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In recent years, in-memory transactional data platforms, often referred to 
as NoSQL data grids, have emerged as a reference solution for 
transactional data management in the cloud. In these in-memory platforms, 
replication plays a role of paramount importance for fault-tolerance 
purposes, given that it represents the key means to ensure data durability 
in the face of unavoidable node failures. Unfortunately, despite the 
abundance of approaches in the area, existing replication schemes still fall 
short of addressing one of the key requirements of cloud computing 
environments: ensuring optimal efficiency when deployed over elastic 
infrastructures that dynamically expand/reduce the number of (physical or 
virtualised) resources in response to fluctuations of workload 
characteristics.  

Tackling this issue is a key goal of the Cloud-TM project, a recent EU 
funded initiative that aims at developing a self-tuning, elastic transactional 
data platform tailored to meet the elasticity requirements of cloud 
computing infrastructures.  
 

1. Introduction 
 

By shifting data and computation away from local servers towards very 
large scale, world-wide data centres, cloud computing promises 
compelling benefits for both cloud consumers and cloud services providers 
(Armbrust et al. 2009). However, the promise of infinite scalability 
catalysing much of the recent hype about cloud computing is still menaced 
by one major pitfall: the lack of programming paradigms and abstractions 
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capable of bringing the power of parallel programming into the hands of 
ordinary programmers.  

One of the most crucial issues to tackle when developing applications 
for the cloud (and in general for large scale distributed systems) is the 
management of concurrent access to a shared state. The challenge here is 
to identify mechanisms capable of ensuring adequate consistency levels 
while being: 

 
(1) simple and familiar for the programmers 
(2) highly efficient and scalable 
(3) fault-tolerant and highly available 
 

Cloud-TM (www.cloud-tm.eu) is an ongoing European Project that is 
tackling precisely these issues by developing a self-optimising middleware 
platform aimed at simplifying the development and administration of 
applications deployed on large scale cloud computing infrastructures. 

At the core of the Cloud-TM platform lies the abstraction of a 
Distributed Software Transactional Memory (DSTM) (Carvalho et al. 
2010; Couceiro et al. 2009). DSTMs are a recently proposed extension of 
the Transactional Memory (TM) (Shavit and Touitou 1997) programming 
paradigm, which was originally introduced to simplify the development of 
concurrent, though not distributed, programs. By releasing the 
programmer from the burden of managing locks or other error-prone low-
level concurrency control mechanisms, TMs have been shown to enable a 
significant boost in productivity, to shorten development times, and to 
increase code reliability in complex concurrent applications. DSTMs have 
recently garnered significant interest as a more flexible and scalable 
alternative to conventional relational DBMSs (Stonebraker et al. 2007), 
particularly attractive in cloud environments. On the industrial side, the 
market of in-memory transactional data grids (as DSTMs are typically 
referred to in these enviroments) has undergone a rapid proliferation, and 
nowadays offers a good number of platforms both as proprietary products 
(e.g. Oracle© Coherence) and open source projects (e.g. JBoss© 
Infinispan). On the academy side, this area is attracting the interest of a 
growing community of researchers from areas such as distributed 
computing theory (Attiya et al.2010), database systems (Kallman et al. 
2008), high performance computing (Bocchino et al. 2008) and, naturally, 
transactional memories (Herlihy and Sun 2007). 

In these in-memory platforms, replication plays a role of paramount 
importance for fault-tolerance purposes, since it represents the key means 
to ensure data durability in the face of node failures. Unsurprisingly, the 
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replication schemes employed in these platforms take inspiration from the 
vast amount of literature on replication of transactional systems (Patino-
Martínez et al. 2000, Couceiro et al. 2009). However, despite the 
abundance of existing replication strategies, no universal, one-size-fits-all 
solution exists providing optimal performance in highly heterogeneous/ 
fluctuating workloads and independently of the scale of the underlying 
platform. 

The complexity of this problem is therefore exacerbated in cloud 
computing platforms due to the feature regarded as one of the key 
advantages of the cloud: its ability to elastically acquire or release 
resources, de facto dynamically varying the scale of the platform in real-
time to meet the demands of varying workloads.  

In light of these considerations, we advocate that, in order to match the 
elasticity requirements of cloud computing infrastructures, and to 
maximize efficiency, in-memory transactional data grids should entail 
multi-modal replication strategies and be able to dynamically self-tune 
their operating mode.  

The structure of this chapter is as follows: first, in Section 2, by 
surveying existing approaches for state consistency in replicated 
transactional platforms, a taxonomy of the main solutions in literature is 
presented. In Section 3, we complement the critical analysis with a set of 
performance evaluation studies aimed at exposing advantages and 
drawbacks of existing solutions. Our results provide experimental 
evidence of the fact that fluctuations of the workload can have a strong 
impact on the performance of existing replication protocols, motivating the 
need for investigating self-tuning mechanisms. In Section 4, an case study 
highlighting the benefits achievable via the proposed self-tuning 
replication mechanism is illustrated. Finally, Section 5 presents an 
overview of the online research lines, shedding light on some of the key 
challenges that need to be addressed to achieve this ambitious goal, and 
providing pointers to recent results in this area. 

 
 

2. A Taxonomy of  
Transactional Replication Protocols 

 
Over the last decades, a vast amount of literature on replication of 
transactional systems has emerged (Pedone et al. 2003; Kemme and 
Alonso 1998; Patino-Martínez et al. 2000). The various solutions can be 
classified according to the following taxonomy in fig. 2.1. 
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Fig. 2.1. Taxonomy for full-replication transactional solutions 

 

 
 
A first classification parameter is whether write transactions can be 
executed on a single node or by all nodes in the system: single versus 
multi-master schemes. 
 
Single-master. In single master schemes, also known as primary backup, 
write transactions are executed exclusively at a single node (also called 
master or primary), whereas the remaining replicas can only run read-only 
transactions. Upon failure of the master, a backup replica is elected to 
become the new master. 

Fig. 2.2 below exemplifies the execution of a transaction is a system 
with two backup replicas. The master executes transaction T1 and, after 
committing it, broadcasts its updates to the replicas, which apply them in 
order. 

Note that, as the write transactions can be serialised locally by the 
master using its local concurrency control algorithm, this approach can 
rely on a simple replica synchronisation scheme with respect to multi-
master solutions (as we will see shortly). 
 
Fig. 2.2. Single-Master 
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On the down side, the throughput of write transactions does not clearly 
scale up with the number of nodes in the system, which makes the master 
prone to becoming the system bottleneck. 

 
Multi-master. Multi-master schemes, on the other hand, are typically 
more scalable as transactions can be processed in all nodes. There are two 
types of synchronising the access to data: eager and lazy. The first relies 
on a remote synchronisation phase upon each (read/write) access, which 
normally results in very poor performance results (Franklin et al. 1997). 
Conversely, the lazy approach defers replica synchronisation until the 
commit time, which is when the transaction is finally validated. Lazy 
multi-master schemes can be classified based on whether they rely on 
Atomic Commit Protocols (such as Two-Phase Commit) or Atomic 
Broadcast (AB) (Defago et al. 2004) schemes to determine the global 
serialisation order of transactions. 

 
Two-Phase Commit. In solutions based on Two-Phase Commit (2PC), 
transactions attempt to atomically acquire locks in all nodes. Even though 
they normally incur in minor communication overheads with respect to 
those relying on AB, these solutions are well known to suffer scalability 
problems due to the rapid growth of the distributed deadlock rate as the 
number of replicas in the system grows (Gray et al. 1996). 
 
Fig. 2.3. The Two-Phase Commit protocol  
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Fig. 2.3 above shows the 2PC protocol in action. The coordinator first 
sends the prepare message with the transaction. Both participants validate 
the transaction, acquire the locks of the objects read and written and reply 
to the coordinator with “commit” or “abort.” If all participants answer 
commit, the coordinator sends a decision message with the indication of 
committing the transactions. If at least one participant replies abort, the 
coordinator sends an abort message. The participants apply the decision of 
the coordinator and the latter ends the protocols after receiving the 
acknowledgement from all participants. 
 
Atomic Broadcast based replication. Conversely, AB-based replication 
is a family of (distributed) deadlock-free algorithms that serialise 
transactions in the total order established by an AB service (Defago et al. 
2004). These solutions can be distinguished into two further classes: state 
machine replication and certification. 

 
State Machine Replication. In the state machine replication (Schneider 
1993), all replicas execute the same set of transactions in the same order. 
The transactions are shipped to all replicas using total order broadcast and, 
consequently, all replicas receive transactions in the same order and 
execute them in that order. However, both transactions and the validation 
scheme must be fully deterministic so that all replicas begin and end 
transactions in the same state. 

Fig. 2.4 depicts the execution of the State Machine Replication in two 
replicas. Replicas 1 and 2 atomic broadcast the request to start transactions 
T1 and T2. T1 is ordered first—it (atomically) pre-acquires all the locks it 
requires, executes and commits in both replicas. T2 must wait until the 
locks are released to be executed also in both replicas. 
 
Fig. 2.4. State Machine Replication 
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This solution has the key advantage of never incurring in transactional 
aborts. On the other hand, it requires a-priori knowledge of the 
transaction’s read-set and write-set. Further, the execution cost of write 
transactions has to be fully paid by all the replicas in the system, which 
may limit the scalability of this approach in write dominated workloads. 

 
Certification. Certification based techniques take a more optimistic 
approach and have been shown to achieve higher scalability by fully 
executing the transaction only at one node. This means that different 
transactions may be executed on different replicas concurrently. If the 
transaction aborts, no coordination is required. However, if the transaction 
is ready to commit, coordination will both ensure serialisability (Bernstein 
et al. 1986) and propagate the updates to the other replicas. This means 
that two transactions may update concurrently the same data in different 
replicas and it is up to the coordination phase to detect this situation and 
abort at least one of the transactions. 

In this work, we will be mainly focusing on the following three 
certification protocols: non-voting (NVC), voting (VC) and Bloom filter 
(BFC) certification. 

 
Non-Voting Certification. As with all certification protocols, in Non-
Voting Certification (Pedone et al. 2003; Patino-Martínez et al. 2000) the 
transaction first executes locally. Then, when it is ready to commit, its 
read and write-set are sent to all replicas using Atomic Broadcast. 
Consequently, all replicas certify the transaction in total order. The 
validation phase consists of checking if the read-set is still valid or, in 
other words, if no other transaction has updated any item in the read-set. If 
the read-set is valid, the transaction can be committed. Otherwise, it is 
aborted. 
 
Fig. 2.5. Non-Voting Certification protocol 
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Fig. 2.5 above exemplifies the execution of NVC when one replica fails. 
Two transactions, T1 and T2, execute concurrently in two replicas. Atomic 
broadcast orders T1 before T2. R1 fails, but since the remaining replicas 
both received T1’s read and write sets, they validate the transaction and 
apply the updates. T2 is then delivered to R2 and R3, validated and 
aborted due to conflicts with the already committed T1. 

The key advantage of NVC consists of necessitating a single AB-based 
communication phase to determine the outcome of transactions. However, 
since the entire read-set must be sent together with the write set, messages 
exchanged by the replicas become very large, resulting in high levels of 
network congestion. 

 
Voting Certification. The Voting Certification (Kemme and Alonso 
2000) tries to overcome this issue by only ABcasting the write-set of 
locally executed transactions. As fig. 2.6 shows, commit requests are 
processed in total order but, in this case, only the replica where the 
transaction was executed can validate it since no other replica can access 
its read-set. When this replica finishes the validation, it sends the outcome 
to all replicas using reliable broadcast (Guerraoui and Rodrigues 2006), a 
lightweight communication primitive that guarantees all replicas receive 
the message. When this message is received, replicas either apply the write 
set of the corresponding transaction or discard it. 

The messages exchanged by the replicas are significantly smaller 
compared to those generated by NVC. However, this protocol requires one 
additional communication step to disseminate the outcome of the 
transaction. 
 
Fig. 2.6. Voting Certification protocol 

 

 
 
Bloom Filter Certification. Bloom Filter Certification (Couceiro et al. 
2009) consists of encoding the read-set of transaction in a Bloom Filter 
(Bloom 1970), a space-efficient data structure that strongly (and 
efficiently) compresses the messages disseminated via the AB service, 
while still allowing every replica in the system to deterministically certify 
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the transactions. Unlike voting schemes, BFC avoids additional 
communication steps during the commit phase. In terms of generated 
network traffic, even though BFC generates larger messages than voting 
protocols, it typically reduces the size of the messages exchanged via the 
AB service significantly when compared to non-voting schemes. On the 
down side, BFC can suffer from false positives due the probabilistic nature 
of Bloom filter-based encoding, which ultimately lead to an additional rate 
of aborted transactions. 

 
 

3.  No “One-Size-Fits-All” Solution 
 

We can conclude from the previous section that the design space of 
distributed state consistency mechanisms is so vast that no universal, one-
size-fits-all solution exists. The efficiency of individual state management 
approaches can in fact be strongly affected by both: 
 

(1) the characteristics of the incoming workload, such as the ratio of 
read/write operations, as well as the spatial/temporal locality in the 
data access patterns, and 

(2) the scale of the system (e.g. low vs high number of nodes, local vs 
geographical distribution) on which these mechanisms are 
deployed. 

 
In order to support this claim, in the remainder of this section we present 
an experimental study to compare the performance of the previously 
presented protocols in distinct workload/scale settings. 

The tests were run on a cluster of eight nodes, each one equipped with 
two Intel Quad-Core XEON at 2.0 GHz, 8 GB of RAM, running Linux 
2.6.32-26-server and interconnected via a private Gigabit Ethernet. 

In the two first experiments, the test system consisted of a key/value 
store implemented in Java. We used a synthetic benchmark and two 
different contention scenarios: the first consisted of a data set with 100,000 
items, while in the second the data set had only 1,000 items. Note that by 
varying the size of the data set, the probability of contention among 
transactions also varies. Specifically, the contention probability is around 
two orders of magnitude larger when using the smaller data set. Each 
transaction performed ten reads and one update operation, choosing the 
data items to be accessed uniformly from the data set. 
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Single versus Multi-master. The graph in fig. 2.7 compares the 
throughput (number of transactions per second) of single-master (SM) and 
an implementation of multi-master using the 2PC protocol (MM-2PC) that 
is run at the end of each transaction. This experiment clearly showed that 
neither solution outperforms the other in both scenarios. For the low 
contention scenario, the MM-2PC is able to achieve a much higher 
throughput than single-master, whereas when there is high contention in 
the data set, the single-master scheme outperforms MM- 2PC. This is due 
to the fact that, while single-master is unaffected by the contention, the 
number of conflicts has a huge impact in the performance of MM-2PC, 
and the low throughput is the result of the high number of deadlocks. 

 
Fig. 2.7. Throughput of single-master and multi-master 2-Phase Commit 
protocols 
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Multi-master versus Certification. The plot in fig. 2.8 compares the 
performance of MM-2PC and certification. The MM-2PC performance has 
the best performance for the low contention scenario. Certification 
outperforms MM-2PC in high contention scenarios once more due to the 
high rate of deadlocks in the latter. 
 
 
 
 
 
 
 
 
 
 



Towards Autonomic Transactional Replication for Cloud Environments 11 

Fig. 2.8. Throughput of Certification and multi-master 2-Phase Commit 
protocols 
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There are many approaches to implement Atomic Broadcast (Defago et al. 
2004), for instance sequencer (one node is responsible for ordering the 
messages) or token (nodes can only send messages when they own a 
token). For this test we used a sequencer based implementation of Atomic 
Broadcast which limits the maximum throughput achievable by the system 
to the maximum number of messages that can be ordered by the 
sequencer. This is the only bottleneck in the performance of the protocol, 
as the contention level does not influence the throughput . 

 
Non-Voting versus Bloom Filter versus Voting Certification. 
Following the discussion presented in Section 2, the performance of each 
of these three alternative certification mechanisms is strongly dependent 
on the actual distribution of the size of the read-sets generated by the 
transactional application. 

Fig. 2.9 below shows the results of a sensitivity analysis aimed at 
assessing the actual impact of the read-set size distribution on the 
performance of the three previously described certification schemes. The 
results were obtained using a simple synthetic benchmark adapted from 
the Bank Benchmark originally used in Couceiro et al. (2009). Focusing 
only on the effects due to variations of the read-set size, which represents 
the goal of this sensitivity analysis, the benchmark was configured to 
never generate conflicts among transactions. The only aborts experienced 
in the system are therefore those determined by false positives with the 
BFC scheme (which was configured to have an additional abort-rate of 
1%, as in Couceiro et al. 2009). The in-memory transactional data grid and 
the certification protocols were implemented in Java. The system uses two 
main components: (i) a state-of-the-art Software Transactional Memory 
(STM), namely JVSTM (Cachopo and Rito-Silva 2006), used to manage 
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local concurrency, and (ii) a replicated key/value store, used to maintain 
associations between unique object identifiers and object instances.  

 
Fig. 2.9. Throughput of three certification strategies with different read-set 
sizes 
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Our experimental results highlight that no one-size-fits-all-solution exists 
that maximizes throughput across all the considered workloads. On the 
contrary, NVC provides the best performance in the scenario with small 
read-sets, BFC the best in the scenario with 1,000 items in the read-set, 
and VC is by far the best with large read-sets. Further, the relative 
difference in the performance between the best and worst performing 
protocol for each scenario ranges from a factor 2.5x (BFC vs VC, read-set 
size equal to 1,000) to 10x (VC vs NVC, read-set size equal to 100,000). 
 
 

4. The Cloud-TM Approach 
 
Section 3 provided a number of experimental evidences highlighting the 
benefits that could be achieved by dynamically adapting the replication 
mechanism in an in-memory transactional data platform. Fig. 2.10 below 
illustrates a possible example scenario highlighting how the autonomic, 
self-optimising capabilities that we are developing in the Cloud-TM 
platform will be exploited by user level applications. 
 The bottom part of the figure shows the variations over time of (a) the 
incoming traffic, (b) the ratio of read/write transactions, and (c) the 
transaction conflict probability. 

Five different workload scenarios are considered, each associated with 
distinct optimal management strategies minimising the number of 
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resources to be hired from the cloud (while, of course, ensuring the same, 
user-defined Service Level Agreements). 

In the first scenario (from the left) the workload is read-dominated and 
both the incoming traffic and the transaction conflict probability are low. 
In these settings, the optimal strategy is to hire a low number of resources 
and to use a primary-backup replication scheme. As discussed in Section 
2, this simple, centralised approach allows the minimising of the replica 
coordination overhead, providing optimal performances as long as the 
number of write transactions remains sufficiently low so to avoid 
overloading the primary. 

As the load increases (second scenario from the left), leaving the 
conflict rate and the write/read ratio unaltered, the Cloud-TM will 
automatically scale up the number of nodes hired from the cloud 
infrastructure. The replication scheme does not vary with respect to the 
former scenario. In fact, being workload read-dominated, the primary is 
still able to quickly process the incoming write transactions. 
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Fig. 2.10. Example scenario of self-tuning replication in the Cloud-TM 
platform 

 

 
 

In the following scenario (the third from the left), due to a surge in the 
relative number of write transactions, the primary gets overwhelmed by 
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the incoming write requests, becoming the system’s bottleneck. The 
Cloud-TM will react by triggering a reconfiguration of the replication 
scheme, passing to employ a multi-master replication scheme which 
allows for an even distribution of the write requests among the nodes and, 
consequently, the achievement of a higher throughput. Since the 
transaction conflict rate remains low (because the write operations target 
low contended data regions, for example private user data), an optimistic 
conflict detection policy relying on a certification-based approach is 
adopted. In fact, by letting transactions optimistically access possibly stale 
data, this class of replication protocols allows for achieving maximum 
inter-replica parallelism, at least as long as the conflict rate remains 
sufficiently low (Ciciani et al. 1992). 

In the fourth scenario, we consider precisely the increase of the 
transaction conflict rate. This type of workload may arise, for instance, in 
an e-auction application in proximity to the expiration of an auction for a 
highly contended item. As already hinted, in high-contention scenarios, 
optimistic conflict detection schemes suffer from a high abort rate and 
incur a significant performance degradation. The Cloud-TM middleware 
will detect such a suboptimal system configuration, and transparently 
switch to a more pessimistic conflict detection scheme, such as the active 
replication mechanism described in Section 2, which is known to perform 
better in high conflict scenarios by serialising transactions and reducing 
the transaction abort probability (Ciciani et al. 1992; Nicola and Jarke 
2000). 

Finally, to the extreme right, as the workload returns to exhibit its 
original characteristics (low load, write/read ratio and conflict rate), the 
Cloud-TM will accordingly release the additional nodes acquired from the 
cloud infrastructure and switch back to use a primary-backup scheme (that 
outperforms multi-master approaches in these workload conditions). This 
will avoid underutilizing the hired resources and minimise the operational 
costs sustained by the cloud user. 

 
 

5. Current research directions  
explored in the Cloud-TM project 

 
The design of self-tuning transactional replication mechanisms 
encompasses two major problems: 
 



16                   Maria Couceiro, Paolo Romano, Luís Rodrigues 
 

(1) determining the optimal replication strategy/operational mode on 
the basis of the current, and foreseen, workload and system 
characteristics 

(2) allowing the efficient switching among multiple protocols/system 
configurations. 

 
Concerning the first of the above two issues, we are faced with a complex 
multi-variable online optimisation problem that entails monitoring/tuning 
of a large number of system indicators/parameters.  

The performance of a replicated transactional system is, in fact, not 
only determined by the current demand/utilisation of system resources, for 
example CPU, network bandwidth, memory. Workload characteristics (for 
example, transaction conflict probability), as well as scale (i.e. number of 
nodes) and topology (for example, single data centre vs multiple 
geographically distributed clusters) of the platform have a large impact on 
performance.  
Further, self-tuning a replicated transactional system necessarily entails 
the automatic optimisation of at least some of its fundamental building 
blocks, such as the underlying Group Communication System (Miranda et 
al. 2001) and local concurrency control algorithm (Sonmez et al. 2009). 

We are currently tackling this issue by using differentiated 
methodologies, including analytical performance modelling (Sanzo et al. 
2011), machine learning techniques (using both online reinforcement 
learning techniques and off-line approaches, such as neural networks or 
decision trees [Couceiro et al. 2010]), and more recently control theoretic 
techniques (Goebel et al. 2009). 

Some relevant results that we have recently achieved in these areas are 
related to the performance forecasting of popular transactional memory 
algorithms (Sanzo et al. 2011) (for example the commit-time locking 
algorithm used in TL2 [Dice et al. 2006]), of Atomic Broadcast protocols 
(Couceiro et al. 2009; Romano and Leonetti 2011), and of alternative 
certification replication schemes (Couceiro et al. 2011). 

Let us now analyse the second issue, namely the need to design 
efficient mechanisms aimed at supporting the dynamic switching among 
different replication algorithms. Achieving this goal requires addressing 
problems of both a theoretical and practical nature.  

On the practical side, it requires engineering a framework that permits 
efficient switching between heterogeneous (possibly) distributed state 
consistency mechanisms. On the theoretical side, it would be desirable to 
design ad hoc schemes to preserve correctness despite the simultaneous 
coexistence of incompatible contention management strategies. 
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In fact, unlike in conventional non-distributed transactional systems 
(Guerraoui et al. 2005), the Cloud-TM platform is composed by 
distributed nodes, which need to consistently cooperate according to a 
common replica coordination scheme. Generally speaking, this raises the 
problem of enforcing a distributed agreement among the platform nodes in 
case of alteration of the adopted replication protocol.  

In practice, however, the complexity of this dynamic reconfiguration 
task depends on the nature of the replication protocols from/towards which 
the system transitions. In fact, Couceiro et al. (2011) show that by 
exploiting knowledge of the dynamics of the destination and target 
replication protocols, it is possible to architect the replication manager to 
simultaneously support multiple atomic broadcast based replication 
protocols. We are currently working on mechanisms allowing for seamless 
switching between single and multi-master strategies, avoiding any stall or 
unnecessary transaction abort during transition periods. 

It is worth highlighting that the efficiency of the mechanisms employed 
to support the system's reconfiguration is of paramount importance. This is 
particularly true in case the self-tuning mechanism relies on online 
reinforcement learning techniques for identifying the reconfiguration 
policies to be used in the system.  

These approaches are particularly attractive as they are based on 
lightweight algorithms, and since they spare the burden of developing 
accurate models of the system to be controlled. The latter is a complex, 
error-prone and time consuming task, which may even be unfeasible in 
virtualised environments (as typical of IaaS cloud infrastructures [Amazon 
2010]), where little or no knowledge is available on the actual 
characteristics of the underlying physical infrastructure.  

On the other hand, online learning approaches require (possibly 
periodical) exploratory phases, in which multiple reconfiguration 
strategies are tested in order to build (or enhance) the initial (or current) 
statistical knowledge of the system's behaviour (typically in terms of 
rewards associated with state/action pairs [Sutton and Barto 1998]). The 
practical viability of these approaches is therefore strictly dependent on the 
availability of mechanisms supporting efficient distributed 
reconfigurations. 
  
 

6. Conclusions 
 
Elastic scaling, one of the key drivers underlying the success of the cloud 
computing paradigm, makes the problem of self-tuning the data 
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consistency mechanisms a crucial issue in order to maximize efficiency of 
transactional data grids. This is one of the key goals being pursued in the 
Cloud-TM project, and on which this book chapter has focused. 

Based on a critical analysis of the main existing transactional 
replication schemes, and via an experimental study relying on fully-
fledged prototypes, we have highlighted a number of relevant trade-offs 
among the solutions proposed so far in literature. We have shed light on 
some of the key challenges that need to be addressed to achieve this 
ambitious goal, and overviewed some of the approaches that we are 
currently investigating to address these challenges. 
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