
Integration and Evaluation of Multi-Instance-Precommit Schemes
within PostgreSQL

Paolo Romano and Francesco Quaglia
DIS, Sapienza Università di Roma

Abstract
Multi-Instance-Precommit (MIP) has been recently pre-

sented as an innovative transaction management scheme
in support of reliability for Atomic Transactions in multi-
tier (e.g. Web-based) systems. With this scheme, fail-
over of a previously activated transaction can be supported
via simple retry logics, which do not require knowledge
about whether, and on which sites, the original transac-
tion was precommitted. Mutual deadlock between the orig-
inal and the retried transaction are prevented via MIP fa-
cilities, which also support reconciliation mechanisms for
at-most-once transaction execution semantic. In this arti-
cle we present an extension of the open source PostgreSQL
database system in order to support MIP. The extension
is based on the exploitation of PostgreSQL native multi-
version concurrency control scheme. We also present an
experimental evaluation based on the TPC-W benchmark,
aimed at quantifying the relative overhead of MIP facil-
ities on transaction execution latency, system throughput
and storage usage.

1. Introduction
The design and development of supports for reliable

transaction management in (Web-based) multi-tier dis-
tributed systems is a fundamental issue for most modern ap-
plications, such as e-business. One complex representative
case is when middle-tier servers drive the execution of dis-
tributed transactions involving multiple (autonomous) back-
end sites, and one cannot rely on application level compen-
sation mechanisms to guarantee atomicity despite failures.
In this scenario, the employment of an Atomic Commit Pro-
tocol (ACP) is mandatory.

The mainstream ACP is the so called Two-Phase-
Commit (2PC), which is based on the precommit state as the
expression of transactional sites endorsement for successful
execution of local data manipulation statements. For this
protocol, several frameworks have been proposed in order
to achieve integration with the multi-tier system organiza-
tion, among which we can mention classical Transaction
Processing Monitors [1] and the recent e-Transaction speci-
fication [2]. The base idea in all these solutions is to achieve
reliability via mutual fail-over capabilities across middle-
tier server replicas or incarnations. This is done via diffu-
sion of precommit/abort logs across the middle-tier (before
any commit/abort message is sent out) so to prevent that

different server replicas take different decisions on a same
distributed transaction, possibly leading to a violation of the
atomicity property. From a formal perspective, this means
reaching consensus on the outcome of the distributed trans-
action across the middle-tier.

On the other hand, the cost for achieving consensus can
become unaffordable in case of large scale geographical dis-
tribution of middle-tier servers, like in Application Deliv-
ery Network (ADN) infrastructures [9], namely representa-
tive expressions of the edge computing paradigm in service
oriented applications. In order to cope with this issue, we
have recently presented an innovative (application transpar-
ent) management model for distributed atomic transactions,
which is referred to as Multi-Instance-Precommit (MIP) [6],
which has been used as the building block for the con-
struction of multi-tier reliability protocols framed by the e-
Transaction specification.

With MIP, each replicated middle-tier server instance
can retry the execution of a given transaction (e.g. upon
client re-transmission), without explicit knowledge (and
therefore consensus) about the state of a previously acti-
vated instance (if any) of that same transaction. The two
transaction instances do not incur mutual deadlock and are
reconciliated at commit time just thanks to the capabilities
offered by MIP, hence obeying at-most-once semantic. We
note that the avoidance of explicit consensus on transac-
tion outcome across middle-tier servers means avoiding the
need for accurate failure detection capabilities across those
same servers. This further strengthens the relevance of the
MIP model. Concerning the design and formal correctness
of multi-tier reliability protocols (i.e. e-Transaction proto-
cols) based on the MIP model, we remind the readers to [6].
Instead, in this article we focus on the integration of MIP
within PostgreSQL (version 8.1.3).

We describe in a methodic manner the issues associ-
ated with the integration of MIP within PostgreSQL, includ-
ing non-intrusive modifications to existing database kernel
subsystems (such as concurrency control). This descrip-
tion can be also used as a reference for possible integration
of MIP within the kernel of other database systems, espe-
cially those oriented to multi-version concurrency control
(natively adopted by PosgreSQL). Finally, we present an
experimental study relying on the TPC-W benchmark [8],
aimed at evaluating the overhead associated with MIP facil-
ities, in terms of transaction latency and system throughput,

as well as in terms of extra storage for tuples metadata.

2. The MIP Model
There are two main aspects that differentiate the MIP

model compared to traditional (distributed) transaction
management schemes, one is related to transaction demar-
cation and concurrency control, the other one is related to
precommit/commit logs.

Concerning the first aspect, the basic idea is to allow
a transactional data manipulation request, to be (concur-
rently) activated, and effectively processed, multiple times.
This would permit fail-over of a previously activated trans-
action instance without its preventive extermination. Over-
all, the following features characterize demarcation and
concurrency control in MIP:

Transaction Demarcation. A MIP transaction is univocally
associated with a MIP-TID, which is formed by the cou-
ple < XID,XINST >, where XID is a base identifier,
and XINST is the so called instance identifier. Multiple
MIP transactions can have the same XID, but they cannot
have the same < XID,XINST > pair. We say that all
the transactions associated with the same XID, but with
different XINST values, form a family of sibling transac-
tions.

Concurrency Control. In case a MIP transaction T requires
(read/write) access to some data item d previously accessed
(written/read) by a not yet committed (e.g. precommitted)
transaction T ′, T is granted access to the pre-image of d
with respect to the execution of T ′ if (A) T and T ′ are both
MIP transactions and (B) they share the same XID (i.e.
they are sibling transactions). Hence, any update performed
by a not yet committed MIP transaction T ′ is not visible
to any sibling transaction T . Operatively, this means that
a newly activated sibling transaction does not get blocked
waiting for commit/abort of a previously activated one, due
to data conflicts. This building block allows effective fail-
over (with no need for accurate failure detection and ex-
plicit extermination protocols of the original pending trans-
action), to be activated in case whichever anomaly (also
including performance failures) occurs along the chain of
multi-tier components originally involved in the processing
of the transactional data manipulation request.

Concerning the other aspect of differentiation with standard
transactional schemes, namely the management of precom-
mit/commit logs, the MIP model relies on a data struc-
ture called MIP-Table (MIPT). The objective of this data
structure is to provide supports for both (A) reconcilia-
tion of sibling transactions (hence allowing at-most-once
semantic) and (B) retrievability of sibling transactions (non-
deterministic) results, in order to select the one associ-
ated with the data manipulation pattern representative of
reconciliation. Overall, the database is required to main-
tain a MIPT for each family of sibling transactions associ-
ated with a given XID. In the following, we will denote
with MIPTx the table keeping track of transactions with
XID = x. The y-th entry of MIPTx stores the follow-

ing information related to the transaction with XID = x
and XINST = y: (1) state: a value, in the domain
{null, prepared, abort}, reflecting the current transaction
state (null is the default initialization value); (2) result: the
(non-deterministic) output produced by the execution of the
transaction. Each MIPTx also keeps a special field, namely
MIPTx.req which records the (client) request content that
gave rise to sibling transactions with XID = x. The lat-
ter information is useful in order to autonomously allow the
database server to trigger fail-over actions (e.g. via a stub)
through a request push mechanism towards the middle-tier,
which can simulate the client retransmission (see [6]), and
whose aim is to promptly yield to transaction commit/abort
so to improve data availability (by timely releasing any lock
held by a precommitted transaction). The MIPT is accessi-
ble via proper prepare/commit APIs, which are quite sim-
ilar to standard xa prepare/xa decide services pre-
scribed by the XA specification [7]. Via these APIs, the
middle-tier server coordinating the execution of whichever
sibling transaction can (i) prepare that specific instance, (ii)
retrieve the state (and result) of all the sibling transactions
currently registered within the MIPT, and (iii) converge to a
univocally identified data manipulation path, representative
of reconciliation, associated with the minimum XINST
value identifying a distributed transaction instance success-
fully prepared at all the involved sites.

3. Integrating MIP within PostgreSQL
3.1. Transaction Demarcation

PostgreSQL automatically and transparently assigns a
unique scalar identifier TID to a transaction when it starts.
Many components of PostgreSQL use TIDs in different
ways, hence changing the way they are generated and as-
sociated with transactions, in order to support MIP demar-
cation, would not represent a viable option. To address this
issue, we associate each MIP transaction with two identi-
fiers, namely, the original TID selected by PostgreSQL and
a MIP-TID, which is instead selected by the overlying ap-
plication and passed as a parameter to PostgreSQL when
the transaction is started up. To achieve this, we have ex-
tended the demarcation API with the user-level SQL com-
mand BEGIN MIP < XID,XINST >. We note that al-
lowing the MIP-TID to be defined externally to the database
kernel is an intentional design choice since it allows the
transactional management logic (e.g. at the application
server side) to easily correlate different (distributed) trans-
action instances with different instances of a same client
(re-transmitted) request. A similar approach is used in stan-
dard XA technology for allowing the coordinator of a dis-
tributed transaction to associated, at precommit time, an ap-
plication selected identifier with the transactions executing
at the different sites. The difference with our proposal is that
we allow global identification to be anticipated at transac-
tion start time. This will be reflected in the way the re-
engineered version of PostgreSQL manages sibling trans-
actions during their whole execution. Concerning the asso-
ciation between the MIP-TID and the original TID, this has

been implemented via an in memory hash-table, indexed
via MIP-TID values, which also allows retrieving the MIP-
TIDs and the TIDs of all active sibling transactions. As it
will be discussed, this is required while handling the recon-
ciliation phase among sibling transactions during the com-
mit phase.

3.2. Concurrency Control
PostgreSQL, as well as several other mainstream com-

mercial DBMSs (such as Oracle [4]), implements a multi-
version concurrency control scheme. This is achieved by
creating a new version of a tuple whenever a write opera-
tion is executed on it, and by letting read operations access
the most recent committed version of the tuple at the time
the transaction started. PostgreSQL allows the existence of
at most one uncommitted version of each tuple, which we
refer to as the active version. Instead, the most recent ver-
sion generated by a committed transaction is referred to as
the valid version. To determine tuple visibility and detect
conflicts the concurrency control scheme maintains within
the metadata associated with each tuple version a couple
of TIDs, namely < t xmin, t xmax >, which represent
the identifiers of the transactions that, respectively, created
and updated that tuple version, and a pointer, namely t ctid,
which links the tuple to the successive version, if any. Ac-
cordingly, when a transaction Ti creates an active version
of a tuple, the tuple t xmax value is set to the special value
null, while the t xmax value associated with the valid tu-
ple version is set to Ti’s TID and its t ctid is linked to the
active version. At starting time, each transaction Ti identi-
fies its database snapshot, which is determined by its own
TID as well as by its set of concurrent transactions, defined
as those transactions that were already active upon activa-
tion of Ti (whose TIDs are stored within the in-memory
transactional context of Ti) plus any transaction possibly
activated after Ti (i.e. having TID greater than Ti’s TID).

The concurrency control mechanism exploits the above
described data structures to handle read/write operations as
follows:

Read - upon read access to a tuple by transaction Ti, the his-
tory of committed tuple versions is used to retrieve the most
recent tuple version committed by a transaction not con-
current with Ti (i.e. the version having maximum t xmin
value among the versions created by committed transactions
not concurrent with Ti). It follows that the selected tuple
might correspond to a version older than the valid one. On
the other hand, if the read request is for a tuple previously
written by Ti, it is satisfied by accessing the active version
previously created by Ti itself.

Write - upon write access to a tuple by transaction Ti, the
following version checks are performed: (1) If the valid ver-
sion was created by a transaction concurrent with Ti (i.e.
t xmin on the valid version is the TID of a transaction
concurrent with Ti), the abort of Ti is immediately forced.
Otherwise, there are two cases: (2.A) There is currently no
active version of the tuple. In this case Ti requests an ex-
clusive lock on the valid version. If the exclusive lock is

granted without any wait, Ti creates the active tuple version,
which is used for any successive access by Ti. Otherwise,
upon being woken up from the wait phase, Ti starts again
the whole version checking. (2.B) An active version of the
tuple exists. In this case Ti is queued for future access to
the exclusive write lock associated with the tuple, and the
whole version checking is repeated when Ti resumes.

Regarding the mechanism used by PostgreSQL for man-
aging exclusive locks, an in memory lock table is used to
store information on waiting transactions. Specifically, the
lock table is indexed via transaction TIDs, and each entry
records the TIDs of transactions waiting for the termination
of the transaction indexing that entry. A tuple is consid-
ered locked by setting its t xmax to the TID of the lock-
ing transaction. When a transaction completes (thus releas-
ing its locks), it wakes up any transaction currently wait-
ing on its corresponding lock table entry. In this way, per-
transaction, rather than per-tuple, locking data structures are
used, hence improving scalability in the management of the
locking mechanism.

Beyond the above mechanisms for exclusive write locks,
PostgreSQL also supports shared locks, which can be re-
quested for, e.g., ensuring foreign keys integrity constraints,
or upon explicit application request. In this case, a transac-
tion waiting for the release of a shared lock may have to wait
for the termination of a set of transactions. The association
between a tuple and the TIDs of transactions holding the
shared lock on it relies on indirection mechanisms. Essen-
tially a so called MULTIXACT ID is stored within the tuple
header which is used as an indexing information to access
an external table (maintained on a disk file and cached in
RAM), which stores the list of TIDs associated with trans-
actions holding the shared lock.

The integration of the MIP model within PostgreSQL
led us to alter the synchronization scheme in order to regu-
late concurrent accesses to any tuple (also in write mode)
by multiple sibling transactions. This has been done by
mostly exploiting facilities already available within the
database kernel in order to allow the modified synchro-
nization scheme to efficiently and non-intrusively coexist
with the native PostgreSQL concurrency control mecha-
nism, and with the treatment of non-MIP transactions. From
a methodological perspective, our solution is based on two
new lock types, which we refer to as Sibling-eXlcusive (SX)
and Sibling-Shared (SS). SX and SS locks can only be re-
quested by MIP transactions, whereas the original Shared
(S) and eXclusive (X) locks can only be requested by non-
MIP transactions. The below table shows the compatibility
of SX, SS, S and X locks:

S X SS SX
S Yes No Yes No
X No No No No
SS Yes No Yes Yes iff same XID

SX No No Yes iff same XID Yes iff same XID

Mutual compatibility between SX locks permits multiple
sibling transactions to share the before-image of a given tu-
ple, thus allowing the spawning of multiple active versions.

On the other hand, compatibility between SS and SX locks
avoids mutual blocking situations between sibling transac-
tions, which might otherwise compromise the timeliness of
the fail-over phase and would require explicit preventive
extermination of previously activated pending transactions.
Finally, standard compatibility rules apply vs S and X locks,
thus synchronizing MIP vs non-MIP transactions according
to the native scheme adopted by PostgreSQL.

In order to support SS and SX locks, two fields, called
XID and S MULTIXACT ID (each of 4 bytes), have been
introduced within the tuple header. The XID field speci-
fies whether the tuple valid version is currently locked by a
MIP transaction (via either SS or SX locks). In the positive
case, it also identifies the family of sibling transactions for
which lock compatibility, as expressed by the above table,
holds. The S MULTIXACT ID field is used in differenti-
ated modes depending on the number of sibling transactions
currently locking that tuple. In case only one of those trans-
actions is active, it stores the transaction XINST forming
the MIP-TID. Otherwise, it is used as indexing informa-
tion (in a similar way to the previously discussed MULTI-
XACT ID) to retrieve from a cached paged file the list of
MIP-TIDs (and corresponding TIDs) of sibling transactions
currently locking the tuple. The TIDs have been placed
within that list in order to provide immediate identification
of the parameters used by the lower level locking mecha-
nism which, as discussed above, is based on a wait-for-TID
policy. Also, given that the original tuple header maintains
a single link (i.e. t ctid) for the identification of the suc-
cessive version (i.e. the active version in case of the valid
tuple), multiple links required for coexistence and retrieval
of multiple active versions associated with different sibling
transactions have been also stored within such a list. We
note that this external data structure does not need to be allo-
cated in case of normal behavior (i.e. no failure, or suspect
of failure in the execution of the original MIP transaction).

3.3. Precommit and Commit Phases
As pointed out in Section 2, the management of the pre-

commit/commit phase of MIP transactions shows clear dif-
ferences when compared to a conventional approach. These
are mainly due to the fact that precommit logs must keep
track of the (possible) precommit state of a family of sib-
ling transactions. Also, the commit log must keep track
of which one among the prepared sibling transactions has
been eventually committed, as a result of the reconciliation
scheme. This has required the development of an ad-hoc
subsystem within PostgreSQL kernel, which is based on
the MIP-Table (MIPT) data structure (see Section 2) as the
base to address the previous issues. MIPT management has
been non-intrusively integrated with typical kernel activities
supporting generation and synchronous write of the Write-
Ahead-Logs (WAL) [3].

Below we first describe the organization of the MIPT
data structure and then provide insights on the re-
lated management activities. As a preliminary ob-
servation, similarly to the BEGIN MIP statement, we
have extended the SQL command set in order to sup-

port both prepare and commit requests for MIP transac-
tions. Specifically, PREPARE MIP < XID,XINST >
’request string’ ’result string’ can be used
to request the database to precommit the MIP transaction
associated with a specific MIP-TID, to atomically register
the associated result and request strings within the corre-
sponding MIPT entry, and to return the updated MIPT to
the transaction coordinator. We recall again that, by explicit
design choice, MIP-TIDs are selected by the overlying ap-
plication (i.e. via the BEGIN MIP statement - see Section
3.1), in a way to support mechanisms for correlating a spe-
cific request string with a family of transactions associated
with a same XID. The usage of that family identifier in the
prepare phase is reflected in a final association between the
request string and the precommit log of that sibling transac-
tions family. As hinted, this can even support database side
retransmission activities (e.g. via a proper stub) in order to
further speedup fail-over and increase data availability via
prompt release of precommit locks. Analogously, the SQL
command COMMIT MIP < XID,XINST > was intro-
duced to support the final commitment of the MIP trans-
action representing the reconciliated execution path within
that family, and to simultaneously request the abort of any
other active or precommitted sibling transaction.

MIP-Tables. In order to ensure the scalability of the
MIPT management logic, in our implementation MIPTs are
maintained on a file residing on disk, which we refer to as
MIPT data, of which a small number of pages are explic-
itly cached in main memory to reduce I/O activity. To effi-
ciently determine the position of the MIPT associated with
a given family of sibling transactions within the MIPT data
file we use an indexing data structure, which we refer to
as MIPT offset, also maintained as a paged disk file cached
in RAM. For performance reasons, we have structured the
MIPT offset index as a B-tree whose keys are transaction
XIDs, and whose leaves contain the offset of the corre-
sponding MIPTs within the MIPT data file. We have used
the B-tree since the keys correspond to application defined
identifiers which can be generated in an arbitrary and uncor-
related (although univocal) manner. Therefore, the indexing
data structure is not guaranteed to be accessed sequentially,
which would lead to poor performance (due to reduced lo-
cality) in case it were implemented as a linear indexing data
structure.

MIPTs are sequentially allocated within the MIPT data
file, and are composed by two main parts: (i) the header and
(ii) the results area. The MIPT header contains the follow-
ing information:

1. Sibs X MIPT , namely the maximum number of
sibling transactions that can be registered within the
header without incurring an overflow (1).

1Overflows are tackled by allocating a new chunk for that same MIPT,
which also includes a new header (identical to the original one, except for
that it stores no request string) linked to the original one.

2. An array of size Sibs X MIPT , whose entries con-
tain the following information: (i) the transaction
XINST , (ii) the transaction state, and (iii) a pointer
to the initial position of the corresponding result within
the MIPT .

3. The actual number of the previous array entries that
have already been used to register a sibling transaction,
and the number of free bytes within the results area.

4. A pointer to the initial position within the MIPT data
file of the memory area allocated due to the occurrence
of an overflow, if any.

5. The request string associated with the family of sibling
transactions.

Concerning the allocation of the results area, its size is
set to Sibs X MIPT × sizeof(result string),
where result string is the result passed as input pa-
rameter to the PREPARE MIP command that triggered the
MIPT allocation. This simple heuristic is based on the idea
that the results produced by sibling transactions are likely
to exhibit similar size.

Precommit and Commit Log Management. To enable
MIPTs recoverability and to guarantee the atomicity of
transaction precommit and of the update of the correspond-
ing MIPT, we rely on a conventional Write-Ahead-Logging
(WAL) strategy [3]. More in detail, this is accomplished by
writing the log entries describing the MIPT updates right
after the typical log entries (related, e.g., to the locks main-
tained by the transaction) produced by the original precom-
mit logic implemented within PostgreSQL, and just before
emitting the PRECOMMIT log marker, whose presence on
the log-file denotes that the transaction has been precom-
mitted. On the other hand, updates of the MIPT offset and
MIPT data files are performed only after having success-
fully flushed the transaction logs to disk. This avoids the
need for undoing any update performed on the MIPT offset
and MIPT data file in case of failure of log flushing.

Finally, during both precommit and commit phases, the
database may be required to selectively abort active and/or
prepared sibling transactions (this supports reconciliation).
In our implementation, the abort of active sibling transac-
tions is made possible by just retrieving the corresponding
TIDs within the in memory hash table keeping track of the
identity of each active MIP transaction (see Section 3.1).
Conversely, in order to enforce the abort of precommitted
sibling transactions, the corresponding MIPT is queried to
retrieve the XINST of the transaction to be aborted, so to
reconstruct the internal identifier previously associated with
the transaction when requesting its precommitment, which
is used to request the abort through PosgtreSQL standard
(internal) APIs.

4. Experimental Evaluation
Performance models in [5], have already highlighted

how the avoidance of explicit consensus across middle-tier

Average tuple size (bytes) Overhead %
Address 154.1 5.2%
Author 410.9 1.9%
CC Xacts 126.6 6.3%
Country 63.2 12.6%
Customer 491.3 1.6%
Item 593.9 1.3%
Order 96.8 8.3%
Order Line 115.8 6.9%
Weighted Average (smallest data-set) 163.8 4.9%
Weighted Average (largest data-set) 429.3 1.9%

Table 1. Overhead due to the extension of the
tuple header for the TPC-W benchmark.

servers can increase system scalability and reduce end-to-
end latency in multi-tier systems. Given that the MIP model
is a building block for the avoidance of explicit consen-
sus, and for additionally avoiding extermination schemes
while handling fail-over, the performance analysis in [5]
is representative of its performance benefits, compared to
traditional transaction management schemes imposing co-
ordination at the level of the middle-tier and extermination
based fail-over. Hence, the experimental study in this sec-
tion is rather aimed at quantifying both memory and com-
putational overheads for the MIP-enhanced version of Post-
greSQL. In order to assess such an overhead in a realistic
scenario, our analysis is based on the well-known TPC-W
[8] benchmark, representative of an on-line book store.

The main potential source of memory overhead in the
MIP-enhanced version of PostgreSQL is related to the ex-
tension of the tuple header with the two additional fields
XID and S MULTIXACT ID (both of size 4 bytes), which
give rise to an increase of the size of the tuples stored and
manipulated by the DBMS. To quantify the actual impact
of this modification, we report in Table 1 the average per-
centage of spatial overhead for each of the database tables
specified by TPC-W. In the last two rows of Table 1, we also
report the average storage overhead, weighted according to
the number of tuples in each table, when considering both
the smallest and the largest data-sets specified by TPC-W,
corresponding to 250k and 17M tuples, respectively. We
note that the overhead introduced by the growth of the tu-
ples header is actually very limited. Specifically, the aver-
age percentage overhead over the whole database is around
5% for the smallest data-set, and is below 2% for the largest
data-set. This is because, in the former case, the Order Line
and Address tables, for which the average overhead is about
5%, account for 54% of the whole database. Conversely,
in the largest data-set, the Item table tuples, whose aver-
age overhead is around 1%, take up about the 95% of the
data-set size. The maximum overhead is introduced for the
Country table, whose average tuple size is only 63 bytes.
However, even in this (most unfavorable) case the overhead
remains around 10%. Overall, we can conclude that in prac-
tical scenarios the additional memory consumption due to
the increase of the tuple header size is expected to be very

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
Ti

m
e

(s
ec

)

Requests per Second

BC (PostgreSQL)
BC (MIP-PostgreSQL)

AC (PostgreSQL)
AC (MIP-PostgreSQL)

Figure 1. Execution time of non-MIP transac-
tions on PostgreSQL and of MIP-transactions
on the MIP-enhanced version.

low, or even negligible.
In order to evaluate the latency overhead due to the em-

ployment of the MIP facilities, we have developed a proto-
type implementation of the TPC-W benchmark logic, based
on JDBC. In this study, read-only transactions (which do
not pose any reliability issue, and hence would not leverage
MIP facilities) have been filtered out from the benchmark
workload. Therefore, only non-idempotent transaction pro-
files have been considered. Such a choice allows us to eval-
uate a scenario in which MIP subsystems are used by ev-
ery activated transaction so to spotlight their overhead. We
plot in Figure 1 the results of a comparative performance
test in which we contrast the response times of the un-
modified PostgreSQL 8.1.3 and of the corresponding MIP-
enhanced version, while processing two different TPC-W
transaction profiles, namely Buy Confirm (BC) and Admin
Confirm (AC). These are representative of lightweight and
heavyweight transactional logics, respectively. Also, these
performance data have been obtained for the largest data-
set prescribed by the benchmark. The performance results
were obtained by hosting the database server on a 4 CPUs -
Xeon 2GHz - machine equipped with 4GB of RAM, 2 SCSI
disks (10000 RPM) in RAID-0 configuration, and running
the Linux operating system (kernel version 2.6.8). By the
plots we get that the performance of the MIP-enhanced ver-
sion is nearly undistinguishable from that of the original
PostgreSQL version (the difference is about 2% over the
whole curve), thus providing indications on the actual effi-
ciency of the previously described MIP subsystems.

To further analyze the performance of the MIP subsys-
tems, we have evaluated the transaction execution time also
in the case where the data structures external to the tuple
header (i.e. the table pointed by S MULTIXACT ID - see
Section 3.2) are really allocated by the database kernel. This
does not occur if a single sibling transaction of a given fam-
ily is executed (as in the previously described test). To reach
such a configuration, we execute the original transaction by
leaving it pending in the precommit state. Next, we acti-

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
Ti

m
e

(s
ec

)

Requests per Second

BC (1 sibling xact x req)
BC (2 sibling xacts x req)
AC (1 sibling xact x req)

AC (2 sibling xacts x req)

Figure 2. Execution time for fail-over transac-
tions - 2 sibling xacts curve (original transac-
tions in the precommit state) - vs the single
sibling transaction case.

vate a fail-over sibling transaction, by also committing it,
and we evaluate its execution latency. In such a case, the
volume of requests we consider along the x-axis expresses
half of the real transaction workload on the database (since
each request is actually served via two sibling transactions).
Interestingly, from the plots in Figure 2 we get that the sys-
tem throughput gets actually reduced by only the 33% for
the BC transaction profile, and the 25% for the AC trans-
action profile. This is because the data access patterns of
sibling transactions show strong similarities, hence most of
the data accesses performed by the fail-over transactions re-
sult in database buffer hits. This also explains the relatively
smaller throughput reduction for the AC transaction profile,
which requires accessing a larger number of data items in
read mode with respect to the BC transaction profile. In-
dependently of these considerations, the performance data
in Figure 2 provide an experimental evidence of the effi-
ciency of the MIP subsystems we have integrated within
PostgreSQL.

References
[1] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing: for the

Systems Professional. Morgan Kaufmann Publishers Inc., 1997.
[2] S. Frølund and R. Guerraoui. e-Transactions: End-to-end reliability for three-

tier architectures. IEEE Transaction on Software Engineering, 28(4):378–395,
2002.

[3] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz. Aries:
A transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Transactions on Database Systems,
17(1):94–162, 1992.

[4] Oracle Corporation. Oracle 9i replication. 2001.
[5] F. Quaglia and P. Romano. Ensuring e-Transaction with asynchronous and un-

coordinated application server replicas. IEEE Transactions on Parallel and Dis-
tributed Systems, 18(3):364–378, 2007.

[6] P. Romano and F. Quaglia. Providing e-Transaction guarantees in asynchronous
systems with inaccurate failure detection. In Proc. of the 5th Symposium on
Network Computing and Applications (NCA), pages 155 – 162. IEEE Computer
Society Press, 2006.

[7] The Open Group. Distributed TP: The XA+ Specification Version 2. 1994.
[8] Transaction Processing Performance Council. TPC BenchmarkT M W, Standard

Specification, Version 1.8. Transaction Processing Perfomance Council, 2002.
[9] A. Vakali and G. Pallis. Content delivery networks: Status and trends. IEEE

Internet Computing, 07(6):68–74, 2003.

