
A Look to the Old-world∗Sky:
EU-funded Dependability Cloud Computing Research

Alysson Bessani
University of Lisbon, Faculty of

Sciences, Portugal
bessani@di.fc.ul.pt

Rüdiger Kapitza
TU Braunschweig, Germany
rrkapitz@ibr.cs.tu-bs.de

Dana Petcu
Institute e-Austria Timişoara &
West University of Timişoara,

Romania
petcu@info.uvt.ro

Paolo Romano
INESC-ID / Instituto Superior

Tecnico, Portugal
romano@inesc-id.pt

Spyridon V. Gogouvitis
National Technical University

of Athens, Greece
spyrosg@mail.ntua.gr

Dimosthenis Kyriazis
National Technical University

of Athens, Greece
dimos@mail.ntua.gr

Roberto G. Cascella
Inria Rennes, France

roberto.cascella@inria.fr

ABSTRACT
Cloud computing is currently the most important trend in
the Information and Communication Technology (ICT) in-
dustry, and it has still not fully realized its potential. Rea-
sons for its popularity are the opportunities to rapidly al-
locate vast amounts of computing resources and the fact
that resources are accounted per use. While cloud com-
puting was initiated by major industry players, academia
has rapidly caught up; currently we see a vast number of
cloud computing-related research efforts. However, since in-
dustry pushes development and many research aspects of
cloud computing demand for large compute resources and
real workloads, pure academic efforts have difficulties to ad-
dress the most important issues and to have a major impact.
On the other hand, academia usually tends to explore dis-
ruptive ideas that would not be addressed by industry alone.

This paper summarizes the approaches and methods of five
EU-funded research projects that focus on cloud comput-
ing in general and address important issues such as security,
dependability, and interoperability. These aspects have re-
ceived limited attention by the industry so far. The key
to success of these large joint efforts is the close collabora-
tion between partners from academia and industry spread all
over Europe. The specific projects are Cloud-TM, Contrail,
mOASIC, TClouds and VISION Cloud. Besides presenting
the individual projects and their key contributions, we pro-
vide a perspective on future ICT research in Europe.

∗Although the term “old world” usually refers to Europe,
Asia and Africa, we use it here only as a reference to Europe.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Cloud computing

General Terms
Reliability, Security, Design, Performance, Algorithms

Keywords
Dependability, Europe, Research projects, Clouds

1. INTRODUCTION
Cloud computing is one of the major trends in Information
and Communication Technology (ICT) industry these days
and still has not reached all possible markets. A major rea-
son for its popularity is the opportunity to rapidly allocate
and deallocate vast amounts of compute resources as needed.
Moreover, a key aspect for the success of the cloud model is
the existence of a business model (pay-per-use) that may be
lucrative not only for providers but also for cloud users.

While cloud computing was initiated by major industry play-
ers, academia rapidly caught up, and currently we see a large
and steadily growing number of cloud computing related re-
search efforts. However, since industry pushes development
and many research aspects of cloud computing demand for
large compute resources and real workloads/field experience,
pure academic works have difficulties to address the most
important issues and therefore fail to have a major impact.

Recognizing the limitations of pure academic projects, the
European Commission (EC) have been pushing for hybrid
project consortiums composed by industry and academic
parts. The idea is to foster new ideas that probably would
be deemed too risky for companies alone to try and, at the
same time, ensure that these ideas can find its way to in-
novative products and services by industry. In this paper
we present an overview of five projects being funded the
EC in the period of 2010-2013. All these projects deal with
dependability concerns in cloud computing, considering dif-
ferent application scenarios (from the deployment of smart

43

grid controllers on the cloud to the storage of massive multi-
media data in media companies) and a wide range of disrup-
tive techniques (from new programming models for Internet-
scale services [36] to new dependable services based on ad-
vanced and not yet deployed techniques such as Byzantine
fault tolerance [1, 31]).

The five projects discussed in this paper (Cloud-TM [2],
Contrail [4], mOSAIC [8], TClouds [10], and VISION Cloud
[11]) involve more than 40 partners from almost every Euro-
pean country, including major companies and organizations
such as IBM, HP, Philips, SAP, SNIA, France Telecom, and
RedHat. The total cost of these projects is around 44 million
euros, with more than 75% of this volume being supported
by the EC.

The objective of this paper is twofold. First, we aim to
demonstrate how complementary the contributions of these
five projects are and to instigate a discussion about how
the results of these projects can shape European clouds in
the years to come. Second, we want to disseminate some of
these exciting results to a wider audience, especially in the
US, since many of the activities being developed in these
projects do not target publication, and thus lack a better
dissemination outside Europe.

It is important to remark that these five projects are not
the only ones dealing with dependability issues of cloud
computing. However, they are perhaps the most promi-
nent representatives of this exciting European research ef-
fort. For a more complete and extensive description of the
cloud projects presented here (and also other cloud-related
efforts), we invite the reader to consult [40].

The paper is organized as follows. Section 2 gives a brief
overview of how EC funding works. Section 3 describes some
of the concerns being addressed by the projects described in
the paper. The following section describes the five projects.
Finally, Section 5 presents some final remarks.

2. EUROPEAN RESEARCH FUNDING FOR

HIGHLY INNOVATIVE ICT
Since 1984, the European Commission has been implement-
ing funding programmes to support highly innovative re-
search and development activities in the field of information
and communication technologies. Until 2013 seven Frame-
work Programmes (FP) have been implemented, covering
eight strategic challenges, namely: Pervasive and Trusted
Network and Service Infrastructures, Cognitive Systems and
Robotics, Alternative Paths to Components and Systems,
Technologies for Digital Content and Languages, ICT for
Health, Ageing Well, Inclusion and Governance, ICT for low
carbon economy, ICT for the Enterprise and Manufacturing,
ICT for Learning and Access to Cultural Resources. Each
challenge has specific objectives and priorities, which are
being defined and detailed in the corresponding FPs. The
next FP, namely “Horizon 2020” [6], will run from 2014 to
2020 covering various cooperation themes [5], such as ICT,
health, transport and socio-economics, with an estimated
budget of 80 billion euros.

The research and development of networks and service in-
frastructures was considered to be the challenge number one

in the last three workprogrammes of the currently running
FP7-IC. Thereby, cloud computing being an important topic
that is not only key for the first challenge but for many ar-
eas of applications of ICT. In this context, multi-national
and multi-disciplinary teams from academic and industrial
sectors are conducting research in collaborative projects to
respond to the long term challenges of the current society
and the science of the future. According to [37] currently
more than thirty european projects are working in the cloud
computing field. Five of them are briefly summarized in this
paper. Following the advent of the last calls of the workpro-
gramme on the topic of Cloud computing, around twenty
more projects are expected to start in Autumn 2012. The
current trends of the research activities in Cloud computing
were recently identified in [43] by the Expert Group in Cloud
Computing of the European Commission and the recom-
mendations will be taken into account in the new workpro-
gramme.

3. CONCERNS BEING ADDRESSED
Given their size and scope, the EC-funded projects presented
in this paper address many concerns relevant to their tar-
geted use cases, however, at least five perennial concerns can
be identified on these projects.

• (The lack of) Trust on the clouds: There is a
big debate about how much one needs to trust a cloud
provider. Some adopters advocate that the model it-
self requires complete trust in the same sense a per-
son needs to trust a Bank1. Detractors point out that
accidental and malicious failures that cause extended
unavailability of some providers as well as information
leaks and data corruption in some cloud services are
more common than one would expect. In the end,
there must be a middle ground in which customers
would justifiably trust clouds that give extended secu-
rity guarantees and/or use more than one provider for
tolerating or recover from such events.

• SLAs (Service Level Agreements): A fundamen-
tal requirement of trustworthy cloud computing is the
definition and enforcement of service level agreements
between customers and providers. The wide range of
applications and requirements a cloud infrastructure
can host and observe, respectively, makes this prob-
lem much harder for a cloud provider than, for exam-
ple, for a telecom provider. Moreover, the complex-
ity of a cloud infrastructure and the economy of scale
employed by cloud providers may require a complete
reengineering of the cloud stack in order to support
SLAs.

• Portability: One of the key impediments for moving
some services to the cloud is the fear of vendor lock-in,
when the cost of moving a service from one provider
to another is so high that one needs to comply with
a provider, even in adverse conditions (poor perfor-
mance, higher-than-expected costs, etc.). Another im-

1It should be noted, however, that Banks are centuries-old
organizations backed by states (i.e., if some problems hap-
pen, citizens tend to have their savings back). Unfortu-
nately, this is not the case with cloud providers.

44

portant aspect of vendor lock-in is the lack of portabil-
ity between clouds. This is specially true for the Plat-
form as a Service (PaaS) model, where an application
developed for a certain platform cannot easily migrate
to another. In this sense, a fundamental requirement
for avoiding vendor lock-in is the portability among
different providers’ platforms and services, which can
only be achieved if the providers agree on a common
platform (which is very unlikely, since the offers vary)
or the services are developed with a portability layer,
that adapt the specific needs of the application to a
specific provider platform.

• Programming models and infrastructures: Cloud
computing widened the horizon of distributed comput-
ing as more quickly than ever diverse distributed re-
sources can be allocated and released. This imposes
new challenges on handling system complexity. A promis-
ing approach to address such developments is to pro-
vide tailored programming models and their associated
infrastructures. One prominent example is MapRe-
duce but there will be more to come. These future
programming models need to address scalability, re-
silience and adaptiveness to resource availability.

• “Intelligent” storage solutions: The sheer amount
of ever-growing data demands for new solutions at all
levels. While cloud infrastructures offer data storage
of nearly unlimited size, the problem is to exchange
large data sets and to process it. Thus, data should be
moved with care and computation should be moved to
the data and not vice versa.

As shown in the remaining of the paper, some of these con-
cerns are being addressed by multiple projects. However, in
most cases the approaches being taken are complementary.

4. APPROACHES UNDERTAKEN BY THE

SELECTED PROJECTS
In this section we focus on five particular on-going projects
(2010-2013) that we consider relevant for the subject of de-
pendability and security in cloud computing.

4.1 Cloud-TM
The Cloud-TM project [2] aims at designing, building, and
evaluating an innovative middleware platform for the de-
velopment of Cloud-based services. The Cloud-TM project
builds on recent results in the area of Transactional Memory
(TM) [44], a programming paradigm originally proposed to
simplify the development of parallel applications in multi-
core environments. TM integrates the familiar notion of
atomic transaction as a first-class programming language
construct, sparing programmers from the burden of imple-
menting low level, lock-based synchronization mechanisms.

The Cloud-TM project aims to extend the conventional TM
abstraction, traditionally confined within the boundaries of
a single multi-processor machine, to seek a convergence with
the distributed computing paradigm, and introduce a novel
programming abstraction which combines the simplicity of
TM with the scalability and failure resiliency achievable
by exploiting the resource redundancy proper of large scale
cloud infrastructures [42].

�
�
�
���
���
�
	

�
�
�
�
�
	

�����������	������������	
�����	
�

����	�������	�����������	����	

�

!"�

�
�
	#
	$
�%	

�
�
���

	

�

!"�

�
�
	�
�
�
"&'�
	

���������	
������	����	�������	

�������	��
���
����������

(����)�
	�������	

�����	������
��

��� �����������

���	����	���
���������

!��"�#��$�

�
�
�
���
���
�
	

�
�
�
�
�

�����������	������������	
�����	

�

!"�

�
�
	#
	$
�%	

�
�
���

�

!"�

�
�
	�
�
�
"&'�

�����	 ����
��

�� �����������

���	����	��
��������

!��"�#��$

��	���&�'��"
�

�

�"

�,���

��/#����:����������&���"��;�

<�
&����������	������������>���

����
�
?�""���������

�;�	�"�

��������@������������	��	��	���>���;�	�"��

��	��B����	�#����
�	���>���;�	�"��

������	��	��	���>���;�	�"�� ��������@�����

�&��������&��>�
�

���>���

Figure 1: Overview of Cloud-TM architecture.

4.1.1 Architectural Overview
Figure 1 provides an architectural overview of the Cloud-
TM platform. The Cloud-TM platform is formed by two
main components: the Data Platform and the Autonomic
Manager.

The Data Platform is responsible for storing, retrieving
and manipulating data across a dynamic set of distributed
nodes, elastically acquired from the underlying IaaS Cloud
provider(s). It exposes a set of APIs, denoted as “Data Plat-
form Programming APIs” in Figure 1, aimed at increasing
the productivity of Cloud programmers from a twofold per-
spective:

1. Storing and querying data into/from the Data Plat-
form using the familiar and convenient abstractions
provided by the object-oriented paradigm, such as in-
heritance, polymorphism, associations.

2. Taking full advantage of the processing power of
the Cloud-TM platform via a set of abstractions
that will hide the complexity associated with paral-
lel/distributed programming, such as load balancing,
thread synchronization and fault-tolerance.

The backbone of the Data Platform is represented by a
highly scalable, elastic and dynamically reconfigurable Dis-
tributed Software Transactional Memory (DSTM). In order
to maximize the visibility and impact of the project’s results,
Cloud-TM selected as its reference DSTM platform one of
the mainstream open-source in-memory transactional plat-
forms, namely Red Hat’s Infinispan. Infinispan is a recent
in-memory transactional data grid [34] designed from the
ground up to be extremely scalable, and is being enhanced
during the project with innovative algorithms for data repli-
cation and on-line self-tuning.

45

The Autonomic Manager is the component in charge of au-
tomating the elastic scaling of the Data Platform, and of
orchestrating self-optimizing strategies aimed to dynami-
cally reconfigure the data distribution and replication mech-
anisms. Its topmost layer exposes an API allowing the spec-
ification and negotiation of QoS requirements and budget
constraints. The Autonomic Manager leverages on pervasive
monitoring mechanisms that do not only track the utiliza-
tion of heterogeneous system-level resources (such as CPU,
memory, network and disk), but characterize also the work-
load sustained by the various subcomponents of the Data
Platform and their efficiency. The stream of raw data gath-
ered by the Workload and Performance Monitor is then
filtered and aggregated by the Workload Analyzer, which
generates workload profiling information and alert signals
for the Adaptation Manger. Finally, the Adaptation Man-
ager hosts a set of optimizers relying on techniques of dif-
ferent nature, including analytical, simulative and machine-
learning, to self-tune the platform’s components and control
its auto-scaling with the ultimate goal of meeting QoS/cost
constraints.

4.1.2 Selected results in the dependability area
In the following we overview some recent results achieved by
the Cloud-TM project in the area of dependable data man-
agement. In particular we review three results addressing
different aspects of transactional data replication, namely
high scalability, autoscaling and self-tuning.

Scalable transactional replication. A common trait
characterizing the new generation of cloud data platforms
is the adoption of a range of weak consistency models, such
as eventual consistency [24], restricted transactional seman-
tics (e.g. single object transactions [33], or static transac-
tions [13]), and non-serializable isolation levels [15]. By em-
bracing weak consistency, these platforms achieve unprece-
dented scalability levels. On the down side of the coin, weak
consistency models expose additional complexity to applica-
tion developers, forcing them to deal with the idiosyncrasies
caused by concurrency, network partitioning and/or failures.
Therefore, a crucial research question is whether consistency
and scalability are actually two mutual exclusive qualities, or
whether, there exist any sweet spot in the trade-off between
scalability and consistency that allows to design highly scal-
able data replication protocols while exposing simple and
intuitive consistency semantics.

In Cloud-TM we have addressed this fundamental issue by
designing and integrating in our platform GMU [36], a gen-
uine partial replication protocol for transactional systems,
which exploits an innovative, highly scalable, distributed
multiversioning scheme. GMU never blocks or aborts read-
only transactions and spares them from distributed valida-
tion schemes. Unlike existing multiversion-based solutions,
GMU does not rely on a global logical clock, hence avoiding
global contention points that would limit system scalability.
GMU has been evaluated in large scale public and private
cloud platforms of up to a hundred nodes with challeng-
ing OLTP workloads such as the industry standard TPC-C
benchmark, showing linear scalability and negligible over-
heads with respect to much weaker isolation levels such as
SQL’s repeatable read (see Figure 2).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

co
m

m
itt

ed
 tx

/s
ec

)

Number of Nodes

TPC-C (90% read transactions)

GMU
Repeatable Read

Figure 2: Performance of the GMU protocol [36].

GMU guarantees the Extended Update Serializability (EUS)
isolation level, a consistency criterion that is sufficiently
strong to ensure correctness even for very demanding ap-
plications (such as TPC-C), but also weak enough to allow
efficient and scalable implementations, such as GMU. Fur-
ther, unlike several relaxed consistency models proposed in
literature, EUS has simple and intuitive semantics, thus be-
ing an attractive, scalable consistency model for ordinary
programmers

Auto-scaling. Existing cloud platforms allow non-expert
users to provision a cluster of any size on the cloud within
minutes. However, removing the system administrator
and the traditional capacity-planning process from the loop
shifts the non-trivial responsibility of determining a good
cluster configuration to the non-expert user. Unfortunately,
forecasting the performance of data centric applications
while varying the scale of the underlying platform is ex-
tremely challenging. In fact, the performance of distributed
data platforms tend to exhibit strong non-linear behaviors
as the number of nodes in the system grows, as a conse-
quence of the simultaneous, and often inter-dependent, ef-
fects of contention affecting both physical (computational,
memory, network) and logical (conflicting data accesses by
concurrent transactions) resources [26]. Due to these com-
plexities, auto-scaling mechanisms currently offered by com-
mercial cloud support only simple reactive provisioning poli-
cies based on user defined thresholds on resource (e.g., CPU
or memory) utilization. However, no guarantee is provided
on the impact of the auto-scaling policies on key application
level performance indicators, such as throughput or response
time, which are essential for the definition of any Service
Level Agreement.

The Cloud-TM project has attempted to fill this gap by in-
troducing TAS (Transactional Auto Scaler) [26], an elastic-
scaling system (see Figure 3) that relies on a novel hybrid
analytical/machine-learning-based forecasting methodology
to predict the performance achievable by transactional in-
memory data stores in face of changes of their scale [26].
Applications of TAS range from on-line self-optimization of
in-production applications, to the automatic generation of
QoS/cost driven elastic scaling policies, and what-if analy-
sis on the scalability of transactional applications.

46

�����

�����

�	

�����

�� �
���

�����������
���
�

��	
����	
��������
���	
�����	

�����
������	

���

�����������������
	

����
�����������	��
����
	��	����
��	
�����	

���

��

���

�

���

��

���!�����
���
�

����������

��
�
���	�
	

Figure 3: Architecture of the Transactional Auto
Scaler [26].

Self-tuning replication. Decades of literature and field
experience in the area of data replication have brought to
the development of a plethora of approaches for state consis-
tency in distributed platforms, and taught a fundamental,
general lesson: no universal, one-size-fits-all solution exists
that can achieve optimal efficiency across all possible kinds
of workloads and for any level of scale of the system. This
issue is hence particularly exacerbated in Cloud computing
platforms due to the feature that is regarded as one of the
key advantages of the cloud: its ability to elastically ac-
quire or release resources, dynamically varying the scale of
the platform in real-time to meet the demands of varying
workloads. This means that in order to maximize efficiency
(i.e. minimizing operational costs, in the pay-per-use pric-
ing model) data management middleware needs to adapt its
consistency mechanisms in order to ensure optimal perfor-
mance for every workload and at any scale.

An important step achieved by the Cloud-TM project to-
wards the fulfillment of this goal is PolyCert [23]. Polycert is
a polymorphic data replication protocol that allows for the
concurrent co-existence of different state of the art trans-
actional replication protocols, relying on machine-learning
techniques to determine the optimal certification scheme on
a per transaction basis. By self-tuning the replication strat-
egy on the basis of current workload, PolyCert can achieve
a performance extremely close to that of an optimal non-
adaptive protocol in presence of non heterogeneous work-
loads, and significantly outperform any non-adaptive proto-
col when used with complex applications generating hetero-
geneous workloads.

4.1.3 Summary
Cloud-TM aims at defining a novel programming paradigm
to facilitate the development and administration of cloud ap-
plications. To this end, the Cloud-TM project is developing
a self-optimizing Distributed Transactional Memory middle-
ware that will expose a familiar object-oriented program-
ming paradigm and spare programmers from the burden of
coding for distribution, persistence and fault tolerance, let-
ting them focus on delivering differentiating business value.

In order to achieve optimal efficiency with any workload
and at any scale, the Cloud-TM middleware will integrate
pervasive autonomic mechanisms that will serve the twofold
purpose of automating resource provisioning and self-tuning
the various layers of the platform.

Federation

User management/
authorization application

coordinator

SLA lifecycle
management

SLA coordination

accounting

SLA negotiation

Provider

User management/
authorization

accounting

SLA lifecycle
management

SLA enforcement

monitoring

SLA negotiation

Resource

appliance
management

application
deployment

appliance hosting

appliance
monitoring

GAFS

resource
reservation

appliance

VIN

Figure 4: Overview of Contrail architecture.

4.2 Contrail
Contrail [4] is an open source integrated approach to vir-
tualization, which aims at offering Infrastructure as a Ser-
vice (IaaS) services, services for federating IaaS clouds, and
Contrail Platform as a Service (ConPaaS) services on top
of federated clouds. In Contrail, the user is relieved from
managing the access to individual cloud providers and can
focus on specifying the service or application. The appli-
cation will be then deployed on few clouds selected from a
large set of heterogeneous cloud providers. These providers
can implement a different cloud technology, have different
hardware, or offer different types of guarantees.

Contrail implements a dependable cloud by guaranteeing the
availability of the computational resources and having strict
guarantees in terms of quality of service (QoS) and qual-
ity of protection (QoP), that customers can specify in the
Service Level Agreement (SLA), when submitting their re-
quests, and monitor during the execution of the application.
The Contrail Federation is the primary access for the cus-
tomers. It is the entity entitled to select the best provider
for serving the customers’ requests, and to negotiate and
enforce the SLAs even on unreliable providers. Thus, a cus-
tomer of Contrail only needs to submit the distributed ap-
plication, along with its runtime configuration, and specify
the requirements in an OVF [12] and SLA documents re-
spectively. Then, the Federation ensures that the providers’
resources are utilized as needed for offering an elastic, de-
pendable, and trustworthy cloud service. These qualities
enable customers to rely on cloud computing as an external
source for their data management and as processing facilities
for creating their business on top.

Figure 4 depicts the Contrail architecture. It is designed
to be extensible, allowing the reuse of some components in
different layers, and to give the possibility to exploit com-
ponents independently. As such it is organized in modular
components separated by well-defined interfaces and struc-
tured in layers to specifically address, from the top to down,
the federation, the provider, and the resources. The federa-
tion layer is the entry-point for users, who register and au-
thenticate to use the Contrail services; users interact with
this layer to negotiate SLAs, to submit and monitor their

47

applications. The federation layer is then in charge of in-
teracting with the different cloud providers, enabling seam-
less access to their resources. The Contrail Federation [21]
implements federated identity management, for authentica-
tion and authorization, and integrates security mechanisms
to provide strict security guarantees expressed as quality of
protection (QoP) terms. The SLA terms for security (QoP)
and performance guarantees (QoS) are used to select the
most suitable cloud providers to deploy the user’s appli-
cation based on the resources available and the providers’
reputation, matching the level of performance and trustwor-
thiness required by the application. The Federation then
proceeds to negotiate proper SLA terms with each provider
in a transparent way for the users. In this phase, a high
degree of interoperability could be achieved thanks to the
Virtual Execution Platform (VEP) [28, 29] service (see Fig-
ure 5) enabling the federation to manage the resources of
public and private cloud providers regardless of the hard-
ware and the technology implemented.

The provider layer implements the business part of a cloud
provider since it negotiates and enforces SLAs, monitors the
application and does the accounting of the resources. This
layer is the sole interacting with the Contrail Federation.
The resource layer manages the physical resources of a cloud
provider. In Contrail, each cloud provider runs a copy of
the VEP software which in turn seamlessly integrates its
resources with the Contrail Federation. The separation of
the provider and resource layers have a two fold meaning: a
cloud provider can have many data centers, and the cloud
provider could use the management services of the provider
layer to run their business independently or in addition to
the Contrail Federation.

A key objective of the Contrail project is to provide a reli-
able cloud platform. The gateway is the Contrail Federation
and three other important components are VEP, GAFS, and
VIN. VEP [28] is a reliable application deployment platform
that is resilient to operational failures and which supports
secure management of user data with a strong guarantee for
QoS. It is an open source technology implementing stan-
dards and offers the deployment of end-user applications
independently from the underlying platform, providing the
needed support for interoperability to the Contrail Feder-
ation. GAFS (Global Autonomous File System) is a reli-
able and highly available storage service implemented with
XtreemFS [30]. It is used both to store VM images and sys-
tem logs, and as a scalable Storage as a Service for Cloud
users and applications. GAFS provides scalability and elas-
ticity, and implements security mechanisms for data access
control and encryption for data in transit. It also allows to
specify the level of protection of the stored data and the lo-
cation of the storage due to specific legal requirements or ne-
gotiated QoS terms, e.g., low latency and high throughput.
VIN (Virtual Infrastructure Network) [20] is responsible for
managing all communication within a Contrail application
and maintaining a stable network when resources are added
or removed to an elastic application. It creates a dedicated
private network per application, which is deployed in an iso-
lated environment and can provide different security levels
for the communication.

Another key objective of Contrail is to provide elastic PaaS
services on top of federated clouds. This is achieved thanks
to ConPaaS (the Contrail PaaS) [41] component, which will
directly interact with the Federation to use services and fea-
tures such as user management, SLA handling, and applica-
tion deployment. The tight integration with the Federation
will ensure that a ConPaaS service can be deployed over
different cloud providers to guarantee elasticity within the
constraint of the negotiated SLA, thus integrating security,
availability and performance guarantees for a reliable exe-
cution. As a standalone component, ConPaaS [41] already
ensures that services can deploy themselves on the cloud,
be self-managed, elastic, and scalable. A ConPaaS service
can monitor its own performance and increase or decrease
its processing capacity by dynamically (de-)provisioning in-
stances of itself in the cloud.

4.2.1 Contrail challenges for a dependable cloud
This section overviews how Contrail tackles major challenges
for a dependable cloud.

Security and trustworthiness. Security and trustworthi-
ness of the cloud infrastructure is one of the major concerns
for customers willing to use cloud computing for running
their applications and storing their data. Proper security
can only be achieved by adequately protecting them against
unauthorized access or modification. Contrail integrates au-
thentication and authorization mechanisms at the federation
layer having the Federation in charge of authenticating the
users and handling user identities and credentials to act on
behalf of the users seamlessly [21]. In Contrail, the enti-
ties operating the federation and the cloud infrastructure
represent independent security domains. As such a user fed-
eration identity is used to match the credentials managed at
the federation layer with those at the cloud providers deploy-
ing the application. The Contrail authorization system is
meant to protect a user application and data from unautho-
rized access of others, and contextually the cloud provider
from a misuse of the resources. The authorization is based
on the concept of mutual attributes, associated with the re-
sources or users, and continuous control to evaluate whether
possible modifications of attributes may lead to a failure in
satisfying previously defined security policies. Contrail also
provides an isolated environment for each application via a
dedicated secured virtual network (VIN in Figure 4) to meet
privacy requirements and avoid other users or even the cloud
provider to interfere with the application itself. The level of
privacy for an application and potential legal requirements,
such as geographical location of data storage or computing
resources, are specified as Quality of Protection (QoP) terms
in the SLA.

Availability. The availability of the resources in cloud
computing is of utmost importance both for satisfying the
request of the users and to implement elasticity of cloud ser-
vices, which requires cloud providers to allocate on-demand
resources. The Contrail Federation integrates heterogeneous
public and private clouds, and gives users the possibility to
deploy an application over multiple clouds seamlessly. For
instance in case of a request for additional resources, which
are not available at the cloud provider hosting the applica-

48

tion, the Federation can take over and locate resources in an
alternative provider to meet the customers’ requests. The
portability of an application or part of it on a different cloud
provider could be an issue because of the technology mak-
ing difficult the interoperability across federated clouds. In
Contrail, interoperability is supported via the VEP service
which is able to manage the deployment of an application
regardless of the underlying technology and it will rely on
the support of standards to describe distributed cloud ap-
plications (e.g., OVF [12]) and open protocols to build and
manage them (e.g., OCCI [9]).

Sharing cloud resources with other users exposes the cus-
tomers and the cloud provider to possible misuse of the re-
sources, which might not be anymore available in case of out-
ages or network misconfiguration. Contrail addresses these
issues by ensuring proper isolation of the applications and
control over the access to the resources. Moreover, the mon-
itoring infrastructure proposed in Contrail collects informa-
tion about resource usage. The monitoring data is used to
take actions both at the provider and federation layer to
manage the available resources efficiently during the execu-
tion of the application or to do advanced reservation before
deploying an application.

Reliability and performance guarantee. On the one
hand a cloud provider should contractually reach the ap-
plication performance objective to ensure a reliable appli-
cation execution. On the other end, the provision of new
resources to meet this objective should be done at the mini-
mum cost for the customer. Contrail uses SLAs to negotiate
QoS terms; the Federation is then in charge of locating the
best cloud provider and monitoring the applications. To
provide resilience to failures and prevent a potential viola-
tion of SLAs or implement fault tolerance, Contrail supports
application snapshot via the VEP service. The snapshot is
a single OVF document describing all active Virtual Ma-
chines (VMs) with links to their respective saved disk im-
ages. The Federation can then proactively decide to migrate
the whole or part of the application to another provider if
more resources are needed to satisfy the QoS or a failure
has been detected. In such a scenario, the Contrail software
is able to satisfy the user needs for the deployment of elas-
tic and scalable applications guaranteeing performance and
fault tolerance.

4.2.2 Application deployment and SLA management
Figure 5 depicts the deployment of an application in Con-
trail. A user of the Contrail system authenticates with the
Federation portal and negotiates the deployment of the ap-
plication, described in the OVF [12] standard. This format
is portable, being platform neutral, and is extensible by the
users if needed. The user negotiates with the Federation the
Service Level Agreement (SLA), which indicates the per-
formance objectives (QoS) and level of security requested
(QoP). In Contrail, there are three types of SLA templates:
specific to an OVF descriptor of an application or service
(in Figure 5), generic for multiple applications of the same
user, or hybrid as it is an intersection of the previous two
and refers to a specific section of the OVF descriptor. Upon
verifying the available resources and the requested QoS and
QoP, the Federation can decide to deploy an application
on a single cloud provider or it can split it across multiple

��������	
	��
����	

��������	
	��
����	

��	 ���	

�		�������	

(�������	���������	

�������	
	��
����	

�������	
	��
����	

�������	
	��
����	

���	
���

Figure 5: Application deployment in Contrail.

providers (see Figure 5). Elasticity rules are also managed
via SLAs, and other cloud providers can be selected at run-
time when extra resources are requested.

Each Contrail cloud provider has a SLA management com-
ponent (SLA negotiation and SLA enforcement in Figure 4)
and it can negotiate with the Federation long term SLAs,
such that the Federation has the means to manage a user
request without negotiating new SLAs. Negotiated SLAs
associated to an application are communicated to the VEP
component in order to be applied. The VEP is in charge
of provisioning resources from the resource layer in confor-
mance with negotiated SLAs, of monitoring the application
during the whole lifecycle and of providing monitoring data
to the SLA enforcement component. The monitoring data
are used to detect a potential violation of SLAs. This is done
first at the provider layer, where the SLA enforcement com-
ponent reacts through requests to the VEP if more resources
are available, otherwise at the federation layer, where re-
quired actions will be taken to satisfy the negotiated SLA.
If an application is split across multiple cloud providers, each
cloud provider monitors and enforces the SLA for the part of
application it deploys and the Federation verifies on the ag-
gregated monitoring data that the SLA negotiated with the
user is not violated. Contrail also offers PaaS services with
ConPaaS (see Figure 5). The integration of ConPaaS in the
Contrail software stack [3] will guarantee the deployment of
PaaS services by exploiting all the Federation features, such
as monitoring and SLA enforcement.

4.2.3 Summary of Contrail dependability features
The main results of Contrail that provide solutions for de-
pendable cloud services are the following:

• A Federation service integrating security to select the
best matching resources (with variable prices) offered
by multiple cloud providers;

• SLA negotiation and enforcement via monitoring ca-
pabilities to guarantee QoS and QoP terms;

• VEP to implement interoperability for deploying appli-
cations in a dynamic and heterogeneous environment;

• ConPaaS to offer an open-source runtime environment
for easy and scalable applications in the cloud.

49

Addressing these important challenges is fundamental to
support large user communities formed of individual cit-
izens and/or organizations relying on Cloud resources for
their business applications.

4.3 mOSAIC
The mOSAIC Consortium [8] has promise to deliver an
open-source API and a PaaS which allows to port Cloud-
enabled applications from one Cloud infrastructure service
provider to another, and which allows to select the Cloud
service at the deployment time.

4.3.1 Approach
The first step to keep the mOSAIC’s promise was the design
of a set of open APIs that: (a) introduces new level of ab-
stractions in order to reach the promise of Cloud computing
to make the infrastructure programmable; (b) uses an event-
driven approach and message passing as being most appro-
priate for Cloud computing paradigm (c) is instantiated by
proof-of-concept implementations in popular programming
languages, like Java and Python.

While other open APIs (like jClouds, libcloud, SimpleCloud,
OpenStack, etc.) are trying to provide an uniform API that
abstracts the functionality of a certain type of the Cloud
resource (virtual machine, storage, networking) by keeping
the programming style close to the one of the native API
of the Cloud resource, the mOSAIC’s APIs try to improve
the efficiency on the application side by removing restric-
tions like the requirement for synchronous communications
or REST interfaces.

The new level of abstractions are represented by: (a) Drivers
equivalent with the above mentioned APIs, close to the na-
tive APIs (any of the mentioned things can be a Driver); (b)
Connectors that are representing the operations with a cer-
tain type of Cloud resource (e.g., message queues, key value
store, etc.) in a specific language and independent from the
programming style of Drivers; (c) Cloudlets that are express-
ing the reactions of the applications to the events related to
the Cloud resources allocated to the applications; (d) In-
teroperability layer that acts as proxy between Connectors
and Drivers. Details of these concepts as well the results
of preliminary tests showing the efficiency of such approach
when compared with classical synchronous and REST based
architecture can be found in [39].

Beyond using open APIs, the portability can be sustained
by open protocols, open standards, semantics, and abstrac-
tion layers like reference architectures or mediator services.
mOSAIC is using OCCI as open protocol in its brokerage
mechanisms and CDMI as open standard at Driver level, as
well as a complex semantic engine that help the application
designer to find the right functionality or the right Cloud
service (described in terms of a particular Cloud ontology).

The second step to keep the mOSAIC’s promise was the de-
sign of a PaaS that: (a) is open-source and deployable; (b)
helps the application developers to deploy the application in
one or multiple Clouds without the need to set the execution
environment; (c) allows the development of the application
on desktop after which its porting to personal, private or
public Cloud can be done smoothly; (d) monitors the exe-

����� ���	��� �

����
��������� ���	��� �

����
����

����������������
���� �������
�

�
���� �������
�

�

�

����
��� ��

��
�

����
��� ��

��

������ ���� ��� ���������� ���� ��� ����

������ �

���� ��
�� �����

 �

����
����

������ �

���� ��
�� �����

 �

����
����

������
��
�

����
����
������
��
�

����
����

���
��
�����
�
���

���� J ����	

?�	K��
���

�

���
��
�����
�
���

���� J ����	

?�	K��
���

�

�

����
���

����

������
 ��K� �
��
!�	
������

��

?	
��� �		��

�

����
���

����

������
 ��K� �
��
!�	
������

��

?	
��� �		��

�����
�� ������

�K���
���
�
��	

��

�
����

��

�
� � � �

�����
�� ������

�K���
���
�
��	

��

�
����

��

�
� � � �

������
���
��� ��
�������
���
��� ��
����
����
��
���� ��

��
���
����
��
���� ��

��

�
�	
���������	
�

�
�	
���������	
�

?	
��� �		���
�	�����
 �
���
�

?�K��
�

?	
��� �		���
�	�����
 �
���
�

?�K��
�

�
�	�	��
��
�	�	��
�

������� ����������������� ����������

���
������ ����
���
����
�

�
����
������	�
�
������
��
�
��	�

���
������ ����
���
����
�

�
����
������	�
�
������
��
�
��	�

�

� �������
���
����
�

�� � �

�������
!
�"	��

�

� �������
���
����
�

�� � �

�������
!
�"	��

����� ������

#
����	��
#
�
��
 �����
�

����� ������

#
����	��
#
�
��
 �����
�

�
��	��
��	����	
� ����

#	
��	��
���
�K�
�� ����
�
$
�
�	� �K��	���

�
��	��
��	����	
� ����

#	
��	��
���
�K�
�� ����
�
$
�
�	� �K��	���

����
�
��	�
��

%

�	� �

��

����
�
��	�
��

%

�	� �

��

�

����
���
��

��

���
����
�

?���� ����
��

�

����
���
��

��

���
����
�

?���� ����
��

����� ���

�������� ���

���

 ��
��� �������� ��

��

 &�� ?�	K��K���� ��������
� '	���	�
!�
(�����
 �	���� ?�	K������ ?'�

 ��
��� �������� ��

��

 &�� ?�	K��K���� ��������
� '	���	�
!�
(�����
 �	���� ?�	K������ ?'�

!�
����	��
�������� ��

��

�K������K��

!�
����	��
�������� ��

��

�K������K��!�
(�����
� �	����� ?�	K������� ?'�!�
(�����
� �	����� ?�	K������� ?'� K�� �� K��
��

!
�K���
�
���?�	K��
��

�����

K�� �� K��
��

!
�K���
�
���?�	K��
��

�����

�
��� ���
��� ��� ��
����	�� ���������
��� ���
��� ��� ��
����	�� ��������

Figure 6: General overview of mOSAIC’s PaaS ar-
chitecture.

cution of the application allowing its elasticity at the level
of components; (e) can deal with long-running applications
like web applications, as well with data or computational
intensive scientific applications.

4.3.2 Architectural Overview
A general overview of the mOSAIC’s PaaS is provided in
Figure 6. The implementation in Java of the API set and
the open-source part of the PaaS are available at [7].

The targeted applications are the ones built from compo-
nents that are able to be multiplied or reduced in the execu-
tion phase in order to keep the application’s key performance
indicators between the desired thresholds. Simple proof-of-
concept web applications are provided with the code (one
being exposed in [38]), while the complex applications that
have motivated the developments and which are providing
currently the first feedback are partially described in [25].

An application descriptor exposing the application’s compo-
nents and communications between them is interpreted by
the platform and an adequate request for e-infrastructure
services is forwarded at deployment stage to a Cloud agency
(details in [45]) that, after the service level agreement nego-
tiations, is entitled to return the links to the allocated Cloud
resources.

50

Various proof-of-the-concept adaptors to Cloud services are
currently in development, half of them for public Clouds
offered by European providers or for open-source deploy-
able software allowing to build Private or Hybrid Clouds.
The repository of re-usable components includes, beyond the
Connectors, Cloudlets and Drivers, open source deployable
services like Riak for key-value store or RabbitMQ for mes-
sage passing (depicted by the acronym COTS in Figure 6).

4.3.3 Results in the dependability area
From the point of view of dependable Cloud computing, mO-
SAIC deals with the followings topics: fault tolerance, avail-
ability, reliability, safety, and maintainability.

To ensure the fault tolerance, several decisions were taken at
the design of the new set of APIs. The application compo-
nents are requested to communicate only via message queues
that are seen as Cloud resources. In the case of faults in one
component instance the messages are redirected to another
instance of the same component. Several instances of the
same component are managed by a Container that is enti-
tled to implement the fault tolerance mechanisms.

To ensure the availability of the application on long term or
in the case of breakdowns of the underlying Cloud services,
the application deployer can request to the Cloud agency
the re-allocation of new Cloud resources. Furthermore, the
application can be developed and partially maintained also
on the developer desktop (through the usage of the Portable
Testbed Cluster).

To ensure the reliability of the application, the number of
Containers that are managing a certain number of instances
of the application components can be specified at the deploy-
ment phase. Different Containers will be scheduled usually
in different virtual machines.

In what concerns the safety of the developed and deployed
applications, it is necessary to underline the advantages of
the event-driven approach. Event-based programs tend to
use a single thread to process events, avoiding concurrency
problems. Moreover, the event-based programs running un-
der heavy load are more stable than the threaded programs.

To ensure the maintainability, the components of the appli-
cation can be stopped and restarted during the application
execution. This is possible due to discovery services that
are part of the platform, as well as due to the asynchronous
communications and message queuing system.

4.4 TClouds
The TClouds project [10] aims to improve the security and
robustness of cloud services. As of today, cloud providers
offer only a few, if any, explicit security guarantees in their
SLAs. The providers are generally confronted with a de-
mand for more robust services from their customers. This is
underlined by a number of security incidents and failures of
cloud services, which have received public attention, some-
times deserved and sometimes not.

TClouds explores methods from security and dependability
in operating systems, virtualization, and distributed systems
for increasing the resiliency and security of cloud infrastruc-

tures and platforms. The project centers around a reference
architecture [46] that rests on the following three observa-
tions:

1. A cloud scenario has dependability and security needs
that cannot be met by the application layer alone, re-
quiring security-specific solutions to be provided at
lower layers of the cloud architecture (infrastructure
and platform).

2. Proprietary approaches to achieving resilience in a
cloud infrastructure and platform make it more dif-
ficult and more expensive to migrate and interoperate
between providers, creating vendor lock-in and exclud-
ing competition. Open, standards-based mechanisms
are required instead.

3. Wherever there is a single point of failure, be it at a
technical or an organizational level, any high-resilience
objective may be compromised. This holds also for
multiple federated clouds that share common or re-
lated management and trust domains. This requires a
genuinely diverse multi-provider approach.

These observations lead to the development of a set of so-
lutions representing different instantiations of the reference
architecture. These solutions comprise mainly the construc-
tion of either a trusted cloud infrastructure and the design
of dependable cloud services using the available public cloud
offers.

4.4.1 Selected project results
In the following we discuss the main research avenues pur-
sued by TClouds.

Legal requirements. The TClouds project acknowledges
that many of the impediments to adopting cloud computing
stem from legal uncertainty and from issues with business
models. From the legislation point of view, the project is
investigating legal challenges associated with the flexibility
of cloud computing. The reality of multinational cloud plat-
forms raises questions regarding which legislations govern
the handling of personal identifiable information (PII). The
data protection legislation of the EU is applicable when-
ever the cloud provider (or a unit thereof) is located or
uses equipment for data processing in a member state of the
EU. Therefore, any server farm, data center, or specific ge-
ographic component in the EU results in applicability. The
EU data protection framework restricts the transfer of PII
to outside the EU. It demands adequacy of data protection
standards of the recipient to guarantee sufficient safeguards
of the individual’s right to information self-determination.
Only few countries meet these high expectations of ade-
quate privacy provisions since 75% of states worldwide do
not have comprehensive data protection laws, including the
USA. Transferring PII to these states is only allowed un-
der very strict contractual conditions (e.g., if the informa-
tion cannot be related with some citizen). The European
Commission established a self-certification framework for US
companies, the US-EU Safe Harbor framework. This allows

51

US companies to self-certify adherence to privacy princi-
ples that should provide adequate data protection standards
within this company.

Verifying virtual infrastructures. A second contribu-
tion of TClouds is a set of tools to assess the security of
services deployed on public cloud platforms. One of these
tools was used in a recent study for exposing that many
of the OS images found in the Amazon Cloud App Store
have backdoors and other vulnerabilities, which renders any
client running such an image prone to simple attacks [18].
This tool, called AmazonIA (Amazon Image Attack), allows
one to scan an OS image for backdoors before using it and
thereby increases the confidence in the proper security con-
figuration of the image.

Another tool devised in the project aims to verify the infor-
mation flow in of heterogeneous virtualized computing in-
frastructures [17]. The tool inspects VM configuration files,
builds a graph model, and computes the potential informa-
tion flow between the components, in order to identify pos-
sible leaks, attacks, and security-policy violations.

Trusted cloud infrastructures. One of the key objec-
tives of TClouds is to build secure private clouds in such a
way that they may run safety-critical and sensitive services,
which cannot be done in a public cloud today. This objec-
tive is being addressed through the exploitation of trusted
computing (TC) technology. The idea is to build data cen-
ters with TC-enabled servers (e.g., that possess a TPM chip
or another hardware root-of-trust) that can provide such ad-
vanced security properties. In particular, TClouds members
are extending the OpenStack resource scheduler with remote
attestation capabilities to ensure that only certified VMs are
deployed in a given infrastructure.

An orthogonal but related solution being devised in the
project is a system for the management of trusted virtual
domains (TVDs) composed of sets of interconnected vir-
tual machines [19]. The VMs of a TVD are interconnected
in such a way that their data transfers never leave the
TVD. Remote communication between compartments over
untrusted networking infrastructure is secured by a secu-
rity kernel deployed on each physical machine. This kernel
is deemed secure since its code is verified through remote
attestation using TC technology.

Every information flow within a TVD or between TVDs is
also controlled by the security kernel and is only granted
if it complies with the security policy. The security policy
is enforced by a trusted organization manager component
(TOM) that manages all TVDs and appliances in the or-
ganization through a trusted management channel between
itself and the security kernel of each machine.

Resilient cloud services. Most cloud infrastructures and
platforms rely on a set of critical services in order to operate
correctly. Examples of such services are coordination, au-
thentication, logging, metadata store, databases and so on.
Many of these services employ state-machine replication pro-
tocols for high-availability in face of crashes and asynchrony.

TClouds builds on the recent development of practical
Byzantine fault-tolerance (BFT) systems in order to cre-
ate cloud-management services that can effectively tolerate
adversarial influence beyond crashes, such as value-domain
errors, malicious attacks, or Byzantine faults. The project
addresses this topic by designing and implementing a robust
BFT replication library that can be used for replicating any
(deterministic) service. This library is called BFT-SMaRt,
and is freely available on the web [1]. Contrary to previous
works on the field, the focus of BFT-SMaRt is not on pro-
viding new protocols and algorithms, but instead to make
a subset of state-of-the-art techniques work on a stable sys-
tem.

By exploiting the trusted computing technology available in
TClouds-enabled private clouds, the project also improves
the replication protocols themselves. In particular, TClouds
has developed two resource-efficient BFT replication proto-
cols that tolerate up to f faulty replicas: one uses 2f + 1
replicas that may be hosted in diverse data centers [47] and
the other uses only f + 1 replicas residing in the same dat-
acenter [31]. Prototypes for these replication protocols are
being implemented using the BFT-SMaRt codebase.

Programming models & platforms. Another objective
of TClouds is to improve the resilience of widely used cloud
platforms and programming models. A relevant result in
this direction was a MapReduce platform capable of tol-
erating (non-malicious) Byzantine faults that uses several
techniques to avoid incurring on prohibitive costs [22].

Cloud-of-clouds services. One last strand of work in
TClouds addresses the combination of multiple, indepen-
dent cloud services into one more resilient “cloud-of-clouds”
service. The underlying idea is the same as for building
resilient single-domain cloud services from replicated com-
ponents: If one whole cloud represents a unit of failure, then
a resilient federation of multiple cloud services should result
in a service with better availability and more security. This
idea is pioneered by TClouds by combining resources from
a diverse set of commodity public clouds.

Through using BFT replication mechanisms, this approach
is able to tolerate faults and intrusions on up to a certain
number of providers. However, the BFT mechanisms must
be adapted to the different inter-cloud environment from the
intra-cloud setting. Several challenges need to be addressed:
replication mechanisms are required that (1) can tolerate a
large spectrum of faults and security threats, (2) can cope
with Internet communication unpredictability to effective
make multi-cloud systems run smoothly, (3) are compati-
ble with most public clouds available without changing their
infrastructures or requiring their cooperation, and (4) mini-
mize the replication resource overhead to make the solution
economically viable for practical applications. These chal-
lenges cannot be completely addressed by the current repli-
cation protocols and thus new techniques must be devised.

The first cloud-of-clouds service developed at TClouds is the
DepSky object storage system [16], which uses object stor-
age services from diverse cloud providers (e.g., Amazon S3,

52

Rackspace Files) to build a virtual trusted object storage. In
a nutshell, the DepSky protocols address the requirements
mentioned before in the following way. First, DepSky toler-
ates arbitrary (a.k.a. Byzantine) faults in order to cope with
all possible behavior of a fraction of providers. Second, the
protocols are completely client-based, in the sense that no
specific code needs to be deployed in the clouds. DepSky as-
sumes that the clouds provide storage service with standard
operations for managing objects and containers (put, get,
list, etc.). Finally, DepSky employs both secret sharing and
erasure codes to ensure confidentiality and space efficiency
for the stored data, respectively. This solves two important
problems: (1) no single cloud has access to the information
stored in itself and, at the same time, there is no need for
key distribution protocols; (2) storing data in N clouds cost
less than N times as much as single cloud storage since only
a portion of the data is stored in each cloud.

The DepSky system deals with the problem of data repli-
cation using a cloud-of-clouds. A more complex problem
that is currently being addressed is how to use the comput-
ing resources available on public clouds to build dependable
cloud-of-cloud computing services. The technical challenges
of providing a cloud-of-clouds computing platform are sub-
stantially harder than for the storage case, since the required
replication protocols for general services (e.g., state machine
replication) usually do not work very well on WANs. The
initial approach to cope with this problem is to extend BFT-
SMaRt to achieve better performance in WANs, and then
build cloud-of-cloud services using it.

4.4.2 Summary
TClouds tackled the problem of dependable and secure
Cloud computing considering a general reference architcture
that can be instantiated in different ways, as reflected by the
broad scope of the project results. This approach takes in
consideration the fact that different solutions are required at
different levels, depending on the applications requirements
and constraints, and that there is no silver bullet for Cloud
dependability. Accordingly, the project provides only a set
of tools and methods that need to be adapted for specific
application scenarios.

4.5 VISION Cloud
The goal of the VISION Cloud project [11] is to“provide reli-
able and effective delivery of data-intensive storage services,
facilitating the convergence of ICT, media and telecommu-
nications”. To this end five areas of innovation have been
identified and are driving the VISION Cloud platform: (1)
content is managed through data objects associated with a
rich metadata model, (2) avoidance of data lock-in by en-
abling the migration of data across administrative domains,
(3) avoiding costly data transfers by moving computations
close to the data through programming agents called stor-
lets, (4) enabling efficient retrieval of objects based on their
content, properties and the relationships among them and
(5) providing strong QoS guarantees, security and compli-
ance with international regulations. More details on the
project aims and architecture can be found in [32].

4.5.1 Data and Account Model
In VISION Cloud the unit of storage is a data object. A data
object contains data of arbitrary type and size, has a unique

identifier that can be used to access it and has metadata as-
sociated with it. Each data object resides within the context
of a single container. Containers are the unit of placement,
reducing not only the frequency of making global placement
decisions, but also the size of the location information that
has to be stored globally. Metadata can be associated with
both data objects as well as containers. We distinguish be-
tween two categories of metadata, namely user and system
metadata. While the semantics of the former are transpar-
ent to VISION Cloud, the platform provides the facilities
needed to create, update and make queries on it. System
metadata, on the other hand, has concrete meaning to the
Cloud storage system. It either directs the system how to
deal with the object (e.g., access control, reliability, perfor-
mance requirements, etc.), or provides system information
about the object (e.g., size, creation time, last access time,
etc.) to the user.

The account model of VISION Cloud consists of tenants,
sub-tenants and users. A tenant is an organization that
subscribes to the platform’s services. A tenant may repre-
sent a commercial firm, a governmental organization, or any
other organization, including any group of one or more indi-
vidual persons. It is the entity that negotiates Service Level
Agreements (SLAs) with VISION Cloud and is billed ac-
cordingly. A tenant may also define subtenants. Subtenants
can be viewed as different departments of the same organi-
zation. A firm consisting of an R&D Department and HR
Department could therefore constitute different subtenants
of the same tenant. This allows for different service levels
to be set according to the requirements of each department,
while also providing for isolation where needed. Thus, a
commercial firm is able to “map” its business structure di-
rectly on the underlying storage. A user is the entity that
actually consumes the storage services provided. For au-
diting, billing and security reasons [14, 27], every operation
needs to be associated with a user.

4.5.2 Approaches addressing dependability
SLA Management, in VISION Cloud, has a central role, as
a lot of management decisions come from the SLA under
which a container is created. SLAs in VISION Cloud are
dynamic, in the sense that, contrary to current commercial
offerings, a tenant is able to negotiate its terms, cost and
penalties with the platform [35]. The tenant is thus able to
define various requirements to the platform, such as:

• Latency and throughput;

• Durability levels, by which the probability of data loss
is defined;

• Availability, by which the probability that the data is
available when requested is defined;

• Geographic preference, by which a tenant asks that the
data is stored within a specific geographic region;

• Geographic exclusion, by which a tenant asks that the
data is not stored within a geographic region;

• Security, such as encryption of data with a specific
algorithm;

53

• Data dispersion, which defines the minimum geo-
graphic distance that data centers holding replicas of
the data should have.

These terms are automatically transformed to system re-
quirements. For example a durability of 99.999% can be
translated to creating 3 replicas of a given container. The
management directives are thereafter added as metadata to
containers during their creation process and are used for op-
timizing their placement.

In order to efficiently manage the platform and make de-
cisions, a clear and coherent global view of the system is
needed. For this reason, VISION Cloud makes use of a
monitoring mechanism that is able to collect, aggregate and
distribute monitoring information (events) across the deci-
sion making components (that exploit a unified management
model [48]) of the collaborating clusters and data centers of
the Cloud. The metrics collected form the basis for QoS
management, while the efficiency of the mechanism helps
lower the total cost of ownership (TCO) of the system. The
events are generated by different VISION Cloud components
(sources) in response to – directly or indirectly – a user ac-
tion (e.g, putting a new object), or periodic performance
measurements (CPU load, network traffic, etc.). In order to
efficiently use network resources (thus lowering TCO), and
distribute as much as possible the needed computations, ag-
gregation rules are applied on three levels of the platform,
namely node, cluster and cloud level. Moreover, different
fault-tolerance levels are used based on the importance of
the generated events. Some events, needed for accounting
and compliance reasons, are persisted and replicated while
others are distributed on a best-effort basis.

The coupling of management metadata with an advanced
monitoring framework also allows for proactive SLA viola-
tion detection schemes to be developed. Therefore, trends
and patterns are continuously calculated on metrics defined
in the SLAs. Building on the knowledge that is accumulated
though the analysis of monitored parameters, the system
is able to proactively detect conditions that could lead to
degradation of the QoS delivered and take necessary man-
agement actions to avoid a possible SLA violation. For in-
stance, the system can detect that a container is being in-
creasingly accessed, leading the throughput offered to fall
below the requested threshold, and triggering the replica-
tion of the container.

Moreover, in such a highly distributed environment multiple
hardware faults are bound to happen concurrently. There-
fore, VISION Cloud employs resiliency mechanisms to con-
tinuously check for faults and take recovery actions taking
into consideration that faults may also affect the recovery
process itself.

4.5.3 Summary
The amount of data being produced and stored in the Cloud
is constantly increasing. VISION Cloud aims at providing
an advanced storage cloud solution overcoming limitations
of today’s commercial offerings such as data lock-in, rudi-
mentary SLAs, separation between compute and storage re-
sources and security. Research is thus conducted, amongst

others, in fields such as defining new data and compute
models, SLA management and QoS provision, monitoring of
large-scale infrastructures, security and compliance mecha-
nisms. With respect to dependability, the aforementioned
work on SLA management as well as resiliency mechanisms
(e.g., through a component for fault-handling of containers
and storage objects) will allow for the provision of an infras-
tructure and environment on specific levels of quality.

5. CONCLUSIONS
This paper presented some selected contributions of five on-
going EU-funded projects that tackle Cloud dependability
issues. As described, each one of these projects has its own
vision on how to extend and improve Cloud computing as
we know it today. While there have been already a lot of
exciting results there will be another wave of contributions
during the next year which builds the final phase for most of
these projects. All of them publish their results and typically
provide source code for key components on their web pages
[2, 4, 8, 10, 11]. The latter also offers a good stating point
to get in touch and exchange ideas.

6. ACKNOWLEDGMENTS
We thank Christian Cachin and Tobias Distler for comments
on a preliminary version of the paper and all projects part-
ners that contributed to the works described in this paper.
This work was partially supported by the European Com-
mission through grants FP7-ICT-2009-5-257784 (Cloud-
TM), FP7-ICT-2009-5-257438 (Contrail), FP7-ICT-2009-
5-256910 (mOSAIC), FP7-ICT-2009-5-257243 (TClouds),
FP7-2009-5-ICT-257019 (VISION Cloud).

7. REFERENCES
[1] BFT-SMaRt Web Site.

http://code.google.com/p/bft-smart/.

[2] CloudTM Web Site. http://www.cloudtm.eu/.

[3] Contrail code repository. http://contrail.projects.
ow2.org/xwiki/bin/view/Main/.

[4] Contrail web site. http://contrail-project.eu/.

[5] Cooperation themes in Horizon 2020.
http://ec.europa.eu/research/horizon2020/pdf/

press/fact_sheet_fp7_themes_in_h2020.pdf.

[6] Horizon 2020. http://ec.europa.eu/research/
horizon2020/index_en.cfm?pg=home&video=none.

[7] mOSAIC code repository.
http://bitucket.org/mosaic.

[8] mOSAIC Web Site. http://www.mosaic-cloud.eu.

[9] Open Cloud Computing Interface.
http://occi-wg.org.

[10] TClouds Web Site.
http://www.tclouds-project.eu/.

[11] VISION Cloud Web Site.
http://www.visioncloud.eu/.

[12] Open Virtualization Format Specification, Jan 2010.
DMTF Standard. http://dmtf.org/standards/ovf.

[13] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM
Transactions on Computer Systems, 27(3), 2009.

[14] K. R. Balraj. An Approach to Achieve Delegation of
Sensitive RESTful Resources on Storage Cloud. In 2nd

54

Workshop on Software Services: Cloud Computing and
Applications based on Software Services, 2011.

[15] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of the International
Conference on Management of Data (SIGMOD ’95),
pages 1–10, 1995.

[16] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: Dependable and Secure Storage in
a Cloud-of-Clouds. In Proceedings of the 6th EuroSys
Conference (EuroSys ’11), pages 31–46, 2011.

[17] S. Bleikertz, T. Groß, M. Schunter, and K. Eriksson.
Automated Information Flow Analysis of Virtualized
Infrastructures. In Proceedings of the 16th European
Symposium on Research in Computer Security
(ESORICS ’11), pages 392–415, 2011.

[18] S. Bugiel, T. Pöppelmann, S. Nürnberger, A.-R.
Sadeghi, and T. Schneider. AmazonIA: When
Elasticity Snaps Back. In Proceedings of the 18th
Conference on Computer and Communications
Security (CCS ’11), pages 389–400, 2011.

[19] S. Cabuk, C. I. Dalton, K. Eriksson, D. Kuhlmann,
H. V. Ramasamy, G. Ramunno, A.-R. Sadeghi,
M. Schunter, and C. Stüble. Towards automated
security policy enforcement in multi-tenant virtual
data centers. Journal of Computer Security,
18(1):89–121, 2010.

[20] Contrail Consortium. Design of the virtual
infrastructure network, 2011. Contrail Deliverable -
D4.1.

[21] M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli,
P. Mori, J. Jensen, I. Johnson, and P. Kershaw. The
Contrail approach to cloud federations. In Proceedings
of the International Symposium on Grids and Clouds
(ISGC ’12), 2012.

[22] P. Costa, M. Pasin, A. Bessani, and M. Correia.
Byzantine fault-tolerant MapReduce: Faults are not
just crashes. In Proc. of the 3rd Int. Conference on
Cloud Computing Technology and Science
(CloudCom’11), 2011.

[23] M. Couceiro, P. Romano, and L. Rodrigues. PolyCert:
Polymorphic Self-optimizing Replication for
In-Memory Transactional Grids. In Proceedings of the
12th Conference on Middleware (Middleware ’11),
pages 309–328, 2011.

[24] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of the 21st Symposium on Operating
Systems Principles (SOSP ’07), pages 205–220, 2007.

[25] B. Di Martino, D. Petcu, R. Cossu, P. Goncalves,
T. Mahr, and M. Loichate. Building a Mosaic of
Clouds. In Proceedings of the Euro-Par 2010 Parallel
Processing Workshops (Euro-Par ’10 Workshops),
pages 571–578, 2011.

[26] D. Didona, P. Romano, S. Peluso, and F. Quaglia.
Transactional Auto Scaler: Elastic scaling of NoSQL
transactional data grids. In Proceedings of the 9th
International Conference on Autonomic Computing
(ICAC ’12), 2012.

[27] S. Halevi, D. Harnik, B. Pinkas, and

A. Shulman-Peleg. Proofs of ownership in remote
storage systems. In Proceedings of the 18th ACM
conference on Computer and communications security
(CCS’11), pages 491–500, 2011.

[28] P. Harsh, Y. Jegou, R. G. Cascella, and C. Morin.
Contrail virtual execution platform: Challenges in
being part of a cloud federation. In Proceedings of the
4th European Conference Towards a Service-based
Internet (ServiceWave ’11), pages 50–61, 2011.

[29] P. Harsh, Y. Jegou, R. G. Cascella, and C. Morin.
Open computing infrastructures for elastic services. In
European Research Activities in Cloud Computing.
Cambridge Scholars Publishing, 2012.

[30] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender,
E. Focht, M. Hess, J. Malo, J. Marti, and E. Cesario.
The XtreemFS architecture – a case for object-based
file systems in grids. Concurrency and Computation:
Practice & Experience, 20(17):2049–2060, 2008.

[31] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
S. V. Mohammadi, W. Schröder-Preikschat, and
K. Stengel. CheapBFT: Resource-efficient Byzantine
Fault Tolerance. In Proceedings of the 7th EuroSys
Conference (EuroSys ’12), pages 295–308, 2012.

[32] E. K. Kolodner, S. Tal, D. Kyriazis, D. Naor,
M. Allalouf, L. Bonelli, P. Brand, A. Eckert,
E. Elmroth, S. V. Gogouvitis, D. Harnik,
F. Hernandez, M. C. Jaeger, E. B. Lakew, J. M.
Lopez, M. Lorenz, A. Messina, A. Shulman-Peleg,
R. Talyansky, A. Voulodimos, and Y. Wolfsthal. A
Cloud Environment for Data-intensive Storage
Services. In Proceedings of the 3rd International
Conference on Cloud Computing Technology and
Science (CloudCom’11), pages 357–366, 2011.

[33] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Operating Systems Review, 44:35–40, 2010.

[34] F. Marchioni and M. Surtani. Infinispan Data Grid
Platform. PACKT Publishing, 2012.

[35] N. Mavrogeorgi, S. V. Gogouvitis, A. Voulodimos,
G. Katsaros, S. Koutsoutos, D. Kyriazis,
T. Varvarigou, and E. Salant. Content Based SLAs in
Cloud Computing Environments. In 5th International
Conference on Cloud Computing, 2012.

[36] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When Scalability Meets Consistency:
Genuine Multiversion Update-Serializable Partial
Data Replication. In Proceedings of the 32nd
International Conference on Distributed Computing
Systems (ICDCS ’12), 2012.

[37] D. Petcu. Invitation to a Journey in the ERA of Cloud
Computing. In European Research Activities in Cloud
Computing, pages 1–18. Cambridge Scholars
Publishing, 2012.

[38] D. Petcu, M. Frincu, C. Craciun, S. Panica,
M. Neagul, and G. Macariu. Towards Open-Source
Cloudware. In Proceedings of the 4th International
Conference on Utility and Cloud Computing
(UCC ’11), pages 330 –331, 2011.

[39] D. Petcu, G. Macariu, S. Panica, and C. Crăciun.
Portable Cloud applications – From theory to
practice. Future Generation Computer Systems, 2012.
doi:10.1016/j.future.2012.01.009.

55

[40] D. Petcu and J. Vázquez-Poletti (Editors). European
Research Activities in Cloud Computing. CSP, 2012.

[41] G. Pierre, I. el Helw, C. Stratan, A. Oprescu,
T. Kielmann, T. Schuett, J. Stender, M. Artac, and
A. Cernivec. ConPaaS: An integrated runtime
environment for elastic cloud applications. In
Proceedings of the 12th Conference on Middleware –
Posters and Demos Track (Middleware ’11), pages
5:1–5:2, 2011.

[42] P. Romano, L. Rodrigues, N. Carvalho, and
J. Cachopo. Cloud-TM: Harnessing the cloud with
distributed transactional memories. SIGOPS
Operating Systems Review, 44(2):1–6, 2010.

[43] L. Schubert and K. Jeffery. Advances in Clouds.
Research in Future Cloud Computing. Expert Group
Report, 2012. http://cordis.europa.eu/fp7/ict/
ssai/docs/cloud-report-final.pdf.

[44] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th Symposium on
Principles of Distributed Computing (PODC ’95),
pages 204–213, 1995.

[45] S. Venticinque, R. Aversa, B. Di Martino, M. Rak,
and D. Petcu. A Cloud Agency for SLA Negotiation
and Management. In Proceedings of the Euro-Par 2010
Parallel Processing Workshops (Euro-Par ’10
Workshops), pages 587–594, 2011.

[46] P. Verissimo, A. Bessani, and M. Pasin. The TClouds
Architecture: Open and Resilient Cloud-of-clouds
Computing. In Proceedings of the 2nd Workshop on
Dependability of Clouds, Data Centers and Virtual
Machine Technology (DCDV ’12), 2012.

[47] G. Veronese, M. Correia, A. Bessani, and L. Lung.
Efficient Byzantine Fault Tolerance. IEEE
Transactions on Computers, 2012.

[48] A. Voulodimos, S. V. Gogouvitis, N. Mavrogeorgi,
R. Talyansky, D. Kyriazis, S. Koutsoutos,
V. Alexandrou, E. Kolodner, P. Brand, and
T. Varvarigou. A Unified Management Model for Data
Intensive Storage Clouds. Proceedings of the
Symposium on Network Cloud Computing and
Applications (NCCA’11), pages 69–72, 2011.

56

