
Technical Report RT/08/2014

AutoPlacer: Scalable Self-Tuning Data

Placement in Distributed Key-value Stores

João Paiva

INESC-ID/IST

jgpaiva@gsd.inesc-id.pt

Pedro Ruivo

INESC-ID/IST

pruivo@gsd.inesc-id.pt

Paolo Romano

INESC-ID/IST

romano@inesc-id.pt

Luis Rodrigues

INESC-ID/IST

ler@inesc-id.pt

April 2014





Abstract

This paper addresses the problem of self-tuning the data placement in replicated key-value stores.

The goal is to automatically optimize replica placement in a way that leverages locality patterns in

data accesses, such that inter-node communication is minimized. To do this e�ciently is extremely

challenging, as one needs not only to find lightweight and scalable ways to identify the right

assignment of data replicas to nodes, but also to preserve fast data lookup. The paper introduces

new techniques that address these challenges. The first challenge is addressed by optimizing, in

a decentralized way, the placement of the objects generating most remote operations for each

node. The second challenge is addressed by combining the usage of consistent hashing with a

novel data structure, which provides e�cient probabilistic data placement. These techniques have

been integrated in a popular open-source key-value store. The performance results show that the

throughput of the optimized system can be six times better than a baseline system employing the

widely used static placement based on consistent hashing.
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1 Introduction

Distributed NoSQL key-value stores [17, 27] have emerged as the reference architecture for data management
in the cloud. A fundamental design choice in these distributed data platforms is how to determine the
placement of objects (i.e., key/value pairs) among the nodes of the system. A data placement algorithm
must simultaneously address two main, typically opposing, concerns: i) maximizing locality by replicating
data at the nodes that access them more frequently, while enforcing constraints on the object replication
degree and on the capacity of nodes; ii) maximizing lookup speed, by ensuring that a copy of an object can
be located as quickly as possible.

The data placement problem has been investigated in a number of alternative variants, e.g. [20, 26].
Classic approaches formulate the data placement problem as a constraint optimization problem, and use
Integer Linear Programming techniques to identify the optimal placement strategy with the granularity of
single data items. Unfortunately, these approaches su↵er from several practical limitations. In first place,
finding the optimal placement is a NP-hard problem, hence any approach that attempts to optimize the
placement of each and every item is inherently non-scalable. Further, even if the optimal placement could be
computed, it is challenging to maintain e�ciently a (potentially very large) directory to store the mapping
between items and storage nodes.

Directories are indeed used by several systems such as PNUTS [12] or BigTable [8]. To minimize the costs
associated with the maintenance of the directory, these systems trade-o↵ placement flexibility and support
placement at a very coarse level, i.e. large data partitions rather than on a per instance basis. However, even
if coarse granularity is used, the use of a directory service introduces additional round-trip delays along the
critical execution path of data access operations, which can hinder performance considerably.

To avoid the above issues, many popular key-value stores, such as Cassandra [27], Dynamo [17], Infin-
ispan [34], use random placement based on consistent hashing. By relying on random hash functions to
determine the location of data across nodes, these solutions allow lookups to be performed locally, in an
very e�cient manner [17]. However, due to the random nature of data placement (oblivious to the access
frequencies of nodes to data), solutions based on consistent hashing may result in highly sub-optimal data
placements.

This paper presents AutoPlacer, a system aimed at self-tuning the data placement in a distributed
key value store, which introduces a set of novel techniques to address the trade-o↵s described in the previous
paragraphs. Unlike conventional solutions [20, 26], that formulate the data placement optimization problem
as an intractable ILP problem, AutoPlacer employs a lightweight self-stabilizing distributed optimization
algorithm. The algorithm operates in rounds, and, in each round, it optimizes, in a decentralized fashion,
the placement of the top-k “hotspots”, i.e. the objects generating most remote operations, for each node of
the system. This design choice has the advantage of reducing the number of decision variables for the data
placement problem (solved at each round), ensuring its practical viability.

In order to be able to identify the “hotspots” of each node with low processing cost, AutoPlacer
adopts a state of the art stream analysis algorithm [35] that permits to track the top-k most frequent items
of a stream in an approximate, but very e�cient manner. The information provided by the Space-Saving
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Top-k algorithm is then used to instantiate the data placement optimization problem. We first study the
accuracy of the solution from a theoretical perspective, deriving an upper bound on the approximation ratio
with respect to a solution using exact frequencies. Next we discuss how to maximize the e�ciency of the
solution, showing how it can be made amenable for being partitioned in independent sub-problems, solvable
in parallel.

Unlike solutions that rely on directory services, AutoPlacer guarantees 1-hop routing latency. To this
end, AutoPlacer combines the usage of consistent hashing, which is used as the default placement strategy
for less popular items, with a highly e�cient, probabilistic mapping strategy that operates at the granularity
of the single data item, achieving high flexibility in the relocation of (a possibly very large number of) hotspot
items.

The key innovative solution introduced to pursue this goal is a novel data structure, which we named
Probabilistic Associative Array (PAA). The goal of the PAA is to minimize the cost of maintaining a mapping
associating keys with nodes in the system. PAAs expose the same interface of conventional associative arrays,
but, in order to achieve space e�ciency, they trade-o↵ accuracy and rely on probabilistic techniques which
can lead to inaccurate results with a user-tunable probability (these inaccuracies do not a↵ect the correctness
of the system, in worst case they may only degrade its performance). Internally, PAAs rely on Bloom Filters
(BFs) and on Decision Tree (DT) classifiers. BFs are used to keep track of the elements inserted so far in
the PAA in a space-e�cient way; DTs are used to infer a compact set of rules establishing the associations
between keys and values stored in the PAA. In order to maximize the e↵ectiveness of the DT classifier, we
expose a programmatic API that allows programmers to provide semantic information on the nature of the
keys stored in the PAA (e.g., the data type of the value associated with the key). This information is then
exploited, during the learning phase of the PAA’s DT, to map keys into a multi-dimensional space that can
be more e↵ectively clustered by a DT classifier.

In summary, AutoPlacer provides two key features:

• It introduces a novel iterative, decentralized, self-tuning data placement optimization scheme.

• It preserves e�cient lookups, while achieving high flexibility in determining an optimized data place-
ment, through the use of a new probabilistic data structure designed specifically for this purpose.

AutoPlacer has been integrated in a popular, open-source key-value store, namely Infinispan: Infin-
ispan is the reference NoSQL platform and clustering technology for JBoss AS, a mainstream open source
J2EE application server. The choice of Infinispan is also motivated by the fact that the authors are involved
in a European project [41], which used Red Hat’s Infinispan as the backbone of a highly scalable and self-
tuning cloud data store. We conducted experiments on both public and private cloud infrastructures, using
a porting of the well-known TPC-C benchmark for key-value stores, and GeoGraph [50], a complex bench-
mark representative of Geo-social network applications. The results of our experimental study highlight the
e↵ectiveness of AutoPlacer, which can achieve up to 6x speed-ups with respect to a baseline system using
consistent hashing.

The remaining of the paper is structured as follows. Our target system is characterized in Section 2.
Section 3 provides a global overview of AutoPlacer. Then, its components are described in more detail in
the next two sections: the PAA internals are described in 4; a theoretical analysis of the optimizer’s accuracy
is provided in 5. Section 6 reports the results of the experimental evaluation of the system. Section 7 compares
our system with related work. Finally, Section 8 concludes the paper.

2 System Characterization

The development of AutoPlacer has been motivated by our experience [39, 38, 42] with the use of an
existing, state-of-the art, key-value store, namely Infinispan [34] by Red Hat c�. In Infinispan (and other
similar products such as [27, 17]), data is stored in multiple nodes using consistent hashing. For each key,
consistent hashing determines a supervisor node for that item. Items can be replicated. A node that stores
a copy of data item i is denoted an owner of that item. Assume that d copies are maintained of each data
item, the owners of data item i are deterministically assigned to be j’s supervisor plus its d � 1 immediate
successors (in the one hop distributed hash table that is used to implement consistent hashing).
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Each node serves a dual purpose: it stores a subset of the data items maintained by the distributed store
and also executes application code. The application code may be structured as a sequence of transactions
(Infinispan supports transactional properties), with di↵erent isolation levels.

When the application code reads a data item, its value must be retrieved from one of its owners (which
can be another node in the cluster). Thus, optimal performance is achieved if the node that executes a
given application is the owner for the items it accesses more often. When the application writes a data item,
all owners must be updated. Interestingly, the placement policy can also a↵ect the performance of write
operations. When multiple writes are performed in the context of a transaction, they can be applied in batch
when the transaction commits. Hence, the larger the number of owners of keys updated by a transaction,
the higher the number of nodes that have to be contacted during its commit phase.

Infinispan uses consistent hashing to ensure that all lookups can be executed locally. Unfortunately, in
typical deployments of large-scale key-value stores, random data placement can be largely suboptimal as
applications are likely to generate skewed access distributions [30], often dependent on the actual “type”
of operations processed by each node [48, 16]. Also, workloads are frequently distributed according to load
balancing strategies that strive to maximize locality [23]/minimize contention [2]. As we will show in the
evaluation section, all these facts make consistent hashing sub-optimal. Therefore, significant performance
improvements can be achieved by using appropriate autonomic data placement strategies.

3 AutoPlacer Overview

AutoPlacer is designed to optimize data location in a decentralized manner, i.e., each node in the system
contributes to the global optimization process. Since AutoPlacer is aimed at systems that use consistent
hashing as the default data placement policy, we also rely on consistent hashing to decentralize the optimiza-
tion e↵ort: each node is responsible for deciding the placement for the items it supervises. AutoPlacer
executes, periodically, a sequence of optimization rounds. As a result of each round, a number of data
items may be relocated. This happens only if the expected gains are above a minimum threshold. Each
optimization round consists of the following sequence of six tasks.

Task 1: The first task of the AutoPlacer approach consists of collecting statistics about the hotspots
data, i.e., the top-k most accessed data items, at each node. In fact, instead of trying to optimize the
placement of every data item in a single round, at each optimization round, AutoPlacer only optimizes
the placement of items that are identified as hotspots. Since this task is run periodically, once some hotspots
have been identified (and relocated) in a given round, new (di↵erent) hotspots are sought in the next round.
Therefore, although in each round only a limited number of hotspots is identified, in the long run, a large
number of data items may be selected over multiple optimization rounds, as long as gains can still be obtained
from their relocation.

Task 2: The second task consists in having the nodes exchange statistics regarding the data items that
were identified as hotspots during the current round. More precisely, each node gathers (from the remaining
nodes of the platform) access statistics on any hotspot items it supervises.

Task 3: The above information is used in the third task (denoted the optimization task) to find an
appropriate placement for those items. The result of this task is a partial relocation map, i.e., a mapping of
where replicas of each hotspot items that the node supervises (for the current round) must be placed.

Task 4: Even if the number of hotspots tracked at each round is a small fraction of the entire set of items
maintained in the key-value store, over multiple rounds the relocation map can grow in an undesired way,
and may even be too large to be e�ciently distributed to all nodes. This task is devoted to encoding the
relocation map in a probabilistic data structure that can be e�ciently replicated on all nodes in order to
ensure fast lookups, i.e. a Probabilistic Associative Array (PAA). Specifically, each node computes the PAA
for the (relocated) objects it supervises.

Task 5: Once each PAA has been computed, each node disseminates it among all nodes. By assembling
the PAAs received from all the nodes in the system, each node can locally build an object lookup table that
includes updated information on the placement of data optimized during this round.

Task 6: Finally, at the end of each round, the data items for which new locations have been derived are
transferred (using conventional state-transfer facilities [25, 43]) in order to match the new data placement.

As can be inferred from the previous description, the work is divided among all nodes and communication
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Table 1: Parameters used in the ILP formulation.
N the set of nodes j in the system
O the set of objects i in the system
X a binary matrix in which Xij = 1 if the object i is

assigned to node j, and Xij = 0 otherwise
rij , wij the number of read, resp. write, accesses performed

on a object i by node j
crr, crw the cost of a remote read, resp. write, access
clr, clw the cost of a local read, resp. write, access

d the replication degree, that is number
of replicas of each object in the system

Sj the capacity of node j.

takes place only during tasks 2, 5, and 6, in order to, respectively, exchange statistical information on
hotspots, distribute the PAA, and finally relocate the objects. Also the tasks that require communication
are performed in parallel, without the help of any centralized component.

Note that AutoPlacer is only concerned with the placement of data and is agnostic to the data
consistency mechanisms used by the key-value store. For instance, AutoPlacer is compatible with the
di↵erent consistency levels supported in Infinispan. Naturally, the consistency protocol in use must be
prepared to support dynamic re-adjustment of the number and placement of replicas, but this is today the
default for most consistency protocols, as it is required anyway for fault-tolerance.

In the next subsections we provide more information about the two main components of AutoPlacer,
namely, the optimizer (executed by Task 3) and the PAA (built in Task 4 and used subsequently to perform
data lookups locally).

3.1 Optimizer

Most works, e.g., [48, 29, 26, 20], in the area of data placement (and of its many variants [26, 20]) assume
that the objective and constraint functions of the optimization problem can be expressed (or approximated)
via linear functions, and accordingly formulate an Integer Linear Programming (ILP) problem. The ILP
model can indeed be adopted also for the specific data placement problem tackled in this paper. To this
end, one can model the assignment of data to nodes by means of a binary matrix X, in which Xij = 1 if the
object i is assigned to node j, and Xij = 0 otherwise. Further, one can associate (average, or per object)
costs with local/remote read/write operations. The ILP problem is then formulated as the minimization of
the objective function that expresses the total cost of accessing all data items across all nodes, subject to
two constraints: i) the number of replicas of each object must meet a predetermined replication degree, and
ii) each node has a finite capacity (it must not be assigned more objects than it can store). In Table 1 we
list the parameters used in the problem formulation, which aims at minimizing the following cost function:

X

j2N

X

i2O
Xij(cr

rrij + crwwij) +Xij(cl
rrij + clwwij) (1)

subject to:

8i 2 O :
X

j2N
Xij = d ^ 8j 2 N :

X

i2O
Xij  Sj

Despite its convenient mathematical formulation, ILP problems are NP-hard. Further, solving the above ILP
problem would require to collect and exchange among nodes access statistics for all objects in the system.
We tackle these drawbacks by introducing a lightweight, multi-round distributed optimization algorithm,
which we describe in the following.
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3.1.1 Space-Saving Top-k algorithm

An important building block of AutoPlacer is the Space-Saving Top-k algorithm by Metwally et al. [35].
This algorithm is designed to estimate the access frequencies of the top-k most popular objects in an ap-
proximate, but very e�cient way, i.e. by avoiding maintaining information on the access frequencies (namely
counters) for each object in the stream. Conversely, the Space-Saving Top-k algorithm algorithm maintains
a tunable, constant, number m, where m ⌧ |O|, of counters, which makes it extremely lightweight. On
the downside, the information returned in the top-k list may be inaccurate in terms of both the elements
that compose it and their estimated frequency. However, this algorithm has a number of interesting prop-
erties concerning the inaccuracies it introduces. First, it ensures that the access frequencies of the objects
it tracks are always consistently overestimated. Also, its maximum overestimation error is known, and is
equal to the frequency of the least frequently accessed item present in top-k, denoted as Fk. Finally, its
space-requirements can be tuned to bound the maximum error introduced in the frequency tracking, as we
will further discuss in Section 5.

3.1.2 Using Approximate Information

In AutoPlacer each node j runs 2 distinct instances, noted as top-krdj , resp. top-kwr
j , of the Space-Saving

Top-k algorithm, used to track the k most frequently read, resp. updated, data items during the current
optimization round. We denote with top-kj(O) the subset of cardinality k (of the entire data set O) contained
in both the read and write top-k instances at node j, and with top-K(O) = [j2N (top-kj(O)) the union of
the top-k data items across all nodes.

By restricting the optimization problem to the top-k accessed data items we reduce the number of decision
variables of the ILP problem significantly, namely from |O||N | to O(k|N |) (where k ⌧ |O|). This choice is
crucial to guarantee the scalability of the proposed approach. However, it requires to deal with the incomplete
and approximate nature of the data (read/write) access statistics provided by the top-k algorithm, which we
denote with r̂ik,ŵik to distinguish them from their exact counterparts (rik,wik). Also, we use the notation
X̂ to refer to the solution of the optimization problem using as input the access statistics provided by the
top-k algorithm, and distinguish it from the one obtained using the exact access statistics in input, which
we denote Xopt.

A first problem to address is related to the possibility of lacking information concerning the access
frequency by some node j for some data item i 2 top-K(O): this can happen in case i has not been tracked
in top-kj(O), but is present in the top-kj0(O) of some other node j0 6= j. To address this issue, we simply
set to 0 the frequencies r̂ij ,ŵij

Finally, the approximate nature of the information provided by the Space-Saving Top-k algorithm may
impact the quality of the identified solution. A theoretical analysis aimed at evaluating this aspect will be
provided in Section 5.

3.1.3 Accelerating the solution of the optimization problem

To accelerate the solution of the optimization problem we take two complementary approaches: relaxing the
ILP problem, and parallelizing its solution.

The ILP problem requires decision variables to be integers and is computationally onerous [48]. Therefore,
we transform it into an e�ciently solvable linear programming (LP) problem. To this end, we let the matrix
X̂ assume real values between 0 and 1 (adding an extra constraint 8i 2 O, 8j 2 N 0  X̂ij  1). Note that
the solutions of the LP problem can have real values, hence each object is assigned to the d nodes which
have highest X̂ij values. As in [48], we use a greedy strategy according to which, if the assignment to a node
causes a violation of its capacity constraint, the assignment is iteratively attempted to the node that has the
d+ k-th (k 2 [1, |N |� d]) highest scores.

Second, we introduce a controlled relaxation of the capacity constraint, which allows us to partition the
ILP problem into |N | independent optimizations problems that we solve in parallel across the nodes of the
platform. Let top-kj(O|n) be the set of keys in top-kj(O) of node j that node n supervises. Each node j
sends its top-kj(O|n) to each other node n in the system. As a result each node j also gathers the access
statistics top-K(O|j) = [n2N top-kn(O|j) concerning the current hotspots that j supervises. At this point
each node j computes the new placement for the data in top-K(O|j).
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Table 2: PAA Interface.
Method Input Parameters Output

create SethKey,Value[d]i, ↵, � PAA
get Key Value[d]
add SethKey,Value[d]i PAA

getDelta PAA �PAA
applyDelta �PAA PAA

Note that since we are instantiating the (I)LP optimization problems in parallel, and in an independent
fashion, we need to take an additional measure to guarantee that the capacity constraints are not violated.
To this end we instantiate the (I)LP problems at each node j with a capacity S0

j = Sj � |N |k. In practice,
this relaxation is expected to have minimum impact on the solution quality as k ⌧ Sj .

Overall, at the end of an optimization round each node j produces two outputs: the partial relocation
map X̂, and the cost reduction achievable by relocating the data in top-K(O|j) according to X̂, which
we denote as �Cj . �Cj is computed as the di↵erence between the result of Equation 1 applied to the
partial relocation map X̂ obtained in this round, and that obtained in the previous round. This value allows
estimating the gain achievable by performing this optimization round, and, as we will discuss shortly, is used
in AutoPlacer to determine the completion of the round-based optimization algorithm.

3.2 Probabilistic Associative Array: Abstract Data Type Specification

Even though in each round AutoPlacer optimizes the placement of a relatively small number of data
items, over multiple optimization rounds the number of relocated objects can grow very large. Hence, a
relevant issue is related to the overhead for maintaining, and replicating, a possibly very large relocation
map. Indeed the relocation map can be seen as an associative array in which each entry is a pair mapping
a data item to the set of nodes that own it.

The Probabilistic Associative Array (PAA) is a novel data structure that allows maintaining an associative
array in a space e�cient, but approximate way. We present the PAA as an abstract data type, with an
interface analogous to conventional associative arrays. Later in Section 4, we will discuss how it has been
implemented in AutoPlacer.

The PAA is characterized by the API reported in Table 2, which is similar to that of a conventional
associative array, including methods to create and query a map between keys and (constant d-sized) arrays
of values. To this end, the PAA API includes three main methods:

• the create method, which returns a new PAA instance and takes as input a set of pairs in the domain
(key ⇥ array[d] of values) to be stored in the PAA (called, succinctly, seed map) and two tunable error
parameters ↵ and � (discussed below);

• the get method, which allows querying the PAA obtaining the array of values associated with the key
provided as input parameter, or ? if the key is not contained in the PAA;

• the add method, which takes an input a seed map and adds it to an existing PAA.

The PAA is designed to trade o↵ accuracy for space e�ciency, and may return inaccurate results when
queried. In the following we specify the properties ensured by the get method of a PAA:

• it may provide false positives, i.e., it can provide a return value di↵erent from ? for a key that was not
inserted in the PAA. The probability of false positives occurring is controlled by parameter ↵.

• it has no false negatives, i.e., it will never return ? for a key contained in the seed map.

• it may return an inaccurate array of values for a key contained in the seed map. The probability of
returning inaccurate arrays is controlled by parameter �. In other words, with some small and tunable
probability, the data items may be located in di↵erent nodes than those specified by the seed map
(thus, the e�ciency of lookup may cause some degree of sub-optimal placement).
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• its response is deterministic, i.e., for a given instance of a PAA, the return value for any given key is
always the same.

Finally, the PAA API contains two additional methods that allow to update the content of a PAA in
an incremental fashion: getDelta, and applyDelta. getDelta takes as input a PAA and returns an
encoding, denoted as �PAA, of the di↵erences between the base PAA over which the method is invoked (say
PAA1) with respect to the input PAA, say PAA2. The �PAA returned by getDelta can then be used to
obtain PAA2 by invoking the method applyDelta over PAA1 and passing as input parameter �PAA.

Before presenting the internals of the PAA implementation (see Section 4), we discuss, in the next
sections, the functioning of AutoPlacer’s distributed algorithm.

3.3 The AutoPlacer iterative algorithm

We now provide, in Algorithm 1, the pseudo-code formalizing the behavior of the AutoPlacer algorithm
executed by a node j. Each node maintains a local lookup table, denoted as LookupT, that consists of an
array of PAAs, one per each node j in the set of nodes composing the system (denoted by ⇧ in Alg. 1).
Specifically, j’s entry of LookupT is used to keep track of the objects supervised by node j that have already
been relocated by AutoPlacer. For any given round, LookupT is the same on all nodes.

At the beginning of each round, j collects statistics concerning its top-k most frequently read/written data
items. This activity is encapsulated by the collectStats procedure (line 5), which is designed to track only
accesses to objects whose placement had not been previously optimized in previous rounds. This measure
is necessary, as, otherwise, in presence of stable distributions of the data access among nodes (i.e., stable
workloads), the top-k lists at each node may quickly stagnate. Especially in case of skewed distributions the
top-k lists would tend to track the very same objects (i.e., the most popular ones) along every round.

By tracking only the keys whose placement has not been optimized in previous rounds, it is guaranteed
that, in two di↵erent rounds, two disjoint sets of objects are considered by the optimization algorithm,
leading to the analysis of progressively less “hot” data items. Further, it prevents the possibility of ping-
pong phenomena [21], i.e. the continuous re-location of a key between nodes, as it guarantees that the position
of each object is optimized at most once.

To determine whether an access to a data item should be traced or not, the collectStats procedure
is provided with LookupT as input (we recall that LookupT keeps track of all items whose placement has
been previously optimized). Upon a read/write access on a data item, the collectStats procedure checks
if the item is contained in LookupT and, in the positive case, it avoids tracing this access. Notice that this
assumes that the data access frequencies do not change significantly during the entire optimization process.
In fact, in order to cope with scenarios in which applications’ data access patterns change at a frequency
higher than AutoPlacer’s complete optimization, the structure of LookupT must be more complex. In
Section 3.4 we detail how these scenarios are handled by AutoPlacer.

Next the nodes exchange the information collected by collectStats. Since we also parallelize the
optimization procedure, we send to each node only the statistical information that will be relevant to the
computation that will be performed at that node, i.e., the statistical information regarding the data items
it supervises.

At this point, each node optimizes the placement for the objects it supervises (primitive Optimize),
determining their new owners (encoded in the partial relocation map, denoted X̂). The node also computes
the reduction of the local cost function (denoted as �Cj ) that the new assignment brings.

Then, node j computes a temporary PAA, based on the previous value of its PAA (stored in LookupT [j])
and on the new additional relocation information X̂ (lines 13-14). The API of the PAA is then used to
extract the relevant deltas from the existing PAA that need to be disseminated, in order to avoid sending
the entire PAA again (line 15). These deltas are exchanged among nodes, and applied locally, such that
every node can update all entries of LookupT (lines 16-22).

Each optimization round ends by triggering the re-location of the data via the moveData() primitive.
This primitive will use the updated PAAs to determine the set of items that have been re-located, and gives
the necessary commands to perform the corresponding state transfers. Several state transfer techniques
could be used for this purpose [25, 43], whose complexity is dependant on the consistency guarantees that
the key-value store implements (e.g. transactional vs eventual consistency). These mechanisms are indeed
orthogonal to the AutoPlacer system.
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ALGORITHM 1: AutoPlacer’s behavior at node j

1 Array[1. . . |N |] of PAA : LookupT={?, . . . ,?};
2 PAA: tmpPAA=?;
3 do
4 Array[1. . . |N |] of Sethi, r, wi : req=?;
5 htoprdk , top

wr
k i  collectStats(LookupT);

6 foreach n 2 ⇧ do
7 send({hi, r, wi 2 {toprdk [ top

wr
k } such that supervisor(i) = n}) to n;

8 end
9 foreach n 2 ⇧ do

10 req[j] receive() from n;

11 end

12 h ˆX,�Cj i  Optimize(req);

13 tmpPAA  LookupT[j];

14 tmpPAA.add( ˆX);

15 �PAA: delta  tmpPAA.getDelta(LookupT[j]);
16 broadcast(delta,�Cj);

17 �C⇤  0;

18 foreach n 2 ⇧ do
19 [delta,�Cn

]  receive() from n;

20 LookupT[n] LookupT[n].applyDelta(delta);
21 �C⇤  �C⇤

+�Cn
;

22 end

23 moveData();

24 while �C⇤
> �;

AutoPlacer relies on a simple self-stabilizing mechanism that halts the distributed optimization algo-
rithm if the “gain” achieved during the last optimization round does not exceed a user-tunable minimum
threshold, denoted � (line 23). This allows avoiding to analyze the “tail” of the data access distribution,
whose optimization would lead to negligible gains. We chose as metric to evaluate the optimization gain the
reduction of the cost function achieved during the last optimization round, �C⇤ . To compute this value,
each node j disseminates the value for the reduction of its local cost function �Cj along with delta, in line
16. At the end of this dissemination phase each node of the system can deterministically compute �C⇤ and
evaluate the predicate on the termination of the optimization algorithm.

Finally, AutoPlacer leverages the fault-tolerant mechanisms used by the underlying key-value store
itself to recover from node failures. In fact, Infinispan relies on JGroups [3] to maintain the cluster mem-
bership; if a node crashes both the key-value store and the AutoPlacer components receive consistent
up-to-date membership change notifications that can be used to safely recover from failures (for instance,
this prevents AutoPlacer from blocking while waiting from inputs from di↵erent nodes).

After one round of the AutoPlacer algorithm, some items will be mapped to nodes di↵erent from those
mapped by consistent hashing. Hence, the system must use a lookup function which supports this change.
Algorithm 2 shows the pseudocode for the lookup function for a key k. First, consistent hashing is used to
identify the supervisor of k, say s. We then check whether the PAA associated with s contains k. In the
positive case, we use the mapping information provided by LookupT [s] to identify the set of nodes that are
currently maintaining key k. Otherwise, we simply return the set of owners for k as determined by consistent
hashing (d is the replication degree).

3.4 Handling dynamic workloads

In the previous sections we have described how AutoPlacer can be employed to optimize data placement
in presence of static workloads. However, the algorithm can be extended to cope with dynamic workloads,
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ALGORITHM 2: PAA-based lookup function

1 Array[1 . . . d] of Nodes lookup(Key k)
2 if LookupT[supervisor(k)].get(k) 6= ? then
3 return LookupT[supervisor(k)].get(k);
4 else
5 s  supervisor(k);
6 return {s, s+1, . . ., s+d-1};
7 end

8 end

i.e. scenarios in which the data access patterns generated by the nodes in the system vary over time. In
this case, the data placement identified by AutoPlacer at the end of a round may become suboptimal
and require the re-location of data items whose placement had previously been optimized by AutoPlacer.
The key issue is that, once that a data item has been relocated by AutoPlacer, its data accesses are no
longer traced via the top-k, in order to avoid re-optimizing its placement in following rounds and to prevent
the stagnation of the top-k statistics. In the following we show how it is possible to extend AutoPlacer
to cope with dyamic workloads, by having it operate in epochs.

In each epoch, AutoPlacer operates exactly as described in the previous sections. A new epoch is
started when the need for recomputing data placement is identified, i.e. whenever an abrupt change of the
access patterns is detected during the current epoch. Various key performance indicators may be adopted
to reveal the occurrence of a relevant workload shift, including the ratio of remote to local data access
operations and/or the number of nodes involved in commit. Indeed, as a consequence of AutoPlacer’s
optimization algorithm, these performance indicators are expected to decrease over time if the data access
patterns at the various nodes remain stable.

In the prototype of AutoPlacer we trigger the beginning of a new epoch whenever we detect a sudden
growth of the probability of remote data accesses. Each node disseminates this information periodically in
the system. At each dissemination round, every node computes the average remote access probability in the
system, and uses the same deterministic function (i.e., comparison with a user-configurable threshold) to
determine whether to trigger a new epoch. Thus, the need to start a new epoch can be locally detected by
any node. In such case, the node will simple send a message to the remaining nodes to make sure that every
node will also re-start executing Alg. 1. This simple scheme ensures that all nodes will agree on triggering
a new epoch in the same dissemination round.

Upon the beginning of a new epoch e, each node creates an empty LookupTe associated with the current
epoch. However, unlike a normal AutoPlacer round, this LookupTe is not merged with any pre-existing
LookupT s, but it is stacked on top of LookupT from previous rounds. This new LookupTe will serve a twofold
purpose. On one hand, it allows for storing a “patch” for the currently established data placement (encoded
by the set of LookupT s of the preceding epochs). Further, the current LookupTe is provided as input to the
collectStats() method, which will use it to determine whether or not to track accesses to a data item d
in the node’s top-k in the current epoch, depending on whether d is stored in LookupTe (which, we recall,
implies that d has been re-located by AutoPlacer during epoch e).

Since in the first round of any epoch e, its LookupTe is empty, the accesses to all objects in the key-value
store will be tracked, allowing to re-optimize the placement of data items that have been subjected to access
patterns shifts since the last epoch. If objects need to be relocated, their new position is stored in the
corresponding PAA in LookupTe. At the end of the round, each node will broadcast the PAA associated
with the data it supervises, as usual, and the other nodes will merge it with the empty LookupTe. We
alter also the way in which the lookup function operates: since an object may have been relocated in a
previous epoch, we query the stack of LookupT (in reverse chronological order). The lookup function returns
the mapping determined by the first LookupT that contains the required data item (i.e., the most recent
re-location of a data item), or the result of the default consistent hashing scheme in case the data item has
not been relocated in any epoch (and, therefore, is not present in any LookupT ).

A simpler way for AutoPlacer to handle varying workloads would be to reset its LookupT as it detects
a change in the workload. Even though this would be an e↵ective method of resetting AutoPlacer, it
would have the negative e↵ect of causing the system to shu✏e all data previously optimized, returning to
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the original consistent hashing data placement. Keeping an history of previous LookupT, arranged in reverse
chronological order and regulated by the notion of epochs, allows for minimizing the overhead introduced
by the need to re-optimize the placement of data in the system. In fact, if the placement determined in a
previous epoch remains optimal in the new epoch for a subset O of the platform’s data, and is sub-optimal
for a subset S, the data items in O will not be re-located in the new epoch (as the optimization algorithm
executing during the new epoch will confirm the optimality of the current placement).

The disadvantage of keeping an history of LookupT is that it could slow down the lookup function after
a long series of epochs. However, it is important to note that after the system has stabilized on the most
recent epoch e and AutoPlacer has stopped optimizing placement, LookupTe will contain the entire set
of hotspots given the data access patterns currently exhibited by the application. Thus, PAAs belonging to
previous epochs will only be queried to obtain the location of objects which were relocated in some previous
epoch, and that are no longer used by the nodes they were moved to. Hence, after AutoPlacer has
stabilized, all but the most recent LookupT may be discarded, causing the non-hotspot objects to return
to their supervisor nodes (as determined by consistent hashing). Since the AutoPlacer algorithm is
executed independently at each node, each node n may unilaterally decide when to purge the previous PAAs
associated with the data it supervises. So, when a node has finished optimizing placement, it broadcasts a
PURGE message so that other nodes will discard the existing history of PAAs associated with the objects n
supervises.

Finally, we note that in order to ensure the termination of the AutoPlacer’s optimization process, we
need to assume that the frequency with which workloads change is su�ciently low to give AutoPlacer
enough time to execute a su�cient number of optimization rounds. However, even in challenging scenarios
characterized by frequent shifts of the application’s data access patterns, the algorithm described above
allows for e↵ectively reacting to workload changes by minimizing the costs associated with the re-mapping
of data replicas to nodes.

4 Probabilistic Associative Array Internals

This section is devoted to discuss the implementation of PAAs. We start, in Section 4.1, by providing some
background on two building blocks that are used internally to the PAA, namely Scalable Bloom filters [1],
and a decision tree algorithm for data streams, called VFDT [19]. Next, in Section 4.2, we introduce the
FeatureExtractor interface, a programming abstraction that allows to extract semantic information on
the keys inserted in the PAA, and which aims to maximize the e�ciency of its probabilistic, space-e�cient
encoding. In Section 4.3, we discuss in detail how each of the methods of the PAA’s interface defined in
Section 4.3 can be implemented. Finally, in Section 4.4, we illustrate with a concrete example how PAAs
are exploited in the AutoPlacer system.

4.1 Building Blocks

Scalable Bloom filters (SBF) [1] are a variant of Bloom filters (BF) [6], a well know data structure that
supports probabilistic test for membership of elements in sets. A BF never yields false negatives (if the
query returns that an element was not inserted in a BF, this is guaranteed to be true). However, a BF may
yield false positives (a query may return true for an element that was never inserted) with some tunable
probability ↵, which is a function of the number of bits used to encode the BF and of the number of
elements that one stores in it (that must be known a-priori). SBFs extend BFs in that they can adapt their
size dynamically to the number of elements e↵ectively stored, while still ensuring a bounded false positive
probability. Internally, this is achieved by creating, on demand, a sequence of BFs with increasing capacity.

VFDT [19] is a classifier algorithm that induces decision trees over a stream of data, i.e. without assuming
the a-priori availability of the entire training data set unlike most existing decision trees [36]. VFDT is an
incremental online algorithm, given that it has a model available at any time during its run and refines the
model over time (by performing new splits, or pruning unpromising leaves) as it is presented with additional
training data. As classical o↵-line decision trees, the output of VFDT is a set of rules that allows to map
a point in the feature space to a target discrete class. A noteworthy property of VFDT is that the trees it
produces are asymptotically arbitrarily close to the ones produced by a batch learner (i.e., an o↵-line learner
that uses the entire training set to determine how to grow the tree). The misclassification probability can be
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configured by means of the parameter � [19], which a↵ects the frequency with which new rules are induced
in the trees built by the VFDT algorithm.

The PAA uses SBFs and VFDT in the following manner. SBFs are used to assert if a key was stored
in the PAA. VFDT is used to obtain the set of values associated with a key stored in tha PAA. The next
sections explain how this technique works in detail.

4.2 FeatureExtractor Key Interface

In order to maximize the e↵ectiveness of the machine-learning statistical inference, programmers can option-
ally provide semantic information on the type of key inserted in a PAA, by having their keys implementing
the FeatureExtractor interface. This interface exposes a single method, getFeatures(), which returns
a set of pairs hfeatureName, featureValuei, where featureName is a unique string identifying each feature
and featureValue is a (continuous or discrete) value defining the value of that feature for the key.

The purpose of this interface is to allow a key to be mapped, in a semantically meaningful (and hence
inherently application dependant) way, into a multi-dimensional feature-space that can be more e�ciently
analyzed and partitioned by a statistical inference tool. In particular, the set of features extracted via
this interface defines the “feature space” [36] over which, as we will see in the following section, the VFDT
algorithm infers a set of compact rules. This ruleset, which is encoded as a decision tree, allows defining
which regions of the feature space should be assigned to the various nodes of the system.

Normally, features can be “naturally” derived from the data model used in the application. For instance,
if an object-oriented (or relational) model is used, a typical encoding for the key corresponding to an object
of class “Person” with ID=3 may be “Person-3”. The FeatureExtractor interface can then simply parse
the key and return the pair h“Person”, idi. This can be further illustrated considering the real example of
the TPC-C benchmark, which we used in our evaluation. In this case, a “Customer” object with id c1 would
be associated with a feature, h“Customer”, c1i. Further, since in TPC-C a customer is statically registered
in a “Warehouse” object, c1 would have a second feature h“Warehouse”, w1i, being w1 the identifier of
the warehouse where c1 is registered. Hence, a di↵erent customer c2 registered with a warehouse w2 would
be associated with the features h“Customer”, c2i and h“Warehouse”, w2i, while the object representing
warehouse w2 itself would be associated with the features h“Customer”, N/Ai and h“Warehouse”, w2i.

Note that this sort of feature extraction could be automated, provided the availability of information
on the mapping between the application’s domain model, in terms, e.g., of entities and relationships, and
the underlying key/value representation. This can be done using annotations or domain specific languages,
analogously to what is done in Object-to-Relational Mapping (ORM) solutions [4].

Finally, we note that this approach could be used, at least in principle, even in case of completely
unstructured keys. In such a case, the feature extraction phase would map the keys onto a mono-dimensional
feature space that coincides with the keys’ domain. However, as we mentioned in Section 4.1, the PAAs
use VFDT, an online decision-tree based classifier algorithm, to infer a set of rules that map regions of the
feature space onto nodes in the system. As in any machine learning problem [5], the ability of the classifier to
infer a compact, yet accurate rule set is, in practice, strongly dependant on the quality of the used features,
and on their capability to promote the identification of clusters. Although, generally speaking, there is no
universal rule that determines how many features should be used to achieve optimal performance [33], one
may argue that, in most classification problems, using a mono-dimensional feature space is likely to limit the
inference capabilities of classifier algorithms. This is the reason why AutoPlacer’s programming model
promotes, via the FeatureExtractor interface, the encapsulation of additional semantic information in
the key structure.

4.3 PAA Operations

We can finally discuss how each of the methods specified by the PAA abstract interface introduced in
Section 3.2 is implemented:

• Create: to instantiate a new PAA from a seed map, an SBF is first created, sizing it to ensure the
target error rate ↵ and populating it with the keys passed as input parameter. Next, d new instances of
VFDT are trained. The i-th instance of VFDT (i 2 [1, . . . , d]) is trained by using a dataset containing,
for each key k in the seed map, an entry composed by the mapping of k in the feature space (obtained
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using k’s FeatureExtractor interface), and as target class value, the i-th value associated with k in the
seed map. As we are creating a decision-tree from scratch over a fully-known training set, we use in this
phase VFDT as an o✏ine-learner, by configuring it to use the C4.5 algorithm [40]. This allows us to tightly
control the cardinality of the rule set it generates to achieve arbitrary accuracy in encoding the mapping,
and hence fine tune the pruning of the rule set to achieve the user specified parameter �. To this end we
need to keep into account that, when new data is added to the PAA (via the Add method, to be discussed
shortly), the decision tree is grown using the VFDT on-line algorithm, which can introduce an additional
misclassification probability �. Hence, during the pruning phase of the initial o↵-line trained decision tree,
we aim at achieving a misclassification rate on the training set equal to �0 = 1� 1��

1�� .
The asymptotic complexity of the Create operation results as the sum of: i) creating an SBF — an

operation that has constant cost, as it boils down to allocating a byte array whose size can be computed
in O(1) based on ↵; ii) building the training set for d VFDTs via the FeatureExtractor interface —
an operation that has O(S · f · d) cost, where S is the number of keys in the seed map, f is the number of
features encoded in the keys, and d is the replication degree; and iii) training d VFDTs, which has complexity
O(d · (S · f · log(S)), which is the cost of building d decision trees over a training set of cardinality S with f
attributes using C4.5 [47].

• Get: queries for a key k are performed by first querying the SBF. If the response is negative, ?
is returned. Otherwise (and this may be a false positive with probability ↵), the VFDT is queried by
transforming k in its representation in the feature space by means of the FeatureExtractor interface.
If k had actually been inserted in the PAA, the query to the SBF is guaranteed to return a correct result.
However, it may still be wrongly classified by the VFDT algorithm, which may return any of the target
classes that it observed during the training phase.

The asymptotic complexity of the Get operation is equal to O(h · sl + dt � depth) where h and sl are,
respectively, the number of hash functions and of internal bloom filters used by the SBF, and dt � depth
is the depth of the decision tree induced by VFDT, which is typically assumed O(log(S)) when analyzing
complexity of decision tree algorithms [47].

• Add: to implement this method, we leverage on the incremental features of the SBF and VFDT. To
this end, we first insert each of the entries k passed as input parameter into the SBF. This may lead to
the generation of an additional, internal bloom filter, to ensure that the bound on ↵ is ensured. Next we
incrementally train the VFDT instances currently maintained in the PAA, by providing them, in a single
batch, the entire set of key/value pairs that is being added to the PAA. As the VFDT algorithm introduces
at most � misclassification errors with respect to an o↵-line decision tree, and given that we prune the initial,
o↵-line built decision tree to achieve accuracy �0, we guarantee the tree built by VFDT upon the execution
of the Add method still achieves the target bound on misclassification �.

The asymptotic complexity of the Add operation is equal to O(Sh+ dSf log(S)), which corresponds to
the cost of inserting S items in the SBF (by using h hash functions), plus the cost of build d trees using
VFDT over a batch of S examples in the training set.

• getDelta: the output consists of the binary di↵ of the SBFs, plus the rule set of the VFDT maintained
by the PAA over which this method is invoked. To obtain the binary di↵ of the SBFs, we use a simple
optimization that allows for avoiding the processing of all but the latest internal BF in common between the
2 PAAs being di↵ed. As new elements are added always to the most recent internal BF, when this method
is invoked over a PAA p, passing as input parameter a PAA p’, it returns: i) any new BF included in p as a
result of the insertion of additional elements in p’, and ii) the most recent BF stored by p’, which may have
been in the meanwhile altered to store additional elements.

Excluding, for simplicity, this optimization from the analysis, the complexity of the getDelta operation
can be estimated as proportional to the size (measured in bytes) of the PAA over which this operation is
invoked.

• applyDelta: symmetrically to what is done in getDelta, this method generates a new PAA, whose
SBF is obtained by applying the binary SBF di↵ contained in the input �PAA to the SBF of the PAA over
which this method is invoked. The rule set of the output PAA is set equal to the one contained in the input
�PAA.

The complexity of this method, analogously to getDelta, is proportional to the size of the PAA passed
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Figure 1: Example usage of PAAs in AutoPlacer

as input parameter.

4.4 Example usage of PAAs in AutoPlacer

Figure 1 provides a concrete example of usage of PAA inAutoPlacer. Let us start by analyzing Figure 1(a).
On the left side, we report an example set of keys whose placement in the system needs to be updated,
together with their corresponding new placement. We recall that this information is obtained as output
of the optimization phase of each AutoPlacer’s round. Before inserting these keys in the PAA, the
FeatureExtractor interface is first executed, yielding the result on the right. This phase allows extracting
semantic information embedded in the key structure, and to map them into a feature space, which, in the
considered example, consists of tuples of the form {Customer⇥Warehouse⇥District}, and having as
target class the identifier of the node to which the key should be reassigned.

Figure 1(b) illustrates the mapping of the seed map in the feature space. Note that in this diagram,
we indicate with di↵erent point types (namely, a circle, a box and a triangle) keys that are mapped to
di↵erent nodes/values of the target class. Note also that we omit to label the Customer axis for the sake
of readability. The figure also depicts a possible clustering induced by the ruleset determined by running
the VDFT algorithm on the seed map. In the considered example, the decision tree is built using three rules
that partition the feature space according to the value of the Warehouse feature, and attribute a di↵erent
target class value (i.e., node) to each partition. In the considered example, which is clearly simplistic for the
sake of clarity, the mapping of 7 keys to 3 di↵erent nodes (out of a possibly much larger set of total nodes)
is encoded using exclusively 3 rules, which can be encoded in a much more compact way than the relocation
map. It should be noted that the considered rule set may actually match a much larger number of keys than
those included in the seed map. This would happen, for instance, in case each warehouse, in the considered
example, was associated with a large population of customers.

This is the reason why PAAs integrate a SBF, which they use to store the ids of the keys, whose mapping
has been inserted in the PAA. Assume that a PAA, following its initialization with the considered set of
keys, is queried about a key k not included in this set, where k = Customer : Pedro � W1 � D2. With
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high probability — more precisely, with the probability ↵ specified upon the creation of the PAA — the
key will not result present in the PAA’s SBF, and the rule set of the VFDT will not be queried. In this
case, we recall that AutoPlacer would consider the key not relocated, and locate it using the default
consistent hash function. On other hand, had the SBF su↵ered of a false positive, the PAA would have used
the VFDT’s rule set to determine the value associated with k, and also su↵er of a false positive.

An example of inaccurate mapping for a key stored in the PAA would have occurred in case the same
rule set had been produced with an input seed map containing also the key-value pair < Customer :
SomeName�W1�D2, 2 >. In this case the rule set induced by the VDFT algorithm misclassifies the key
based on the fact that the value of its Warehouse feature is 1, and erroneously associates it with the target
value/node 1, instead than 2.

5 Optimizer Analysis

As already noted, the approximate nature of the information provided by top-k may a↵ect the quality of the
identified solution. An interesting question is therefore how degraded is the quality of the data placement
solution when using top-k. In the following we provide an answer to this question by deriving an upper bound
on the approximation ratio of the proposed algorithm in a single optimization round. Our proof shows that
the approximation ratio is a function of the maximum approximation error provided by any top-kj(O), which
we denote e⇤, and of the average frequency of access to remote data items when using the optimal solution.

Theorem 1 The approximation ratio of the solution X̂ found using the approximate frequencies r̂ik,ŵik is:

1 +
d

|N |� d
�, with � =

e⇤(crr + crw)

crrrR+ crwrW

where e⇤ is the maximum overestimation error of top-k, and rR, resp. rW , is the average, across all nodes,
of the number of read, resp. write, remote data items using the optimal data placement XOpt.

Proof Let us now denote with C(X, rij , wij) the cost function used in Eq. 1 of the ILP formulation restricted
to the data items contained in top-K(O):

X

j2N

X

i2top-K(O)

Xij(cr
rrij + crwwij) +Xij(cl

rrij + clwwij)

and with Opt = C(Xopt, rij , wij) the value returned by the cost function using the binary matrix Xopt

obtained solving the ILP problem with exact access statistics rij , wij .
Let lR, resp. rR, be the average, across all nodes, of the number of read accesses to local, resp. remote,

data items using the optimal data placement X. lW and rW are analogously defined for write accesses.
These can be directly computed, once known XOpt and rij ,wij as:
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We can then rewrite Opt and derive its lower bound:

Opt =|top-K(O)|((|N |� d)(crrrR+ crwrW )+ (2)

+ d(clrlR+ crwlW )) �
� |top-K(O)|(|N |� d)(crrrR+ crwrW )
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Next, let us derive an upper bound on the “error” using the solution X̂ obtained instantiating the ILP
problem using the top-k-based frequencies r̂ij , ŵij . The worst scenario is that an object o 2 O is not assigned
to the d nodes that access it most frequently because they do not include o in their top-k. In this case we can
estimate the maximum frequency with which o can have been accessed by any of these nodes as e⇤. Hence
if we evaluate the cost function C(X̂, rij , wij) using the exact data access frequencies, and the solution X̂ of
the ILP problem computed using approximate access frequencies, we can derive the following upper bound:

C(X̂, rij , wij)  Opt+ |top-K(O)|de⇤(crr + crw) (3)

The approximation ratio is therefore:

C(X̂, rij , wij)

C(XOpt, rij , wij)
 1 +

d

(|N |� d)

e⇤(crr + crw)

crrrR+ crwrW
(4)

In the following corollary we exploit the bounds on the space complexity of the Space-Saving Top-k
algorithm [35] to estimate the number of distinct counters to use to achieve a target approximation factor
1 + d

|N |�d�.

Corollary 2 The number m of individual counters maintained by the Space-Saving Top-k algorithm, to
achieve an approximation factor equal to 1 + d

|N |�d� is:

m =
SL

�

crrrR+ crwrW

crr + crw

where SL is the total number of accesses in the stream.

Proof Derives from Theorem 6 of the work that introduced the Space-Saving Top-k algorithm [35], which
proves that to guarantee that the maximum overestimation error e⇤  ✏Fk, where Fk is the frequency of the
k-th element in top-k, it is su�cient to use m = SL

✏Fk
counters.

Finally, since in each round AutoPlacer optimizes the placement of a disjoint set of items, it follows
that, if we assume stable data access distributions, the approximation ratio achieved by the optimization
algorithm during round i will necessarily be lower (hence better) than for round i � 1. In fact, at each
round, the frequencies of the items tracked by the top-k will be lower than in the previous rounds, and,
consequently, e⇤ will not increase over time.

6 Evaluation

This section evaluates the di↵erent aspects of the AutoPlacer. First we describe our experimental setting.
Next we discuss the e�ciency of the PAA data structure. We then present two case-studies of our system,
one based on the well-known OLTP benchmark, TPC-C, and one based on a benchmark representative of
geo-social applications, GeoGraph [50]. In order to use both benchmarks in AutoPlacer, we modified the
keys of objects in the benchmarks in order to implement the Feature Extractor Interface according to the
static attributes of the objects they represent. For both benchmarks, we configured AutoPlacer to run
new rounds every minute, and limited the Top-K size to 1000.

6.1 Experimental Settings

In order to evaluate experimentally AutoPlacer, we integrated it in the Infinispan key-value store. We
have run experiments on two settings, one for each benchmark we make use of. For the TPC-C benchmark,
we have used a cluster of 40 virtual machines (deployed on 10 physical machines) running Xen, equipped
with two 2.13 GHz Quad-Core Intel(R) Xeon(R) E5506 processors and 40 GB of RAM, running Ubuntu
Linux 2.6.32-33-server and interconnected via a private Gigabit Ethernet. For the GeoGraph benchmark, we
deployed our platform on of FutureGrid1. More specifically, we deployed the Cloud-TM Platform on top of
a virtualized infrastructure with 25 VMs, which were configured with 16GB RAM, one 2.93GHz core Intel
Xeon CPU X5570, running CentOS 5.5 x86 64 and interconnected by an InfiniBand network.

1
http://portal.futuregrid.org
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Table 3: Re-located objects and size of di↵erent PAA implementations
Mechanism Re-located Local

objects space (KB)

PAA-scalable 26600 150.8
PAA-Bloom 26600 31.84
Bloomier 26600 575.3

TPC-C Benchmark: Since Infinispan provides support for transactions, we developed for our experimen-
tal study a porting of a well-known benchmark for transactional systems, namely the TPC-C benchmark [30],
which we adapted to execute on a key-value store2. This choice is motivated by the fact that TPC-C is a
complex benchmark, which generates workloads representative of realistic OLTP environments, with com-
plex and heterogeneous transactions having very skewed access patterns and high conflict probability. This is
in contrast with common key-value store benchmarks [13], which are typically composed of simple synthetic
workloads.

Since our evaluation focuses on assessing the e↵ectiveness of AutoPlacer in di↵erent scenarios of
locality, we have modified the benchmark such that we can induce controlled locality patterns in the data
accesses of each node. This modification consists in configuring the benchmark such that the transactions
originated on a given node access with probability p data associated with a given warehouse, and with
probability 1� p data associated a warehouse chosen randomly. So, for example, by setting p = 90%, nodes
will have disjoint data access patterns (each accessing a di↵erent warehouse) for 90% of the transactions,
while the remaining 10% access data uniformly. In the remaining of the text, when we refer to “degree of
locality” in the context of the TCP-C benchmark, we refer to the value of probability p above.

GeoGraph Benchmark: Geograph [50] is a benchmarking tool that allows injecting complex and rich
workloads representative of the most popular geo-social applications. Geograph has been designed to be
flexible both in the heterogeneity and in the dynamics of the workload. In particular, it provides 19 di↵erent
geo-social services (i.e. actions) and 16 application specific user simulators. These simulators (named agents
in GeoGraph) can be combined in complex ways to generate dynamic workload profiles. In order to have
a realistic geographical distribution of the agents, GeoGraph uses as baselines for each simulation real GPS
traces from Open Street Maps3.

More specifically, the benchmark divides the spatial region where the agents move into 10KM2 areas
named Landmarks. It starts by inserting a set of posts (virtual messages) associated with each Landmark.
Then, agents are spread throughout the map and move across it using the realistic GPS traces, while issuing
actions in its vicinities. The simplest action is read-post action which is used to query the landmark state
for getting posted messages. The second action is update-position which leads to a move operation of the
agent between adjacent landmarks, and possibly to leave a new post.

In order to simulate a real-work deployment of a geo-social service, we have configured the benchmark to
dispatch requests across the nodes in the system depending on their geographical origin. We then attributed
geographical areas (sets of adjacent Landmarks) to servers, such that the requests of an agent are dispatched
to the server responsible for the closest landmark, based on the current geographic position of the agent.

6.2 Probabilistic Associative Array

In this section we study tradeo↵s in the space e�ciency and accuracy involved in the configuration and
implementation of the PAA. For these results, we have used traces of the TPC-C benchmark configured with
100% locality.

2
The code of AutoPlacer and of the porting of TPC-C employed in this evaluation study are freely available in the

Cloud-TM project public repository: http://github.com/cloudtm

3
http://www.openstreetmap.org/traces
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Figure 2: Tra�c generated by a node using di↵erent associative arrays.

Bloom Filter Figure 2 presents the network bandwidth of di↵erent implementations of the PAA, compared
with another form of probabilistic associative arrays, the Bloomier Filters (Bloomier) [9] as the rounds
advance in the system. One implementation of the PAA uses regular Bloom filters (PAA-Bloom) [6], while
the other uses a scalable Bloom filter (PAA-scalable) [1]. Both PAAs were configured with ↵ = � = 0.01,
and the Bloomier filter’s false positive probability was also set to 0.01. We note that the best solution is
the one that allows to propagate in the network only di↵erential updates with regard to the previous state,
i.e, the PAA-scalable. Concerning this latter solution, Figure 2 shows that in some rounds the message
tra�c generate by this solution oscillates. This can be explained considering that, as a result of the insertion
of new data in the PAA, it may be possible to exhaust the capacity of the most recent internal BF of the
scalable Bloom filter, and trigger the allocation of a new slice. In this case, the getDelta method of the
PAA returns the last two (or potentially more, although this never occurred in this experiment) internal
BFs.

Table 3 shows the correspondent local storage requirements at the end of the experiment. As it can be
seen, PAA-scalable has higher storage requirements than PAA-Bloom. This is unsurprising, as scalable
bloom filters are known to achieve lower compression than traditional bloom filters when fed with the same
data set and configured to yield the same false positive rates [1]. However, the storage requirements of both
solutions are still considerably smaller than those of Bloomier filters.

Machine Learner Figure 3 presents the error probability and space required by the DT to encode the
objects moved in every round of the experiment. As more objects are moved in the system, the number of
rules increases, leading to an increase in the size taken by this portion of the PAA. However, the machine
learner can represent the mapping of 26600 keys in 1000 Bytes, which correspond to 213 rules. Furthermore,
it can also be observed that while a significant number of keys is added to the machine learner (around 1000
per round), the error remains relatively stable.

6.3 Leveraging from Locality

This section shows how AutoPlacer is able to leverage form locality patterns in the workload. The results
were obtained with TPC-C, adapted as explained before and with a replication of degree d = 2.

Figure 4(a) shows the throughput of AutoPlacer, compared with the non-optimized system using
consistent hashing for di↵erent degrees of locality in the workload. In the baseline system, no matter how
much locality exists in the workload, since consistent hashing is used to place the items, on average the
number of remote accesses does not change. Thus, for all workloads the baseline system exhibits a similar
(sub-optimal) behaviour. In the system running AutoPlacer, locality is leveraged by relocating data items.
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Figure 4: AutoPlacer performance

As times passes, and more rounds of optimization take place, the system throughput increases up to a point
where no further optimization is performed. It is interesting to note that, in case there is no locality, the
throughput is not a↵ected by the background optimization process. On the other hand, when locality exists,
the throughput of the system optimized with AutoPlacer is much higher than that of the baseline: it can
be up to 6 times better for a workload with 90% locality, and up to 30 times better in the ideal case of 100%
locality.

Figure 4(b) helps to understand the improvement in performance by looking at the number of remote
invocations that are performed in the system as time evolves. Since the initial setup relies on consistent
hashing, both in the baseline and in the optimized system, the average probability of an operation being
local is 1

40 = 2.5% for all workloads. Thus, when the system starts most operations are remote. However,
the plots clearly show that the number of remote operations decreases in time when using AutoPlacer.
The plots also show another interesting aspect: although the number of remote operations decreases sharply
after a few rounds of optimization, the overall throughput takes longer to improve. This is due to the fact
that read transactions access a large number of objects, thus multiple rounds of optimization are required
to alleviate the network, which is the bottleneck in these settings. This clearly highlights the relevance
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Figure 5: Throughput of AutoPlacer, a directory-based and a consistent hashing-based solution, after a
complete optimization process.

of the continuous optimization process implemented by AutoPlacer. At the end of the experiment, the
percentage of operations performed locally is already close to the percentage of locality in the workload;
this shows that when the system stabilizes, AutoPlacer was able to move practically all keys subject to
locality.

Finally, Figure 5 compares the performance of AutoPlacer and that of a directory service-based system
which may be used to store the mappings resultant from a global optimization in systems such as Ursa [48]
or Schism [16] among other state of the art solutions which lack an e�cient way of broadcasting mappings.
These results were obtained by storing the data relocation map obtained at the end of the entire optimization
process into a dedicated directory service. In this case, whenever a node requests a data item that is not
stored locally, it contacts the directory service to determine its location, instead of querying the local PAA.
The results clearly show that the additional latency for contacting the directory service can hinder perform
significantly, independently of the locality of the workload. The plots highlight that, unlike forAutoPlacer,
the performance of directory-based systems can be worse than that achievable by using random placement.
This is explainable considering that, with low locality, a large fraction of data accesses is remote, and that
directory-based services impose a 2-hop latency, unlike consistent hashing and AutoPlacer. Note that,
while the plot depicts throughput values, these numbers are highly correlated with the latency of individual
operations; in fact, the decrease of throughput from AutoPlacer to that of a directory-based system is due
to the latency of lookups and the decrease of throughput from the directory-based system to the baseline is
due to the latency of (non-local) data accesses.

The speed-ups of AutoPlacer vs the directory-based solution are significant, i.e. around 2x, even for
the high locality scenarios. In these scenarios, the reduction of the number of remote operations leads to less
lookups on the directory. However, the cost of accessing a remote data item is, in our testbed, about 2 orders
of magnitude larger than that of accessing a local item. As a consequence, also in these scenarios, the cost of
remote data accesses dominate the execution time of the requests. Hence, such requests, which su↵er from
one additional communication hop latency in a directory-based solution, e↵ectively limit the throughput of
such a solution leading to considerably worse results than AutoPlacer.

6.4 Distributed Optimization

In this section we explore how the design decisions behindAutoPlacer’s distributed optimization algorithm
a↵ect the optimality of the final data placement. We have implemented a version of our optimizer which
works in a centralized way using complete and precise traces of the system, obtained from all nodes during a
long period. This is an approach similar to that of state of the art solutions such as Ursa [48] and Schism [16].
Finally, in order to improve the quality of the solution of the optimizer, such that it becomes an optimal
adversary, we did not relax the ILP constraint on this version.

To achieve a fair comparison, we did three runs of TPC-C with the same settings as Section 6.3, and
with two di↵erent configurations of Infinispan. Firstly, we did two long runs of an unmodified Infinispan,
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Figure 6: Progression of the quality of the data placement optimization solutions of AutoPlacer’s dis-
tributed optimization and of a centralized optimizer, relative to an unoptimized placement

while collecting traces of data access. We used the traces from the first run to generate an optimization
problem, which we fed to the centralized optimizer to derive an optimized placement. Next, we used the
traces from the second run to generate another optimization problem, and store only its cost function.
Finally, we ran AutoPlacer for the same period and collected the data placements resultant from each
round of optimization. In this evaluation, we use the traces from the second run as a fair baseline for
comparison between AutoPlacer and a centralized optimizer; We apply the data placement resultant
from AutoPlacer and from the centralized optimizer to the cost function derived from the traces of the
second run. This allows us to compare the quality of the solution returned by each optimizer with respect
to an independent run from that which the optimizers used as input.

Figure 6 shows how the quality of the solution generated by AutoPlacer evolves along rounds, and
the quality of the solution generated by the centralized optimizer. This quality is a result of applying
the cost function obtained from the second Infinispan run to the data placement solutions generated by
each optimizer. The results are presented as a percentage of the cost of the (unoptimized) data placement
generated by consistent hashing.

Similarly to the behaviour observed in Section 6.3, AutoPlacer converges progressively towards a
steady-state, where the value for the objective function is not reduced any further. As expected, the more
locality is encoded in the workload, the smaller is the value at which AutoPlacer converges, since more
requests can be fulfilled by moving replicas to nodes requesting data items. In fact, the results shown in
Figure 6 match those of Figure 4(b): since the remote operations are considerably more expensive than the
local operations, the value of the objective function at the end of the experiment relative to the unoptimized
version corresponds roughly to the percentage of remote operations relative to the baseline in Figure 4(b).

Regarding the comparison with the centralized optimizer, it can be observed that AutoPlacer’s opti-
mizer’s results are hindered by the fact that it is distributed and relies on uncertain information. However,
it must be noticed that AutoPlacer optimizes the placement based on a much shorter window of time,
which means that the statistics are more prone to be unreliable. This fact, combined with the fact that
AutoPlacer avoids moving data more than once on each round, means that the system may make more
wrong decisions. In absolute terms, this di↵erence is more pronounced for lower locality scenarios, since
AutoPlacer can more easily be deceived by the randomness in the workload than an algorithm which
decides placement based on a longer period. In relative terms, the di↵erence is more pronounced for higher
locality scenarios, since any single deviation from the data placement devised by the centralized optimizer
will have a strong impact on the objective function. Still, AutoPlacer was able to approach the results
of the centralized optimizer to within 10% of the cost of the unoptimized placement, without requiring a
complete trace of execution and while allowing the parallelization of the computation. Furthermore, Au-
toPlacer also provided considerable gains over the unoptimized placement, especially for the high locality
scenarios where the cost is reduced by up to 98.5%.
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Figure 7: Total throughput of AutoPlacer over time for a dynamic workload with 90% of locality. T1
and T2 mark the instants when changes in workload occurred.

Figure 8: Number of objects moved to a specific node per round over time. Figure presents data for one of
the nodes whose data is not a↵ected by the first workload change (at T1).

6.5 Dynamic workloads

In this section we show how changes in the workload a↵ect the behaviour of AutoPlacer. We deployed
TPC-C using the same settings as in Section 6.3, with 90% access locality, but modified the benchmark to
be able to introduce changes to the data access pattern at runtime. This allows us to emulate the existence
of a load balancer which may at any time decide to change the way in which requests are routed to each
node (e.g., due to the change of popularity of some subset of data items).

Figure 7 presents the evolution of the throughput of the system when subject to two changes in workload,
taking place at time T1 and T2. At T1, we cause a change in the data access pattern of 50% of the nodes.
This change causes these nodes to access a di↵erent set of data, and to start access data which was previously
being accessed by some other node in the set. At T2, we perform a similar change, to alter the data access
pattern for all nodes in the system.

As Figure 7 shows, the throughput of the system drops considerably at both T1 and T2. This is caused
by an increase in the remote read operations in the nodes a↵ected by the change, which not only cause their
transactions to last longer, but also flood the network, a↵ecting the transactions of the other nodes. It is
noticeable, however, that the throughput drop at T1 is considerably smaller than at T2, since only 50% of
the nodes are a↵ected by the change. Furthermore, after T2 the throughput drops to roughly the same as
at the beginning of the experiment, since after the change at T1 most of the read operations become remote
as at the beginning of the experiment.
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In terms of convergence time, each section of the experiment runs for 64 minutes, but after roughly 40
minutes no significant increases in throughput are observed. It is important to notice that this fact also holds
for the second section of the experiment (between T1 and T2). Even though the drop in performance after
T1 is not as large as after T2, AutoPlacer still takes the same time to converge on the peak throughput
as for the other sections. This happens because at each round, each node moves a limited number of objects,
hence it will always require a similar number of rounds to optimize a the same number of objects.

Figure 8 shows the number of objects moved to one of the nodes not a↵ected by the change in workload
triggered in T1. From 0 to T1, the node receives most of its objects in the first rounds of optimization, and
as the system reaches a more stable throughput the number of objects moved is reduced. Notice also that
even though the node still receives around 80 objects per round after the throughput has stabilized, this
object relocation leads to a marginal throughput gain. Between T1 and T2, this node’s data remains roughly
the same: since it is not a↵ected by the workload change, it does not request any data from its neighbours.
After T2, a new epoch is triggered, and since the node considered in Figure 8 is a↵ected by the workload
change, it starts requesting and moving data to itself, until the system reaches a stable state towards the
end of the experiment.

6.6 GeoGraph evaluation

This section studies the behaviour of AutoPlacer when using GeoGraph. Figure 9 presents the results for
AutoPlacer running the GeoGraph benchmark. We started using the default, consistent-hashing-based
data placement, and disabling AutoPlacer. After 10 minutes we activated AutoPlacer’s statistics col-
lection. After a 10 minutes period to warm up the statistics, at minute 20 we triggered the first optimization
epoch.

The plots in the top row of Figure 9 show how throughput and response time of read-only transactions
vary over time during an experiment in which we inject load using 128 geographically dispersed agents,
generating 90% read-only transactions (i.e., 90% read-post operations and 10% update-position opera-
tions) with 0 think time. After approximately 10 minutes, when the performance of the system is of about
60 transactions per second, we trigger the gathering of statistics using the probabilistic top-k algorithm
integrated in AutoPlacer. We notice that the throughput has a temporary drop of performance, with the
throughput going down to 53 transactions over the following sampling interval, before achieving a stable
throughput of about 57 transactions per second after about 5 minutes. The temporary drop in performance,
immediately after the activation of the Top-K tracing is most likely imputable to the initial overheads of the
JVM in executing new code paths before the JIT targets them and optimizes them. Interestingly, however,
the performance penalty introduced by top-k fades away almost completely over the following 5 minutes,
where the system stabilizes its performance at about 5% lower than without Top-K tracing.

By looking at the plots concerning the average number of remote get operations for both write and
read-only transactions, in the bottom row of Figure 9, we can notice that transactions are generating a large
amount of remote accesses, resp. about 23 for write and about 360 for read-only transactions. This is a clear
symptom of poor application’s locality, which represents a typical use case that could potentially benefit
significantly from AutoPlacer’s locality enhancing data-placement scheme.

We trigger AutoPlacer at around minute 20, and configure it to execute 10 rounds, collecting in each
round statistics for 1000 keys per node. In order to assess the benefits on performance associated with the
activation of each individual round we set a conservative frequency of 1 activation each 10 minutes. This
choice allows to have su�cient time to observe the dynamics of response of the system to the activation of the
individual AutoPlacer’s rounds. Analogously to the results obtained when using TPC-C, AutoPlacer
provides significant benefits in terms of locality of the applications’ data access patterns: over time we see
that the number of remote operations issued during the execution of transactions drops considerably, with
the first rounds being the most e↵ective. This phenomenon is explicable considering that during the early
optimization rounds AutoPlacer relocates the hot-spot data items that are responsible for causing most
of the remote accesses in each node, whereas in the later rounds the objects appearing in the nodes’ top-k
statistics are going to be accessed less and less frequently by the nodes. The last round ends at about 120
minutes since the beginning of the experiment.

At the end of the experiment we obtain that the throughput fluctuates around 220 transactions per second,
yielding a throughput gain of about 4 times. As expected, the throughput of AutoPlacer clearly increases
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Figure 9: Evolution over time of throughput, duration of read-only transactions, and number of remote get
operations per read-only and update transactions – GeoGraph benchmark.

over time, peaking at more than 4x of the initial, non-optimized throughput. This result is particularly good
since AutoPlacer can infer the locality patterns of a realistic workload without requiring the programmer
to know a-priori how to partition the application’s data and map it to the set of available nodes. The
root causes of these gains are highlighted by the plots concerning the number of remote operations, as well
as by the duration of read-only operations: both of them decrease significantly as subsequent rounds of
AutoPlacer are executed, which leads to a progressive growth of e�ciency of the system.

7 Related Work

A common approach to implementing data placement mechanisms in large scale systems is to rely on coarse-
grained, user-defined data partitions/buckets (also named directories [14] or tablets [12, 8]). Through such
partitioning, systems can deploy a centralized component which manages the location of all buckets in the
system, moving them as required to balance the load on hotspot nodes. While coarse partitioning allows for
somewhat manageable directories (maintaining the mapping between objects and nodes), on the other hand,
its coarse granularity can reduce the e↵ectiveness of the load balancing mechanisms. Furthermore, to improve
data locality, these systems make use of sorted keys: the programmer is responsible for assigning similar keys
to related data in order for it to be placed in the same server (or in the same group of servers) [14, 12, 27].
AutoPlacer does not require the programmer to manually define data partitions. While AutoPlacer
exploits information encoded in the key structure, the programmer is not required to define partitioning
rules. Conversely, these are automatically inferred using machine learning techniques based on the data
access patterns exhibited by the various nodes in the system. Also, by inferring data partitioning rules using
an on-line decision tree algorithm, our system can establish a fine grain placement for the most accessed
items in a space-e�cient way.

As hinted several times in the paper, there is extensive work on defining optimal data placement strategies
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in multiple contexts. A naive design that achieves an optimal object-to-node mapping is to rely on a
centralized component. In such a scheme, nodes send their object request to a single node, which runs an
optimization algorithm based on some variant of the File Allocation Problem (FAP) [7, 29, 49, 28], and then
the new mappings are propagated to a router component which creates lookup tables [44] and routes requests
to system nodes. However, not only does this solution involve an extra network hop for each request, but
also FAP is an NP-complete problem (hence inherently non-scalable in terms of the number of objects) and
this design would cause nodes to send information on every single object they store to a centralized location.
Finally, [29] shows that such an algorithm can react slowly to changes in workloads since the decisions are
not local to the nodes. Despite these drawbacks, several state-of-the art works follow approaches inspired
on this naive solution: [24] and [15] use a centralized component which collects fine-grained statistics on
object usage, derives a placement using an optimization algorithm for improving load balancing across the
system and then acts as a directory to locate objects. Ursa [48] follows a similar design also for achieving
load balancing goals, but it only considers the most used objects in order to improve scalability, in a similar
way as AutoPlacer uses top-k. Schism [16] and the work by Pavlo et al. [37] also follow this centralized
design, with a similar goal as AutoPlacer of improving data locality. To achieve optimal placement, these
latter two systems collect system execution logs to extract statistics on correlated objects, and then use
graph partitioning algorithms to place the objects into groups which are then mapped to nodes. Despite
achieving near-optimal placements, these are mostly o✏ine algorithms, which consider all data in the system
and have a limited scalability as the number of data items grows.

The work by Vilaça et al. [45] presents a Space-Filling Curves-based approach to placing co-related data
in the same nodes by relying on user-defined per-object tags. The resulting system can provide good locality
if the application is designed to perform actions using the tags, since nodes can locally determine who are the
owners of the objects with specific tags. However, unlike our system, this placement is static and encoded
by the programmer, and has no relation with the actual data access patterns that may emerge at runtime.

The recent work in [32] proposes Proteus, a virtual node placement algorithm that allows minimizing the
delay penalties otherwise incurred during server provisioning dynamics when using a conventional consistent
hashing placement scheme. This scheme could be easily integrated with AutoPlacer, as a mechanism like
Proteus could be used in AutoPlacer as alternative to the classic consistent hashing scheme.

Finally, this work is also related to the vast literature on self-management [11, 22] of cloud data platforms,
and in particular to the problems of thermal optimization [31, 10] and SLA-based provisioning [46, 18]. The
self-tuning mechanisms designed to cope with these problems can induce significant variations of the locality
patterns exhibited by the nodes of a distributed key value store, e.g., by altering dynamically the amount
of allocated resources, or the way in which requests are dispatched to resources. AutoPlacer can be used
to ensure that, whenever these systems reconfigure the platform to meet SLA or thermal constraints, the
placement of data across the nodes of the system is always constantly optimized.

8 Conclusions

This paper presented AutoPlacer, a system aimed at self-tuning data placement in a distributed key
value store. AutoPlacer operates in rounds, and, in each round, it optimizes the placement of the top-
k “hotspots”, i.e. the objects generating most remote operations, for each node of the system. Despite
supporting fine-grain placement of data items, AutoPlacer guarantees one hop routing latency using a
novel probabilistic data structure, the PAA, which minimizes the cost of maintaining and disseminating
the data relocation map. AutoPlacer has been integrated in a popular open source (transactional) key-
value store, Infinispan, and experimentally evaluated using a porting of the TPC-C benchmark. The results
shown that AutoPlacer can achieve a throughput up to six times better than the original Infinispan
implementation based on consistent hashing.
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