
CHAPTER TWO

TOWARDS AUTONOMIC TRANSACTIONAL
REPLICATION FOR CLOUD ENVIRONMENTS

MARIA COUCEIRO, PAOLO ROMANO,
LUÍS RODRIGUES

In recent years, in-memory transactional data platforms, often referred to
as NoSQL data grids, have emerged as a reference solution for
transactional data management in the cloud. In these in-memory platforms,
replication plays a role of paramount importance for fault-tolerance
purposes, given that it represents the key means to ensure data durability
in the face of unavoidable node failures. Unfortunately, despite the
abundance of approaches in the area, existing replication schemes still fall
short of addressing one of the key requirements of cloud computing
environments: ensuring optimal efficiency when deployed over elastic
infrastructures that dynamically expand/reduce the number of (physical or
virtualised) resources in response to fluctuations of workload
characteristics.

Tackling this issue is a key goal of the Cloud-TM project, a recent EU
funded initiative that aims at developing a self-tuning, elastic transactional
data platform tailored to meet the elasticity requirements of cloud
computing infrastructures.

1. Introduction

By shifting data and computation away from local servers towards very
large scale, world-wide data centres, cloud computing promises
compelling benefits for both cloud consumers and cloud services providers
(Armbrust et al. 2009). However, the promise of infinite scalability
catalysing much of the recent hype about cloud computing is still menaced
by one major pitfall: the lack of programming paradigms and abstractions

2 Maria Couceiro, Paolo Romano, Luís Rodrigues

capable of bringing the power of parallel programming into the hands of
ordinary programmers.

One of the most crucial issues to tackle when developing applications
for the cloud (and in general for large scale distributed systems) is the
management of concurrent access to a shared state. The challenge here is
to identify mechanisms capable of ensuring adequate consistency levels
while being:

(1) simple and familiar for the programmers
(2) highly efficient and scalable
(3) fault-tolerant and highly available

Cloud-TM (www.cloud-tm.eu) is an ongoing European Project that is
tackling precisely these issues by developing a self-optimising middleware
platform aimed at simplifying the development and administration of
applications deployed on large scale cloud computing infrastructures.

At the core of the Cloud-TM platform lies the abstraction of a
Distributed Software Transactional Memory (DSTM) (Carvalho et al.
2010; Couceiro et al. 2009). DSTMs are a recently proposed extension of
the Transactional Memory (TM) (Shavit and Touitou 1997) programming
paradigm, which was originally introduced to simplify the development of
concurrent, though not distributed, programs. By releasing the
programmer from the burden of managing locks or other error-prone low-
level concurrency control mechanisms, TMs have been shown to enable a
significant boost in productivity, to shorten development times, and to
increase code reliability in complex concurrent applications. DSTMs have
recently garnered significant interest as a more flexible and scalable
alternative to conventional relational DBMSs (Stonebraker et al. 2007),
particularly attractive in cloud environments. On the industrial side, the
market of in-memory transactional data grids (as DSTMs are typically
referred to in these enviroments) has undergone a rapid proliferation, and
nowadays offers a good number of platforms both as proprietary products
(e.g. Oracle© Coherence) and open source projects (e.g. JBoss©
Infinispan). On the academy side, this area is attracting the interest of a
growing community of researchers from areas such as distributed
computing theory (Attiya et al.2010), database systems (Kallman et al.
2008), high performance computing (Bocchino et al. 2008) and, naturally,
transactional memories (Herlihy and Sun 2007).

In these in-memory platforms, replication plays a role of paramount
importance for fault-tolerance purposes, since it represents the key means
to ensure data durability in the face of node failures. Unsurprisingly, the

Towards Autonomic Transactional Replication for Cloud Environments 3

replication schemes employed in these platforms take inspiration from the
vast amount of literature on replication of transactional systems (Patino-
Martínez et al. 2000, Couceiro et al. 2009). However, despite the
abundance of existing replication strategies, no universal, one-size-fits-all
solution exists providing optimal performance in highly heterogeneous/
fluctuating workloads and independently of the scale of the underlying
platform.

The complexity of this problem is therefore exacerbated in cloud
computing platforms due to the feature regarded as one of the key
advantages of the cloud: its ability to elastically acquire or release
resources, de facto dynamically varying the scale of the platform in real-
time to meet the demands of varying workloads.

In light of these considerations, we advocate that, in order to match the
elasticity requirements of cloud computing infrastructures, and to
maximize efficiency, in-memory transactional data grids should entail
multi-modal replication strategies and be able to dynamically self-tune
their operating mode.

The structure of this chapter is as follows: first, in Section 2, by
surveying existing approaches for state consistency in replicated
transactional platforms, a taxonomy of the main solutions in literature is
presented. In Section 3, we complement the critical analysis with a set of
performance evaluation studies aimed at exposing advantages and
drawbacks of existing solutions. Our results provide experimental
evidence of the fact that fluctuations of the workload can have a strong
impact on the performance of existing replication protocols, motivating the
need for investigating self-tuning mechanisms. In Section 4, an case study
highlighting the benefits achievable via the proposed self-tuning
replication mechanism is illustrated. Finally, Section 5 presents an
overview of the online research lines, shedding light on some of the key
challenges that need to be addressed to achieve this ambitious goal, and
providing pointers to recent results in this area.

2. A Taxonomy of
Transactional Replication Protocols

Over the last decades, a vast amount of literature on replication of
transactional systems has emerged (Pedone et al. 2003; Kemme and
Alonso 1998; Patino-Martínez et al. 2000). The various solutions can be
classified according to the following taxonomy in fig. 2.1.

4 Maria Couceiro, Paolo Romano, Luís Rodrigues

Fig. 2.1. Taxonomy for full-replication transactional solutions

A first classification parameter is whether write transactions can be
executed on a single node or by all nodes in the system: single versus
multi-master schemes.

Single-master. In single master schemes, also known as primary backup,
write transactions are executed exclusively at a single node (also called
master or primary), whereas the remaining replicas can only run read-only
transactions. Upon failure of the master, a backup replica is elected to
become the new master.

Fig. 2.2 below exemplifies the execution of a transaction is a system
with two backup replicas. The master executes transaction T1 and, after
committing it, broadcasts its updates to the replicas, which apply them in
order.

Note that, as the write transactions can be serialised locally by the
master using its local concurrency control algorithm, this approach can
rely on a simple replica synchronisation scheme with respect to multi-
master solutions (as we will see shortly).

Fig. 2.2. Single-Master

!"#$%&'

()'

*)'%+%,-$%#' *)',.//0$#'

12234'*)5#'
-26"$%#'

(7'

8&."6,"#$'
*)5#'-26"$%#'

12234'*)5#'
-26"$%#'

Towards Autonomic Transactional Replication for Cloud Environments 5

On the down side, the throughput of write transactions does not clearly
scale up with the number of nodes in the system, which makes the master
prone to becoming the system bottleneck.

Multi-master. Multi-master schemes, on the other hand, are typically
more scalable as transactions can be processed in all nodes. There are two
types of synchronising the access to data: eager and lazy. The first relies
on a remote synchronisation phase upon each (read/write) access, which
normally results in very poor performance results (Franklin et al. 1997).
Conversely, the lazy approach defers replica synchronisation until the
commit time, which is when the transaction is finally validated. Lazy
multi-master schemes can be classified based on whether they rely on
Atomic Commit Protocols (such as Two-Phase Commit) or Atomic
Broadcast (AB) (Defago et al. 2004) schemes to determine the global
serialisation order of transactions.

Two-Phase Commit. In solutions based on Two-Phase Commit (2PC),
transactions attempt to atomically acquire locks in all nodes. Even though
they normally incur in minor communication overheads with respect to
those relying on AB, these solutions are well known to suffer scalability
problems due to the rapid growth of the distributed deadlock rate as the
number of replicas in the system grows (Gray et al. 1996).

Fig. 2.3. The Two-Phase Commit protocol

6 Maria Couceiro, Paolo Romano, Luís Rodrigues

Fig. 2.3 above shows the 2PC protocol in action. The coordinator first
sends the prepare message with the transaction. Both participants validate
the transaction, acquire the locks of the objects read and written and reply
to the coordinator with “commit” or “abort.” If all participants answer
commit, the coordinator sends a decision message with the indication of
committing the transactions. If at least one participant replies abort, the
coordinator sends an abort message. The participants apply the decision of
the coordinator and the latter ends the protocols after receiving the
acknowledgement from all participants.

Atomic Broadcast based replication. Conversely, AB-based replication
is a family of (distributed) deadlock-free algorithms that serialise
transactions in the total order established by an AB service (Defago et al.
2004). These solutions can be distinguished into two further classes: state
machine replication and certification.

State Machine Replication. In the state machine replication (Schneider
1993), all replicas execute the same set of transactions in the same order.
The transactions are shipped to all replicas using total order broadcast and,
consequently, all replicas receive transactions in the same order and
execute them in that order. However, both transactions and the validation
scheme must be fully deterministic so that all replicas begin and end
transactions in the same state.

Fig. 2.4 depicts the execution of the State Machine Replication in two
replicas. Replicas 1 and 2 atomic broadcast the request to start transactions
T1 and T2. T1 is ordered first—it (atomically) pre-acquires all the locks it
requires, executes and commits in both replicas. T2 must wait until the
locks are released to be executed also in both replicas.

Fig. 2.4. State Machine Replication

Towards Autonomic Transactional Replication for Cloud Environments 7

This solution has the key advantage of never incurring in transactional
aborts. On the other hand, it requires a-priori knowledge of the
transaction’s read-set and write-set. Further, the execution cost of write
transactions has to be fully paid by all the replicas in the system, which
may limit the scalability of this approach in write dominated workloads.

Certification. Certification based techniques take a more optimistic
approach and have been shown to achieve higher scalability by fully
executing the transaction only at one node. This means that different
transactions may be executed on different replicas concurrently. If the
transaction aborts, no coordination is required. However, if the transaction
is ready to commit, coordination will both ensure serialisability (Bernstein
et al. 1986) and propagate the updates to the other replicas. This means
that two transactions may update concurrently the same data in different
replicas and it is up to the coordination phase to detect this situation and
abort at least one of the transactions.

In this work, we will be mainly focusing on the following three
certification protocols: non-voting (NVC), voting (VC) and Bloom filter
(BFC) certification.

Non-Voting Certification. As with all certification protocols, in Non-
Voting Certification (Pedone et al. 2003; Patino-Martínez et al. 2000) the
transaction first executes locally. Then, when it is ready to commit, its
read and write-set are sent to all replicas using Atomic Broadcast.
Consequently, all replicas certify the transaction in total order. The
validation phase consists of checking if the read-set is still valid or, in
other words, if no other transaction has updated any item in the read-set. If
the read-set is valid, the transaction can be committed. Otherwise, it is
aborted.

Fig. 2.5. Non-Voting Certification protocol

8 Maria Couceiro, Paolo Romano, Luís Rodrigues

Fig. 2.5 above exemplifies the execution of NVC when one replica fails.
Two transactions, T1 and T2, execute concurrently in two replicas. Atomic
broadcast orders T1 before T2. R1 fails, but since the remaining replicas
both received T1’s read and write sets, they validate the transaction and
apply the updates. T2 is then delivered to R2 and R3, validated and
aborted due to conflicts with the already committed T1.

The key advantage of NVC consists of necessitating a single AB-based
communication phase to determine the outcome of transactions. However,
since the entire read-set must be sent together with the write set, messages
exchanged by the replicas become very large, resulting in high levels of
network congestion.

Voting Certification. The Voting Certification (Kemme and Alonso
2000) tries to overcome this issue by only ABcasting the write-set of
locally executed transactions. As fig. 2.6 shows, commit requests are
processed in total order but, in this case, only the replica where the
transaction was executed can validate it since no other replica can access
its read-set. When this replica finishes the validation, it sends the outcome
to all replicas using reliable broadcast (Guerraoui and Rodrigues 2006), a
lightweight communication primitive that guarantees all replicas receive
the message. When this message is received, replicas either apply the write
set of the corresponding transaction or discard it.

The messages exchanged by the replicas are significantly smaller
compared to those generated by NVC. However, this protocol requires one
additional communication step to disseminate the outcome of the
transaction.

Fig. 2.6. Voting Certification protocol

Bloom Filter Certification. Bloom Filter Certification (Couceiro et al.
2009) consists of encoding the read-set of transaction in a Bloom Filter
(Bloom 1970), a space-efficient data structure that strongly (and
efficiently) compresses the messages disseminated via the AB service,
while still allowing every replica in the system to deterministically certify

Towards Autonomic Transactional Replication for Cloud Environments 9

the transactions. Unlike voting schemes, BFC avoids additional
communication steps during the commit phase. In terms of generated
network traffic, even though BFC generates larger messages than voting
protocols, it typically reduces the size of the messages exchanged via the
AB service significantly when compared to non-voting schemes. On the
down side, BFC can suffer from false positives due the probabilistic nature
of Bloom filter-based encoding, which ultimately lead to an additional rate
of aborted transactions.

3. No “One-Size-Fits-All” Solution

We can conclude from the previous section that the design space of
distributed state consistency mechanisms is so vast that no universal, one-
size-fits-all solution exists. The efficiency of individual state management
approaches can in fact be strongly affected by both:

(1) the characteristics of the incoming workload, such as the ratio of
read/write operations, as well as the spatial/temporal locality in the
data access patterns, and

(2) the scale of the system (e.g. low vs high number of nodes, local vs
geographical distribution) on which these mechanisms are
deployed.

In order to support this claim, in the remainder of this section we present
an experimental study to compare the performance of the previously
presented protocols in distinct workload/scale settings.

The tests were run on a cluster of eight nodes, each one equipped with
two Intel Quad-Core XEON at 2.0 GHz, 8 GB of RAM, running Linux
2.6.32-26-server and interconnected via a private Gigabit Ethernet.

In the two first experiments, the test system consisted of a key/value
store implemented in Java. We used a synthetic benchmark and two
different contention scenarios: the first consisted of a data set with 100,000
items, while in the second the data set had only 1,000 items. Note that by
varying the size of the data set, the probability of contention among
transactions also varies. Specifically, the contention probability is around
two orders of magnitude larger when using the smaller data set. Each
transaction performed ten reads and one update operation, choosing the
data items to be accessed uniformly from the data set.

10 Maria Couceiro, Paolo Romano, Luís Rodrigues

Single versus Multi-master. The graph in fig. 2.7 compares the
throughput (number of transactions per second) of single-master (SM) and
an implementation of multi-master using the 2PC protocol (MM-2PC) that
is run at the end of each transaction. This experiment clearly showed that
neither solution outperforms the other in both scenarios. For the low
contention scenario, the MM-2PC is able to achieve a much higher
throughput than single-master, whereas when there is high contention in
the data set, the single-master scheme outperforms MM- 2PC. This is due
to the fact that, while single-master is unaffected by the contention, the
number of conflicts has a huge impact in the performance of MM-2PC,
and the low throughput is the result of the high number of deadlocks.

Fig. 2.7. Throughput of single-master and multi-master 2-Phase Commit
protocols

!"

#$!!"

$!!!"

%$!!"

&!!!!"

&#$!!"

&$!!!"

'" (")" &!"

!"
#$
%&
"'

%(
))

*%+,-#)$.)/$0-1)

*+","&!!-"
*+","&-"
++,#./","&!!-"
++,#./","&-"

	
Multi-master versus Certification. The plot in fig. 2.8 compares the
performance of MM-2PC and certification. The MM-2PC performance has
the best performance for the low contention scenario. Certification
outperforms MM-2PC in high contention scenarios once more due to the
high rate of deadlocks in the latter.

Towards Autonomic Transactional Replication for Cloud Environments 11

Fig. 2.8. Throughput of Certification and multi-master 2-Phase Commit
protocols

!"

#$!!"

$!!!"

%$!!"

&!!!!"

&#$!!"

&$!!!"

'" (")" &!"

!"
#$
%&
"'

%(
))

*%+,-#)$.)/$0-1)

*+,-"."&!!/"
*+,-"."&/"
00.#1*"."&!!/"
00.#1*"."&/"

There are many approaches to implement Atomic Broadcast (Defago et al.
2004), for instance sequencer (one node is responsible for ordering the
messages) or token (nodes can only send messages when they own a
token). For this test we used a sequencer based implementation of Atomic
Broadcast which limits the maximum throughput achievable by the system
to the maximum number of messages that can be ordered by the
sequencer. This is the only bottleneck in the performance of the protocol,
as the contention level does not influence the throughput .

Non-Voting versus Bloom Filter versus Voting Certification.
Following the discussion presented in Section 2, the performance of each
of these three alternative certification mechanisms is strongly dependent
on the actual distribution of the size of the read-sets generated by the
transactional application.

Fig. 2.9 below shows the results of a sensitivity analysis aimed at
assessing the actual impact of the read-set size distribution on the
performance of the three previously described certification schemes. The
results were obtained using a simple synthetic benchmark adapted from
the Bank Benchmark originally used in Couceiro et al. (2009). Focusing
only on the effects due to variations of the read-set size, which represents
the goal of this sensitivity analysis, the benchmark was configured to
never generate conflicts among transactions. The only aborts experienced
in the system are therefore those determined by false positives with the
BFC scheme (which was configured to have an additional abort-rate of
1%, as in Couceiro et al. 2009). The in-memory transactional data grid and
the certification protocols were implemented in Java. The system uses two
main components: (i) a state-of-the-art Software Transactional Memory
(STM), namely JVSTM (Cachopo and Rito-Silva 2006), used to manage

12 Maria Couceiro, Paolo Romano, Luís Rodrigues

local concurrency, and (ii) a replicated key/value store, used to maintain
associations between unique object identifiers and object instances.

Fig. 2.9. Throughput of three certification strategies with different read-set
sizes

!"

!#$"

!#%"

!#&"

!#'"

("

(" "()!!!"" "(!!)!!!""

!
"#
$
%&
'(
)*

+,
-#
".

/-
0.

1+

2)%*+3)1+3'()+

*+,"
-.,"
+,"

Our experimental results highlight that no one-size-fits-all-solution exists
that maximizes throughput across all the considered workloads. On the
contrary, NVC provides the best performance in the scenario with small
read-sets, BFC the best in the scenario with 1,000 items in the read-set,
and VC is by far the best with large read-sets. Further, the relative
difference in the performance between the best and worst performing
protocol for each scenario ranges from a factor 2.5x (BFC vs VC, read-set
size equal to 1,000) to 10x (VC vs NVC, read-set size equal to 100,000).

4. The Cloud-TM Approach

Section 3 provided a number of experimental evidences highlighting the
benefits that could be achieved by dynamically adapting the replication
mechanism in an in-memory transactional data platform. Fig. 2.10 below
illustrates a possible example scenario highlighting how the autonomic,
self-optimising capabilities that we are developing in the Cloud-TM
platform will be exploited by user level applications.
 The bottom part of the figure shows the variations over time of (a) the
incoming traffic, (b) the ratio of read/write transactions, and (c) the
transaction conflict probability.

Five different workload scenarios are considered, each associated with
distinct optimal management strategies minimising the number of

Towards Autonomic Transactional Replication for Cloud Environments 13

resources to be hired from the cloud (while, of course, ensuring the same,
user-defined Service Level Agreements).

In the first scenario (from the left) the workload is read-dominated and
both the incoming traffic and the transaction conflict probability are low.
In these settings, the optimal strategy is to hire a low number of resources
and to use a primary-backup replication scheme. As discussed in Section
2, this simple, centralised approach allows the minimising of the replica
coordination overhead, providing optimal performances as long as the
number of write transactions remains sufficiently low so to avoid
overloading the primary.

As the load increases (second scenario from the left), leaving the
conflict rate and the write/read ratio unaltered, the Cloud-TM will
automatically scale up the number of nodes hired from the cloud
infrastructure. The replication scheme does not vary with respect to the
former scenario. In fact, being workload read-dominated, the primary is
still able to quickly process the incoming write transactions.

14 Maria Couceiro, Paolo Romano, Luís Rodrigues

Fig. 2.10. Example scenario of self-tuning replication in the Cloud-TM
platform

In the following scenario (the third from the left), due to a surge in the
relative number of write transactions, the primary gets overwhelmed by

Towards Autonomic Transactional Replication for Cloud Environments 15

the incoming write requests, becoming the system’s bottleneck. The
Cloud-TM will react by triggering a reconfiguration of the replication
scheme, passing to employ a multi-master replication scheme which
allows for an even distribution of the write requests among the nodes and,
consequently, the achievement of a higher throughput. Since the
transaction conflict rate remains low (because the write operations target
low contended data regions, for example private user data), an optimistic
conflict detection policy relying on a certification-based approach is
adopted. In fact, by letting transactions optimistically access possibly stale
data, this class of replication protocols allows for achieving maximum
inter-replica parallelism, at least as long as the conflict rate remains
sufficiently low (Ciciani et al. 1992).

In the fourth scenario, we consider precisely the increase of the
transaction conflict rate. This type of workload may arise, for instance, in
an e-auction application in proximity to the expiration of an auction for a
highly contended item. As already hinted, in high-contention scenarios,
optimistic conflict detection schemes suffer from a high abort rate and
incur a significant performance degradation. The Cloud-TM middleware
will detect such a suboptimal system configuration, and transparently
switch to a more pessimistic conflict detection scheme, such as the active
replication mechanism described in Section 2, which is known to perform
better in high conflict scenarios by serialising transactions and reducing
the transaction abort probability (Ciciani et al. 1992; Nicola and Jarke
2000).

Finally, to the extreme right, as the workload returns to exhibit its
original characteristics (low load, write/read ratio and conflict rate), the
Cloud-TM will accordingly release the additional nodes acquired from the
cloud infrastructure and switch back to use a primary-backup scheme (that
outperforms multi-master approaches in these workload conditions). This
will avoid underutilizing the hired resources and minimise the operational
costs sustained by the cloud user.

5. Current research directions
explored in the Cloud-TM project

The design of self-tuning transactional replication mechanisms
encompasses two major problems:

16 Maria Couceiro, Paolo Romano, Luís Rodrigues

(1) determining the optimal replication strategy/operational mode on
the basis of the current, and foreseen, workload and system
characteristics

(2) allowing the efficient switching among multiple protocols/system
configurations.

Concerning the first of the above two issues, we are faced with a complex
multi-variable online optimisation problem that entails monitoring/tuning
of a large number of system indicators/parameters.

The performance of a replicated transactional system is, in fact, not
only determined by the current demand/utilisation of system resources, for
example CPU, network bandwidth, memory. Workload characteristics (for
example, transaction conflict probability), as well as scale (i.e. number of
nodes) and topology (for example, single data centre vs multiple
geographically distributed clusters) of the platform have a large impact on
performance.
Further, self-tuning a replicated transactional system necessarily entails
the automatic optimisation of at least some of its fundamental building
blocks, such as the underlying Group Communication System (Miranda et
al. 2001) and local concurrency control algorithm (Sonmez et al. 2009).

We are currently tackling this issue by using differentiated
methodologies, including analytical performance modelling (Sanzo et al.
2011), machine learning techniques (using both online reinforcement
learning techniques and off-line approaches, such as neural networks or
decision trees [Couceiro et al. 2010]), and more recently control theoretic
techniques (Goebel et al. 2009).

Some relevant results that we have recently achieved in these areas are
related to the performance forecasting of popular transactional memory
algorithms (Sanzo et al. 2011) (for example the commit-time locking
algorithm used in TL2 [Dice et al. 2006]), of Atomic Broadcast protocols
(Couceiro et al. 2009; Romano and Leonetti 2011), and of alternative
certification replication schemes (Couceiro et al. 2011).

Let us now analyse the second issue, namely the need to design
efficient mechanisms aimed at supporting the dynamic switching among
different replication algorithms. Achieving this goal requires addressing
problems of both a theoretical and practical nature.

On the practical side, it requires engineering a framework that permits
efficient switching between heterogeneous (possibly) distributed state
consistency mechanisms. On the theoretical side, it would be desirable to
design ad hoc schemes to preserve correctness despite the simultaneous
coexistence of incompatible contention management strategies.

Towards Autonomic Transactional Replication for Cloud Environments 17

In fact, unlike in conventional non-distributed transactional systems
(Guerraoui et al. 2005), the Cloud-TM platform is composed by
distributed nodes, which need to consistently cooperate according to a
common replica coordination scheme. Generally speaking, this raises the
problem of enforcing a distributed agreement among the platform nodes in
case of alteration of the adopted replication protocol.

In practice, however, the complexity of this dynamic reconfiguration
task depends on the nature of the replication protocols from/towards which
the system transitions. In fact, Couceiro et al. (2011) show that by
exploiting knowledge of the dynamics of the destination and target
replication protocols, it is possible to architect the replication manager to
simultaneously support multiple atomic broadcast based replication
protocols. We are currently working on mechanisms allowing for seamless
switching between single and multi-master strategies, avoiding any stall or
unnecessary transaction abort during transition periods.

It is worth highlighting that the efficiency of the mechanisms employed
to support the system's reconfiguration is of paramount importance. This is
particularly true in case the self-tuning mechanism relies on online
reinforcement learning techniques for identifying the reconfiguration
policies to be used in the system.

These approaches are particularly attractive as they are based on
lightweight algorithms, and since they spare the burden of developing
accurate models of the system to be controlled. The latter is a complex,
error-prone and time consuming task, which may even be unfeasible in
virtualised environments (as typical of IaaS cloud infrastructures [Amazon
2010]), where little or no knowledge is available on the actual
characteristics of the underlying physical infrastructure.

On the other hand, online learning approaches require (possibly
periodical) exploratory phases, in which multiple reconfiguration
strategies are tested in order to build (or enhance) the initial (or current)
statistical knowledge of the system's behaviour (typically in terms of
rewards associated with state/action pairs [Sutton and Barto 1998]). The
practical viability of these approaches is therefore strictly dependent on the
availability of mechanisms supporting efficient distributed
reconfigurations.

6. Conclusions

Elastic scaling, one of the key drivers underlying the success of the cloud
computing paradigm, makes the problem of self-tuning the data

18 Maria Couceiro, Paolo Romano, Luís Rodrigues

consistency mechanisms a crucial issue in order to maximize efficiency of
transactional data grids. This is one of the key goals being pursued in the
Cloud-TM project, and on which this book chapter has focused.

Based on a critical analysis of the main existing transactional
replication schemes, and via an experimental study relying on fully-
fledged prototypes, we have highlighted a number of relevant trade-offs
among the solutions proposed so far in literature. We have shed light on
some of the key challenges that need to be addressed to achieve this
ambitious goal, and overviewed some of the approaches that we are
currently investigating to address these challenges.

References

Amazon. 2010. “Amazon elastic compute cloud amazon ec2”.

http://aws.amazon.com/ec2/ (accessed
Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R. H., Konwinski A.,

Lee G., Patterson D. A., Rabkin A., Stoica I. and Zaharia M. “Above
the Clouds: A Berkeley View of Cloud Computing.” Technical Report
UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, 2009.

Attiya, H., Gramoli, V. and Milani, A. “A provably starvation-free
distributed directory protocol”. In Proceedings of the 12th international
conference on Stabilization, safety, and security of distributed systems
(SSS'10). Springer-Verlag, Berlin, Heidelberg, 2010.

Bernstein, P. A., Hadzilacos, V. and Goodman, N. “Concurrency control
and recovery in database systems.” Boston: Addison-Wesley
Publishing Co, 1986.

Bloom, B. H. “Space/Time Trade-Offs in Hash Coding with Allowable
Errors.” Communications of the ACM 13 (7): 422–426.

Bocchino, R., Adve, V. and Chamberlain, B. “Software transactional
memory for large scale clusters”. In Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming (PPoPP '08). ACM, New York, NY, USA, 2008.

Cachopo, J. and Rito-Silva, A. “Versioned Boxes as the Basis for Memory
Transactions.” Science Computer Programming 63(2) (2006):172–185.

Carvalho, N., Romano, P. and Rodrigues, L. “Asynchronous lease-based
replication of software transactional memory”. In volume 6452 of
Lecture Notes in Computer Science, 376–396. Springer
Berlin/Heidelberg, 2010.

Towards Autonomic Transactional Replication for Cloud Environments 19

Ciciani, B., Dias, D. and Yu, P. “Analysis of Concurrency-Coherency
Control Protocols for Distributed Transaction Processing Systems with
Regional Locality.” Software Engineering, IEEE Transactions on 18
(10) (1992): 899–914.

Couceiro, M., Romano, P., Carvalho, N. and Rodrigues, L. “D2stm:
Dependable distributed software transactional memory.” In PRDC’09:
Proceedings of the 15th Pacific Rim International Symposium on
Dependable Computing, Shanghai, China, 2009.

Couceiro, M., Romano, P. and Rodrigues, L. “A machine learning
approach to performance prediction of total order broadcast protocols”.
In SASO’10: Proceedings of the 4th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, Budapest, Hungary, 2010.

–––. “Polycert: Polymorphic self-optimizing replication for in-memory
transactional grids”. In Middleware ‘11: Proceedings of the
ACM/IFIP/USENIX 12th Middleware Conference, Lisbon, Portugal,
2011.

Defago, X., Schiper, A., and Urban, P. “Total order broadcast and
multicast algorithms: Taxonomy and survey.” ACM Computing
Surveys 36 (4) (2004): 372–421.

Dice, D., Shalev, O., and Shavit, N. “Transactional locking ii.” In
Distributed Computing, volume 4167 of Lecture Notes in Computer
Science, edited by Dolev, S., 194–208. Springer Berlin / Heidelberg.
2006.

 Franklin, M. J., Carey, M. J. and Livny, M. "Transactional Client-Server
Cache Consistency: Alternatives and Performance." ACM Transactions
on Database Systems 22 (3) (1997): 315–363.

Goebel, R., Sanfelice, R. and Teel, A. “Hybrid Dynamical Systems.”
Control Systems IEEE 29 (2) (2009): 28–93.

Gray, J., Helland, P., O'Neil, P. and Shasha, D. “The dangers of replication
and a solution”. In Proceedings of the ACM SIGMOD international
conference on Management of data, J. Widom (Ed.). ACM, New York,
NY, USA, 1996.

Guerraoui, R., Herlihy, M. and Pochon, B. “Polymorphic contention
management.” In Distributed Computing, volume 3724 of Lecture
Notes in Computer Science, edited by Fraigniaud, P., 303–323.
Springer Berlin / Heidelberg, 2005.

Guerraoui, R. and Rodrigues, L. Introduction to Reliable Distributed
Programming. New York: Springer, 2006.

Herlihy, M. and Sun, Y. “Distributed Transactional Memory for Metric-
Space Networks.” Distributed Computing 20 (2007): 195–208.

20 Maria Couceiro, Paolo Romano, Luís Rodrigues

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.,

Jones, E., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J. and Abadi,
D. “H-store: a high-performance, distributed main memory transaction
processing system.” Procedings of the VLDB Endowment 1 (2) (2008):
1496–1499.

Kemme, B. and Alonso, G. “A Suite of Database Replication Protocols
based on Group Communication Primitives.” In Proceedings of the The
18th International Conference on Distributed Computing Systems
(ICDCS '98). IEEE Computer Society, Washington, DC, USA, 1998.

–––. “Don’t Be Lazy, Be Consistent: Postgres-R, A New Way to
Implement Database Replication.” In Proceedings of the 26th Very
Large Data Base Conference, Cairo, Egypt. ACM, 2000.

Miranda, H., Pinto, A. and Rodrigues, L. “Appia, a Flexible Protocol
Kernel Supporting Multiple Coordinated Channels.” In Procedings of
ICDCS’01, Phoenix, Arizona. IEEE, 2001.

Nicola, M. and Jarke, M. “Performance Modeling of Distributed and
Replicated Databases.” IEEE Transactions on Knowledge and Data
Engineering 12 (4) (2000): 645–672.

Patino-Martínez, M., Jiménez-Peris, R., Kemme, B. and Alonso, G.
“Scalable Replication in Database Clusters”. In Proceedings of the
International Conference on Distributed Computing (DISC), 315– 329.
New York: Springer, 2000.

Pedone, F., Guerraoui, R. and Schiper, A. “The Database State Machine
Approach.” Distributed and Parallel Databases 14 (1) (2003): 71–98.

Romano, P. and Leonetti, M. “Self-tuning Batching in Total Order
Broadcast Protocols via Analytical Modelling and Reinforcement
Learning.” ACM Performance Evaluation Review, to be published
2011.

Sanzo, P. D., Ciciani, B., Palmieri, R., Quaglia, F. and Romano, P. “On
the Analytical Modeling of Concurrency Control Algorithms for
Software Transactional Memories: The Case of Commit-Time-
Locking.” Elsevier Performance Evaluation Journal, to be published
2011.

Schneider, F. B. Replication management using the state-machine
approach. ACM Press/Addison-Wesley Publishing Co., 1993.

Shavit, N. and Touitou, D. “Software transactional memory.” Distributed
Computing 10 (1997): 99–116.

Sonmez, N., Harris, T., Cristal, A., Unsal, O. S. and Valero, M. “Taking
the heat off transactions: Dynamic selection of pessimistic concurrency
control”. In Proceedings of the 2009 IEEE International Symposium on

Towards Autonomic Transactional Replication for Cloud Environments 21

Parallel & Distributed Processing. Washington, DC, USA. IEEE
Computer Society, 2009.

Stonebraker, M., Madden, S., Abadi, D., Harizopoulos, S., Hachem, N.
and Helland, P. “The end of an architectural era: (it's time for a
complete rewrite).” In Proceedings of the 33rd international conference
on Very large data bases (VLDB '07). VLDB Endowment 1150–1160,
2007.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction.
Cambridge MA and London: MIT Press, 1998.

	

