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Abstract
Input characterization to describe the flow of incom-

ing traffic in network systems, such as the GRID and the
WWW, is often performed by using Markov Modulated
Poisson Processes (MMPP). Therefore, to enact capacity
planning and Quality-of-Service (QoS) oriented design, the
model of the servers that receive the incoming traffic is
often described as a MMPP/M/1 queue. In a recent
work we have provided an approximate solution for the re-
sponse time distribution of the MMPP/M/1 queue, which
is based on a hyper-exponential process obtained via a
weighted superposition of the response time distributions
of M/M/1 queues. Compared to exact solution methods,
or simulative techniques, the aim of this approximation is
to provide the potential for more efficient model solution,
so to enable, e.g., real-time what-if analysis in system re-
configuration scenarios. In this paper, we show how fast
the computation can be supported in practical settings by
ad-hoc techniques allowing the hyper-exponential model to
be solved with no iterative or numerical costly steps, which
would otherwise be required in order to compute the length
of transient phases due to state switches in the MMPP ar-
rival process. An application to the context of performance
analysis of a GRID system is also shown, supporting the
efficiency of our proposal.

1 Introduction
In the context of queuing theory, a well known model

for system evaluation is the M/M/1 queue, which is of-
ten appreciated for its fast computability. Concerning this
model, while several works have shown that the exponen-
tial distribution for the service time can well fit specific real
world settings (see, e.g., [8, 16]), workload characterization
studies of networked systems, such as the GRID and the
WWW, have shown that the incoming traffic behavior must
rely on models more complex than a simple Poisson process
[3, 6, 10, 13, 18, 22]. Specifically, in order to capture the
typical features of incoming traffic, such as self-similar and
burstiness behaviors, or long range dependency, one of the
most used models is the Markov Modulated Poisson Pro-
cess (MMPP) [17, 19, 20, 21, 24], which is a Poisson pro-
cess whose mean value changes according to the evolution

of a Markov Chain [7]. Hence, it would be important to use
the MMPP/M/1 queue as a realistic model for networked
servers.

In a previous work [5], we have described a technique al-
lowing analytical approximations of the output distributions
(i.e. response time and queue length distributions) of the
MMPP/M/1 queue. This technique consists in approxi-
mating that queue as a weighted superposition of different
M/M/1 queues, which is used to derive statistical upper
and lower bounds for the cumulative distribution functions
of the MMPP/M/1 response time and queue length. As a
matter of fact, these bounds have been expressed as hyper-
exponential distribution functions, just obtained by an ad-
hoc (linear) combination of the exponential distributions
characterizing the M/M/1 queues.

In this work we show how such an approximate model
can be effectively employed in practical settings for sup-
porting, e.g., interactive what-if analysis via real-time com-
putation of the response time distribution, which is particu-
larly important for performance prediction and assessment
in case of (dynamic) system reconfiguration events. Ac-
tually, as we also quantify, via an experimental study, the
main computational intensive step associated with the so-
lution of the approximate model is the evaluation of the
length of transient periods when the request arrival process
switches between different states of the MMPP. This is due
to the need for applying iterative techniques required for
determining convergence towards steady state statistics. To
tackle this drawback, we present a solving procedure for the
approximate model, which completely avoids the need for
such iterative approach. Thus it allows saving most of the
computational cost for obtaining output statistics from the
approximate model. The procedure is based on a further ap-
proximation step relying on a detailed analysis showing that
the length of the transient phases can be well mapped onto
hyperbola equations.

We also provide experimental results quantifying the re-
duced response time from our model solving approach for a
case study related to performance analysis of a GRID sys-
tem. This study is based on the exploitation of traces of in-
coming traffic to GRID servers, which have been shown to
match the MMPP model [15]. Via these results we point out



the viability of our proposal as a computational efficient al-
ternative to techniques based on both exact analytical mod-
els and simulation studies of the MMPP/M/1 queue, in
all the contexts where, beyond accuracy, the response time
for model solving plays a relevant role. As sketched above,
this might be the case of time constrained decision pro-
cesses aimed at evaluating the effects of specific reconfigu-
ration scenarios on the system performance, which are im-
portant especially in the context of design/maintenance of
Quality-of-Service (QoS) oriented systems.

The remainder of this paper is structured as follows.
In Section 2, we recall the hyper-exponential approximate
model of the MMPP/M/1 queue. In Section 3, we pro-
vide the fast model solving procedure. Section 4 is devoted
to the case study in the GRID environment.

2 Recall on the Approximation Technique
The objective of the work in [5] was to derive stochas-

tic processes which approximate the behavior of the
MMPP/M/1 queue by exploiting well known results in
the context of M/M/1 queues. This has been done via ap-
proximating processes giving rise to statistical lower and
upper bound approximations of the queue length and re-
sponse time Cumulative Distribution Function (CDF) of the
MMPP/M/1 queue.

The relevance of identifying a lower bound approxi-
mation on the CDF of the response time r lies in that
any setting ensuring that CDFlower bound(r) > X also
ensures that CDFMMPP/M/1(r) > X . Hence, the
lower bound approximation can be used for modeling
networked servers, without incurring the risk of under-
estimating the effects of the system load, which might
cause violations of any established Service Level Agree-
ment. On the other hand, the upper bound approximation
CDFupper bound(r) can be employed to determine whether
the usage of CDFlower bound(r) to perform capacity plan-
ning leads to potentially large oversize of the system com-
puting power. Specifically, the lower the difference between
CDFupper bound(r) and CDFlower bound(r), the lower the
likelihood of oversize.

In the analysis in [5], the MMPP modeling the incoming
traffic is composed by a generic number of H states (S1 ...
SH ), and the notation Mi/M/1 has been used to refer to
a M/M/1 queue whose arrival rate is the λi observed in
the generic state Si of the MMPP. The analytical approxi-
mations have been based on pinning the response time and
queue length of the MMPP/M/1 queue to the steady state
values of the Mi/M/1 queue as long as the MMPP arrival
process does not change its state from Si to whichever state
Sj .

As an example, consider a two-state MMPP. The mean
number of resident requests at time t in the MMPP/M/1
queue is shown in Figure 1.a. The instants Tk, Tk+1 and
Tk+2 represent transitions between the two states of the
MMPP. Therefore the evolution of the mean queue length

Figure 1. a) MMPP/M/1 behavior; b) Basic
approximation; c) Lower bound approxima-
tion; d) Upper bound approximation.

value of the MMPP/M/1 queue can be described as fol-
lows: each time a state transition occurs there is a transient
phase (t12 for a transition from S1 to S2 and t21 for a transi-
tion from S2 to S1) after which the mean queue length may
reach the steady state, if any, of the corresponding Mi/M/1
queue. As soon as another state transition occurs, a new
transient phase starts.

As discussed in [5], the most obvious way to exploit
the previous reasoning is to adopt the probabilities for the
MMPP to stay in each state Si as the weights for an approx-
imate representation of the behavior of the MMPP/M/1
queue based on weighted superpositions of the H differ-
ent Mi/M/1 queues. Specifically, denoting with Qi the
steady state queue length of Mi/M/1 and with pi the prob-
ability for the MMPP to stay in state Si, the mean queue
length of the MMPP/M/1 queue can be approximated
as Q =

∑H
i=1 piQi, which would correspond to the case

shown in Figure 1.b. A similar technique can be applied
to derive the mean response time of the MMPP/M/1
queue, with only a variation. Specifically, the mean re-
sponse time of the MMPP/M/1 can still be a weighted
sum of the mean response times of the Mi/M/1 queues,
expressed as R =

∑H
i=1 wiRi, but the weights wi do not

simply correspond to the state probabilities of the MMPP
(as in the case of the average queue length). They must
be scaled to keep into account the different arrival rate per
each state, which reflects the fact that we are evaluating the
response time over samples at discrete time points. Hence



Figure 2. Difference between the basic ap-
proximation and the original MMPP/M/1
process.

wi = piλi
P

H
j=1 pjλj

. Finally, as far as the cumulative distribu-

tion and probability density functions of those parameters
are concerned, they can also be derived as a weighted su-
perposition of the corresponding functions associated with
each Mi/M/1 queue, the weights being those described
above, respectively.

With the previous simple approximation, the error made
vs the real behavior of the MMPP/M/1 queue is given by
the grayed out areas in Figure 2. One is the area comprised
between the real transition curve from state Si to state Sj

of the MMPP/M/1 queue, and the stepped transition to-
wards the steady state of Sj (as hypothesized in the approx-
imation). The other one is associated with the counterpart
transition between state Sj and state Si. Actually, the two
areas would tend to cancel each other since the error intro-
duced when passing to a state with a higher utilization factor
is positive, while the error introduced by transitions to states
with lower utilization factors is negative. This means that it
is not possible to obtain reasonable guarantees of underes-
timation or overestimation from this approximation.

To cope with this issue, a lower bound approximation of
the queue length and of the response time CDF has been
derived in [5] by systematically overestimating the queue
length and the response time during transient periods (this
is shown in Figure 1.c for what concerns the queue length).
The generation of this approximation employs the same
aforementioned technique, except that it requires to mod-
ify the probabilities pi to reflect the different ratios among
the average times spent in each of the MMPP states. By
the same considerations, the lower bound process on the re-
sponse time can be also derived using that same aforemen-
tioned approximation approach, except that the weights wi

are changed according to the modified pi.
To generate the upper bound approximation of the queue

length and of the response time CDF, the point of view can
be simply inverted. Specifically, we must systematically
underestimate the queue length during transient periods, as
shown in Figure 1.d. Also in this case the upper bounds for
the output parameters are derived by modifying the pi and
wi to reflect this new perspective on the ratio between the
average times spent in each of the MMPP states.

Overall, assuming that the following parameters are
known: (i) αjk - the transition rates between every Sj and
Sk of the MMPP, (ii) λi - the arrival rate of incoming re-
quests to the queue when the MMPP is in state Si, (iii) µ
- the average service rate, the procedure proposed in [5] to
compute lower and upper bound approximations is the fol-
lowing:

1. Evaluate the equilibrium probabilities vector π =
(p1, . . . , pH) for each state of the MMPP. This requires
solving the following linear system, expressing the balance
and normalizing equations:

πQ = 0 ; π · e = 1 (1)

where Q is the MMPP generator matrix and e is a column
vector with H elements each of which is unity.

2. Evaluate the length of the transition period Ttri,j
asso-

ciated with each transition from state Si to state Sj in the
MMPP arrival process, i.e., the minimum time t for which
the mean queue length N(t) (denoting with t = 0 the oc-
currence time of the state switch) differs from the steady
state mean queue length of the Mj/M/1 queue associated
with state Sj , which we denote as NSj

, by no more than an
arbitrarily small value ε. Formally:

Ttri,j
= min{t ∈ R

+ : |N(t) − NSj
| < ε} (2)

Denoting with Pk(t) the probability for the M/M/1 queue
to contain k requests at time t, with Ph,k(t) the probabil-
ity to contain k requests at time t given that it contained
h requests at time t = 0, with Ph(0) the probability of h
queued requests at time t = 0, by using basic queuing the-
ory results [11], and results in [1, 12] on continuous time
analysis, N(t) can be rewritten as:

N(t)=

∞
X

k=0

kPk(t)=

∞
X

k=0

k

∞
X

h=0
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∞
X

k=0

k

∞
X

h=0

ρi
h
(1 − ρi)Ph,k(t) =

=

∞
X

k=0

k

∞
X

h=0

ρi

h
(1 − ρi)[ρj

(k−h)
2 e

−(ρj+1)µt
(I

h−k
−I

h+k
) +

+ ρj
−h−1

P0,h+k+1(t)] (3)

where In is the modified Bessel function of first kind hav-
ing argument 2µ

√
ρjt, and P0,m(t), namely the probability

to have m requests in the queue at time t given that the
queue is empty at time t = 0, is defined as:

P0,m(t) = ρ
m
j e

−(ρj+1)µt
∞

X

n=m

[(1 + ρj)µt]n

n!

b n−m
2

c
X

u=0

n + 1 − 2u

n + 1

“n + 1

u

” ρu
j

(1 + ρj)n
(4)

3. For the lower bound case, evaluate the modified proba-



bilities p′i by using the formula:

p
′
i = pi(1 +

λi>λj
X

j

pjαij

Pλk>λj

k
pkαkj

min(TSj
, Ttri,j

)

TSj

+

−

λj>λi
X

j

pjαji

Pλk>λi
k

pkαki

min(TSi
, Ttrj,i

)

TSi

) (5)

where TSi
is the expected permanence time of the MMPP

arrival process in the generic state Si. In other words,
the modified probability p′i is generated by adding to each
probability pi contributions associated with transitions from
state Si to whichever state Sj having lower request arrival
rate, and subtracting contributions associated with transi-
tions to state Si from whichever state Sj having higher re-
quest arrival rate.

For the upper bound approximation, the above formula
still holds, with the only need to invert the “λi < λj” and
“λi > λj” conditions in the summations.

Finally, for both lower and upper bound approximations,
the w′

i values are immediately computable once p′i values
are available.

3 On Computational Costs
3.1 Discussion

Among the three steps required by the above recalled ap-
proximate method for calculating lower and upper bound
response time distributions of the MMPP/M/1 queue,
Step 2 is by far the most onerous one in terms of execu-
tion time required for its completion. In fact, Step 1 only
implies the solution of a linear equations’ system of order
n = H , whose asymptotic complexity is known to be upper
bounded by O(n2.52) [2] and for which a large number of
efficient numerical implementations can be found in com-
mon mathematical libraries (such as Mathematica [25] or
Matlab [23]). On the other hand, the computation of Step 3
requires O(H2) scalar manipulations and can be completed
even more rapidly.

Conversely, the determination of the transient duration
Ttri,j

in Step 2 is drastically more costly. In fact, to the
best of our knowledge, no analytic closed form is known
for N(t) in expression (3), therefore solving expression (2)
requires the following two steps:

2.1 Numerically computing N(t), which implies calcula-
tion of nested sums, each one over a theoretically infi-
nite number of terms.

2.2 Using a numerical root-finding algorithm to determine
the time value satisfying the inequality in expression
(2).

In order to quantify the expected execution latency re-
quired for computing Step 2, so to actually assess whether
this step is the real hurdle to fast solution of the approxi-
mate model of the MMPP/M/1 queue presented in [5],

we have developed a prototype model solver in Mathemat-
ica [25]. The solver has been based on the following two
algorithmic approaches for Steps 2.1 and 2.2:

2.1 The external sum in P0,m(t) is stopped at iteration
i, with value denoted as Xi, if the condition |Xi −
Xi−1| < (10−4×Xi−1) is verified, where Xi−1 is the
summation value at iteration i − 1. Hence, the com-
putation is stopped as soon as the relative variation of
the summation value is 4 orders of magnitude lower
than the current value. On the other hand, the two
outermost summations in expression (3) are stopped
as soon as both

∑
k Pk(t) and

∑
h Ph,k(t) reach the

value 0.9999, which means having an almost complete
coverage of state space probability values.

2.2 The minimum finding problem in expression (2) is
solved after having set ε to the 10% of the difference
between the steady state average queue lengths associ-
ated with Si and Sj , namely ε = 0.1 × |NSj

− NSi
|.

This is done by numerically computing the smallest
root of the equation:

N(t) − NSj
− 0.1 × (NSj

− NSi
) = 0 (6)

To this purpose we have developed a specialized search
algorithm which first determines two time instants t′

and t′′ such that t′ < t′′ and that t′′ satisfies expression
(2) whereas t′ does not, and then iteratively restricts
the [t′, t′′] interval, while ensuring that only one of the
new extremes keeps on satisfying expression (2). The
determination of t′ and t′′ is performed via a variant
of the Secant method [4], where the value for the next
iteration is chosen twice as distant as the one predicted
by the original Secant method, so to reduce the number
of iterations required for finding a time value falling
within distance ε from NSj

(recall that N(t) asymp-
totically converges to NSj

). The initial guess for t′ is

set to
|NSj

−NSi
|

λj
for ramp-up transitions (i.e. transi-

tions associated with an increase in the arrival rate),
and to

|NSj
−NSi

|

µ for ramp-down transitions (i.e. tran-
sitions associated with a decrease in the arrival rate).
These two values represent lower bounds on transient
durations, which are determined on the basis of the as-
sumption that, during the transient phase, either no re-
quest completion (this holds for ramp-up transitions),
or no request arrival (this holds for ramp-down transi-
tions) takes place. On the other hand, the initial guess
for t′′ is set to 5 times the guessed value of t′, as such
a choice was experimentally found to typically enable
termination of the Secant method in a very small num-
ber of iterations.

Next, the values of t′ and t′′ found via the Secant
method are used as the input for the Regula Falsi
Method, an effective root finding algorithm combining
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Figure 3. Execution times for the computation
of transient duration Ttri,j

(µ set to 1).
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Figure 4. Transient duration Ttri,j
(µ set to 1).

features of both the Bisection method and the Secant
method [4], which is stopped as soon as it determines
a solution for expression (6) with at least 1% accuracy.

By expressions (2), (3) and (4), the transient duration
only depends on the values of ρi, ρj and µ. Hence, to
evaluate the run-time cost for Step 2 we have repeatedly
executed the model solver by setting µ = 1 and varying
the utilization factors ρi, ρj in the whole plausible domain
[0, 1) × [0, 1), using the value 0.05 as the basic step for de-
termining discrete samples in that domain. The outcoming
execution times, obtained by running the model solver on a
Windows 2003 Server machine equipped with an Intel Xeon
2.0 GHz CPU and 4 GB of RAM, are shown in Figure 3.

The reported data clearly highlight how direct numerical
solution methods for the computation of transient durations
can be slow, especially when we need to evaluate transient
durations for transitions from/to states associated with high
utilization factors. In fact, execution times remain lower
than 10 seconds only when transitions occur between states
Si and Sj of the MMPP arrival process, such that the cor-
responding utilization factors ρi and ρj are both within the
range [0,0.5]. On the other hand, computation time exceeds

100 seconds when ρi and ρj are in the range [0.75, 0.85],
and gets even longer than several hours when they fall in
the range [0.9, 1) (this range is not explicitly shown in the
plots).

By profiling the model solver implementation, we found
out that such an increase in the execution times is due to a
very rapid increase of the cost to compute Step 2.1, when
transitions involving states with high utilization factors oc-
cur. The reason is that transient durations get very long for
transitions involving MMPP states with high utilization fac-
tors, as confirmed by the experimental data shown in Fig-
ure 4 (obtained by means of the same model solver), which
causes a large increase of the number of iterations required
to compute the mean queue length in Step 2.1. Conversely,
the above described solution strategy for Step 2.2 turned out
to never require more than 10 iteration steps, and to termi-
nate, on the average, after 5 iterations.

3.2 Speeding up the Model Solving Procedure
By the results in the previous section, we get that the

approximate model of the MMPP/M/1 queue presented
in [5] cannot be used in combination with classical model
solving techniques in case fast output is required in order to
support performance modeling and prediction. As pointed
out this might be extremely useful in, e.g., interactive what-
if analysis applications and real-time autonomic dynamic
reconfiguration schemes.

To bypass this drawback, just due to the need for ex-
plicit computation of the transient durations associated with
state switches in the MMPP arrival process, we have en-
visaged an alternative way, which is based on a further ap-
proximation step, this time involving the transient duration
value. Specifically, we rely on the idea to provide an ap-
proximate (although accurate) description of transient dura-
tions vs main parameters characterizing the MMPP/M/1
queue, which can be immediately used to speed up compu-
tation of Step 2 in the aforementioned procedure.

As already highlighted (see expressions (2)-(4)), the
transient duration when a state switch occurs from Si to
Sj in the MMPP arrival process, exclusively depends on
the values of ρi, ρj and µ. Hence, in order to provide an
accurate approximation for the transient duration value in
generic settings, we have performed an extended sensitivity
study where, beyond ρi and ρj values, we have also varied
the value of the service rate µ. In Figure 5 we plot the du-
ration Ttri,j

for both ramp-up and ramp-down transitions as
a function of µ when considering a set of ∆ρ = |ρi − ρj |
values widely spanning in the whole plausible range [0, 1).

From these plots we can observe that once the values of
ρi and ρj are fixed, the duration of transient periods rapidly
decreases vs increasing values of µ. More precisely, we
found that Ttri,j

can be very closely fitted by means of a
hyperbola of equation k

µ , whose k parameter exclusively de-
pends on ρi and ρj . In particular, the value of k is equal to
the value of the transient duration associated with a tran-
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Figure 5. Transient duration Ttri,j
vs ∆ρ and

µ.

sition from utilization factor ρi to utilization factor ρj , as
observed for the case of µ = 1. This reference transient
duration value will be denoted as T ∗

tri,j
. Actually, the fit-

ting procedure determining the value of the hyperbola’s k
parameter, has been based on the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm, which converged
after a few iterations and showed negligible residual error.
The outcoming fitting curves are shown in Figure 6.

On the basis of the previous results, we can derive a com-
putational effective approach for the evaluation of the dura-
tion of transient phases associated with a switch in the Mod-
ulating Markov Process characterizing the MMPP/M/1
queue from state Si to state Sj , which can be adopted for
whichever value of the service rate µ. The approach is based
on the assumption that the n×n matrix Mn associated with
the transient duration for the reference case µ = 1 is avail-
able (i.e. it has been pre-computed una-tantum). In partic-
ular, the entry < i, j > of this matrix stores, for the case
µ = 1, the duration of the reference transient period Ttri,j

associated with a switch from utilization factor ρi = i−1
n to

a state with utilization factor ρj = j−1
n , where n is a fixed

number of discrete samples within the interval [0, 1).
Below we describe such a computational effective ap-

proach:

• To compute the duration of a ramp-up transition (case
ρi < ρj), divide the entry in position < bρinc +
1, dρjne + 1 > of the matrix Mn associated with the
reference case µ = 1 by the real µ value characterizing
the service rate.

• To compute the duration of a ramp-down transition
(case ρi > ρj), divide the entry in position < dρine +
1, bρjnc + 1 > of the matrix Mn associated with the
reference case µ = 1 by the real µ value characterizing
the service rate.

It is straightforward to see that, assuming the availabil-
ity of the pre-sampled Mn matrix, the above approach is
characterized by time complexity O(1).
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4 The Case Study
In this section we aim at evaluating the performance ben-

efits from the proposed model solving approach in realis-
tic settings for what concerns the parameters space of the
MMPP/M/1 queue, representative of a GRID network
server.

To this end, we compare the latency of our fast model
solving technique, whose implementation still relies on
Mathematica, with the latency for obtaining the queue
statistics via either simulative analysis or by applying the
most efficient exact solution technique (to the best of our
knowledge) presented in [9], for which we have developed
an implementation using again the Mathematica library.
Actually, the main computational steps required by this ex-
act solution are the following:

1. Determine the MMPP equilibrium probabilities by
numerically solving a system of H linear equations
(where H is the number of states of the MMPP pro-
cess).

2. Use the spectral expansion method [14] to derive
the steady-state probability distribution of the queue.
This implies (1) numerically computing the eigenval-
ues/eigenvectors of a sparse square matrix having size
2H × 2H , and (2) numerically solving a linear equa-
tions system of size (2H + 1) × (2H + 1)

3. Compute the Laplace transform of the response distri-
bution. This requires (1) O(H) symbolic operations
(i.e. additions and multiplications), as well as two
symbolic inversions, involving H×H polynomial ma-
trices, and (2) symbolically reducing the Laplace trans-
form of the response time distribution into partial frac-
tions.

4. Pattern match each term resulting from partial fraction
decomposition in order to constructively compute the



Laplace anti-transform and obtain the response time
distribution in the time domain. This can be done via
a single iteration over the O(H2) terms deriving from
the partial fraction decomposition.

On the other hand, concerning the simulative approach,
we have developed an optimized discrete event simulation
program for the MMPP/M/1 queue, exclusively relying
on C technology, whose execution latency is determined
by stopping the run as soon as the incrementally computed
statistics on the simulated response time CDF vary by no
more than 1%.

We set the MMPP arrival process parameters on the ba-
sis of the results reported in [15]. This work has shown, via
real traces analysis, the feasibility to model incoming traf-
fic to a GRID server just by means of the MMPP model.
Specifically, according to the data reported in [15], the in-
coming traffic of the analyzed GRID server can be modeled
by a two-state MMPP, where the transition rate α12, from
state S1 to state S2 is 0.17, while the transition rate α21

from state S2 to state S1 is 0.08. Also, the request arrival
rates λ1 and λ2, associated with states S1 and S2 are 22.1
and 7.16.

We have used these parameters to build a test scenario
where the performance of the GRID server is evaluated in
case of (i) a single source of jobs, (ii) two uncorrelated job
sources, and (iii) three uncorrelated job sources. In all the
cases the job sources are described on the basis of the pre-
viously mentioned trace based study. Also, while case (i)
represents a basic performance analysis scenario, case (ii)
and case (iii) may be representative of more critical settings
where different job sources need to be de-routed to a sin-
gle GRID site due to, e.g., critical events in the GRID in-
frastructure, and the final performance achievable after de-
routing towards that single GRID site must be assessed. In
terms of MMPP arrival process, the aforementioned cases
correspond to situations where the number of MMPP states
is equal to 2, 4 and 8, respectively. Also, the GRID server
processing time has been set to achieve a scenario where the
server capacity is saturated at the 75% when the three job
sources simultaneously exhibit their peak rate.

As a final preliminary observation, we also want to show
whether gains (if any) in execution speed for solving the ap-
proximate model of the MMPP/M/1 queue via our fast
method arise at the expense of excessive accuracy loss (due
to either the original approximation in the MMPP/M/1
model or the approximation step associated with our fitting-
based approach to the determination of transient duration)
compared to both the simulative study and the aforemen-
tioned exact solution approach. In other words, we want to
evaluate whether synergic adoption of the original approxi-
mate model in [5] and the associated model solving method
provided in this paper can be effective for both computation
latency and accuracy. Hence, beyond performance results,
we also show the output statistics for the MMPP/M/1
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Figure 7. Execution times for the three com-
pared approaches.

queue obtained via the three compared solutions.

Data related to the latency of each solution, while vary-
ing the number of states of the MMPP arrival process, are
shown in Figure 7. They have been evaluated on the same
platform (i.e. a machine with a Xeon 2 GHz CPU and 4 GB
RAM) used for the experimental study in Section 3.1. By
these data we get that our fast model solving procedure al-
ways shows execution time lower than (or at most up to) 11
milliseconds, while the simulative solution shows latency
from 5 to 10 seconds. Concerning the exact method in [9],
it shows execution time on the order of 100 milliseconds
only for the MMPP with 2 states. On the other hand, its
performance rapidly decreases when the number of states
in the MMPP arrival process gets increased. Specifically,
for 8 states the latency of the exact solution method is even
greater than the one provided by the optimized simulation
approach. Overall, our proposal reveals a definitely more
efficient and scalable alternative, having the ability to sup-
port fast (e.g. real-time) performance analysis of servers
modeled via the MMPP/M/1 queue.

As said above, we want to also show that the whole ap-
proach, based on both the approximate model presented in
[5] and the model solving solution introduced in this paper,
provides accurate results. This is supported by the data in
Figure 8 and in Figure 9 showing, respectively, the response
time CDF for 2/4 states and for 8 states in the MMPP arrival
process. By these results, the bounds achieved via the ap-
proximate model and its associated fast solving procedure
are quite close to the results achieved via the exact method
(simulative results are not shown since they are practically
identical to those achieved via the exact method). This de-
notes adequate accuracy from the approximate approach for
such a realistic, representative test case related to GRID ori-
ented infrastructures.
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Figure 8. CDFs for the MMPPs with 2 and 4
states (left) - Zoom on the CDF for the 4 states
case (right).
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Figure 9. CDF for the MMPP with 8 states (left)
- Associated zoom (right).

5 Conclusions
In this article we have complemented one of our pre-

vious studies related to approximate solutions for the
MMPP/M/1 queue, which is a type of queue particularly
interesting to model the performance of networked servers.
Specifically, we have introduced a fast model solving pro-
cedure associated with the original approximate approach,
which is based on ad-hoc fitting techniques allowing the
avoidance of most of the computational costs associated
with the approximate solution. Via an experimental study
in the context of a networked GRID application, we have
also quantified the increased performance and scalability of
our model solving approach when compared to both clas-
sical simulative approaches and exact solution methods for
the MMPP/M/1 queue.
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