
Bridling Concurrency to Boost Performance in Distributed STMs

Nuno Carvalho, Paolo Romano, Luı́s Rodrigues
INESC-ID/IST

Lisbon, Portugal
Email:{nonius, romanop}@gsd.inesc-id.pt, ler@ist.utl.pt

I. INTRODUCTION

Over the last years, a wide body of literature has been
developed in the area of Software Transactional Memory
(STM) systems and, recently, the first STM-based applica-
tions have started to be deployed in production systems [1].
One of the key lessons learnt from the development and
deployment of these applications is that existing STM plat-
forms suffer from a significant limitation: the lack of effi-
cient replication schemes capable of fulfilling the scalability
and reliability levels of real-world applications [1].

Replication of STM systems represents a very recent
research field, and, at current date, only a few solutions
have been proposed and evaluated [2]. On the other hand,
since STMs and databases share the common notion of
atomic transaction, the extensive research developed in the
area of replicated databases represents a natural source
of inspiration for the design of replication schemes for
STMs. Among the plethora of database replication schemes,
recent approaches are based on Atomic Broadcast (AB) [3]
and a distributed certification procedure [4]. These schemes
ensure the consistency of replicas only at commit-time via
a distributed certification phase that uses a single AB to
enforce agreement on a common transaction serialization
order. This avoids distributed deadlocks, and provides non-
blocking guarantees in the presence of (a minority of)
replica failures. Unfortunately, the overhead of previously
published AB based certification schemes can be particularly
detrimental in STM environments [5].

Further, distributed certification schemes are based on
an inherently optimistic approach: transactions are only
validated at commit time and no bound is provided on
the number of times that a transaction will have to be re-
executed due to the occurrence of a remote conflict. This
can lead to undesirably high abort rates in high conflict
scenarios. Also, when considering heterogeneous workloads
containing mixes of short and long-running transactions (as
it is actually the case for several well-known TM bench-
marks [6]), the latter ones may be constantly aborted due to
the occurrence of (remote) conflicts with a stream of short-
lived transactions.

This work was partially supported by FCT (INESC-ID multiannual fund-
ing) through the PIDDAC Program funds and through project “Pastramy”
(PTDC/EIA/72405/2006).

In this paper we briefly announce the novel Asynchronous
Lease Certification (ALC) scheme to tackle the above issues.
In the core of the ALC scheme is the notion of asyn-
chronous lease. Analogously to classic lease schemes [7],
asynchronous leases are used by a replica to establish
temporary privileges in the management of a subset of the
replicated dataset. Unlike classic lease based approaches,
where the lease duration is defined at the time of the lease
establishment, in ALC leases are said to be asynchronous
since that the concept of lease is detached from the notion
of time. Conversely, once a replica acquires a lease on a set
of data items, it holds the lease as long as there is no explicit
lease request from another replica.

II. ASYNCHRONOUS LEASE CERTIFICATION

In the ALC replication scheme, the replica starts by
executing locally the transaction. When the commit process
is started, and before it can be safely certified, the replica
must hold the leases for the data set of the committing
transaction. If the replica does not have all the leases, it
must request them through an AB, which ensures a global
serialization order for the lease ownership. By disseminating
lease requests via AB and atomically enqueueing them at
each node in the AB-delivery order, distributed deadlocks
are avoided. Fairness is ensured by establishing leases in
FIFO order and leases are transferred to a requesting replica
as soon as the transactions (in execution at the lease-
owner replica) to which those leases had been granted have
committed. Finally, we rely on Virtual Synchrony [3] with
non partitionable views to free the leases owned by failed
or unreachable nodes.

The ownership of an asynchronous lease on a set of data
items provides a replica with several key benefits. First of
all, it reduces the commit phase latency of the transactions
that access a given set of data items. The ownership of
the lease, in fact, ensures that no other replica will be
allowed to validate any conflicting transaction, making it
unnecessary to enforce distributed agreement on the global
transactional serialization order. ALC takes advantage of this
by limiting the use of AB exclusively for establishing a
global order for the lease ownership. Subsequently, as long
as the lease is owned by the replica, transactions can be
locally validated and their updates can be disseminated using
a Uniform Reliable Broadcast (URB) [3] primitive, which

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5 6 7 8

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Replicas

Throughput

ALC no conflict
ALC high conflict

Baseline no conflicts
Baseline high conflicts

Figure 1. Throughput of the ALC scheme.

can be implemented in a much more efficient manner than
AB. Secondly, the ALC shelters transactions from repeated
abortions due to remote conflicts. With ALC, analogously
to classic certification schemes, transactions run based on
local data, avoiding any inter-replica synchronization until
they enter the commit phase. At this stage, however, ALC
ensures to have established a lease for the accessed data
items, prior to proceed with the transactions’ validation. In
case a transaction T is found to have accessed stale data, T
is re-executed without releasing the lease. This ensures that,
during T’s re-execution, no other replica can update any of
the data items accessed during the first execution of T. This
guarantees the absence of remote conflicts on the subsequent
re-execution of T provided that it deterministically accesses
the same set of data items accessed during its first execution,
as it is typically the case with realistic applications. This
bounds the maximum abort rate to 50%.

III. PRELIMINARY EXPERIMENTAL RESULTS

We now report preliminary results of a experimental study
aimed at evaluating the performance gains achievable by
the ALC certification scheme in a real distributed STM
system, namely when using our prototype, in face of a STM
benchmark. The target platform for these experiments is a
cluster of 8 nodes, each one equipped with an Intel Quad-
Core Q6600 at 2.40GHz and 8 GB of RAM running Linux
2.6.27.7 and interconnected via a private Gigabit Ethernet.
We used a synthetic workload (obtained by adapting the
Bank Benchmark originally used in [8]) which serves for the
sole purpose of validating the ALC scheme in two extreme
scenarios for what concerns conflicts. In detail, we initialize
the STM at each replica with a vector of numMachines·2
items. In the first scenario, each machine reads and updates
a distinct fragment of the array, thus never conflicting. In the
second scenario, each machine reads and updates the same
data items, thus always conflicting. We compare the ALC
with a baseline certification scheme [4].

The Figure 1 depicts the throughput (committed transac-
tions per second) of the replicated system. In the scenario

with no conflicts, the ALC scheme is able to maintain a
stable throughput as the number of replicas increase and is
able to achieve a throughput 3 times higher than the baseline
certification scheme, thanks to the ALC lease establishment:
once the lease owners are established, the several replicas
can concurrently send the updates to the other replicas
using URB. On the other hand, the baseline must send an
AB for each committing transaction. In the high conflict
scenario, the throughput of the baseline scheme degrades as
the number of replicas increases. This is because with more
replicas, the conflicts cause a very high abort rate (up to
90% for 8 replicas). ALC holds the lease for a transaction
that aborts and accesses the same data items when restarted,
ensuring that each transaction never aborts more than once.

Even though these experimental results have been ob-
tained based on very simple synthetic workloads, they do
highlight the potentialities of ALC in significantly boosting
performance of a classical certification scheme.

REFERENCES

[1] N. Carvalho, J. Cachopo, L. Rodrigues, and A. Rito Silva,
“Versioned transactional shared memory for the FenixEDU
web application,” in Proc. of the Workshop on Dependable
Distributed Data Management (WDDDM). ACM, 2008.

[2] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues,
“D2stm: Dependable distributed software transactional mem-
ory,” in Proceedings of the 15th Pacific Rim International
Symposium on Dependable Computing (PRDC 09), Shanghai,
China, Nov. 2009.

[3] R. Guerraoui and L. Rodrigues, Introduction to Reliable Dis-
tributed Programming. Springer, 2006.

[4] F. Pedone, R. Guerraoui, and A. Schiper, “The database
state machine approach,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 71–98, 2003.

[5] P. Romano, N. Carvalho, and L. Rodrigues, “Towards dis-
tributed software transactional memory systems,” in Proc. of
the Workshop on Large-Scale Distributed Systems and Middle-
ware (LADIS), 2008.

[6] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luján,
and K. Jarvis, “Lee-tm: A non-trivial benchmark suite for
transactional memory,” in ICA3PP ’08: Proceedings of the
8th international conference on Algorithms and Architectures
for Parallel Processing. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 196–207.

[7] C. Gray and D. Cheriton, “Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency,” in SOSP
’89: Proceedings of the twelfth ACM symposium on Operating
systems principles. New York, NY, USA: ACM, 1989, pp.
202–210.

[8] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework
for implementing software transactional memory,” SIGPLAN
Not., vol. 41, no. 10, pp. 253–262, 2006.

