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Abstract
Many different mechanisms have been developed to implement Distributed

Transactional Memory (DTM). Unfortunately, there is no “one-size-fits-all”
design that offers the desirable performance across all possible workloads and
scales. In fact, the performance of these mechanisms is affected by a number
of intertwined factors that make it hard, or even impossible, to statically
configure a DTM platform for optimal performance. These observations have
motivated the emergence of self-tuning schemes for automatically adapting
the algorithms and parameters used by the main building blocks of DTM
systems. This chapter surveys existing research in the area of autonomic DTM
design, with a focus on the approaches aimed at answering the following two
fundamental questions: how many resources (number of nodes, etc.) should
a DTM platform be provisioned with, and which protocols should be used to
ensure data consistency.

1 Introduction

After more than a decade of research, implementations of the Transactional
Memory (TM) abstraction have matured and are now ripe to enter the realm
of mainstream commodity computing. Over the last couple of years, TM sup-
port has been integrated in the most popular open-source compiler, GCC,
and also in the CPUs produced by industry-leading manufacturers such as
Intel [1] and IBM [2]. Distributed Transactional Memory (DTM) [3, 4, 5]
represents a natural evolution of this technology, in which transactions are
no longer confined within the boundaries of a single multi-core machine but,
instead, may be used as a synchronization mechanism to coordinate concur-
rent executions taking place across a set of distributed machines. Just like
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TM have drawn their fundamental motivation in the advent of multi-core
computing, the need for identifying simple, yet powerful and general pro-
gramming models for the cloud is probably one of the key factors that have
garnered growing research interest in the area of DTM over the last years [6].
Another major driver underlying existing research efforts in the area of DTM
is fault-tolerance: as TM-based applications are expected to turn mainstream
in the short term, it becomes imperative to devise efficient mechanisms capa-
ble of replicating the state of a TM system across a set of distributed nodes
in order to ensure their consistency and high-availability despite the failures
of individual nodes [7, 8].

From the existing literature in the area of DTM, it can be observed that the
design space of DTM platforms is very large and encompasses many complex
issues, such as data placement and caching policies, replication protocols,
concurrency control mechanisms, and group communication support, just
to name a few. The performance of these fundamental building blocks of
a DTM is affected by multiple intertwined factors. This has motivated the
development of a wide range of alternative implementations, each exploring
a different trade-off in the design space and optimized for different workload
types, platform’s scales, and deployment scenarios. As a result, the body of
literature on DTM encompasses solutions tailored for read-intensive [7] vs
conflict-prone [9, 10] workloads, replication mechanisms optimized for small
clusters [11], large scale data centers [12, 13], as well as approaches specifically
targeting geographically distributed DTM platforms [3].

One of the key conclusions that can be easily drawn by analyzing the re-
sults above is that there is no “one-size-fits-all” solution that can provide
optimal performance across all possible workloads and scales of the plat-
form. This represents a major obstacle for the adoption of DTM systems in
the cloud, which bases its success precisely in its ability to adapt the type
and amount of provisioned resources in an elastic fashion depending on the
current applications’ needs. Besides, a DTM encompasses an ecosystem of
complex subcomponents whose performances are governed by a plethora of
parameters: manually identifying the optimal tuning of these parameters can
be a daunting task even when applications are faced with static workloads
and fixed deployments. Guaranteeing optimal efficiency in presence of a time
varying operational envelope, as typically occurs in cloud computing envi-
ronments, requires to adjust these parameters in a dynamic fashion — a
task that is arguably extremely onerous, if not impossible, without the aid
of dedicated self-tuning mechanisms.

This is precisely the focus of this chapter, in which we dissect the problem
of architecting self-tuning mechanisms for DTM platforms, with a special
emphasis on solutions that tackle the following two fundamental issues:

• elastic scaling: DTM systems can be deployed over platforms of different
scales, encompassing machines with different computational capacities
interconnected via communication networks exhibiting diverse perfor-
mances. Hence, a fundamental question that needs to be addressed when
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architecting a DTM-based application is how many and what types of re-
sources (number of nodes, their configuration, etc.) should be employed
(e.g., acquired from an underlying IaaS (Infrastructure as a Service) cloud
provider) in order to ensure predetermined performance and reliability
levels. In cloud computing environments, where resources can be dis-
pensed elastically, this is not a one-off problem, but rather a real-time
optimization problem. Its optimal solution requires not only to estimate
the performance of applications when deployed over infrastructures of
different scale and types, but also to encompass economical aspects (e.g.,
by comparing the cost of a DTM deployment over a large number of
relatively slow nodes against a deployment on a smaller number of more
powerful machines) as well as issues related to the on-line reconfiguration
of the platform (namely, how to rearrange data after scaling);

• adapting the data consistency protocol: the literature on data consistency
protocols for distributed and replicated transactional systems is a quite
prolific one. Existing approaches explore a number of different design
choices, concerning aspects such as whether to execute transactions on
all nodes (as in active replication [14]) or executing in just one replica
and only propagating the transaction’s updates (a.k.a. deferred update
schemes [15]), how to implement transaction validation [16], and whether
to use distributed locking [17] vs total order communication protocols [18]
to serialize transactions. This has motivated research aimed at support-
ing the automatic switching between multiple data consistency protocols,
and, in some cases even the simultaneous coexistence of different proto-
cols. The key challenges addressed in these works are related to how to
preserve consistency despite the (possibly concurrent) employment of al-
ternative consistency protocols, as well as to the identification of the best
strategy to adopt given the current workload and system’s characteristics.

The remainder of this chapter is structured as follows. We first provide,
in Section 2, an overview of the main building blocks encompassing typical
DTM architectures, and illustrate some of the key choices at the basis of their
design. Next, in Section 3, we identify the DTM components that would
benefit the most from the employment of adaptive, self-tuning designs. In
Section 4, we provide background on the main methodologies employed in
the literature to decide when to trigger an adaptation and to predict which
among the available strategies to adopt. In Section 5 we focus on elastic
scaling, and in Section 6 we discuss adaptation of the consistency protocols.
Finally, Section 7 concludes the paper.

2 Background on DTM

This section is devoted to overview on the key mechanisms that are encom-
passed by typical DTM architectures. It should be noted that the discussion
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Fig. 1 High level architecture of typical DTM platforms (single node).

that follows does not aim at providing a thorough and exhaustive survey
of existing DTM designs, but rather to facilitate the description of the self-
tuning DTM systems described in the remainder of this chapter.

The diagram in Figure 1 depicts the high level architecture of a typical
DTM platform, illustrating the key building blocks that compose the software
stack of this type of system.

DTM API. At their top most layer, existing DTM platforms expose APIs
analogous to those provided by non-distributed TMs that allow to define a
set of accesses to in-memory data to be performed within an atomic transac-
tion. The actual API exposed by a DTM is ultimately influenced by the data
model that it adopts; the range of data models explored in the DTM litera-
ture includes, besides the object-based [7] and word-based [5] ones (typically
employed in non-distributed TMs), also popular alternatives in the NoSQL
domain, like the key-value [13, 19] model. Certain DTM platforms [20, 21]
that support partial replication schemes (i.e., which do not replicate data at
every replica of the system) provide also dedicated API support to influence
the policies employed to determine the placement of data (and its replicas)
across the nodes of the system, with the goal of enhancing the data locality
achieved by DTM applications. These include programmatic mechanisms to
ensure the co-location of data items [21] or to provide the data placement
service with semantic information (like the data item’s type and the relations
in which it is involved) concerning the data access patterns generated by the
nodes of the platform [20].

Data Placement Service. The data placement service, as the name sug-
gests, is responsible for locating the nodes that maintain (replicas of) the data
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items accessed during the transaction execution. This module is required ex-
clusively in case the DTM platform adopts a partial replication scheme (as
in fully replicated systems each node maintain a replica of every data item),
although certain DTM platforms may rely on analogous abstractions to es-
tablish ownership privileges of nodes on data items [21]. The actual imple-
mentation of this service is strongly affected by the transaction execution
model embraced by the DTM, which can be either control-flow or data-flow.
In control-flow systems data items are statically assigned (unless the plat-
form is subject to elastic scaling) to the nodes of the platform, which retrieve
non-local data items via RPC. In data-flow systems, conversely, transactions
are immobile and objects are dynamically migrated to invoking transactional
nodes. As in the control-flow model the placement of data is static, several
control-flow DTM systems [21, 22, 12] adopt simple policies based on con-
sistent hashing [23]. This technique, which essentially maps data items to
nodes of the platform randomly via the use of a hash function, has the desir-
able properties of executing data items look ups locally (i.e., the nodes that
replicate a given data item can be identified by computing the hash of its
identifier) and achieving a good balance in the data distribution. Data-flow
DTMs, on the other hand, rely on ad-hoc (distributed) directory or cache co-
herence protocols, such as the Arrow [24] or the Ballistic [25] protocols. These
protocols require that, in order for a node to access a data item, it must first
acquire its ownership (which implies locating the current data item owner).
As a result, data-flow models can introduce additional network hops along
the critical path of execution of transactions with respect to control-flow solu-
tions (that do not allow migration of data). On the pro-side, by dynamically
moving the ownership of items to the nodes that access them, data-flow sys-
tems can spontaneously lead to data placement strategies achieving better
locality than static policies, like consistent hashing, supported exclusively
by control-flow systems. A detailed discussion on control-flow and data-flow
models, as well as on systems adopting these models, can be found in Chapter
16.

Transaction Dispatcher. The transaction dispatcher is a component present
in several DTM platforms [10, 5, 26], and is in charge of determining whether
the execution of a transaction should take place on the node that generated it,
on a different one, or even by all nodes in the platform. This decision can be
driven by different rationales, such as reducing data contention [26] or enhanc-
ing data locality [10, 5, 21]. In order to support the migration and execution of
entire transactions at remote nodes, the transaction dispatching mechanism
typically requires ad-hoc support at the DTM API layer in order to ensure
proper encapsulation of the transaction logic, i.e., a function/procedure en-
coded in a programming language, and of its input parameters (using classic
RPI mechanisms).

Local STM. As for the local data stores, existing DTM platforms typically
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leverage on state of the art local STMs, which implement efficient concurrency
control algorithms optimized for modern multi-core architectures [7, 11, 9,
27].

Cache for Remote Data. Some partially replicated DTM platforms [28,
21] cache frequently accessed remote data items, and update them using
lazy/asynchronous invalidation strategies. Clearly, it must be possible to ma-
nipulate also cached data without breaking consistency: therefore they are
maintained in memory and their manipulation is subdued to some form of
concurrency control. However, cached data need typically to be associated
with different meta-data and managed with different rules than the data
stored in the local STM (whose ownership can be established via the data
placement service). As a consequence, cached data are normally maintained
in separate in-memory structures.

Distributed Consistency Protocol. Clearly, the data accesses performed
by local transactions need to be synchronized with those issued by transac-
tions executing at different nodes. The responsibility of this task is delegated
to a distributed consistency protocol, which is ultimately responsible for en-
forcing the consistency guarantees ensured by the DTM platform. The liter-
ature on DTM (and more in general on distributed transactional platforms,
e.g., distributed DBMS) has explored a number of alternative consistency
levels, like 1-copy serializability [13], virtual world consistency [9], extended
update serializability [12] and parallel SI [29]. Clearly, the choice of the con-
sistency criterion has a strong impact on the design of the underlying dis-
tributed consistency protocol. Another factor that has a key impact on the
distributed consistency protocol is whether the system employs full or partial
replication. In fully replicated DTM platforms, in fact, once the transaction
serialization order is established (typically by means of a consensus or atomic
broadcast service [7]), the nodes can determine the outcome of committing
transactions locally (by validating their read-set with respect to the most
recent committed version). Conversely, in partially replicated DTM systems,
some sort of 2PC-like agreement is unavoidable, as the snapshot accessed by a
committing transaction needs to be validated, in general, by multiple nodes,
which must certify the freshness of the transaction’s snapshot with respect to
the locally stored authoritative copies of data. Over the last decades, a vast
literature on distributed consistency protocols for transactional systems has
emerged [15, 30, 31]. A possible taxonomy of existing solutions is reported in
Figure 2.

Single-master. In single master schemes, also known as primary backup, write
transactions are executed exclusively at a single node (also called master or
primary), whereas the remaining replicas can only run read-only transac-
tions [32]. Upon failure of the master, a backup replica is elected to become
the new master.
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Fig. 2 Taxonomy for consistency protocols in transactional systems.

Note that, as the write transactions can be serialized locally by the mas-
ter using its local concurrency control algorithm, this approach can rely on a
simpler replica synchronization scheme with respect to multi-master solutions
(as we will see shortly). On the down side, the throughput of write transac-
tions does not clearly scale up with the number of nodes in the system, which
makes the master prone to become the system bottleneck.

Multi-master. Multi-master schemes, on the other hand, are typically more
scalable as transactions can be processed on all nodes. There are two types of
synchronizing the accesses to data: eager and lazy. The first relies on a remote
synchronization phase upon each (read/write) access, which normally results
in very poor performance results [33].Conversely, the lazy approach defers
replica synchronization till the commit time, which is when the transaction
is finally validated. Lazy multi-master schemes can be classified based on
whether they rely on Atomic Commit Protocols (such as Two-Phase Commit)
or Total Order (TO) [34] broadcast/multicast schemes to determine the global
serialization order of transactions.

Two-Phase Commit. In solutions based on Two-Phase Commit (2PC), trans-
actions attempt to atomically acquire locks at all nodes that maintain data
accessed by the transaction. Even though these schemes normally incur in
minor communication overheads with respect to those relying on TO, these
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solutions are well known to suffer of scalability problems due to the rapid
growth of the distributed deadlock rate as the number of replicas in the sys-
tem grows [17].

Total Order based schemes. Conversely, TO-based replication is a family of
(distributed) deadlock-free algorithms that serializes transactions according
to the total order established by a TO service [34]. These solutions can be
distinguished into two further classes: state machine replication and certifi-
cation.

State Machine Replication. In the state machine replication [14, 35], all repli-
cas1 execute the same set of transactions in the same order. The transactions
are shipped to all replicas using total order broadcast and, consequently, all
replicas receive transactions in the same order and execute them in that order.
However, both transactions and validation scheme must be fully deterministic
so that all replicas begin and finish transactions in the same state.

Certification. Unlike State Machine Replication, certification based tech-
niques undertake a speculative approach, which can achieve higher scalability,
in low conflict workloads, by fully executing the transaction only at one node.
This means that different transactions may be executed on different replicas
concurrently. If the transaction aborts during its execution, no further co-
ordination is required. However, if the transaction is ready to commit, a
transaction validation phase is triggered in order to certify that it has not
accessed stale items. The information exchanged to certify transactions varies
depending on the considered certification protocol (e.g., non-voting [36], vot-
ing [37] or bloom-filter based [7]), but the certification request is disseminated
by means of a TO broadcast service that targets all the nodes that maintain
replicas of the data items accessed by the transaction. In case of partial repli-
cation, as already mentioned, this certification phase may have to involve a
voting phase to gather positive acknowledgements from at least one replica
of each data item accessed within the transaction; in this case the message
pattern of the distributed consistency protocols coincides with the one of the
2PC scheme, in which the prepare messages are disseminated using a TO
service.

3 What should be self-tuned in a DTM?

As it clearly emerges from the discussion in the previous section, the design
and configuration space of DTM is quite vast, and there are several com-
ponents in the DTM stack whose setting and parametrization has a strong

1 This technique has been proposed for fully replicated systems.
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impact on DTM performance. Indeed, performance of a DTM application
are driven by complex non-linear dynamics stemming from the intertwined
effects of workload’s resource utilization (e.g., in terms of CPU and net-
work bandwidth), data access pattern (e.g., data contention and locality),
inter-nodes communication (e.g., for remote read operations) and distributed
synchronization (e.g., for committing transactions).

Typical Key Performance Indicators (KPIs) of a DTM are general purpose
metrics like transactions response time and achievable throughput. DTM-
specific KPIs include also metrics like transactions abort probability, execu-
tion time of the distributed commit phase, number of remote accesses during
the execution phase, and number of nodes involved in the transaction process-
ing. While Quality of Service specifications are typically expressed in terms of
throughput and response time, DTM-specific KPIs are fundamental metrics
in many DTM self-tuning schemes, as they allow for pinpointing bottlenecks
and for identifying sub-optimal configurations. For example, a high abort rate
may imply an excessive concurrency level in the platform and may lead to the
decrease of the number of concurrently active transactions in the platform.

Recent research [26, 38, 39, 40] has shown that transactional workloads
are very heterogeneous and affected by so many variables that no-one-size-
fits-all solution exists for the DTM configuration that guarantees optimal
performance across all possible applications’ workloads. To address this is-
sue, a number of alternative solutions have been proposed to tackle the prob-
lem of self-tuning DTMs. Such solutions draw from different fields of perfor-
mance modeling and forecasting and aim to optimize several major building
blocks/configuration parameters of DTMs, focusing in particular on the fol-
lowing five aspects: elastic scaling, choice of the consistency protocol, data
placement and replication degree, communication layer and local TM imple-
mentation.

In the following, we analyze the main trade-offs that emerge in the self-
tuning of these DTM building blocks. In Section 5 and Section 6 we will
return to investigate in greater detail the problems of automating the elastic
scaling process and the choice of consistency protocol, by surveying existing
research in these areas.

Scale. The scale of a DTM consists in the number of nodes composing the
platform and, possibly, the maximum number of active threads allowed on
each node, namely, the multiprogramming level (MPL). Accordingly, the elas-
tic scaling, i.e., dynamic resizing, of a DTM can take place horizontally, by
altering number of nodes in the platform, or vertically, by adapting the MPL.

Different scales in the DTM not only result in a different physical resources
utilization, but also into different data access patterns. In fact, increasing the
number of active transactions in the system, either by scaling horizontally
or vertically the platform, other than requiring more processing power, also
results into a higher concurrency in accessing and modifying shared data,
with a possible commensurate increase of conflicts and, hence, abort rate.
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This poses a major challenge when devising elastic scaling schemes for DTMs
as the bottleneck of a DTM application may lie in data contention. Hence,
scalability trends of DTM applications are far from being easily predictable,
as increasing the processing power, i.e., number of nodes, or processing units,
i.e., number of threads, does not always entail better performance.

Scaling out a DTM poses additional challenges than altering its MPL level:
changing the number of nodes composing a DTM, in fact, results not only
into an increased processing power, but also into a modification of the place-
ment of data, which can get redistributed across the nodes of the platform
(as it is case, for instance, when using consistent hashing-based placement
policies). Such modification can imply a shift in data locality, and affect the
probability that a transaction accesses data maintained by its originating
node. For write transactions this results also in a change in the number of
nodes to be contacted at commit time to propagate updates and, hence, in
the duration of the corresponding phase.

The aforementioned DTM dynamics are not encompassed by the vast ma-
jority of available state-of-the-art solutions for automatic resource provision-
ing, as they mainly target stateless applications or neglect the impact of
elastic scaling on data distribution and contention [41, 42, 43, 44, 45, 46].
Devising an optimal autonomic elastic scaling schemes for DTM is, thus, a
very challenging task, which needs to be tackled by means of ad hoc solutions.

Distributed Consistency Protocol. Like for the scale, the choice of the
distributed consistency protocol has a huge impact on both logical and phys-
ical resource utilization. Single master approaches deal with the concurrency
control of update transactions on the master node: on one side this tends to
mitigate data contention, as conflicts can be resolved more efficiently, i.e.,
in a fully local fashion and without the need to run a distributed consen-
sus algorithm to determine the outcome of a transaction; on the other hand,
the master node may become a bottleneck in case the arrival rate of update
transactions exceeds its processing capacity.

Multi-master schemes, instead, allow for a better load balancing among
nodes even in write dominated workloads (by distributing update transac-
tions across all the nodes of the DTM platform), but generally require oner-
ous inter-node synchronization mechanisms for detecting and resolving con-
flicts among transactions. As mentioned in Section 2, consistency protocols
based on 2PC require only two round-trip between a transaction’s initiator
and other involved nodes to agree on the outcome of the transaction, but
are liable to distributed deadlocks; TO-based protocols, conversely, achieve
deadlock freedom, but the latency induced by the TO primitive may lead to
higher synchronization costs at commit time [39].

Data placement and replication degree. Data locality plays a role of
paramount importance in DTMs, as it determines the frequency of access
to remote data present in the critical path of execution of transactions [20].
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The tuning of the data placement and of the replication degree is aimed at
enhancing the quality of the data layout, so as to increase data locality and
reduce the execution time of transactions.

Two fundamental challenges that need to be tackled for implementing ef-
fective self-tuning data placement schemes are i) how to identify the optimal
data layout (i.e., the data layout that maximizes the performance of the
platform), and ii) how to keep track of the new mapping between data item
replicas and nodes in the DTM platform. The former is in fact a distributed
optimization problem, which has been addressed both in its on-line [20, 47]
and off-line [48, 49] formulation, considering different objective functions and
constraints (e.g., maximizing locality [20, 48] vs balancing load [47]) and
both centralized [48] and decentralized [20] solutions. As for the tracking of
the mapping between data items and nodes of the DTM platform, there are
two main trade-offs that need to be taken into account. Approaches relying
on external (and properly dimensioned) directory services [48, 47] can typ-
ically support fine-grained mapping strategies also for large data sets, but
impose non-negligible additional latency in the transaction’s critical path.
Approaches that explicitly store the mapping of the entire data set at each
node either rely on random hash functions [21] or on coarse grained map-
ping strategies — as the overhead for storing and keeping synchronized a
fine-grained mapping would be unbearable with large data sets. This has
motivated the usage of probabilistic techniques [20, 49] that sacrifice accu-
racy of data items lookups in order to reduce the memory footprint of the
meta-data used to encode the data-to-nodes mapping.

The tuning of the replication degree in a DTM [50, 38] is another closely
related problem, which encompasses a subtle trade-off between the probabil-
ity of accessing locally stored data and the cost of the synchronization phase
necessary to validate committing transactions. On one hand, in fact, increas-
ing the replication degree generally results into a higher probability that a
transaction accesses a data item that is maintained by the local node; on
the other hand, for update transactions, it also typically leads to an increase
in the number of nodes to be contacted at commit time for validating the
transaction and propagating its updates [38].

Group Communication System. Inter-nodes communication represents
a major source of overhead in DTM, as it can introduce relatively large
latencies in the critical path of execution of transactions, both for the retrieval
of remote data items and to support the distributed commit phase [4, 51].
Other than increasing transactions’ completion time (and hence reducing the
achievable throughput), these latencies can have a great impact also on the
conflict rate of transactions: in fact, the longer a transaction takes to execute,
the higher is the chance that another transaction will try to concurrently
access and/or modify a common datum.

A typical trade-off that arises in the design of coordination services, like
consensus or total order multicast primitives, is that configurations/protocols
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that exhibit minimum latencies at low message arrival rate tend also to
support relatively low throughputs. Conversely, protocols/configurations op-
timized for supporting high throughputs normally introduce much higher
latencies when operating at low throughput levels. These trade-offs have
motivated the development of self-tuning mechanisms supporting both the
dynamic switching between alternative implementations of communication
primitives (e.g., variants of TO) [52, 53], as well as automatic configuration
of internal parameters of these protocols (e.g., message batching) [54, 55].

Local TM. As discussed in Section 4.2, the typical architecture stack of
DTM systems includes a non-distributed (S)TM, which is used to regulate
concurrent access to locally stored data. The problem of self-tuning TM has
also been largely explored in literature, as TM and DTM, unsurprisingly,
exhibit similar trade-offs, e.g., the workload characteristics can strongly affect
the performance of the concurrency control algorithm, as well as the optimal
MPL. Examples of self-tuning solutions that dynamically adjust these TM
mechanisms/parameters can be found in [56, 57, 58, 59].

Another TM parameter that has been object of self-tuning techniques
is the lock granularity [60]. Lock granularity expresses what is the atomic
portion of the data set (or of the memory space, for centralized TMs) that the
concurrency control scheme deals with. The finer is the granularity, the higher
is the concurrency that the concurrency control scheme allows for, but also
the overhead incurred to maintain and manage meta-data. For example, in a
per-item locking scheme, every data item is guarded by a lock and conflicts
can be detected at the granularity of the single item. A coarser scheme,
instead, reduces the number of employed locks at the cost of inducing false
conflicts, i.e., conflicts among transactions that access different data items,
which, nonetheless, insist on the same lock.

Finally, self-tuning techniques have been proposed to optimize the thread
mapping strategy [61] and efficiently exploit the memory hierarchy of modern
multiprocessors. In these architectures, just like we just described for the
distributed case, data locality plays a fundamental role in determining the
performance of an application. Thread mapping consists in placing threads
on cores so as to amortize memory access latency and/or to reduce memory
contention, i.e., it tries to allocate a thread that frequently accesses a given
memory region on the core that incurs the minimal latency when accessing
that portion of the memory space.

4 When and which adaptation to trigger?

In this section, we provide background on the main methodologies that are
commonly employed in the literature of self-tuning systems to tackle two key
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issues: when to trigger an adaptation, and how to predict which among the
available reconfigurations to enact.

4.1 When to trigger adaptations?

An important aspect to consider when dealing with self-tuning of systems is
determining when to trigger an adaptation. This aspect gains a paramount
importance in DTMs, in particular when performing elastic scaling, replica-
tion switching or change in the replication degree. In fact, global reconfig-
urations and data migration can pose significant overhead on transactions
processing, which may severely hinder performance during a non-negligible
time window [62].

In this context, a key classification of existing self-tuning techniques is
whether they react to workload changes, or they try to anticipate them.
Another fundamental problem is related to the issue of distinguishing in a
robust way actual workload changes from transient noise, which frequently
affect workload metrics measurements in large scale systems. Finally, an-
other relevant issue, which is at the basis of proactive schemes, is how to
predict future workload trends. In the following we provide an overview of
the key methodologies/building blocks that are used to address these issues.
It should be noted that the techniques described below can be employed in
a broad range of self-tuning systems, and their applicability is not restricted
to adaptive DTM platforms.

Before describing each of these techniques, it is worth noting that in a
DTM environment a workload can be characterized using a multitude of
metrics. Besides classical/general-purpose metrics, like transactions arrival
rate and CPU/bandwidth demand to perform operations, the workload of a
DTM can be characterized also using DTM-specific metrics, such as the ratio
of read-only vs update transactions, the number of accessed data items per
transaction, and the transaction conflict probability.

Reacting to vs Predicting Workload Changes. A key characteristic
that allows for coarsely classifying existing self-tuning mechanisms is whether
they rely on reactive vs proactive approaches. Reactive schemes evaluate the
need for reconfiguration based on the current workload, whereas proactive
self-tuning strategies attempt to anticipate the need for changing system’s
configuration by predicting future workload trends.

Since reactive schemes track variations of the workload based on recent ob-
servations,they typically allow the system to react promptly even to abrupt
workload changes due to exogenous factors (like flash crowds [63]), which
would be very hard, if not impossible, to predict using proactive schemes.
However, given that the reconfiguration is carried out against the current
workload, reactive schemes can yield sub-optimal performance during tran-
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sitory phases, especially in case the adaptation phase incurs a non-negligible
latency.

On the other hand, the pros of proactive strategies coincide with the cons
of reactive ones. By anticipating the need for changing system’s configura-
tion, adaptations can be enacted before the occurrence of workload changes.
As a result, proactive approaches can reduce the period of time during which
suboptimal configurations are used. On the other hand, the effectiveness of
proactive approaches is strongly dependent on the accuracy of the mech-
anisms that they adopt to predict future workload trends (which we will
overview shortly). For this reason, proactive and reactive schemes are some-
times combined into hybrid schemes [63, 64, 45].

Robust change detection. Workload measurement, especially in com-
plex distributed platforms like DTMs, are typically subject to non-negligible
noises. Hence, the robustness of any self-tuning scheme is strongly affected by
its ability to distinguish small workload fluctuations, e.g., due to short tran-
sitory phases or transient spikes, from actual workload shifts, i.e., transitions
from one workload to a different, stable one. This is a fundamental requi-
site to enforce the system’s stability, i.e., to avoid its continuous oscillation
among different states, namely configurations, due to frequent re-adaptations
triggered by unavoidable, fleeting workload’s fluctuations.

A principled approach to tackle this issue is based on the idea of consid-
ering the workload as a generic signal. Filtering techniques [65] can, then, be
applied in order to reduce/remove noise and extract statistically meaningful
information. One of the simplest examples of a filter is the Moving Average
(MA), in which, given a time window composed by t intervals, the value v at

observation j is given by vj =
∑j

i=j−t+1
vi
t ; in the Exponential Moving Aver-

age (EMA), elements in the summation are given a weight that decreases as
the measurement becomes older, in order to give more importance to recent
measurements.

A more advanced filter employed to perform measurements in presence
of noise is the Kalman Filter [66], which computes the value of the target
metric as a weighted sum of the last prediction and the latest measurement.
The weights reflect the confidence of such estimate and measurement and
it is inversely proportional to the variance associated with those two values.
The Kalman Filter represents a reference technique to track systems’ param-
eters [67] and have been successfully applied in a wide range of applications,
from CPU provisioning in virtualized environments [68] to performance op-
timization with energy constraints [69].

Another prominent related technique, originally introduced in the liter-
ature on statistical process control [70] to verify whether a process com-
plies to its behavioral expectations, is the CUSUM (Cumulative Sum Control
Chart) [71]. CUSUM involves the computation of a cumulative sum: noting
xn the n-th measurement for the target metric and wn the corresponding
weight, the cumulative sum at the n-th step, namely Sn, is expressed as
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Sn = max{0, Sn−1 + wnxn}, with S0 = 0. When Sn grows over a predefined
threshold, a change in the metric is identified.

The CUSUM technique, whose employment has been borrowed from the
manufacturing field, has been applied not only to workload monitoring and
characterization for distributed transactional platforms [72], but also to tackle
other issues like tracking faults in distributed systems [73] and detecting
divergence from a desired QoS [74].

Workload forecasting. As already mentioned, workload forecasting is a
key problem at the basis of proactive self-tuning techniques. The techniques
used to this purpose are typically borrowed from the literature on time-series
analysis and forecasting, and can be classified depending on whether they
operate in the time or in the frequency domain [75].
Time-domain methods. Techniques belonging to this category forecast the
value for a metric in the next time window based on the raw measurements
of such metric in the past. Auto Regression and Moving Averages methods
are at the basis of a broad family of time-domain solutions: ARMA (Auto-
Regressive Moving Average), which combines the two; ARIMA (AR Inte-
grated MA), which generalizes the previous one to the case of non-stationary
time series (i.e., time series whose shape changes over time); SARIMA (Sea-
sonal ARIMA), which allows the ARIMA technique to incorporate preex-
istent knowledge about seasonal, namely recurring, behaviors [76]. Other
popular solutions are based on the use of filtering techniques, such as the
aforementioned Kalman Filter. In fact, due to its recursive nature, once in-
stantiated, the Kalman Filter can be queried not only to filter out noisy
components from the current measurements, but also to predict future val-
ues of the tracked workload metrics.

Frequency-domain methods. Techniques belonging to this category are aimed
at extracting from time series information about seasonality and recurrence.
Frequency-domain methods rely either on spectral analysis or on wavelet
analysis. They are both based on the idea of decomposing a time series into
a summation in the frequency domain: the former uses sinusoids as basis, the
latter uses wavelets [76].

4.2 Which adaptation to trigger?

Once workload changes are detected, self-tuning systems need to decide which
adaptation to trigger, if any, to react to such change. The identification of the
optimal configuration is typically performed by means of performance models,
which allow for the estimation/prediction of the system’s performance in
the various available configurations. The literature on performance modeling
of computing systems is very prolific, and the models used in self-tuning
system differ significantly in their nature and complexity. In Figure 3, we
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Fig. 3 Taxonomy of performance modeling techniques.

classify them into white, black and gray (an hybrid of black and white) box
techniques, according to whether (and how) they exploit knowledge on the
internal dynamics of the system. Moreover, we further classify black box, and
hence grey box, approaches into off-line and on-line, depending on whether
the model is built before putting the application in execution or at runtime.

White box modeling. This approach leverages on available expertise on
the internal dynamics of systems and/or applications, and uses such knowl-
edge to build an Analytical Model (AM) (e.g., based on queueing theory) or
simulators, aimed at capturing how system’s configuration and workload’s
parameters map onto performance [77]. Once defined, analytical models typ-
ically require no training (or a minimal profiling to obtain the value for some
basic parameters) for being instantiated. In order to ensure their mathemat-
ical tractability, however, analytical models typically rely on approximations
and simplifying assumptions on how the modeled system and/or its workload
behave. Their accuracy can hence be challenged in scenarios (i.e., areas of the
configurations’ space or specific workload conditions) in which such approx-
imations are too coarse, or are simply not matched. In addition, aside from
possible re-evaluations of internal parameters, analytical models’ inaccura-
cies are not amendable, as the mathematical characterization of the system’s
dynamics in encoded by means of immutable equations.

Black box modeling. This approach lies on the opposite side of the spec-
trum with respect to the white box solutions. Black box modeling does not
require any knowledge about the target system/application’s internal behav-
ior. Conversely, it relies on a training phase, namely on observing the system’s
actual behavior under different configurations and while subject to different
workloads, in order to infer a statistical performance model via different Ma-
chine Learning (ML) techniques [78]. Over the last years, these approaches
have become more and more popular as tools for performance prediction of
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modern systems and applications, whose ever growing complexity challenges
the viability of developing sufficiently detailed, and hence accurate, analytical
models.

In practice, the accuracy achievable by black box models strongly depends
on the representativeness of configurations and workloads that the ML has
witnessed with during its training phase. This results in the ability of black
box models to achieve a very good accuracy for scenarios sufficiently close to
the ones observed during the training phase; on the other hand, predictions’
accuracy of ML techniques is typically poor in regions of the parameters’
space that were not sufficiently sampled during the training (in which case
the model is often said to be used in extrapolation).

Unfortunately, the space of all possible configurations for a target sys-
tem/application grows exponentially with the number of variables (a.k.a.
features in the ML terminology) that can affect its performance — the so
called curse of dimensionality [79]. Hence, in complex systems, like DTMs,
the cost of conducting an exhaustive training process, spanning all possible
configurations of the design and configuration’s space and experimenting with
all possible workloads, can typically be prohibitive.

Grey box modeling. Grey box approaches, as the name suggests, employ
white and black model methodologies in hybrid fashions, so as to inherit the
best features of the two worlds: the good accuracy in extrapolation (i.e., for
unseen configuration/workloads) and minimal training time typical of white
box models, and the robustness and possibility to incrementally enhance
accuracy, via periodic retraining, of black box models.

Grey box techniques can, in their turn, be grouped into three categories.

• Parameter fitting: this solution relies on fitting techniques [80] to identify
the values of (a subset of) the input parameters of a white box model,
whose direct measurement is undesirable or infeasible. This is the case, for
instance, of models that require detailed workload characterization [42] or
service demand times [41], and whose measurement from an operational
system may introduce prohibitive overheads. This technique is used also
in case some parameters of white-box models do not map directly to any
physical aspect of the system, and are instead used to encapsulate com-
plex systems’ dynamics that would be otherwise hard to capture explicitly
via analytical techniques [58]. In these situations, fitting techniques can
be used to determine the values of the unknown parameters that minimize
the model’s prediction errors over a given training set.

• Divide et impera: this technique consists in building performance models
of individual parts of the entire system, which are either based on AM or
on ML. The sub-models are then combined in order to obtain a prediction
of the system as a whole [72, 38]. This approach is particularly suited for
scenarios in which the internals dynamics of certain sub-components of
the system are not known and/or are not easy to model using white-box
analytical models, e.g., the networking infrastructure in a cloud-based
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distributed platform. The performance of these sub-components can then
be predicted using black-box ML-based techniques, whereas white-box
modeling can be used for the remainder of the system. By narrowing
the domain over which ML techniques are used, their learning time is
normally significantly reduced; also, the joint usage of white box models
allows for achieving better accuracy in extrapolation when compared with
pure black-box approaches.

• Bootstrapping: this methodology relies on an AM predictor to generate
an initial synthetic training set for the ML, with the purpose of avoiding
the initial, long profiling phase of the target application under different
settings. Then, the ML is retrained over time in order to incorporate
the knowledge coming from samples collected from the operational sys-
tem [59, 55].

While white box modeling is an inherently off-line technique, ML solutions,
at the basis of purely black or grey box models, can be instantiated either
off-line or on-line.

Off-line Learning. Off-line black box performance models are typically built
by means of Supervised Learning (SL), in which the ML algorithm is trained
on labeled features, i.e., input for which the output is known.

In SL, the training algorithm, noted γ, is a function defined over the
training set Dtr = {< x, y >}, where x =< x1, . . . , xn > is a point in a
n−dimensional features’ space, noted F , and y is the value of some unknown
function φ : F → C. The co-domain C of the function may be a discrete
set, whose elements are called classes, or a continuous space. The problem of
learning the mapping of elements of F to C is called classification in the first
case, and regression in the second one.

The output of γ is a function, also called model, noted Γ , which represents
an approximation of φ over the features’ space F . More precisely, a model
Γ : F → C takes as input a point x ∈ F , possibly not observed in Dtr, and
returns a value ŷ ∈ C.

In off-line SL, the training set Dtr is assumed fully available to the learning
algorithm. When new data is available, e.g. by gathering new sample from
a running application, a new model can be built from scratch, considering
the whole available training data set. Note that this palingenesis of the sta-
tistical model does not qualify as an instance of on-line learning, as we shall
discuss briefly, as the model is built ex novo over an ever-increasing training
set. Examples of off-line SL algorithms are Decision Trees, Support Vector
Machines and Artificial Neural Networks [78].

On-line Learning. We distinguish three main approaches to on-line black
box learning. The first one consists in on-line SL, according to which the
model is built incrementally over a stream of training samples, i.e., only a
subset of Dtr (possibly of cardinality 1) is available at the time, and it has
to be incorporated in the model without being stored for further consid-
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eration [81]. Approaches in this domain typically assume that the learning
algorithm can access each sample only once during the training phase. As a
consequence, they normally require considerably less computational resources
than off-line techniques, but may also achieve lower prediction accuracy.

A second on-line ML technique is Reinforcement Learning (RL). RL aims
at inferring the best way of performing actions in an environment (character-
ized in DTM context by a set of workload and performance indicators) given
a state (i.e., a workload), so as to maximize some notion of cumulative reward
(e.g., throughput). The main challenge tackled by RL techniques [82, 83] is
finding a balance between exploration (of untested actions for a given state)
and exploitation (of available, and typically incomplete, knowledge), while
minimizing the, so called, regret, that is the cumulative error with respect
to the optimal strategy. Frequent explorations allow for acquiring a good
knowledge of the rewards corresponding to different actions in a given state,
but also causes the system to oscillate among several sub-optimal configura-
tions, yielding to instability and hindering performance. On the other hand,
an overly conservative policy, which does not test the available options suffi-
ciently often, may get stuck in local maxima, especially in scenarios in which
the reward distribution is subject to large variance (and may hence require
a relatively large number of samples to be accurately estimated).

Finally, on-line black box self-tuning schemes can be based on optimiza-
tion techniques like Gradient Descent or Genetic algorithms [84]. These ap-
proaches seek to minimize/maximize a given application’s performance indi-
cator: similarly to RL approaches, they combine exploration and exploitation;
however, they do not encompass the notion of cumulative reward, thus differ-
ing from RL in the way the search of the optimal configuration is carried out
and in the amount of information maintained about the system/application’s
state and previously performed explorations.

5 Elastic scaling in DTM systems

In this section we review solutions aimed at self-tuning the scale of DTMs.
Though we focus on this kind of platform, we also include in the analysis
solutions that have been proposed and evaluated in the broader field of elastic
scaling of distributed data platforms and which could be applied also to the
case of DTMs.

In our analysis we will focus on three main technical challenges, which
need to be tackled in order to implement effective elastic scaling solutions
for DTM, namely: how to preserve consistency during elastic scaling, when
to trigger elastic scaling, how to determine the new scale of the DTM.

How is elastic scaling supported? DTM can either scale vertically,
namely, by changing the number of concurrent threads active in each of the
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platform’s nodes, or horizontally, namely, changing the number of nodes in
the platform. In the first case, the scaling procedure does not encompass
inter-node synchronization or state transfer, as it simply consists of activat-
ing/deactivating the desired number of threads [57].

Scaling out a DTM is, conversely, a much more challenging task given
the stateful nature of the platform that implies the need for a state transfer
phase and the constraint of preserving the consistent and atomic access to
data items during the reconfiguration. In this paragraph we survey some state
transfer techniques that have been proposed to elastically scale databases but
that are applicable also to the case of DTMs.

The simplest solution to scale out a distributed transactional platform
is the stop and go technique, which naively consists in blocking transactions
execution during the state transfer and restoring it when it is over. Of course,
the major drawback of this solution is that it implies service unavailability
during the scaling phase, and it is, thus, employed only when there is no
other option available [21].

For this reason, a number of solutions have been proposed to perform the
state transfer at the application level, i.e., relying only on the transactional
middleware of the platform.

A first one represents an improvement over the stop and go: while a new
node is being initiated it cannot serve requests, but other nodes can, thus
maintaining the service available. This technique basically consists of three
phases. In the first one, a new node is spawned and starts receiving data from
the source nodes designated by the data placement component. In the sec-
ond one, it receives newer versions of data that it has already received during
the first phase, but which have been updated in the meanwhile. In the last
phase, the new node receives the last stream of data and starts processing
transactions; in order to allow the new node to catch up with the state of
running nodes without breaking atomicity and consistency, this phase may
require all the nodes in the system to stop processing transactions, thus re-
sulting into a short service unavailability window. This technique has been
applied to the context of live migrations of databases in multi-tenant [85]
and single instance [86, 46] environments. Optimized variants for partially
replicated systems also exist, in which the amount of data sent by live nodes
to the joining one(s) is evenly split, thus resulting into an optimal load bal-
ancing [87].

A further optimization of the aforementioned scheme consists in allowing
the new node to start serving transactions as soon as it gets data. In order
to maintain atomic and consistent access to data, schemes relying on this op-
timization integrate the state transfer with the distribution and concurrency
control protocol employed by the platform [88].

Another technique employed for elastic scaling of distributed databases,
especially in the case of multi-tenant infrastructures, consists in transferring
a snapshot of the database, i.e., an image of the database state at a given
point in time. This can be achieved by means of VM migration [89] and
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backup tools [90, 91] or by relying on the presence of a Network Attached
Storage [85].

Finally, Barker et al. [92] show that no-one-size-fits-all solutions exists in
the landscape of the described techniques for databases migration and state
transfer. Therefore, they introduce a hybrid scheme that automatically selects
the best elastic scaling scheme to employ, choosing between a black-box VM
migration and a database-aware, application-level state transfer.

When to trigger elastic scaling? As introduced in Section 4, the literature
on elastic scaling of distributed data platforms includes proposals based on
the reactive and proactive approaches.

Among the solutions based on reactive schemes, Exponential Moving Aver-
age (EMA) is employed in the provisioning of a one-copy serializable database
by Soundararajan et Amza [46] and of an eventually consistent data store by
Trushkowsky et al. [93]: given a current raw measurement vr and the output
of last EMA computation vl, the current value for target metric vc (average
response time of queries in the first case and arrival rate to a dataset partition
in the second one) is obtained as vc = αvr + (1−α)vl. Here, α is a weighting
factor: the higher, the faster older observation are discounted.

Scaling the size of a DTM, however, is a very onerous operation, as it
triggers a state transfer phase that can induce significant additional load on
the system for a potentially long time [62, 92, 89]. Thus, as a result of relying
on a reactive scheme to trigger the elastic scaling, during the whole reconfig-
uration phase, the platform can suffer from severe performance degradation
due to a sub-optimal configuration with respect to the incoming workload.
To avoid such a shortcoming, the majority of recent research works on auto-
matic resource provisioning rely on proactive schemes to trigger the elastic
scaling of data platforms.

Approaches operating in the time domain, based on simple linear extrap-
olation [94] and filtering [62], have been applied to drive the elastic scaling
of distributed databases. Solutions relying on time series analysis, namely
ARMA and ARIMA, have also been frequently applied to drive automatic
elastic scaling policies for Cloud applications [43, 95, 44].

Likewise, works based on time series analysis in the frequency domain find
application in automatic resource provisioning scheme for Cloud infrastruc-
tures. They are either used alone, as in the case of the Agile system [96], or
in conjunction with ANN in a recent work by Napoli et al. [97].

Approaches [45, 64] combining reactive and proactive techniques, espe-
cially in QoS-oriented and SLA-based Cloud platforms, typically favor a more
aggressive scheme in adding nodes and more conservative ones in scaling down
removing nodes from a platform. The rationale behind this choice is that the
cost, both monetary and in terms of performance, for maintaining resources
that are not strictly necessary to guarantee a desired QoS is lower than the
one resulting from an unfortunate scaling down choice, both because of the
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overhead due to a new scaling up phase and to the penalties stemming from
possible SLA violations.

In the Cloud-TM data platform [40, 98], Kalman filter and polynomial
regression are employed to predict future workloads; however, they are com-
plemented by a reactive scheme based on a filter that detects variations of
average values over two consecutive time-windows, and the CUSUM algo-
rithm. Different trade-offs between pro and reactiveness can be achieved de-
pending on the parametrization of such algorithms. A similar approaches is
undertaken also in ShuttleDB [92], where a threshold-based reactive scheme
is complemented by times series forecasting by means of an ARIMA model.
Iqbal et al. [45] propose a hybrid scheme which is reactive in acquiring re-
sources, while it employs a second order regression to detect over-provisioning
with respect to the incoming workload and, accordingly, release resources. In
MeT [64], resources are greedily acquired in a non-linear and iterative fash-
ion, i.e., if the system is under-provisioned, the number of acquired nodes
at iteration i is twice as much as at last iteration; nodes in the system are,
instead, released linearly, namely, one by one. Ali-Eldin et al. [63] provide
a thorough analysis of controllers for elastic Cloud-based application relying
on nine different schemes combining reactive and proactive approaches. Their
work suggest that, indeed, hybrid schemes do perform better than pure ones.

With the exception of the techniques integrated in the Cloud-TM plat-
form, the aforementioned solutions typically target either stateless/non-
transactional platforms or transactional ones with external storage systems
(e.g., Network Attached Storages) or backup services.

Their application to DTMs without those specific supports or in typical,
commercial Cloud deployment is, hence, not straightforward. Moreover, such
proposals do not account for other potential concurrent reconfigurations of
the platforms at other levels, e.g., at the consistency protocol one. Challenging
research problems in this direction that demand further investigation are the
estimation of the duration of the reconfiguration phase and of SLA violations
incurred during that time.

Which scale to choose? A plethora of analytical and simulative models
for distributed transactional data platforms exist [99, 100] that are aimed
at computing the performance of the platform when deployed over different
number of nodes. However, they mainly target relational databases and do not
encompass complex dynamics that stem from elastically scaling the platform
at runtime, like the variation in data locality. For this reason, in recent years,
performance modeling and forecasting specifically aimed at supporting elastic
scaling of DTM has garnered much attention, resulting into solutions that
cover the whole spectrum of the techniques introduced in Section 4.2.

A pure white box model, relying on Parallel Discrete Event Simulation,
has been proposed by Di Sanzo et al. [101]. It allows for the definition of
trace based workloads in order to forecast the effect of elastically scaling,
both vertically and horizontally, a DTM, encompassing generic data place-
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ment schemes and arbitrary data access patterns exhibited by the hosted
application.

Pure black box approaches, instead, have been undertaken in [50, 102],
where ANN are employed to predict transactions’ throughput and response
time while varying the number of nodes composing a DTM. In particular, the
work in [102] allows for supporting what-if analysis at the granularity of indi-
vidual transactional classes, and not only on the overall average performance
of the entire transactional workload.

A divide et impera grey box modeling approach is proposed by Didona
et al., which targets performance prediction of fully [72] and partially repli-
cated [38] DTMs when varying its scale over Cloud infrastructures. In such
approach, analytical modeling is employed to model resource contention over
the CPU and to capture transactions’ conflict probability on data. Conversely,
ML, and specifically decision tree based regression, is employed to predict the
latency of network-bound operations, e.g., the retrieval of remote data and
the execution of the distributed commit phase.

A variant of the bootstrapping grey box methodology is proposed in [57],
and extended in [103], with the aim of determining the scale for a DTM
application that results in the higher throughput. This approach combines
analytical modeling, supervised learning and pure exploration in order to
build a performance model that incrementally enhances its accuracy. A DT
regressor is employed to learn at runtime a corrective function to be applied
to the output of the base performance predictor (based on [72]) so as to
progressively reduce its prediction error. The DT is incrementally trained
over the base model’s mis-predictions for workloads and scales that the DTM
has experienced with. In order to widen the training set of the DT without
incurring the cost of state transfer, different levels of MPL are explored for
a given workload and number of nodes in the DTM.

6 Adaptation of the Data Consistency Protocol

In this section we review the most relevant solutions that focus on the adapta-
tion of the protocol used to enforce data consistency in DTM platforms. Each
system is described according to the three major concerns for supporting au-
tomatic protocol switching in DTM platforms: how is consistency ensured
despite the on-line switching between different data consistency protocols,
when the system should switch the protocol, and which is the most suitable
consistency protocol according to the current conditions.

How is protocol switching supported? There are two main architectural
approaches for protocol switching in DTM platforms, ad-hoc and generic,
which explore different trade-offs between simplicity, efficiency and generality.
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In the ad-hoc approach, the system is designed to accommodate specific
and predetermined protocols and it is highly tailored to provide seamless
switching mechanisms between protocols, i.e., to minimize the impact on
performance during the switching phase. By exploiting the knowledge on
the internal dynamics of the origin and target consistency protocols (for in-
stance, how they are implemented), one can indeed design specialized switch-
ing mechanisms that exploit possible compatibilities with the purpose of re-
ducing the overhead and/or duration of the switching phase. Typically, it is
not possible to support the switching from/to additional protocols without
making profound changes in the system.

Examples of these systems include PolyCert [16] and HTR [26]. PolyC-
ert is a DTM that relies on three certification-based consistency protocols:
non-voting certification, which sends the read-set of transactions as is; Bloom
filter certification, which encodes the transaction’s read-set in a Bloom filter,
minimizing the size of the messages exchanged by nodes but increasing the
complexity of processing the received message; and voting certification, in
which only the write-set of transactions is disseminated but replicas must
wait for a commit decision from the node where the transaction originally
executed. As transactions finish their local execution, the protocol that mini-
mizes the commit phase is selected from the three available (using techniques
described further ahead in the section), improving therefore the throughput
of the system. HTR also determines the optimal protocol on a per transaction
basis: based on the abort rate on the moment each transaction is issued, ei-
ther the deferred update model, which takes advantage of multicore hardware
to process transactions in parallel, is chosen or the state machine approach,
which guarantees an abort free execution. Both systems are tailored for those
specific protocols and do not contemplate the addition of others.

Ideally, developers should be allowed to choose the most suitable replica-
tion protocols for their systems and workloads. Also, these protocols should
be easy to plug into the system, and oblivious of other protocols (i.e., there
should be no dependencies between protocols neither while the system is in
normal operation nor when during the switching phase).

Recently, a new approach was proposed that offers both flexibility and
performance. MorphR [39] is a framework that supports multiple replication
protocols by only requiring their adherence to a specified API. It provides two
mechanisms for the switching phase: stop and go and fast switching. The first
approach relies on a blocking scheme to guarantee that there is no transaction
from the old protocol running in the system when the new protocol starts
executing, ensuring isolation between the switching protocols and avoiding
the need to implement interactions between protocols. The second approach
leverages on the knowledge of developers to implement specialized switch-
ing algorithms between pairs of protocols enabling their co-existence so that
the performance of the system is not affected by this adaptation. MorphR’s
prototype was tested with three very different protocols representing distinct
classes of replication approaches: 2PC, PB and a TOB-based scheme.
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When to switch? The most common approach to trigger switching in these
systems is employing reactive schemes, that detect changes in the workload
and react to those changes. Most adaptive DTM systems [39, 72] rely on this
approach, especially systems like HTR and PolyCert, which determine the
best protocol on a per-transaction basis and transactions’ operations are not
known prior to their actual execution.

On the opposite side of the spectrum, CloudTM platform [40] integrates
workload and resource demand prediction schemes, by including algorithms
for time-series forecasting which allow predicting future workload’s trends
and allow the system to enact proactive self-tuning schemes. This function-
ality represents a fundamental building block for any proactive adaptation
scheme, i.e., schemes triggering reconfigurations of the platform anticipating
imminent workload’s changes, which are particularly desirable in case the
platform’s reconfiguration (as in the case of elastic scaling) can have non-
negligible latencies.

Which protocol to choose? The most straightforward way to approach
the problem of determining the most suitable protocol is to set thresholds
that, using one or more metrics, define the scenarios in which each protocol
delivers (or is expected to deliver) the best performance. HTR follows this
approach: it monitors the abort rate of the system before each transaction
and if it exceeds a certain threshold, the transaction is executed in the state
machine mode, which guarantees abort free execution. When the abort rate
is lower than the set threshold, transactions will revert to executing in the
deferred update mode.

However, threshold-based approaches become very hard to properly tune
when the complexity of the replication schemes and workloads increases, as
the increasing number of metrics and thresholds will eventually become un-
manageable by an administrator. Let aside, the lack of flexibility imposed by
the usage of fixed values for the thresholds. Both PolyCert and MorphR rely
on the black box approach, namely machine learning techniques which were
previously presented in Section 4, to cope with a larger number of protocols,
with potentially complex algorithms, system configurations and workloads.
While PolyCert assesses protocol suitability on a per transaction basis (i.e.,
each transaction issued will be certified with the protocol that minimizes its
total execution time), MorphR evaluates the state of the system periodically
(at a frequency tuned by the administrator) to verify whether the protocol
in use is the optimal one and, if not, changes the protocol used by the entire
system to match the most suitable option for the observed conditions.

However, a pure black box approach will not be able to cope with work-
loads and system configurations that were not included in the data used as
its training set. The grey box approach, used in TAS [72, 38], relies on ana-
lytical models designed to predict the behavior of 2PC and PB regardless of
the workload and system configuration (number of machines, hardware used,
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etc.). This method is especially well tailored for systems in which administra-
tors do not have prior knowledge of workloads and deployment configurations
or when these two aspects are constantly varying. On the other hand, taking
advantage of this approach entails possessing a very deep knowledge of the
system’s internals to be able to design a complete and accurate model.

7 Conclusions and open research questions

In this chapter we have investigated the problem of designing self-tuning
DTM platforms. Along the way, we have exposed some of the key trade-offs
in the design of the main components of DTM systems, and recalled some of
the base methodologies that are commonly employed in self-tuning systems.
We have then focused our attention on two specific self-tuning problems,
elastic scaling and adaptation of the distributed consistency protocol, and
critically analyzed existing literature in these areas.

The analysis that we have conducted in this chapter shows that, despite
being a relatively young research area, the existing literature encompasses
already a number of self-tuning solutions that target the key building blocks
of DTM platforms. On the other hand, our analysis suggests also that there
are still a number of unexplored areas and open research problems, which
represent interesting opportunities for future research.

In the elastic scaling area, for instance, we are not aware of solutions for
estimating the impact on performance due to the occurrence of the state
transfer activities that are necessary to redistribute data across nodes of the
DTM platform. Another aspect that has not been satisfactorily addressed, to
the best of our knowledge, by existing solutions in the area of elastic scaling of
DTM is the prediction of the locality shifts (i.e., the change in the probability
of incurring in remote accesses) due to the redistribution of data among the
nodes caused by the elastic scaling process.

As for the dynamic switching of the DTM consistency protocol, existing
solutions only take into account adaptations of the distributed consistency
mechanisms, and do not seek integration with the self-tuning mechanisms
for non-distributed TMs (e.g., targeting the local concurrency control or the
thread mapping).

A related, albeit more fundamental open question, is how to effectively in-
tegrate the various self-tuning mechanisms proposed in literature and target-
ing different modules/parameters of DTM platforms. These systems are con-
stituted by a complex ecosystem of components, each one associated with spe-
cific key performance indicators, utility functions and monitorable/tunable
parameters. These components exhibit non-trivial mutual interdependencies;
hence, in general, it is not possible to optimize separately different modules
of a DTM, as the effect on performance of tuning different parameters are
often intertwined. The complexity of this type of system is simply too high
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for monolithic self-tuning approaches, i.e., approaches that try to optimize
the system as a whole by trying to identify all possible relations among the
feasible adaptation alternatives of the entire ecosystem of components. Alter-
native, modular approaches would be highly desirable, as they would allow
for unifying the large set of existing self-tuning mechanisms that target dif-
ferent aspects of DTMs. To the best of our knowledge, this problem is still
unexplored by existing research.
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