware transaction when there are two or more
locks, instead of performing multiple compare-and-swap op-
erations (CAS) to acquire all locks. The rationale of this
optimization is to batch the synchronization of two or more
CASes into a single TSX hardware transaction. If the trans-
action is not successful, we fall-back to the normal acquisi-
tion. Note that this is not lock elision [23]; we are e↵ectively
using TSX as a multi-CAS, not eliding the locks acquired.

Devising the Locking Scheme. We are left with the logic
for updating the locking scheme for fine-grained serialization
of transactions in Seer, which we present in Alg. 5. This
procedure, opportunistically invoked by one thread, starts
by summing the commit and abort per-core statistics.



For all transactions in the application, we consider a pair
x, y at a time, and calculate the conditional probability of
x aborting, given that y was running concurrently with it,
P (x aborts | x k y), and the conjunctive probability of x

aborting and y running concurrently, P (x aborts \ x k y):

P (x aborts | x k y) = a

x,y

c

x,y

+ a

x,y

P (x aborts \ x k y) = P (x aborts | x k y)⇥ P (x k y))

=
a

x,y

c

x,y

+ a

x,y

⇥ c

x,y

+ a

x,y

e

x

=
a

x,y

e

x

where we abbreviated commitStats[x][y] to c

x,y

,
abortStats[x][y] to a

x,y

and executions[x] to e

x

. These
two probabilities can be e�ciently calculated with the
statistics that are at our disposal, and are used to define
two thresholds, T h1 and T h2, aimed at pursuing di↵erent
goals.

The threshold T h1 establishes a lower bound on the prob-
ability P (x aborts \ x k y), below whose value Seer avoids
serializing transactions x and y. Low values of this probabil-
ity imply that the frequency of aborts events of x, in which y

was found to run concurrently with it, are rare. It is hence
beneficial to avoid the cost of restricting concurrency and
sparing the costs of additional lock acquisitions.

The threshold T h2 is instead used to establish a cut-o↵ on
the probability distribution of P (x aborts | x k y) (hence-
forth abbreviated as P

x,y

), which aims at determining which
subset S, of the set of transactions y, suspected to conflict
x, should be prevented from running in parallel with x.
More in detail, Seer includes in S only the transactions y

whose probability P
x,y

is larger than T h2-th percentile of a
Gaussian distribution N (⌘,�2) with mean ⌘ and variance �

equal, respectively, to the mean and variance of the values of
P

x,y

(for all possible values of y). The rationale here is that a
transaction y

0 that is wrongly suspected of conflicting with x

(due to false positives while probing the active transactions)
will have significantly lower values of P

x,y

0 , with respect to
a transaction y

00 that conflicts with x often. Hence, for such
transactions y

00, P
x,y

00 will fall in the tail of the cumulative
distribution function of probabilities, which we fit with a
Gaussian distribution having equivalent mean and variance.
Using the conditional probability P (x aborts | x k y) (dif-

ferently from the case of T h1, in which we rely on the con-
junctive probability P (x aborts \ x k y)) is aimed at fac-
toring out, in the inference process, the cases in which x and
y are not concurrent. This allows for focusing the analysis
solely on the available evidences that support the hypothesis
of a cause-e↵ect relation between the concurrent execution of
x with y and the abort of x, and for separating falsely sus-
pected pairs of transactions from actually conflicting ones
more reliably than if one used the conjunctive probability.
Summarizing: if both conditions in line 72 are met, mean-

ing that x is deemed to abort too often because of y, Seer re-
quires that transactions x and y have to acquire each other’s
lock (recall that we associate on lock per transaction).
Finally, Seer relies on an on-line self-tuning mechanism

that automates the identification of the values of the thresh-
olds T h1 and T h2, hence sparing users from the burden
of identifying statically defined values that may be sub-
optimal in heterogeneous, or time varying, workloads. To
this end, Seer uses a simple and lightweight bi-dimensional
stochastic hill-climbing search, which exploits the feedback

of the TM performance (throughput obtained via RTDSC-
based measurements) to guide the search in the parameter’s
space [0,1]⇥[0,1] for the thresholds T h1 and T h2. Our hill-
climbing is stochastic in the sense that, with a small proba-
bility p, it performs random jumps in the parameters’ space
to avoid getting stuck in local minima. We configured this
self-tuning mechanism with standard values that were ap-
plied to irregular concurrent applications such as those used
with TM [8]. Specifically, we set p to 0.1% and the initial
values of T h1 = 0.3 and T h2 = 0.8.

5. EVALUATION
To evaluate our proposal, we formulate several questions

and experiments. First, in Section 5.1, we compare Seer
with the available alternatives for HTM. Next, in Sec-
tion 5.2, we assess how often hardware transactions are suc-
cessful and to what extent locks are acquired. Finally, in
Section 5.3, we seek to understand the merit of each design
choice of Seer and its overheads.

All the experimental results were obtained using a TSX-
enabled Intel Haswell Xeon E3-1275 processor with 32GB
RAM and 8 virtual cores (4 physical, each one running up
to 2 hardware threads). We ran our experiments in a ded-
icated machine running Ubuntu 12.04, and the results re-
ported are the average of 20 runs. Our evaluation uses the
standard STAMP suite, a popular set of benchmarks for
TM [21], encompassing applications representative of var-
ious domains that generate heterogeneous workload. We
excluded Bayes given its non-deterministic executions, and
Labyrinth as most of its transactions exceed TSX capacity.

5.1 How much can we gain with Seer?
To assess the benefits of Seer we consider 3 alternatives:

1.HLE where transactions may be retried a small number
of times (processor implementation-dependent), but without
any scheduling or contention management, which may cause
the lemming e↵ect [6] on the elided lock1.

2. RTM where the retry logic is controlled in software
and hence we retry a given number of attempts in HTM and
always wait before doing so if the single-global lock is taken.
As already discussed in Section 2, the usage of a single lock
in the fall-back path of these two baseline mechanisms makes
them analogous in spirit to the ATS scheduler [26].

3. SCM where we implemented the Software-assisted
Conflict Management [1] technique. SCM uses an auxiliary
lock to serialize transactions that are aborted, thus decreas-
ing the chance of having the lemming e↵ect, where failed
hardware transactions keep exhausting the attempts and
fall-back to the single-global lock.

We used a budget of 5 attempts for hardware transactions
in all approaches (as used by Intel for this set of bench-
marks [27]). We present the results for these approaches
together with Seer in Figure 3. The speedups are relative
to a sequential non-instrumented execution. In general we
can see that Seer performs similarly to the best solution up
to 3 threads, and better with 4 or more threads. This is a
consequence of having more opportunity for our fine-grained
scheduling to shine when there is more concurrency.

Figure 3i shows the geometric mean speedup across all
the benchmarks, where we can see that Seer yields 62% im-
provement over RTM and SCM with 8 threads, with peak

1STAMP benchmarks are executed as having 1 lock to elide.
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Figure 3: Speedup of di↵erent HTM based approaches across STAMP benchmarks.

gains of approximately 2�2.5⇥ over the best performing al-
ternative baseline in benchmarks such as Genome, Intruder
and Vacation.

5.2 Where are the gains of Seer coming from?
HTM performance is known to be strongly a↵ected by

the likelihood with which transactions resort to acquiring
the global lock [10]. Furthermore, even in cases in which
hardware transactions are used successfully, parallelism may
be overly restricted by the usage of the auxiliary lock in the
case of SCM, or of fine-grained locks in the case of Seer.

Table 3 provides a breakdown of the usage of locks for
each considered approach, shedding lights on the reasons
underlying the performance gains achieved by Seer. The
reported results are averaged across all benchmarks.

As expected, HLE drastically loses its ability to execute
transactions in hardware, as threads increase, because it suf-
fers from the lemming e↵ect and at higher concurrency de-
grees most transactions use the single-global lock. RTM
improves over this scenario but still uses hardware transac-
tions only in 63% of the executions at 8 threads. The SCM
approach has significantly lower usage of the fall-back path
(up to 5%). However, there are up to 29% hardware trans-
actions that execute under the auxiliary lock. We highlight
that this is a single lock, which prevents parallelism among
all restarting transactions. This is why SCM is unable to
provide noticeable speedups over RTM in practice, as shown
in the previous section.

Table 3: Breakdown of percentage (%) of types of
transactions used in average across STAMP.
Variant Transaction Mode 2t 4t 6t 8t

HLE
HTM no locks 75 52 39 23
SGL fall-back 25 48 61 77

RTM
HTM no locks 94 82 76 63
SGL fall-back 6 18 24 37

SCM
HTM no locks 90 83 77 66

HTM + Aux lock 8 15 20 29
SGL fall-back 2 2 3 5

Seer

HTM no locks 94 94 85 80
HTM + Tx Locks 2 2 2 3
HTM + Core Locks 3 1 4 4

HTM + Tx + Core Locks 1 2 8 12
SGL fall-back 0 1 1 1

Finally, Seer is able to improve over all previously de-
scribed alternatives, exactly because the frequency with
which it uses a single-global lock is drastically lower (around
1%), and the other locks that it exploits have a much finer
granularity — one per transaction and one per core — that
allow to cope with conflict dependencies and cache capac-
ity exceptions (in case multiple hardware threads share the
same cache) without serializing every active transaction. In
fact, in 50% of the cases in which some transaction lock is
acquired by Seer, the fraction of transaction locks that are
actually acquired is lower than 23% of the globally avail-
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Figure 5: Cumulative contribution of each technique employed in Seer: speedups
are shown relatively to Seer without any lock acquisition (but with all the profiling
enabled) and the three variants are incrementally added.

able transaction locks. This experimental result confirms
the ability of the proposed lock inference mechanism to syn-
thesize e↵ective fine-grained locking schemes.

5.3 How much does each design choice con-
tribute to Seer?

The design of Seer encompassed: 1) capturing statis-
tics about commits, aborts, and concurrent transactions;
2) acquiring transaction locks when aborts occur; 3) ac-
quire a core lock when a capacity abort happens; 4) acquire
transaction locks with a hardware transaction to reduce the
overheads of multiple compare-and-swaps; and 5) adapt the
thresholds T h1, T h2 via a stochastic hill-climbing algorithm.

We first assess the overhead of the monitoring, lock-
inference and self-tuning mechanisms of Seer. For this, we
ran a variant of Seer that incurs the overheads of all its
mechanisms, without however acquiring any lock. In Fig-
ure 4, we show the average speed-up of this Seer’s variant
relatively to RTM (that consistently performed second best
in our evaluation in Section 5.1). These results are the ge-
ometric mean across the STAMP benchmarks, and we can
see that the mean slowdown is less than 5% and varies from
negligible to at most 8%. Even challenging scenarios, such
as a low contention small hash-map (4k elements and 1k
buckets) yielded a maximum of 4% overhead.

In fact, these overheads could be made even lower by
reducing the frequency with which Seer samples statis-
tics and updates the locking scheme, at the cost of in-
creasing the latency for identifying an adequate scheduling
strategy. Our choice of using relatively aggressive monitor-
ing/optimizations rates is motivated by the need to ensure
quick convergence times given that STAMP benchmarks
have very short runs (on the order of a few seconds); yet
in long running services, where convergence speed is a less
critical issue, Seer may be configured to use less frequent
sampling/optimization strategies in order to further reduce
its overheads.

To quantify the relative relevance of each of the mech-
anisms integrated in Seer, we conducted a series of ex-
periments, whose results, shown in Figure 5, evaluate the
speedup of di↵erent variants of Seer. We consider as base-
line, the Seer variant previously considered for the plots
in Figure 4, which incurs the costs of collecting statistics
and updating the locking strategy, without ever acquiring
any lock. Then, we consider four improving variants where

we cumulatively add the transaction locks acquisition, the
core locks acquisition, the hardware transaction acquisition
of locks, and the adaptation of the thresholds used.

In general the transaction locks provide the largest boost
in performance as they capture the conflicts inherent to each
benchmark. Unsurprisingly, the core locks are only benefi-
cial when using 6 or 8 threads, i.e., when we start executing
multiple hardware threads on the same core. The hardware
lock acquisition also shows improvements with larger concur-
rency degrees, since these scenarios are the ones that more
often trigger the necessity of acquiring locks (and, which
hence trigger this optimization more frequently). Also, a
similar gain is provided by adapting on-line the thresholds
used in the transaction locks probabilities calculations. Fi-
nally, we experimented also by enabling only the core-locks
and obtained geometric mean speedups of 9% and 22% at 6
and 8 threads. This corroborates the need for both transac-
tion and core locks.

6. CONCLUSIONS AND FUTURE WORK
In this work we presented Seer, the first fine-grained

scheduler designed to cope with specific challenges arising
with HTMs. The most innovative feature of our proposal
is that it can probabilistically infer conflict patterns among
pairs of transactions of a TM program, without relying on
the availability of precise information from the underlying
TM system. Conversely, Seer relies on lightweight, yet in-
herently imprecise techniques, to gather information on the
set of concurrently active transactions upon the commit and
abort events of transactions. Probabilistic techniques are
then used to filter out false positives and infer an e↵ective
dynamic locking scheme that is used to serialize contention-
prone transactions in a fine-grained fashion. We evaluated
our solution, Seer, against several alternatives using a main-
stream HTM (Intel TSX). As a result, we obtained 62% per-
formance improvements on average in standard benchmarks
with 8 threads, with speed-ups peaking up to 2 � 2.5⇥ in
complex benchmarks like Genome, Intruder and Vacation.

In the future we plan to extend Seer in several direc-
tions. This includes experimenting with probabilistic sam-
pling techniques [5], as well as adopting even more fine-
grained locking schemes, which associate locks depending on
both the atomic block and the identifier of the data structure
being manipulated in that atomic block.

+ tx
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