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Abstract
This paper investigates the problem of deriving white box perfor-
mance models of Hardware Transactional Memory (HTM) sys-
tems. The proposed model targets a popular implementation of
HTM, i.e., the one integrated in Intel’s Xeon (Haswell family) pro-
cessors, and focuses on capturing the dynamics of two key mech-
anisms: the concurrency control scheme and the management of
transactional meta-data in the processor’s cache.

Keywords transactional memory, hardware, performance model-
ing, concurrency control

1. Introduction
Transactional Memory (TM) [25] is an emerging paradigm aimed
to simplify concurrent programming by bringing the familiar ab-
straction of atomic and isolated transactions, originally proposed
in the DBMS’s context [31], to the domain of parallel computing.

Over the last two decades, the research on TM has led to many
different designs and implementations, either in software [21, 20,
8], hardware [26, 30], or combinations thereof [7]. Software based
TM (STM) systems rely on software instrumentation to trace mem-
ory accesses and detect the concurrent execution of conflicting
transactions. Due to its purely software-based nature, STM allows
for supporting a broad range of alternative concurrency control al-
gorithms. However, the overheads resulting from software-based
tracking of transactions’ data accesses can, at least in some work-
loads, severely hinder application’s performance [5].

These instrumentation overheads can be avoided by delegat-
ing the implementation of the TM abstraction to hardware mech-
anisms, an approach that goes under the name of hardware transac-
tional memory (HTM). While a number of alternative HTM designs
have been proposed in the literature, the HTM implementations that
are currently commercially available [26, 30] are built as relatively
non-intrusive extensions of the cache coherency algorithm and, as
such, have a best effort nature: if a transaction performs a larger
number of accesses that the processor’s cache can accommodate,
the transaction is never going to be successfully executed in hard-
ware, and a conservative, lock-based fall-back path has to be used
to ensure progress.

[Copyright notice will appear here once ’preprint’ option is removed.]

Because of its inherently restricted nature, HTM does not rep-
resent the definitive solution to the TM performance problems. Re-
cent work has shown, in fact, that for some applications/workloads
STM can deliver superior performance than HTM [19, 23, 29].
Furthermore, the performance and effectiveness of HTM has been
shown to be largely dependent on the correct tuning of the soft-
ware logic that governs the retry policy of hardware transactions in
presence of different types of aborts (e.g., due to conflicts or ca-
pacity exceptions) [18, 12]. Ultimately, these works indicate that
the performance dynamics of HTM can be strongly affected by a
number of workload dependent parameters and architectural design
choices, which makes the problem of predicting the performance
achievable by HTM-based applications a very challenging task.

This paper makes a step towards clarifying our understanding of
HTM’s performance dynamics by developing the first, to the best
of our knowledge, white-box analytical model of the HTM system
employed in a mainstream processor by Intel, i.e., the Xeon CPU of
the Haswell family. In particular, we focus on the modelling of two
mechanisms that play a key role in determining the performance of
HTM systems: the concurrency control scheme employed to detect
conflicting memory accesses , and the management of transactional
meta-data in the processor’s cache.

We assess the accuracy of the proposed analytical model via
a validation based on a real system and a set of synthetic micro-
benchmarks that generate heterogeneous workloads. The exper-
imental results show that the model can predict application’s
throughput and abort rate with high accuracy.

2. Background on HTM
Current HTM systems provide a best effort implementation of the
TM abstraction, in the sense that transactions are not guaranteed to
commit even if they run in absence of concurrency1. This is due
to the fact that existing HTM implementations use the processor’s
cache hierarchy to buffer transactional reads and writes, and rely on
the cache coherence protocol to detect conflicts. As a consequence,
transactions whose footprint exceeds the processor’s cache capacity
are subject to what we call capacity aborts. Indeed, in existing
HTM implementations, a transaction can also experience other
type of spurious (i.e., not imputable to conflicting accesses) aborts,
because of external events like page faults, context switches and
system calls.

HTM implementations must, thus, rely on an additional fall-
back mechanism in order to guarantee that a transaction eventually
succeeds in committing. The default approach is to allow transac-

1 The only notable exceptions being IBM zEC12’s HTM implementation,
that guarantees that transactions are eventually committed, provided that
they meet some constraints on the instructions they execute and on the
memory regions that they access
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Figure 1: Probability of incurring a capacity abort when accessing
a different number of cache lines. Comparing a real Intel system
(HAR) against a simulator modelling only L1 (SIM).

tions to execute in a software fall-back execution path, guarded by
a single global lock. When a hardware transaction aborts, it can ac-
quire the global lock instead of retrying its execution in hardware.
Hardware transactions must read the lock as free upon starting, as
well as before starting, in order to avoid the, so called, lemming
effect [11]. This means that as soon as a transaction T starts ex-
ecuting in the fall-back path, ongoing hardware transactions abort
and no hardware transaction can (re)start until T releases the lock.
Naturally, the global lock also serializes the execution of multiple
transactions trying to execute in the fall-back path.

The policy governing the retry logic of a transaction (upon an
abort event) can be implemented either in hardware (as for the case
of Intel’s HLE interface) or in software. The latter approach pro-
vides more flexibility, allowing for tuning not only the maximum
number of attempts to execute in hardware, which we call budget,
but also how such budget should be consumed in presence of dif-
ferent abort types, e.g., by exhausting it immediately, or halving it,
upon a capacity abort [4, 18]. In the presented model we consider
that the budget is decreased linearly, i.e., upon an abort, of any type,
the budget is reduced by 1.

3. Dissecting Intel’s HTM implementation
We now focus on investigating two key aspects of Intel’s HTM im-
plementation: i) how it manages conflict among concurrent transac-
tions, and ii) how transaction’s metadata are maintained in the pro-
cessor’s cache and what impact this has on the capacity limitations
perceived by transactions generating different types of workloads.

It should be noted that Intel has not disclosed details on the in-
ternal mechanisms employed by its HTM implementation. So the
information reported in the following is either based on previous
external studies [29, 34], or inferred via new experiments designed
explicitly to shed light on the internals of Intel’s HTM implementa-
tion. All the experimental results reported in this section and in the
remainder of this paper are based on a Xeon E3-1275 v3 running at
3.5GhZ, equipped with 32 GB Ram and Ubuntu 12.04.02LTS.

3.1 Conflict detection and resolution.
Existing literature [29, 34] has already pointed out that Intel’s
HTM implementation relies on an eager conflict detection scheme,
i.e., when a conflict between two transactions materializes, one of
the two transactions is immediately aborted. This is in contrast
to some STM implementations, which detect (certain types of)
conflicts only at commit time, in a, so called, lazy fashion. Another

relevant aspect of the conflict detection schemes integrated by
existing HTM implementations is that, since they are built on top
of a pre-existing cache coherency protocol, the conflict detection
granularity coincides normally with a cache line, which is, for the
case of our target Intel processor, 64 bytes long.

The conflict resolution policy used in Intel’s HTM implementa-
tion, i.e., which transaction is aborted in presence of a conflict, is
an aspect that, to the best of our knowledge, is undocumented by
Intel and has not been investigated by previous external studies. In
order to tackle this issue, we have designed a simple experimental
test that forces two transactions to issue conflicting memory ac-
cesses (load or store of one memory word) in different orders by
injecting properly-tuned delays during transaction’s execution. Our
experimental test showed that, at least in the Intel Xeon processor
targeted by our study, the conflict resolution uses a “Last requester
wins” policy, i.e., if two concurrent transactions T1 and T2 con-
flict on a memory address (i.e., both transactions access it and at
least one of the two accesses is a write), the first transaction to have
accessed that address is consistently the one to be aborted.

3.2 Capacity limitations.
Intel has not disclosed how transactional metadata (e.g., addresses
of the values read and written by transaction) is maintained by its
HTM implementation, but several previous studies [29, 34] have
already partially answered this question.

The conclusions of these studies, which have been also con-
firmed with our experiments, can be summarized as follows:

• The writes of transactions are stored in the L1 data cache. How-
ever, the maximum number of writes that can be executed by a
transaction is smaller than what could be accommodated by the
full L1 data cache: around 450 cache lines vs a total of 512.
Nguyen [34] hypothesized that this reduction of the effective
capacity of L1 cache could be explained by considering that a
transaction must also have sufficient space to store other pro-
gram’s metadata, like the head of the program stack.

• Read-only transactions can perform a much larger number of
reads than the L1 and L2 caches can possibly store, and around
half of the total cache lines available in L3 (actually around
one third in our experiments). In the light of these observations,
Nguyen [34] hypothesised that the transactional reads are main-
tained in L3. In fact, unlike L1, is shared among all the cores of
the same processor, as well as by programs’ code and data —
which may justify why the transaction’s read capacity is smaller
than the full L3’s size.

In this work, we address two questions that are still, to the best
of our knowledge, unanswered by previous studies: i) how many
cache lines in L1 are occupied by the additional metadata (i.e.,
metadata not used to track the transactions’ readset and writeset)
maintained by transactions? and ii) what is the effective capacity
of transactions that execute a mix of read and write operations?

In order to answer these questions we built a simulator of a L1
cache that uses the same geometry of our reference Intel’s proces-
sor (8-way associative, 64 sets, 64 bytes cache lines, 32KB capac-
ity) and implements a Least Recently Used (LRU) eviction policy.
We will use the simulator to validate our assumptions on the in-
ternal mechanisms employed by the considered HTM implemen-
tation, by comparing the output produced by the execution of syn-
thetic programs running on the real system with the output gener-
ated by simulating the execution of the same program.

Size of the additional transactional metadata. To determine the
size of the additional metadata stored by transactions, we designed
the following experiment. We occupy P subsequent cache lines,
starting from a position at random in the simulated cache, so to
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emulate the insertion of additional transactional metadata upon the
start of a transaction. Then we simulate random writes to memory
using the granularity of a cache line. We report a capacity event in
the simulation when we evict one of the cache lines storing one of
the addresses written by the transaction or one of the additional
transactional metadata. We varied the value of P in [0,512] and
compared the average number of writes that a transaction could
successfully execute in 50000 simulated and real runs. The value
of P that produces best matching between simulations and real
execution is 2, a value that appears reasonable especially if one
considers that the transactional metadata may not be cache line
aligned and hence span 2 cache lines even if occupying much less
than 128 bytes.

Capacity with mixes of read/write operations. Previous works
characterizing the transactional capacity of HTM implementations,
e.g., [34, 29] have focused on workloads composed solely by ei-
ther read-only or write-only transactions. In Figure 1 we report the
probability for a transaction to incur a capacity exception when at-
tempting to access i distinct cache-aligned addresses selected uni-
formly at random, where each access has probability PW of be-
ing a write, and 1 − PW of being a read. The data in Figure 1
reveals that halving the number of writes issued by a transaction
(PW =0.5) does not lead to doubling the effective capacity of trans-
actions, but yields only a modest increase of the transaction’s ca-
pacity — whose median moves from around 220 to 250 accesses.
We argue that this phenomenon is not imputable to evictions of
(read) cache lines in the L3 cache, which has a 8MB capacity and
can accommodate thousands of random reads with high probability.
We hypothesize, conversely, that, given the large relative difference
in size between L1 and L3 (32KB vs 8MB), the transaction capac-
ity has to be, for non-negligible values of PW , largely dependent
on dynamics taking place at the L1. More in detail, our hypothesis
is the following. Whenever a transaction issues a read access, the
corresponding cache line has to be loaded in the L1 cache. This
may cause the eviction from L1 of cache lines that had been pre-
viously read or written by the same transaction (as well as of any
additional transactional metadata stored in L1). If the evicted cache
line corresponds to an address written by the transaction, then this
undergoes a capacity exception. If, instead, the evicted cache line
had instead been read, the the transaction does not have to abort,
since the metadata for tracking that read are still stored in L3.

We tested our hypothesis using the same L1 simulator men-
tioned above, and, as it can be observed in Figure 1, we obtain a
very close match between simulation and real system for values of
PW as small as 1%. Below this value, as expectable, the likelihood
of incurring evictions of cache lines in the transaction’s readset be-
comes non-negligible.

Overall, this study confirms that, for a broad range of PW values
([1.0 - 0.01]), it is possible to predict the probability of capacity
aborts quite accurately via models that capture exclusively the
behavior of L1 and neglect the dynamics affecting L3 — which are
inherently more complex given the shared nature of L3 in typical
multi-core architectures.

4. Analytical model
This section is devoted to derive a white-box, analytical model of
the concurrency control mechanism adopted by the HTM system
of Intel Xeon processors (Haswell family).

We start, in Section 4.1, by presenting the key model’s parame-
ters and its underlying assumptions. Next, in Section 4.2, we illus-
trate the methodology we adopted to derive the proposed analytical
model. In Section 4.3 we discuss how the model is solved to pro-
duce performance predictions. Finally, Section 4.4 discusses how

the presented concurrency control model is extended and coupled
with models aiming at capturing the probability of capacity aborts.

4.1 Key model parameters and assumptions
We consider a HTM system with θ threads that execute in closed
loop either a transactional code block (TCB) or a non-transactional
code block (NTCB). A TCB has an average service time, i.e., CPU
demand, of C time units, a NTCB has an average service time Cn,
and a serialized TCB has an average service time Cf . The time to
complete a TCB in the software fall-back path may also account
for the extra cost of acquiring the global lock. The hardware path
has additional costs for starting (TB) and committing (TC ) a trans-
action.

Transactions re-execute as many times as necessary to success-
fully complete. When a transaction starts for the first time, it is as-
signed a budget B of attempts to execute in hardware. This budget
is decreased by one whenever a transaction aborts. When the trans-
action reaches the fall-back path it runs serially until it commits and
releases the lock. When a thread completes a NTCB or successfully
completes a transaction, it starts a new transaction with probability
pt and a new NTCB with probability 1− pt.

A transaction accesses on average L distinct memory words, or
granules. The timing of such accesses is spread uniformly at ran-
dom during a transaction’s lifetime. Namely, a transaction performs
a memory access, on average, every C/L time units. The granule
accessed at each iteration is chosen uniformly at random over a set
of cardinality D. The probability that a memory access is a write is
noted PW . The probability that a memory access is a read is, hence,
1− PW . Table 2 in Appendix summarizes the input parameters of
the model.

The model only considers conflicts stemming from concurrent
accesses to the same granule. This means that the model does not
encompass cache aliasing effects, and also that the memory ac-
cesses issued by threads running NTCBs do not interfere with the
execution of transactional threads. The only notable exception to
this last assumption is represented by conflicts caused by the con-
current acquisition of the global lock used on the fall-back path
(which is acquired by the fallen back transaction outside the scope
of a hardware transaction). The model also does not consider aborts
caused by asynchronous interrupts or page faults. This last assump-
tion simplifies the development of the model without significantly
impacting its predictive accuracy.

Capacity aborts involving read-only transactions occur after
thousands of granules are accessed, as is explained in Section 2.
Hence, it is more likely transactions to abort due to time constraints
than due to capacity. For this reason we only consider workloads in
which the probability of writing is larger than 1%. This allows us
to produce a model that considers the dynamics of L1 cache exclu-
sively. Our preliminary experimental study and previous work [19],
in fact, show that the incidence of spurious aborts is typically much
lower than capacity and conflict-induced aborts.

The model further assumes that no hardware transaction (re)starts
when there is at least one transaction waiting to acquire the lock for
the software fall-back path. In the real system, instead, it is possible
for a thread T to start a hardware transaction before another thread
T ′ waiting for the global lock manages to acquire it. This scenario
results into the early abort of T as soon as T ′ acquires the lock.

A restarted transaction is modeled as indistinguishable from a
transaction that starts for the first time. In addition, the execution
times of code blocks are assumed to be exponentially distributed
i.i.d. variables. Finally, the model assumes a stable and ergodic
system [27], so that quantities like abort probabilities and the mean
execution times exist and are finite, and defined to be either long-
run averages or steady-state quantities.
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Source state Destination State Transition Rate Corresponding Event

[tB , .., t0, nt] [tB , .., t0, nt] ntµn(1 − pt) A thread finishes a NTCB and starts another NTCB

[tB , .., t0, nt] [tB + 1, .., t0, nt− 1] ntµnpt A thread finishes a NTCB and starts a TCB

[tB , .., ti, .., t1, 0, nt] [tB + 1, .., ti − 1, .., t1, 0, nt] tiµt(1 − pa)pt A thread with i > 0 retries left commits a TCB and starts another TCB

[tB , .., ti, .., t1, 0, nt] [tB , .., ti − 1, .., t1, 0, nt+ 1] tiµt(1 − pa)(1 − pt) A thread with i > 0 retries left commits a TCB and starts a NTCB

[tB , .., ti, .., t1, 0, nt] [tB , .., ti − 1, ti−1 + 1, .., t1, 0, nt] tiµtpa A thread with i > 1 retries left aborts a TCB and restarts

[tB , .., ti, .., t1, 0, nt] [0, tB , .., ti+1, .., t2, t1, nt] t1µtpa A thread with 1 retry left aborts a TCB and falls-back to the software path

[tB , .., t1, t0, tn] [tB + 1, .., t1, t0 − 1, nt] µfpt A thread completes a TCB in the fall-back path and starts another TCB

[tB , .., t1, t0, nt] [tB , .., t1, t0 − 1, tn + 1] µf (1 − pt) A thread completes a TCB in the fall-back path and starts a NTCB

Table 1: State transition diagram

4.2 Modeling methodology and target KPIs
Our model is based on average value analysis [35]: it takes as input
system parameters, e.g., θ andB, the average values corresponding
to the workload characterization, e.g., C and Cn, and it returns av-
erage values of three Key Performance Indicators (KPIs). Specifi-
cally, the model computes the average probability that a transaction
aborts, noted PA, the throughput of the system, noted X , and the
average response time of a transaction, R. The response time of a
transaction differs from the service time in that R includes the fact
that a transaction might re-execute multiple times, possibly also in
the software fall-back path, before committing.

We model the evolution of the system by means of a Continuous
Time Markov Chain (CTMC) [27]. A CTMC is a graph in which
vertices represent the states in which the system can be and edges
represent the rates at which the system transitions from one state
to another. In our case, a state is a tuple 〈tB , tB−1, . . . , t0, nt〉.
ti, i = B, . . . , 1 indicates the number of threads that are running
a TCB and still have i retries of their initial budget left. t0 is
the number of threads that have exhausted their budget and have
to execute using the sequential fall-back path. nt is the number
of threads executing a NTCB. Since we are modeling a closed
system where threads constantly execute a code block, it follows
that

∑B
i=0 ti + nt = θ.

The system transitions from a state to another upon the com-
pletion of a NTCB, and upon the commit or abort of one or more
transactions. When t0 = 0, threads executing hardware transac-
tions can run in parallel. When t0 > 0, threads executing hardware
transactions are stalled until the single global lock is free, and the
execution of threads with depleted budget is serialized. Threads ex-
ecuting a NTCB are not affected by the acquisition of the global
lock.

We note µt the rate at which a thread completes a transactional
code block, either successfully or prematurely because of an abort,
and µn = 1/Cn the rate at which a NTCB is completed. We note
µf = 1/C the rate at which a thread completes a TCB in the
fall-back path. In general, let the system be in a state when there
are t hardware transactions running concurrently and nt threads
running a NTCB. Then, a state transition happens if i) any of
the t transactions commits; ii) any of the t transactions aborts;
or iii) any of the nt NTCBs is completed. The first transition is
triggered at a rate given by the product of the rate at which a TCB
is completed times the probability that the completion is caused
by a commit times the number of concurrent transactions, i.e.,
Tµt(1− pa). Following a similar reasoning, the rates at which the
second and third events happen are, respectively, Tµtpa and Nµn.
If a transaction aborts and fall-backs to acquiring the global lock, it
induces the abort of all the other t − 1 transactions and decreases
their budget by one.

We describe in more details the transition rates between pairs of
states in Table 1. The transitions in the table are specific instantia-
tions of the general reasoning provided above.

Figure 4 in Appendix depicts an example CTMC for the case of
two threads and an initial budget B=2.

4.3 Computing the KPIs
Once the CTMC is instantiated with the transition rates, it can be
solved by means of standard techniques [27] to obtain the KPIs of
interest. The transition rates, however, are not provided as input and
thus they have to be computed by the analytical model.

Computing the transition rates is a challenging task because of
the recursive definition of the abort probability. In fact, in HTM, a
transaction T can abort not only because of conflicting accesses or
capacity exceptions. T can also abort because another transaction
aborts, exhausts its budget and acquires the single global lock.

We tackle this issue as follows. We first assume transactions can
abort only because of conflicts with other transactions. Thus, we
obtain the transition rates that allow us to solve the CTMC. Then,
we solve the model a second time, using the abort probability com-
puted in the previous iteration to model the effects of transactions
falling back to the software path.

4.3.1 Computing the state transition rates
Modeling conflicts. When a transaction T accesses a granule g at
time t, it opens a so-called “vulnerability window”. Namely, T be-
comes vulnerable to concurrent accesses to g by other transactions.
As discussed in Section 2, we model an eager conflict detection and
a “Last requester wins” conflict resolution policy. Hence, if T first
reads g, and then another transaction writes g before T commits,
then T aborts. Similarly, if T has written g, if another transaction
then reads or writes g before T commits, then T aborts.

Transactional threads perform memory accesses every C/L
time units on average. Assuming there are θ hardware transactions
running, the rate at which they issue granules accesses is θL/C.
Then, the rate at which transactions other than T issue potentially
conflicting accesses is λ = (θ − 1)L/C. The probability that any
of those accesses results in the abort of T because of a conflicting
access on g during the vulnerability window of g depends on the
probability that at least one of such accesses is directed to g and
that this access is incompatible with T ’s access on g. As we assume
that granules are accessed uniformly at random by transactions,
the probability that a given granule g is accessed is 1/D. The
probability PI that another access to g is incompatible with T ’s
access to g corresponds to one minus the probability that both
accesses are read accesses, i.e., PI = 1−(1−PW )2. Therefore, the
rate at which incompatible accesses to g are produced by the other
θ − 1 active threads is PIλ/D. If T has accessed i granules, then
the rate at which concurrent threads generate incompatible memory
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accesses towards any of these i granules can be approximated as
H(i) = PIλi/D.

We now compute the probability that a transaction T success-
fully acquires i granules, which we note PR(i). If T has not ac-
cessed any memory word, then it cannot be aborted because of
conflicting accesses. Hence, PR(1) = 1. By assumption, T will
perform its second memory access C/L time units after the first
one. Assuming that H(i) is exponentially distributed, we can com-
pute the likelihood that T is aborted at any time t before accessing
the second memory word as H(1)e−H(1)t. Hence, the probability
that T manages to perform its second memory access is

PR(2) = 1−
∫ C/L

0

H(1)e−H(1)tdt = 1− e−H(1)C/L (1)

The general probability that T successfully manages to acquire
its i-th granule can, then, be computed recursively:

PR(i) = PR(i− 1)(1− e−H(i−1)C/L) (2)
We can now compute the mean response time Rt of one execu-

tion of a transaction T when running in the hardware path, assum-
ing that transactions can only be aborted because of conflicting ac-
cesses. This response time does not include multiple re-executions
of the same transaction: it is the average time since the (re)start of
T ’s execution and its completion, independently of whether it is
successful or not.
Rt is, thus, the weighted sum of two contributes, one corre-

sponding to the case in which T commits (RC
t ) and one corre-

sponding to the abort case RA
t . RC

t is given by the probability that
T manages to access all the L granules without aborting, times the
cost of executing a TCB, i.e., PR(L)C. In addition to C, a success-
ful execution also takes TB to execute the begin statement and TC

to commit. During the commit phase, T is still vulnerable to con-
tention from other concurrent transactions. The probability that T
survives this last vulnerability window is e−H(L)TC . Summing all
these contributes,

RC
t = PR(L)(TB + C + e−H(L)TCTC) (3)

The execution time of T if T manages to perform i accesses and
is aborted at time t after the i-th access is equal to TB + iC/L+ t.
RA

t is computed as the weighted average that T is aborted after
having accessed i granules and while trying to access the i+ 1-th,
with i ranging from 1 to L − 1. T can also abort during the final
commit phase, because of a conflicting access towards any of the L
accessed granules. Hence, using the shorthand W = C/L,

R
A
t = TB +

L−1∑
i=1

PR(i)

∫ W

0

iWtH(i− 1)e
−H(i)t

dt+

+CPR(L)(1 − e
−H(L)TC ) =

=TB+

L−1∑
i=1

PR(i)

(
iW

(
1 −e−H(i)W

)
+

1

H(i)
−e−H(i)W

(
W +

1

H(i)

))
+

+CPR(L)(1 − e
−H(L)TC )

(4)

We can now compute the per-state pa and µt. The average abort
probability in one state is one minus the commit probability:

pa = 1− PR(L)e
−H(L)Tc

µt, instead, is computed as the inverse of Rt.

Modeling aborts due to fall-backs. We now use the abort proba-
bility and response times that we derived so far in order to capture
the dynamics stemming from the aborts of transactions with only 1

retry left. We refer to these as dangerous transactions, because their
abort causes all other transactions to abort, decrease their budget
and wait for the global lock to become free.

Let us consider a state with n non-dangerous transactions and d
dangerous ones. We are interested in computing the probability that
a transaction T is aborted not only because of a direct conflict, but
also because of the conflict experienced by a dangerous transaction.

We model the increase in the abort probability of T by comput-
ing an adjusted rate at which T can abort. Such rate, thus, does not
encompass anymore only the rate at which other transactions can
issue conflicting accesses with T , but also the rate at which danger-
ous transactions abort because of a conflict they are experiencing.
To this end, we assume for simplicity that the set of granules ac-
cessed by dangerous transactions is disjoint from the set of granules
accessed by T .

Then, we can express the adjusted rate as the previous rate
H(i) plus the rate at which dangerous transactions abort. The rate
at which a dangerous transaction aborts because of a conflict, is
computed as µtpa, which we obtain from the previous analysis.
The adjusted rate at which a non-dangerous transaction can abort
after having accessed i granules is then Hn(i) = H(i) + dµtpa.
The adjusted rate is different for a dangerous transaction, since it
can only abort because of the conflict of d − 1 other dangerous
transactions. Hence, Hd(i) = H(i) + (d− 1)µtpa.

We can now compute the adjusted value for pa. To this end, we
first compute the adjusted probability that a transaction success-
fully accesses i granules. We again distinguish between the case of
non-dangerous transactions (Pn

R(i)) and dangerous ones (P d
R(i)).

Both probabilities take the value 1 for i = 1. For i > 1, following
the same reasoning applied when computing PR(i), we have:

Pn
R(i) = Pn

R(i− 1)e−Hn(i−1)C/L (5)

P d
R(i) = P d

R(i− 1)e−Hd(i−1)C/L (6)

Taking also into account the vulnerability window Tc corre-
sponding to the final transaction validation, the average value for
the adjusted pa is:

p′a = 1−
( n

n+ d
Pn
R(L)e−Hn(L)Tc +

d

n+ d
P d
R(L)e

−Hd(L)Tc
)

(7)
We also obtain adjusted values for the response time of an exe-

cution of a transaction, again depending on whether the transaction
is dangerous (Rd) or not (Rn). To compute them, we use Equa-
tion 3 and 4, where we substitute H(i) accordingly.

Thus, we compute the average response time of a single hard-
ware execution of a transaction:

R′t =
n

n+ d
Rd +

d

n+ d
Rn (8)

The adjusted µ′t is, hence, its inverse µ′t = 1/R′t.

4.3.2 Computing Target KPIs
Once we have the transition rates for every edge of the CTMC,
we can obtain average throughput X , average transaction response
time R∗t and average abort probability PA.

To this end, we first solve the CTMC by means of standard
methods [27] to obtain the vector ~π of the states probabilities. The
i-th entry of this vector, noted ~πi, represents the probability of the
system being in a given state si ∈ S, where S is the set of all the
states of the CTMC. We use the notation s(ti, ft, nt) to indicate the
index of the state corresponding to ti active hardware transactions,
ft in the fall-back path and nt non-transactional active threads.
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The throughput of the system is defined as the the rate at which
any thread in the system completes a code block (NTCB or TCB).
It is computed as the weighted average of the system being in a
state si times the throughput in si. On its turn, the throughput in si
is the sum of the rates corresponding to the completion of a NTCB
or the commit of a TCB. We refer to the values of µ′t computed in
state s as µ′t,s.

X =
∑

s(ti,ft=0,nt)∈S

~πs(ti µ
′
t,s+nt µn)+

∑
s(ti,ft≥1,nt)∈S

~πs(nt µn+µf )

(9)

We note that in a state s in which there is at least one transaction
in the fall-back path, this equation captures the fact that there is
only one transaction contributing to the throughput, by committing
with a rate µf = 1

C
. In a state s in which ft = 0, instead, the

ti hardware transactions all contribute to the throughput of the
system, with a rate tiµt,s.

To obtain the response time of a transaction, we exploit Little’s
law [28]. We first express X as the product of the number of active
threads θ and the inverse of the average response time of a code
block, whether transactional or not, R∗. Once we obtain R∗ we
note that it corresponds to a weighted average of the response
time of a transactional code block R∗t and of a non-transactional
code block R∗n. Because the system is stable, the probability that a
successfully executed code block is (non) transactional corresponds
to the probability that a (non) transactional code block is started.
Hence, R∗ = ptR

∗
t + (1 − pt)R

∗
n. Because R∗n is equal to Cn

and it is given as input to the model, we can solve the equation and
obtain R∗t .

The average abort probability PA is computed as the weighted
average of the abort probability values obtained in each state s,
noted p′a,s. Because a transaction cannot abort when running in the
fall-back path, we do not consider the states in which ft > 0:
PA =

∑
s(i,f=0,n)∈S ~πsp

′
a,s.

4.4 Modelling capacity aborts
In this section we discuss how the model presented so far can be
extended, in a modular way, with an additional model aimed solely
at predicting the probability, noted PC(i), that a transaction incurs
a capacity abort when it issues its i-th operation.

The integration of these two models is indeed straightforward
as it suffices to observe that the the probability to reach operation
i when both aborts due to conflicts and capacity exceptions are
possible, noted P ′′R(i), can be expressed as:

P ′′R(i) = PR(i)(1− PC(i)) (10)
Let us now discuss how to derive PC(i). In the light of the

findings reported in Section 3.2, our model assumes that a capacity
abort can only be triggered by the eviction from the of a cache
line that was written by a transaction. To compute the probability
that a transactions experiences a capacity abort at its i-th access
we compute the probability that two events jointly happen: i) the
corresponding granule is stored in a full set of the L1 cache, and ii)
the cache line selected for eviction corresponds to a written granule.

We cast the problem of finding this probability to a variation of
the balls-into-bins problem. In our settings, a ball is an accessed
granule, the bins (B) are the sets of the cache, and the capacity of
each bin (C) is the associativity of the cache.

Each memory access performed by a transaction is a ball thrown
at a bin chosen uniformly at random. The variation with respect
to the classic bin-into-balls-problem is two-fold: i) a ball can be
a write ball (with probabilityPW ) or a read ball (with probability
1 − PW ); ii) if a bin is full, a read ball can be removed from it (if
selected by the eviction policy) to make room for another ball.

Let us start by considering the simpler case in which only write
accesses are performed, i.e., only write balls exist. We define a
valid sequence of length I , a sequence of I ball throws such that
no bin overflows, i.e., no bin receives more than C balls. The total
number of possible sequences of length I withB bins isBI . These
sequences also include invalid ones, i.e., sequences in which bins
can have been assigned more than C balls. We note NB,C,I the
number of valid sequences after I balls have been thrown. Then,
the probability that at least one bin experiences an overflow after
throwing I balls, noted P (c ≤ I) is:

P (c ≤ I) = 1− NB,C,I

BI
(11)

We compute NB,C,I in the following way. Assume that exactly
x bins have been filled after I balls are thrown. The number of
combinations of balls-to-bins allocations is given by the product of
i) the number of ways in which the x bins can be filled with xC
balls and ii) the number, ν, of ways in which the the remaining
I − xC balls can be assigned to the remaining B − x bins without
fully filling them. It follows that ν can be computed as NB-x,C-1,I-xC,
i.e., the number of ways in which the remaining I − xC balls can
be thrown in B − x bins in such a way that, at most, every bin is
filled with C − 1 balls.

The minimum value for x is the number of bins that are filled
if balls are assigned to bins in a round-robin fashion: minc =
max(0, I − B(C − 1)). The maximum value for x is the number
of bins that get filled if the balls are thrown to the same bin until it
gets full: maxc = bI/Bc. These x bins can be chosen out of the
totalB possible in

(
B
x

)
ways. Finally, the number of ways in which

Cx balls can be thrown in x bins in such a way that all the x bins
are filled is

∏x-1
y=0

(I-yC
C

)
. The resulting equation for NB,C,I is then

NB,C,I =

maxc∑
x=minc

NB-x,C-1,I-xC

(
B

x

)
x-1∏
y=0

(
I-yC
C

)
(12)

We now describe how we extend this model to take into account
that the capacity abort probability also varies with the probability
of write, PW . In this case, the number of valid sequences of a
given length I is larger than for the case of PW = 1, since if a
full bin contains at least a read ball b, it can still accommodate
an additional (read/write) ball, provided that b is selected by the
eviction policy. Given the combinatorial nature of the problem,
the number of scenarios to be accounted for in order to derive an
exact probabilistic solution increases dramatically for the case of
PW 6= 1, along with the complexity and computational cost of the
resulting model.

We propose therefore an approximate solution technique that is
based on the following approach. Let us introduce the notations: i)
P (c ≤ IPW ), to refer to the probability of having a capacity abort
upon during any of the first I accesses of a transaction that executes
writes with probability PW ; ii) P (c = IPW ∧ ¬c < (I − 1)PW ),
to refer to the probability of having a capacity abort exactly at
the I-th access and of not incurring capacity aborts during the
previous I-1 operations, where each of the I operations is a write
with probability PW .

We start by expressing P (c = IPW ∧ ¬c < (I − 1)PW ) as:

P (c = IPW |¬c < I − 1PW )P (¬c < (I − 1)PW ) (13)

Next we observe that the probability of having a capacity ex-
ception at operation I is not affected by whether this operation is a
read or write , but only by whether the corresponding ball I hits a
full bin and causes the “eviction” of a write ball. Hence:

P (c = IPW |¬c < (I − 1)PW ) = P (c = I|¬c < (I − 1)PW )
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Next, we introduce the following approximation:

P (c = I|¬c < (I − 1)PW ) ≈ P (c = I|¬c < (I − 1))PW

namely, we approximate the conditioned probability of having a
capacity after I read/write accesses with the conditioned probability
of having a capacity after I write accesses scaled down by a factor
PW . The latter scaling factor reflects the fact that P (c = I|¬c <
I − 1) is computed assuming that all the full bins after I-1 balls
contain exclusively write balls. Conversely, if transactions issue
write operations with probability PW , on average the full bins after
I − 1 throws will contain only a fraction of write ball equal to
PWC over a total of C balls. This is only an approximation as
the expected number of full bins after I balls when PW < 1 is
smaller than if PW = 1. In fact, if writes are rare (small PW ),
one can throw in a single bin a number of balls that largely exceed
the bin’s capacity; when PW = 1, conversely the min number of
full bins is strictly bounded by max(0, I −B(C − 1)) . As we will
show in Section 5, this approximation yields good accuracy for PW

values larger than 1%, which, as discussed in Section 3.2, is also a
necessary condition for modelling accurately the cache dynamics
by modelling solely the L1 dynamics.
P (c = I|¬c < I − 1) can be computed by expressing it

as (P (c ≤ I) − P (c ≤ I − 1))/(1 − P (c < I − 1)) and
exploiting Eq. 11, using the definition of conditioned probability.
P (¬c < (I − 1)PW ), in Eq. 13, can be expressed as:

P (¬c < (I−1)PW ) = 1−
I−1∑
J=1

P (c = JPW ∧¬c < (J −1)PW )

and can be computed recursively setting

P (c = 1PW ∧ ¬c < 0PW ) = 1

.
Finally, P (c ≤ IPW ) can simply be expressed as the sum of the

probabilities of having a capacity abort exactly at operation J , and
not earlier, for all J < I :

P (c ≤ IPW ) =

I∑
J=0

P (c = JPW ∧ ¬c < (J − 1)PW )

5. Validation
This section reports the results of a validation study that compares
the KPIs predicted by the model presented in the previous sections
with those achieved when executing on our target experimental
platform (see Section 3).

We start by validating the accuracy of our model of capacity
aborts, since it is a building block on which the overall perfor-
mance model is built. To this end we run several experiments in
which transactions perform N distinct memory accesses with a
write probability 0.01 ≤ PW ≤ 1. We then measure the proba-
bility that a transaction incurs a capacity aborts before successfully
completing the N memory accesses. Such probability is calculated
as the ratio between the number of capacity aborts and the total
number of started transactions (excluding the ones failed because
of spurious aborts).

To control as much as possible the transaction footprints, we
need to minimize the amount of auxiliary data structures used to
generate the random access path. To this end, transactions can only
access memory addresses belonging to a large set of D candidates.
Each memory location d ∈ D is pre-initialized with a random
address belonging to D. After accessing d, a transaction accesses
the granule at the address encoded in d. In this way, we generate a
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Figure 2: Validating the analytical model (ANA) for the probability
of capacity aborts vs a real system (HAR)

random access path over the D possible addresses using minimal
auxiliary memory during the experiment.

Figure 2 reports the results of the experiments and contrasts
them with the predictions output by our analytical model of ca-
pacity aborts. The plot shows that the model is able to predict well
the probability of a capacity abort as a function of the number of
(tentatively) accessed granules and write access probability, attain-
ing a MAE of 2.12%. The highest error is incurred by the model
for PW = 0.01. This is an effect of the approximation that we
have introduced in Section 4.4 to obtain a closed form solution for
the capacity abort probability. Such approximation, in fact, works
better as PW tends to 1 and, with PW = 0 would yield to a null
probability of incurring a capacity abort, regardless of the number
of performed accesses.

We now evaluate the accuracy of the presented analytical
model as a whole. In order to stress its prediction capabilities,
we use a synthetic benchmark that generates different contention
levels and access patterns. In total, we consider a set of 380
workloads, obtained by varying the workload parameters as fol-
lows: θ ∈ {1, 2, 3, 4}, B ∈ {2, 4, 6}, L ∈ {2, 5, 10, 20},
D ∈ {512, 2048, 8192, 32768}, PW ∈ {0.5, 1.0}.

A micro-benchmark launches θ concurrent threads pinned to
different physical cores, hence, not sharing private caches and other
resources. These threads start transactions that perform L accesses
uniformly at random over a predefined granule pool of size D.

The memory accesses of a transaction are performed as follows.
First, a random random value 0 ≤ g < D is generated, such
that g is different from previously generated accesses. Then, with
probability PW the transaction writes g; with probability 1 − PW

the transaction reads g. The granules fit an entire cache line and are
aligned in memory to avoid aliasing conflicts.

The CPU demand of a transaction depends on the number L
of accessed granules. For each of the considered values of L, we
measure the corresponding CPU demand C, which we provide as
input to the model.

In Figure 3 we report a scatterplot comparing the real and
predicted probability of abort and throughput. The reported results
for the real system are obtained as the average of 10000 executions,
from which we removed the first and last quartile to filter out
outliers. Presented error metrics are MAPE, MAE and the Pearson
correlation factor R. The closer R is to 1, the better is the output
prediction of the model.

The reported data confirms the high accuracy of the proposed
model in predicting both the throughput and abort probability of the
system: the MAE for the abort rate is less than 5% and the MAPE
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(a) Abort probability. MAE = 4.94%, R = 0.9923.

(b) Throughput (106 txs. per sec.) MAPE = 8.12%, R = 0.9989.

Figure 3: Validation of the predicted KPIs vs a real system.

for the throughput around 8%; the Pearson correlation coefficient,
R is in both case larger than 0.99, confirming the strong correlation
between the predicted and real KPI values.

6. Related Work
The works that are most closely related to our proposal lie in the
area of analytical modelling of the performance of transactional
systems. A number of analytical models of concurrency control
for database management systems have been proposed in the lit-
erature [36, 1, 37, 22, 10]. More recently, several analytical models
have been proposed for the concurrency control algorithms adopted
by software implementations of TM [38, 24, 9, 33].

The key difference with respect to these approaches is that in our
model we consider peculiar characteristics of the concurrency con-
trol of HTM, including the co-existence of optimistic techniques
(i.e., the speculative execution of parallel transactions) and of a se-
quential, and hence inherently pessimistic, fallback path. Indeed,
to the best of our knowledge, the analytical model presented in this
work is the first one to target HTM systems.

Among the aforementioned works, the proposed model shares a
common treat with the STM model proposed in Di Sanzo et al. [9],
namely the reliance on a CMTC to capture the presence of execu-
tion phases where threads execute in different modes. In the case
of the work of Di Sanzo et al., though, the CMTC served to dis-
tinguish solely between threads executing transactional and non-

transactional code blocks. The CMTC defined in our model, in-
stead, captures a broader range of dynamics, i.e., also the number of
threads with a given available budget and those executing/enqueued
in the fall-back path.

A different line of work makes use of analytical models and
formal notation to predict if it is possible to develop Hybrid TM
(HyTM) solutions without instrumentation [2].

Black box techniques for throughput prediction are present in
the literature for the case of STM [6, 32], and also in HTM either
to predict its throughput [34] or to improve its performance by
tuning the TM parameters [13, 18]. Unlike the white-box analytical
model presented in this model, which can be instantiated by simply
providing a few parameters as input, these black box models require
an extensive training phase. Indeed, the accuracy of black-model
techniques is known to be strongly influenced by the extent to
which the data collected during the training phase is representative
of the actual conditions in which they will be employed [3, 15].

Finally, recently, several gray-box modelling techniques have
been applied to the case of transactional systems. These approaches
combine white and black box modes in order to reduce the learning
cost and/or enhance the accuracy of predictions [32, 17, 15, 33,
16, 14]. As already discussed in Section 4.4, given that the internal
mechanisms used by the Intel’s HTM implementation to maintain
the transactional metadata are undisclosed, a natural way to extend
the presented model would be to integrate it with a black-box model
aimed at predicting the capacity abort probability.

7. Conclusions and future work
This paper presented an analytical model that captures the perfor-
mance dynamics of the concurrency control algorithm employed in
a mainstream hardware transactional memory (HTM) implemen-
tation, namely the one provided by Intel’s Xeon (Haswell family)
processors. The proposed model was validated using a real system
and a synthetic benchmark, which allowed to confirm its high ac-
curacy, at least in the set of considered workloads.

The model proposed in this work fills a relevant gap in the
literature on performance modelling of TM, as it is, to the best of
our knowledge, the first analytical model targeting the concurrency
control of a HTM system. Yet, the presented model has also some
limitations, which we discuss in the following.

A limitation of the current work is its reliance on the assump-
tion that memory addresses are accessed with uniform probability,
whereas many applications’ workloads tend to exhibit skewed ac-
cess patterns. In order to cope with this issue we plan to exploit
the idea of modelling workloads that generate non-homogeneous
access patterns over a data set of size D using instead a simpler
uniform workload over a data set of size D′ 6= D that generates
an equivalent contention level [36, 17, 14]. The key challenge here
lies in identifying the transformation that maps D to D′, as this is
dependent on the concurrency control employed by the underlying
system (and still unknown for the case of Intel’s HTM).

Finally, the number of states associated with the continuous
time Markov-chain (CTMC) used in the presented model grows ex-
ponentially with the number of threads and the budget of attempts
available to execute a transaction using HTM. In order to enhance
the model’s scalability, we are exploring different approximation
techniques, which trade-off prediction accuracy to achieve signifi-
cant reduction in the number of states required by the CTMC.
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Symbol Definition
X Throughput

pa Probability of abort

θ Number of concurrent threads

ti Number of concurrent transactions with i retries

nt Number of concurrent non-transactions

ft Number of transactions in fall-back path

B Initial budget

pt Probability of starting a transaction

C Duration of a transactional code block

Cn Duration of a non-transactional code block

Cf Duration of a fall-back execution

L Number of transactional accesses

PW Probability of write

D Size of the granule pool

TB Time to start a transaction

TC Time to execute a commit

µt Rate of execution of transactions

µf Rate of execution of fall-back transactions

µn Rate of execution of non-transactions

Rt Response time of transactional code block

H(i) Rate of conflict at the i-th operation

PR(i) Probability of reaching the i-th operation

d Number of dangerous transactions (budget equal to 1)

n Number of non-dangerous transactions (budget larger than 1)

Table 2: Parameters of the analytical model.

Figure 4: Example for θ = 2 and B = 2 (some rates are omitted for simplicity).
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