
Bumper: Sheltering Transactions from Conflicts

Nuno Diegues and Paolo Romano
ndiegues@gsd.inesc-id.pt romano@inesc-id.pt

INESC-ID/IST, Lisbon, Portugal

Abstract—This paper addresses the issue of maximizing the
efficiency and scalability of distributed transactional platforms,
by introducing Bumper, a set of innovative techniques to
minimize aborts of transactions in high-contention scenarios.
At its core, Bumper relies on two key ideas: (1) sparing update
transactions from spurious aborts when they access concur-
rently updated data, by attempting to serialize them in the
past via a novel distributed concurrency control scheme that
we call Distributed Time-Warping (DTW); and (2) avoiding
aborts due to contention hot spots (that cannot be tackled by
DTW) via a novel programming abstraction, called delayed
actions, which allows to efficiently serialize, in an abort-free
fashion, the execution of conflict-prone data manipulations.

The techniques used in Bumper can be applied to a wide
variety of transactional replication protocols to enhance their
performance in contention intensive workloads. In this paper
we show how they can be integrated with SCORe, a recent,
highly-scalable genuine partial replication protocol. By means
of an extensive evaluation using well-known benchmarks and
a cluster of 160 nodes, we show that Bumper can boost perfor-
mance up to 3x in conflict-intensive workloads, while imposing
negligible (2.5%) overheads in uncontended scenarios.

I. INTRODUCTION

The advent of the cloud computing paradigm has empow-
ered programmers with the ability to scale out their appli-
cations easily to hundreds of nodes. However, developing
applications capable of effectively exploiting the computa-
tional capabilities of large scale distributed cloud platforms
is far from being a trivial task. This is a consequence
of the design choices characterizing the first generation
of distributed data platforms (DTPs) for the cloud [1].
These typically maximize scalability by adopting very weak
consistency models, such as eventual consistency [1]. By
relaxing consistency, these systems have been shown to
achieve impressive scalability levels. However, they also
shift additional burden from the platform architects to the
application developers, who are exposed to the idiosyn-
crasies associated with concurrency and failures. Indeed,
the inherent complexity of building applications on top of
weakly consistent systems has motivated a flurry of works
aimed to enforce strong consistency semantics in large scale
distributed platforms [2]–[5]. By relying on multi-version
concurrency control algorithms, these solutions [2], [4],

This work was supported by national funds through FCT (Fundação para
a Ciência e Tecnologia) under project PEst-OE/EEI/LA0021/2013, and by
Cloud-TM project (co-financed by the European Commission through the
contract no. 57784).

[5] allow for a very efficient management of read-only
transactions, sparing them from the possibility of aborting
as well as from the costs of any validations. Another key
property ensured by these systems, and aimed to maximize
their scalability is the, so called, genuine partial replication,
according to which the execution of a transaction can only
involve nodes that replicate data items it accessed [6].

Problem. As we will also show later in the paper, the actual
scalability of these systems can be critically challenged by
conflict-prone workloads. The key factors constraining the
scalability of these systems are of a twofold nature. More
precisely, they are related both to the algorithms used to
regulate concurrency among transactions, as well as to the
actual degree of parallelism admitted by the applications
deployed over them:

• State of the art DTPs rely on overly conservative
validation schemes that abort an update transaction whenever
any of its reads is no longer up to date by the time it requests
to commit. This mechanism gained wide adoption because it
can be implemented efficiently. On the other hand, we note
that it does not represent a sufficient condition to detect non-
serializable histories [7], and, as we will show, it can induce
a high number of spurious (i.e., unnecessary) aborts.

• It is well-understood that the maximum degree of
parallelism (and hence, of scalability) admitted by any trans-
actional system is deeply affected by the data access patterns
exhibited by the applications deployed over them [8]. For
instance, several standard OLTP transactional profiles are
characterized by contention hot spots, i.e. frequently updated
data items. Transactions accessing such data items are not
only inherently non-parallelizable; they are also prone to un-
dergo repeated aborts, which can have detrimental effects on
the system’s throughput and user-perceived responsiveness.

Contributions. We address the issues discussed above by
introducing Bumper: a set of mechanisms aimed to shelter
transactions from conflicts, thus enabling scalable perfor-
mance in conflict-prone scenarios while ensuring strong-
consistency (1-copy serializability). At its core, Bumper
relies on two novel mechanisms to prevent different types
of conflicts that would lead to transactions’ abort in state of
the art strongly consistent DTPs: distributed time-warping
(time-warping for the sake of brevity) and delayed actions.

The idea at the basis of time-warping is to allow an
update transaction T , which observes a stale read because

read x
T

read y write y

read x write x

rw

read z write z

read z write z

rw
rw

A

C

D

Figure 1: Executions that exemplify conflicts detected by
typical strongly consistent transactional systems.

of a write issued by a concurrently committed transaction
A, to be serialized before A. This is in contrast with the
approach taken by strongly consistent DTPs [4], [5], [9],
which only allow the commit of update transactions in the
logical present, meaning the snapshot observed by A must
be valid by taking into account every transaction committed
before A. Using the execution in Fig. 1, we see that this
conflict detection would lead to the (spurious) abort of T .
Conversely, in such a scenario, we can safely serialize T
before A by time-warping it, and thus sparing its abort.

A key property of time-warping consists in its efficiency.
From a theoretical perspective, it is straightforward to design
an algorithm capable of accepting every serializable history:
it suffices to track the full graph of dependencies between
every transaction and to ensure its acyclicity [10]. This
would be an unbearably onerous approach, especially in
a large scale DTP. Conversely, time-warping uses a novel,
lightweight validation mechanism, which tracks only direct
local dependencies developed by each transaction during its
execution (such as the ones shown in Fig. 1). Not only
does this mechanism prevent spurious aborts that would be
caused by the validation schemes employed by traditional
systems; it can also be implemented very efficiently and in
a “genuine” fashion (by only collecting information at nodes
that are involved in the distributed transaction).

There are limits to the abort scenarios that time-warping
can avoid. An example is shown in Fig. 1, where transactions
C and D read and write the same data item z. Since
they mutually miss each other’s write, neither can be time-
warp committed and serialized before the other. To cope
with these challenging conflict patterns, we introduce a
programming abstraction, complementary to time-warping
mechanism, which we name delayed action: this is a code
fragment to be executed transactionally, but whose side-
effects/outputs are not observed elsewhere in the encompass-
ing transaction. By allowing programmers to wrap conflict-
prone code within delayed action, Bumper can postpone
their execution until the transaction’s commit, and guarantee
that the snapshot they observe can never be invalidated
by a concurrent transaction. This allows ensuring that a
delayed action cannot cause the abort of its encompassing
transaction, while guaranteeing that it is atomically executed
in the scope of the transaction that triggered it.

The key ideas at the basis of Bumper (i.e., time-warping
and delayed actions) are applicable to a wide variety of

DTPs, such as SCORe [5], P-Store [6], Spanner [2] or
D2STM [9]. In this paper, we demonstrate their practicality
by integrating them with SCORe [5], a state of the art
highly scalable DTP that employs genuine partial replication
and a fully decentralized distributed MVCC algorithm. By
means of an extensive experimental evaluation using 4
well-known benchmarks and a cluster of 160 nodes, we
show that Bumper can boost performance up to 3× in
conflict-intensive workloads, while imposing negligible (2%)
overheads in uncontended scenarios.

The structure of this paper is as follows. We start by
overviewing the related work in Section II. We present our
system model in Section III. Section IV presents the mech-
anisms at the base of Bumper. We discuss the correctness
of our solution in Section V and present our evaluation in
Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

We have recently developed the idea of time-warping
in the context of a shared memory (i.e., non-distributed)
transactional system [11]. To achieve reduction of conflicts
in that setting we exploited the availability of a shared global
clock to develop an efficient validation procedure. However,
applying that core idea in a partially replicated transactional
system required a complete redesign of the concurrency
algorithm developed for shared memory systems, to cope
with two major challenges: i) the lack of a shared global
clock allowing processes to agree on relative ordering of
transactions, and ii) ensuring that the management of the
metadata used in the time-warp abstraction respected the
genuine nature of the underlying partial replication protocol,
and hence preserved its scalability.

The concept of time-warping was introduced in a differ-
ent context through the Virtual Time abstraction of Jeffer-
son [12] to consistently roll-back a stale process to a safe
global state. Here, instead, the time-warp commit mecha-
nism is used to inject “back in time” the versions produced
by a transaction that observed an obsolete snapshot; this is
done with the ultimate goal of reducing aborts.

Distributed transactional schedulers [13] can be seen as
oracles that use the current history to determine when a
transaction should be allowed to execute. Broadly, a trans-
actional scheduler determines the ordering of transactions
so that conflicts are either avoided altogether or minimized.
Time-warping, instead, reconciles conflicting transactions to
yield serializable histories, and can be used orthogonally to
any a priori scheduling strategy.

Database replication has also been widely researched.
In the last decade, several works have studied full repli-
cation techniques, typically layered on top of Total-Order
primitives [14], [15]. In particular, in [16], a technique for
deterministically reordering totally-order delivered transac-
tions was proposed to also reduce conflicts. More recently,

a number of works have proposed partial replication tech-
niques that are more scalable. Walter [3] embraces a relaxed
isolation level (weaker than snapshot isolation) to safely
ignore serialization conflicts in a geo-replicated system. S-
DUR [17] also proposes a technique to scale conflict-prone
workloads — their approach minimizes the communication
steps and coordination of replicas, which are similar goals
of partial replication. None of these solutions overcome the
inherent conflicts in the workloads, and thus their approaches
can be complemented with Bumper to boost performance.

Centralized database systems have also been proposed
around the work of SSI [18], with different validation
schemes for conflict reduction, and assuming that the under-
lying system ensures Snapshot Isolation [19]. The concept
of triads, presented in our work to support distributed time-
warp, is similar in spirit to the dangerous structure used
in SSI. Recent work has applied these ideas to a distributed
database with full replication [20]. Our work is substantially
different from those solutions by exploiting partial replica-
tion and striving for scalability at much larger scales.

Finally, the work of per-tx boxes [21] has also been
proposed to reduce contention hot spots, and are similar
in spirit to delayed actions, in that they also delay the
execution of conflict-prone code until commit time. Yet,
per-tx boxes were proposed for shared-memory and rely on
a shared commit lock. In Bumper we consider a different,
more challenging system model, i.e. a shared-nothing cluster.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a classical asynchronous distributed system
model consisting of a set of processes (also called nodes)∏

= p1, ..., pn that communicate via message passing and
can fail according to the fail-stop (crash) model. We assume
a simple key-value model for data. For each data item k there
is a chain of versions as in typical MVCC schemes [10].
Each version of k is a tuple 〈k, val, ts〉, where k is the key,
val is its value and ts is a scalar derived from a logical
clock that totally orders the chain of k.

We also assume partial replication, in which node pi stores
only a partial copy of the key-value storage. Each data item
is replicated by r processes, and we assume that among any
r replicas there exists at least one that is correct (i.e., does
not crash). We denote with owners(d) the set of processes
that replicate d. The considered model allows us to rely
on consistent hashing distribution policies [22] to avoid the
need for a directory lookup to compute owners(d). We also
denote participants(T) as

⋃
d∈F owners(d) where F =

writeSet(T) ∪ readSet(T) (the footprint of T).

We model transactions as a sequence of read and write op-
erations on data items, preceded by a begin, and followed by
a commit or abort operation. We assume no blind writes [10],
i.e. every write to some k by a transaction is preceded by
a read of k in that transaction. A transaction T originates

on a process pi ∈
∏

, which we call origin(T), and can
read/write any data item (even if not replicated locally).
We additionally define two relations between transactions
(similar to those in [23]). We say that transaction T reads-
from A when A writes to k, commits, and then T reads k
and obtains the version installed by A (we denote this by
A→ T). Transaction B misses transaction T when B reads
k and, during the execution of B, transaction T commits a
new version for k (we denote this by B 99K T). Finally,
processes communicate via reliable FIFO-ordered channels,
i.e. every message sent is eventually received in the send
order as long as both the sender and receiver are correct.

IV. BUMPER

We describe Bumper in the next sections by delving into
our conflict reduction mechanisms. We first discuss how
Bumper can be applied to SCORe, a highly scalable state
of the art protocol that provides 1-copy-serializability and
abort-free read-only transactions. By integrating Bumper
with SCORe, we can obtain a protocol that excels both
in the management of read-dominated and write-dominated
workloads. Before introducing Bumper’s mechanisms, we
give an overview of SCORe, which is aimed at providing
a background sufficient to understand how Bumper can be
applied to it. Next, Section IV-B establishes the principles
of distributed time-warping transactions and how Bumper
implements them. Then, we present delayed actions to
bypass hot spots of contention in Section IV-C. Finally,
we hint how Bumper may be integrated with alternative
transactional replication protocols in Section IV-D.

A. A primer on SCORe

We briefly overview SCORe [5], the baseline protocol
chosen to present Bumper. Similarly to MVCC protocols,
in SCORe, each node ni maintains multiple versions (per
data item) in a chain, where each version is tagged with a
scalar timestamp used to totally order the commit events of
transactions that update the given data item replicated by ni.
At the core of its concurrency control, SCORe manages a
distributed timestamp scheme that allows to establish which
versions are visible to a transaction, and the serialization
order for update transactions.

The commit procedure of a transaction T assigns to T.tsC

a timestamp value that represents T ’s serialization point. The
versions that are visible to T are determined via a timestamp
associated with T , representing its snapshot (called tsS),
which is established upon its first read operation. From that
moment on, any subsequent read operation by T is allowed
to observe the most recently committed version of the datum
having timestamp less than or equal to T.tsS , as in classical
MVCC algorithms. We abstract the calculation of tsS in
function calcSnapshotSCORe, and the visibility rule for
versions described above in function localReadSCORe.

To reach consensus on the fate of T , SCORe relies on
Two-Phase Commit, where we define the coordinator as
origin(T). Upon receiving the prepare message, each par-
ticipant pi acquires read/write locks on the keys read/written
by T , which pi replicates. Next, each participant pi validates
T and sends its vote to the coordinator. If T is successfully
validated at pi then it proposes a serialization point for T
(the value of T.tsC) that is later than any serialization point
it has previously observed. The coordinator then merges
the votes received from the participants, which for SCORe
entails choosing the maximum proposed tsC for T , or
aborting T if any vote is negative. Lastly, the commit
message is sent to every participant pi, whose finalization of
T we abstract in finalizeSCORe. This function eventually
writes back the write-set and makes it available for new
transactions to read. Every node in a SCORe cluster has a
commit thread responsible for this procedure; this thread
serially writes-back committed transactions by respecting
their total order at the node (defined by their tsC).

B. Distributed time-warping

The objective of time-warping is to allow an update trans-
action T , which missed some transaction A, to be able to
commit successfully — this is usually achieved for read-only
transactions in MVCC. Say that A ∈ γ such that T misses
every transaction in γ. Moreover, A is the transaction among
those in γ with the earliest commit according to real time.
Time-warping tries to install the writes of T so that they are
visible to transactions that serialize after A — in this case
we say that T time-warp commits. This way, and recalling
the example in Fig. 1, Bumper would successfully time-
warp commit T whereas traditional validation, checking
exclusively whether the snapshot read by T is still up to
date at commit time, would abort it.

In SCORe, T.tsC is used to serialize T after the transac-
tions that T depends on. When a transaction time-warps, we
additionally compute T.tsW , a scalar used to order T before
the transactions it missed. Moreover, we now tag versions
by assigning T.tsW to their timestamp — if a transaction
does not time-warp, then T.tsW = T.tsC .

There is a limit to which we can bypass conflicts using
time-warping and still ensuring serializability. For this, we
define an abort condition based on a structure created by
the misses relation, that we call a triad. A triad exists
whenever B 99K T 99K A (where, possibly, A = B).
We call such T a pivot, because it links the transactions
in the triad. Then, our time-warp rule for abort is that a
transaction fails its validation if, by committing, it would
create a triad whose pivot time-warp commits. Detailed
arguments on the safety of this validation rule are provided
in Section V. The underlying intuition is that the transaction
that completes the triad witnesses a history in which the
pivot is not contained, which may contradict the fact that
the pivot time-warp commits.

We note that this condition may generate some spurious
aborts (in which it would be possible to serialize the ex-
ecution). However, it is well known [7] that designing a
scheduler capable of accepting all and only the serializable
histories is extremely expensive, especially in distributed
settings. We note also that standard validation mechanisms
[5], [9], [17] abort a transaction T , if by committing T ,
it would develop a single miss relation — thus rejecting
many more serializable executions than our solution. It is
also important to highlight that our triad verification allows
efficient implementations as we shall see in the next section.

B.1 Detailed algorithm description

In the following we describe in detail how to implement
time-warping in an instantiation of Bumper that extends
SCORe. For this, our key change is the computation of
the timestamp T.tsW . We also use a unique identifier for
each transaction. Moreover, each key k has an associated
stamp (k.readStamp) that represents the latest access of
any transaction that read k; it contains two scalars: the stamp
itself and the identifier of a transaction. Finally, each version
tuple now also has a boolean, stating if it was installed
by a time-warped transaction, and the scalar tsC from the
transaction that installed it. We will refer to Algs. 1-2,
where we highlight the line numbers corresponding to the
extension of Bumper over SCORe (distinguishing between
time-warping and delayed action lines). We omit details that
are irrelevant to the integration with Bumper.

Transaction execution. In the begin operation of a trans-
action tx we assign a unique identifier to the transaction.
In the write operation we just buffer the values locally for
deferred update (as in SCORe). The read operation for key
k first checks for a read-after-write conflict. Then, it sends a
request to the nodes that replicate k and waits for a reply1.
The only extension required by the time-warping mechanism
in this phase is line 17. We first note the following: with
time-warping, the prefix of versions visible to tx according
to tx.tsS is not stable, because a concurrent transaction U
may time-warp commit and serialize before the point in time
established by tx.tsS (by having U.tsW ≤ tx.tsS). Thus,
that line in the algorithm serves to guarantee that tx cannot
miss any update transaction that time-warp commits and
serializes before tx.tsS , by ensuring either that: (1) tx safely
reads-from U (despite being a concurrent transaction); or
(2) the commit procedure of U notices that tx 99K U , which,
as we will see, forbids U from time-warp committing. In the
latter, tx witnessed a serialization order that did not include
U . Hence, if we let U time-warp commit and serialize before
tx, we would obtain a non-serializable history.

To achieve the previous guarantees, we use the tu-
ple 〈stamp, id〉 from k.readStamp. Then, in function
updateReadStamp, we derive a new stamp from the last

1If k is replicated locally, then the communication step can be avoided.

Algorithm 1 Bumper pseudo code 1/2.
1: begin(Transaction tx) in nodei = origin(tx)

2| tx.mustTW ← false
3| tx.cannotTW ← false
4| tx.id ← getUniqueId()
5| tx.tsW ← >

6: write(Transaction tx, Key k, Value v) in nodei = origin(tx)
7: tx.writeSet ← (tx.writeSet \ 〈k, 〉) ∪ 〈k, v〉 . deferred update

8: read(Transaction tx, Key k) in nodei = origin(tx)
9: if k ∈ tx.writeSet then return tx.writeSet.get(tx)

10: send READREQ[k, tx] to all nj ∈ owners(k)
11: wait READREPLY[val, tsS] from any nj ∈ owners(k)
12: if firstRead(tx) then tx.tsS ← calcSnapshotSCORe(tx, ts

S)
13: return val

14◦ delayAction(Transaction tx, Action code) in nodei = origin(tx)
15◦ tx.delayed ← tx.delayed ∪ code

16: upon receive READREQ[k, tx] in nodej ∈ owners(k)
17| updateReadStamp(k)

18: wait not underExclusiveAccess(k)
19: [val, tsS] ← localReadSCORe(k, tx)
20: reply READREPLY[val, tsS]

21| updateReadStamp(Transaction tx, Key k) in nodei
22| atomically do {
23| 〈 stamp, id 〉 ← k.readStamp
24| newStamp ← nodei.lastCommit
25| if newStamp > stamp
26| k.readStamp ← 〈 newStamp, tx.id 〉 . update the stamp
27| else k.readStamp ← 〈 stamp, φ 〉. φ symbolizes several readers
28| }

known commit timestamp used at nodei, and increase the
stamp of k along with the transaction identifier (line 26).
In the case that more than one transaction updates a given
stamp, the corresponding identifier becomes φ (line 27).
Together with the visibility rules for versions, these actions
ensure that read-only transactions always observe a con-
sistent (1-copy serializable) snapshot, despite time-warping
transactions. Therefore, read-only transactions skip the dis-
tributed commit (as in the original SCORe [5]) that we
describe next for update transactions.

Distributed commit. When an update transaction tx requests
to commit, a Two-Phase Commit (2PC) is triggered by send-
ing the prepare message to all participants(tx) (line 30).
The prepare phase at nodei incorporates our time-warp
validation (to find dangerous triads), whose outcome is sent
along with the vote of the participant. We recall that tx is
aborted if it completes a triad in which the pivot would time-
warp commit. For this, we use the flags tx.mustTW and
tx.cannotTW — a dangerous triad exists if both flags are
true. Triads can be detected in two cases: when tx time-warp
commits and it becomes a pivot, the triad is detected by the
coordinator of the 2PC when merging the votes received.
The case in which tx is not the pivot, but instead completes
a dangerous triad, is detected in line 53.

Algorithm 2 Bumper pseudo code 2/2.
. attempt to commit: join the votes of the participants and decide

29: commit(Transaction tx) in nodei = origin(tx)
30: send PREPARE[tx] to all pj ∈ participants(tx)
31: for all pj ∈ participants(tx)
32: wait VOTE[, votej] from pj

33| tx.tsW ← min(votej .ts
W , tx.tsW)

34| if votej .mustTW then tx.mustTW ← true
35| if votej .cannotTW then tx.cannotTW ← true

36: if (∃ VOTE[NO, votej]) ∨ (tx.mustTW ∧ tx.cannotTW)
37: send ABORT[tx] to all pj ∈ participants(tx)
38: return ABORT
39: tx.tsC ← max(votes.tsC)

40| if not tx.mustTW . if tx does not time-warp
41| tx.tsW = tx.tsC . then tx serializes at the present

42: send COMMIT[tx] to all pj ∈ participants(tx)

43: upon receive PREPARE[tx] in nodei ∈ participants(tx)
44: for all k ∈ tx.writeSet : local(k)
45: acquireLock(k,EXCLUSIVE) . acquire lock in exclusive mode

46| 〈 stamp, id 〉 ← k.readStamp
47| if stamp ≥ tx.tsS ∧ id 6= tx.id . if concurrent T also read k
48| tx.cannotTW ← true . then T missed tx

49: for all 〈k, ts〉 ∈ tx.readSet : local(k)
50: acquireLock(k,SHARED) . acquire lock in shared mode

. check concurrently installed versions that were missed by tx
51| for all K ∈ k.versions() : K.tsC > tx.tsS ∧ ts 6= K.ts
52| if K.timeWarped ∨ k ∈ tx.writeSet
53| reply VOTE[NO, tx] . tx completes a dangerous triad
54| return
55| tx.mustTW ← true . tx missed something
56| tx.tsW ← min(tx.tsW , K.tsC) . compute time-warp
57◦ if tx.delayed not empty ∧ tx.mustTW
58◦ reply VOTE[no, tx] . restart with eager delayed actions
59◦ return
60◦ for all action ∈ tx.delayed : local(action)
61◦ for all k ∈ action.keySet() . local keys accessed
62◦ acquireLock(k, DELAYED). acquire lock in delayed mode

63: tx.tsC ← nodei.nextId++
64: reply VOTE[YES, tx]

65: upon receive COMMIT[tx] in nodei ∈ participants(tx)
66: atomically do {

67◦ for all action ∈ tx.delayed : local(action)
68◦ action.execute() . delayed execution without conflicts

69: finalizeSCORe(tx) . eventually invokes writeBack for tx
70: }

. invoked for each write of tx when it is ready to commit
71: writeBack(Transaction tx, Key k) in nodei : local(k)

72| newVersion ← k.prependNewV ersion()
73| newVersion.ts ← tx.ts
74| newVersion.tsC ← tx.tsC

75| newVersion.timeWarped ← tx.mustTW

The computation of those flags takes place after the ac-
quisition of the locks associated with the keys (as explained
for SCORe, shared mode for reads and exclusive mode for
writes). In lines 44-48, we check for a possible B 99K tx
by verifying if k.readStamp was increased concurrently to
the execution of tx (this also checks that the only reader
is not tx itself). In such case, tx cannot time-warp commit
because B already witnessed this execution. In lines 49-56,
we check for a possible tx 99K A for every k read by tx. To

do so, we obtain the versions of k installed concurrently to
the execution of tx, and verify if tx did not read that version.
In this case, tx must time-warp commit to correctly serialize
before A. Given this case, we note that we immediately
abort tx if we can deduce the existence of a dangerous triad
at that point (line 53): (1) tx would complete a dangerous
triad where A is the pivot; or (2) tx and A form a cycle,
as both read and write k concurrently, which is a particular
case of our definition of triad. Otherwise, we update tx.tsW

in line 56, which represents the point in time in which
the writes of tx will be installed. To respect the fact that
tx 99K A, we minimize tx.tsW with A.tsC so that tx
serializes before A (hence why we keep tsC in the versions
installed, in line 74): this ensures that the resulting time-
warp serializes tx before the set of transactions it missed.

After conducting this novel validation at participant
nodei, we let SCORe propose tx.tsC by incrementing a
local scalar. Then, participants reply to the coordinator
and each vote is merged in lines 32-35. The validation
flags are also merged — this allows the function to check
if participants(tx) detected the dangerous triad that we
disallow. Next, if tx did not miss any transaction, we set
tx.tsW = tx.tsC . This corresponds to the normal case in
which typical validations (such as SCORe’s) do not abort
tx (so it is not necessary to time-warp commit it). Upon
receiving the commit decision, a participant nodei relays
this event to SCORe. Eventually, this invokes the write-back
mechanism that we also extended: we tag versions using
tx.tsW and with the additional metadata that we described.

C. Delayed actions

A delayed action corresponds to a part of the application
code that is encapsulated in a transaction, but that can be
executed outside of the normal flow of execution of that
code and postponed until the transaction’s commit (line 15).
This is possible whenever the output generated, or the state
updated, by a portion of code of the transaction is not
required (i.e. read) elsewhere within that transaction. As an
example, consider that transactions C and D (in Fig. 1)
are contending to increment z, which is the balance of
an online store, upon two payments of customers. If the
customers had bought different items, which is very likely
in a large store, both C and D should be able to proceed
independently if it was not for the contention hot spot
in the balance. As a matter of fact, the balance of the
store does not affect the outcome of the payments — it
is only important to be updated within the transaction to
ensure correct accountability checks, and possibly be made
available after the transaction commits (to display it). So
we address these situations by exploiting delayed actions
that are executed at the end of the distributed commit, after
the lock acquisition phase — this way we can guarantee that
the delayed reads always observe the most recent available
version at the time in which the transaction commits. In other

words, no concurrent transaction can commit and invalidate
those reads, thus making delayed actions abort-free.

A first challenge is how to ensure that delayed actions
can be executed efficiently in a partial replicated setting. In
fact, since they are executed during the distributed commit,
it is desirable to ensure that, whenever a delayed action is
executed at a node ni, it only accesses data locally stored by
ni. This avoids involving additional nodes in the commit.

We avoid these issues by having delayed actions abide
by the following programming paradigm. When defining
a delayed action, programmers are required to identify (a
possible over-approximation of) the keys to manipulate. We
assume that these keys can all be read or written, and so
we extract from them the executors set of nodes where the
delayed execution is to be performed. In the prepare phase,
the delayed action is registered at those nodes by piggyback-
ing the corresponding keys in the prepare message. During
its execution at node ni, a delayed action may only access
data locally maintained by ni. Otherwise the transaction
is aborted, an error is reported to the programmer, and
the transaction is restarted executing the delayed actions
“eagerly”, i.e. within the transaction, by not postponing them
(line 58). Moreover, we assume deterministic computations,
as these are being executed by different replicas. Finally,
we allow each of the delayed action instances (one per each
node in executors) to return a result, which is then reduced
in the coordinator via a programmer-defined operator.

A second challenge is to regulate concurrency between
transactions encompassing delayed actions and regular trans-
actions. Suppose that k is incremented concurrently, by
transactions L1 and L2 using delayed actions, and by another
transaction T in the traditional way. Intuitively: (1) we
want L1 and L2 to proceed concurrently (ensuring that
their effects are serializable); (2) we want T to detect the
concurrent read and write of k performed by the delayed
actions; and finally, (3) we do not want either L1 or L2 to
abort because T committed first and manipulated k.

To correctly address this challenge, we use the com-
mit thread available at every node, responsible for serially
writing-back updates produced by transactions in the total
order defined by their commit timestamp (tsC). This allows
the distributed commit of L1 and L2 to progress concurrently
during the execution of 2PC, until their delayed actions
are executed sequentially within the commit thread, before
their write-back (line 68). To guarantee correctness when
some transaction T conflicts with L1, we rely on the lock
acquisition for the keys (to be manipulated in the delayed
actions). Differently from normal writes, which acquire an
exclusive lock at prepare time, these keys might be locked
by several transactions (line 62) and written by their delayed
actions (within the commit thread in line 68). Therefore we
safely allow L1 and L2 to share locks over the keys to be
manipulated by their delayed actions. For this reason, we

created a delayed mode for the locks associated with each
key, which may be shared by delayed actions and is mutually
exclusive with both read and write modes.

Finally, we consider a transaction T that must time-warp
commit (because it has at least one miss). If T has any
pending delayed actions to be executed, this can pose a
problem: the time-warp commit serializes the transaction
in a past point in time, but the delayed actions take place
in the present. So there is a duality between the intent of
both mechanisms, as time-warping tries to deal with stale
data whereas delayed actions are designed to always operate
over fresh data. We delegate further research on this duality
for future work; there is room for reconciliation between
the mechanisms, albeit possibly in an intricate matter. In
this work we reconcile these two mechanisms by aborting
transactions that must both time-warp and execute delayed
actions — this causes the delayed actions to be executed in
the normal way (thus eagerly) in the re-execution (line 58).

D. Integration with alternative DTP protocols

In order to highlight the generality and “portability” of the
conflict reduction mechanisms of Bumper, we briefly discuss
how it may be adapted for the case of full replication, or in
case that the system does not use MVCC.

In fully replicated systems, all state is available in every
node. In this case we note that it is possible to relax some
of the constraints on the programming paradigm of delayed
actions, as it would no longer be necessary to act upon just
a group of keys that is known to be co-located. Hence, it
would not be necessary to have any a priori knowledge of
the set of keys to be accessed within a delayed action.

On the other hand, it is possible that the local concurrency
control does not support MVCC, and instead maintains only
a single version of data. Then, the time-warping mechanisms
can still be applicable, as long as there exists a timestamping
mechanism, as this allows for reasoning on the concurrency
of events. This is typically available in optimistic concur-
rency control schemes such as those used in the DTPs that
we mentioned in this paper. Also in this case, with regard to
delayed actions, we consider that there may exist multiple
commit threads performing the write-back phase of non-
conflicting transactions in parallel. In this case one can resort
to alternative locking mechanisms (not described for space
constraints) to correctly serialize two delayed actions that
contend (as they would no longer be executed sequentially
by the same thread). In fact, delayed actions can also be used
in DTPs guaranteeing lower isolation levels (e.g., Snapshot
Isolation) to mitigate contention on hot spots.

V. DISCUSSION ABOUT CORRECTNESS AND FAILURES

We now show that applying Bumper to SCORe preserves
the latter’s isolation level (1-copy serializability) when con-
sidering the time-warping algorithm. In Section V-B, we

write x

A

T
read x read z

B
write zwrite ? read ?

dep ?

C
write ?

T.tsS

A.tsC

C.tsC T.tsC

B.tsS B.tsC

absurd

T.tsW

B.tsW

Figure 2: Execution allowed by Bumper but rejected by
SCORe (by aborting some transaction).

argue that delayed actions do not change that result. For
space constraints, we omit a full formal proof. Nevertheless,
we provide informal correctness arguments. Finally, we
discuss the impact of Bumper on failure recovery.

A. Time-warping

We start by considering the fail-free executions that
SCORe accepts (named HG), and show that Bumper also
accepts them. Then we consider the fail-free executions that
Bumper accepts, but that SCORe rejects (named HB), and
show that they are necessarily serializable.

We begin by noting that SCORe always aborts a trans-
action T in the same conditions in which Bumper tries to
time-warp commit T . Then, we can show for HG that, when
Bumper aborts, this implies that SCORe also aborts: lines 37
and 53, where Bumper aborts tx, correspond to the cases in
which tx has at least a miss and so SCORe aborts tx.

We now consider an arbitrary execution, which can be
extended to match every execution in HB , and show that
it is serializable2. In the following we shall derive a set
of restrictions on this arbitrary execution until we reach an
absurd, which we also exemplify in Fig. 2. Since we are con-
sidering the set of executions that are accepted by Bumper,
but rejected by SCORe, they must contain one time-warped
transaction T that missed transaction A. This implies that A
commits before T does so (such that T notices the miss and
time-warps) and also that A is concurrent with T (otherwise
no miss would occur). Also note that A cannot have time-
warp committed as well, as that would have triggered the
abort of T in line 52. The same line (but its second condition
instead) would be triggered if A missed T (which would
have created a cycle between A and T). It is also impossible
for T to read-from A because they are concurrent and T
has already missed A; this would require A.tsW ≤ T.tsS ,
but we already stated that A cannot time-warp commit, so
we actually have T.tsS < A.tsW = A.tsC .

Now consider some transaction B that misses T : this
would create a triad (detected either by B in line 52 or

2Recalling classic serializability theory results [7], we say that an
execution is serializable if the graph of read-from and miss relations
(edges) between transactions (nodes) is acyclic.

by T in line 37). So the arbitrary execution that we are
considering can only contain a cycle if T reads-from B.
Consider, without loss of generality, that B reads-from
A (perhaps transitively), and thus A.tsC ≤ B.tsS . Then,
because T.tsS < A.tsC , and A → B (even if transitively),
we obtain T.tsS < B.tsS . We note that these conclusions
are also visible in the timeline drawn in Fig. 2. Because
T.tsS < B.tsC , T can only read-from B if B time-warps
before T.tsS — this implies that B misses some transaction
C. But at this point we can summarize the restrictions
devised so far and reach an absurd that forbids B → T .
We have that T.tsS < B.tsS , and for B 99K C, it must be
that B.tsS < C.tsC ; but then we get T.tsS < B.tsW , so
it is an absurd that B → T . Thus all executions in HB are
serializable, and Bumper preserves 1-copy serializability.

B. Delayed Actions

When considering delayed actions, we explain why we
can disregard the validation for these postponed manipula-
tions, and what guarantees the consistent evolution of the
state of replicas of the same set of keys.

We start by recalling that the delayed actions of a transac-
tion T are executed after a commit decision for T arrives to
the commit thread of some node nodei ∈ participants(T)
— thus the corresponding locks will have been acquired in
the prepare phase of the commit procedure. This ensures
mutual exclusion when accessing some key k between (1)
the accesses inside delayed actions and (2) validations of
transactions that access k normally. In addition to this,
because the execution takes place in the commit thread, this
implies that delayed actions cannot observe concurrent trans-
actions. Given that we restricted T not to time-warp when it
has delayed actions, then T.tsW = T.tsC . Therefore, both
normal and delayed portions of T are serialized on T.tsC .

Finally, the consistent evolution of the state trajectory of
the various replicas of a key is ensured given that i) SCORe
ensures that replicas of the same keys update this set of keys
according to the same total-order [5], and ii) given that we
assumed delayed actions to be deterministic.

C. Dealing with failures

Bumper, when built upon SCORe, inherits its virtues and
issues for what concerns fault-tolerance. We refer to the
original SCORe paper [5] for a detailed discussion on how to
deal with failures. For space constraints, we will only briefly
recall that, due to the reliance of SCORe on Two-phase
Commit, it is necessary to adopt additional mechanisms
(such as replication techniques for ensuring high availability
of the coordinator’s state [24]) in order to avoid blocking in
spite of failures of the coordinator. Note that Bumper does
not introduce any additional complexity/drawback for what
concerns failure-handling: this enhances the relevance and
practicality of the proposed solution.

0

2000

4000

6000

8000

10000

20 40 60 80 100 120 140 160
0

20

40

60

80

100

th
ro

ug
hp

ut
 (t

xs
/s

)

ab
or

te
d

tra
ns

ac
tio

ns
 (%

)

#nodes

Bumper throughput
SCORe throughput

Bumper aborts
SCORe aborts

Figure 3: Benefits of time-warp in SkipList.

VI. EXPERIMENTAL EVALUATION

We integrated Bumper into a publicly available implemen-
tation of the SCORe protocol, which is based on Infinispan,
a mainstream in-memory DTP developed by Red Hat. This
allows us to evaluate the benefits achievable by Bumper
using as baseline a highly scalable, strongly consistent
genuine partial replication protocol. We measure both overall
throughput and abort probability (note that read-only trans-
actions are abort-free in SCORe). Every run uses replication
degree of two for fault-tolerance. Our experimental study
aims at answering the following questions: (1) How much
can Bumper enhance SCORe’s scalability in a conflict-prone
scenario? (2) To what extent can it reduce the transaction’s
abort rate? (3) What overheads does Bumper introduce in
conflict-free workloads?

We used four well-known benchmark applications, which
we will briefly describe while presenting the results. Each
execution is the result of ten runs with exclusive access to
all the machines used. We use geometric mean whenever
showing averages over normalized results. We conducted our
tests on top of OpenStack, a cloud computing infrastructure,
deployed in a dedicated cluster. Each machine is equipped
with two 2.13 GHz Quad-Core Intel(R) Xeon(R) E5506
processors, 40 GB of RAM and interconnected via a private
Gigabit Ethernet. The VMs instantiated via OpenStack were
allocated 1 physical core plus 4GB Ram and the virtual-
ization took advantage of the hardware support provided
by the Intel(R) processors. For all tests we varied the
number of VMs from 10 to 160, such that they were always
uniformly distributed across the physical machines. Finally,
the virtualized OS was Ubuntu 12.04 and our prototypes ran
on Java HotSpot version 1.6.0 38.

We begin with two benchmarks and workloads without
any obvious contention hot spots, and thus we avoid using
any delayed action. This is done to ensure that the benefits
achieved are exclusively due to time-warping mechanism.
We start with a micro-benchmark originally proposed to
evaluate transactional memory systems, and that exercises
a skip list data-structure — a building block for many
applications. A skip list is used to maintain an ordered

0

1000

2000

3000

4000

5000

6000

7000

20 40 60 80 100 120 140 160
0

20

40

60

80

100
th

ro
ug

hp
ut

 (t
xs

/s
)

ab
or

te
d

tra
ns

ac
tio

ns
 (%

)

#nodes

Bumper throughput
SCORe throughput

Bumper aborts
SCORe aborts

Figure 4: Benefits of delayed actions in TPC-C.

set of integers with an average size of 256 elements and
a range of possible keys of 65 thousand integers. This
means that most of the time there might exist structural
conflicts when manipulating the list, but rarely should the
transactions be attempting to insert or remove the same
element. Fig. 3 shows the results for a workload with 50%
read-only transactions (that check the existence of a given
element) and update transactions that insert and remove
items. The results show a peak gain of 2.23 speedup at 160
nodes. As we will consistently witness, these gains are due
to a considerable reduction of aborts. In this case, we report
a reduction of average likelihood of update transactions’
aborts from 15% to 0.9%.

We then consider YCSB (Yahoo! Cloud Serving Bench-
mark) [25], which was designed to benchmark NoSQL key-
value storage systems and generates data access patterns
that mimic real applications’ skewed workloads. We used
a workload containing 50% of update transactions, which
access 16 keys and modify up to 4 keys, and 50% short
read-only transactions that access a single data item. For
space constraints, we report only textually the results of this
experiment: once again, we obtain considerable gains due
to the avoidance of many conflicts by exploiting the time-
warping mechanisms; Bumper yielded an average speedup
of 2.8 over SCORe, by reaching an impressive peak through-
put of almost 13k txs/s against 4.8k txs/s at 160 nodes in
this conflicting-prone and update intensive workload with
lightweight transactions.

We now move to evaluate the benefits achievable by using
delayed actions. To this end we consider a porting of the
TPC-C benchmark, a well-known OLTP benchmark that was
adapted to run on top of transactional key-value stores (and
used, in previous works [4], [5], to evaluate the performance
of strongly consistent partial replication protocols). This
benchmark portraits the activities of a whole-sale supplier
and contains a number of easily identifiable contention
hot spots. Specifically, one of its transaction profiles, the
so-called Payment transaction, updates the balances of a
warehouse and of its district whenever an order for an item
stored in that warehouse is processed. The balances of each

0
1000

3000

5000

7000

9000

11000

13000

20 40 60 80 100 120 140 160
0

20

40

60

80

100

th
ro

ug
hp

ut
 (t

xs
/s

)

ab
or

te
d

tra
ns

ac
tio

ns
 (%

)

#nodes

Bumper throughput
SCORe throughput

Bumper aborts
SCORe aborts

Figure 5: Vacation with time-warping and delayed actions.

warehouse and its district are maintained by a distinct pair
of keys, which turn quickly into contention hot spots as the
scale (and consequently the parallelism level) increases. We
encapsulated the update of the warehouse/district balance
into a delayed action, and injected a workload containing
50% of update transactions. The results of this experiment,
reported in Fig. 4, demonstrate clearly the benefits deriving
from the ability of delayed actions to avoid contention over
hot spots. The average abort probability of an update trans-
action is 38% for SCORe, whereas Bumper substantially
reduces it to 0.8%. As a result Bumper scales up to 6.4k
txs/s and obtains a peak speedup of 3.4 at 160 nodes.

To assess the overhead of the mechanisms at the core
of Bumper we also conducted experiments in uncontended
scenarios, in which there are no benefits from the usage
of either time-warping or delayed actions. We resorted
again to YCSB and used a workload with 50% update
transactions. To guarantee absence of contention, we altered
the data access pattern of transactions to update a single key
selected from disjoint sets. As a result of this experiment,
we measured a negligible average 2.5% overhead, which
results from the additional validations that Bumper computes
at commit time while holding the locks.

Finally, we also used the Vacation benchmark from the
STAMP [26] suite of transactional memory applications.
Vacation simulates an online travel agency in which several
types of resources can be manipulated by customers or
by the agency. Like for TPC-C, we used a port of this
benchmark for distributed key-value stores. This benchmark
showcases the benefits of both time-warping and delayed
actions. The latter are used to work around contention hot
spots associated with keys that maintain the number of
free/used travel resources of various kinds. Several invariant
checks are performed around these statistics to ensure the
consistency of the application was not broken. Fig. 5 reports
the results for this experiment, once again with a reduction of
abort percentage yielding direct gains on the throughput and
scalability of the system: the benefits of our contributions
reduce the average abort rate to under 1% and lead to a
speedup of 2.1 at 160 nodes.

VII. CONCLUSION

This paper tackled the issue of how to maximize the
scalability of strongly consistent distributed transactional
platforms in presence of conflict intensive workloads. We
did so by introducing two innovative mechanisms aimed to
reduce the transaction abort rate in two orthogonal ways,
Distributed Time-Warping and Delayed Actions.

We call these mechanisms Bumper, as these techniques
can be plugged on various transactional replication protocols
to enhance their robustness in high contention scenarios.
We discuss how to integrate Bumper in SCORe, a re-
cent, highly scalable protocol for distributed transactional
platforms, which provides genuine partial replication and
relies on a multi-versioning concurrency control scheme.
Finally, we evaluated the benefits achievable by the pro-
posed solutions by conducting an experimental study using
four well-known benchmarks. To this end, we integrated
Bumper in Infinispan, a popular open-source transactional
key-value store. Our experiments highlight that Bumper
allows boosting throughput up to a 3× factor in conflict
intensive workloads, while imposing negligible (about 2%)
overheads in the absence of contention.

REFERENCES

[1] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in SOSP, 2007, pp. 205–220.

[2] J. Corbett et al., “Spanner: Google’s globally-distributed
database,” in OSDI, 2012, pp. 251–264.

[3] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional
storage for geo-replicated systems,” in SOSP, 2011, pp. 385–
400.

[4] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues,
“When Scalability Meets Consistency: Genuine Multiversion
Update-Serializable Partial Data Replication,” in ICDCS,
2012, pp. 455–465.

[5] S. Peluso, P. Romano, and F. Quaglia, “SCORe: A Scalable
One-Copy Serializable Partial Replication Protocol,” in Mid-
dleware, 2012, pp. 456–475.

[6] N. Schiper, P. Sutra, and F. Pedone, “P-Store: Genuine Partial
Replication in Wide Area Networks,” in SRDS, 2010, pp.
214–224.

[7] C. H. Papadimitriou, “The serializability of concurrent
database updates,” J. ACM, vol. 26, no. 4, pp. 631–653, Oct.
1979.

[8] P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical
modeling of database concurrency control,” J. ACM, vol. 40,
1993.

[9] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues,
“D2STM: Dependable Distributed Software Transactional
Memory,” in PRDC, 2009, pp. 307–313.

[10] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency control and recovery in database systems. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1987.

[11] N. Diegues and P. Romano, “Brief Announcement: Enhancing
Permissiveness in Transactional Memory via Time-Warping,”
in DISC, 2013.

[12] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, pp. 404–425, Jul. 1985.

[13] J. Kim and B. Ravindran, “On transactional scheduling in
distributed transactional memory systems,” in SSS, 2010, pp.
347–361.

[14] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-
Peris, “Middleware based data replication providing snapshot
isolation,” in SIGMOD, 2005, pp. 419–430.

[15] B. Kemme and G. Alonso, “Don’t Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication,”
in VLDB, 2000, pp. 134–143.

[16] F. Pedone, R. Guerraoui, and A. Schiper, “The Database State
Machine Approach,” Distrib. Parallel Databases, vol. 14,
no. 1, pp. 71–98, 2003.

[17] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred
update replication,” in DSN, 2012, pp. 1–12.

[18] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable
isolation for snapshot databases,” in SIGMOD, 2008, pp. 729–
738.

[19] H. Berenson et al., “A critique of ANSI SQL isolation levels,”
in SIGMOD, 1995, pp. 1–10.

[20] H. Jung, H. Han, A. Fekete, and U. Röhm, “Serializable
Snapshot Isolation for Replicated Databases in High-Update
Scenarios,” PVLDB, vol. 4, no. 11, pp. 783–794, 2011.

[21] J. Cachopo and A. Rito-Silva, “Versioned boxes as the basis
for memory transactions,” Science of Computer Program-
ming, vol. 63, no. 2, pp. 172–185, 2006. Elsevier.

[22] D. Karger et al., “Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on the
World Wide Web,” in STOC, 1997, pp. 654–663.

[23] A. Adya, “Weak consistency: a generalized theory and op-
timistic implementations for distributed transactions,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1999.

[24] J. Gray and L. Lamport, “Consensus on transaction commit,”
ACM Trans. Database Syst., vol. 31, no. 1, pp. 133–160, 2006.

[25] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in SoCC, 2010, pp. 143–154.

[26] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“STAMP: Stanford Transactional Applications for Multi-
processing,” in IISWC, 2008, pp. 35–46.

