
MultiPathPrivacy: Enhanced Privacy
in Fault Replication
Pedro Louro, João Garcia and Paolo Romano

INESC-ID Lisboa / IST
Lisboa, Portugal

{plouro,jog,romanop}@gsd.inesc-id.pt

Abstract—Most computer applications are published with
bugs, whose reproducibility is strictly dependent on the availabil-
ity of detailed information about the real usage of the application.
Unfortunately, this data collection process raises severe privacy
issues, as error reports are very likely to include personal
information. This represents a strong disincentive for users
to submit error reports, hampering the software maintenance
process.

In this work we address the issue of how to design data
obfuscation mechanisms aimed at anonymizing the error reports
generated by faulty applications, without compromising the bug
reproducibility. The solution presented in this paper, MultiPath-
Privacy, is based on an idea which is, to the best our knowledge,
still unexplored in literature: maximizing the achievable degree
of obfuscation by exploiting the presence of multiple execution
paths leading to the manifestation of the same bug.

MultiPathPrivacy relies on an off-line reachability analysis
phase, based on symbolic execution techniques, which is aimed at
identifying not only the set of alternative execution paths leading
to the execution of the code block where the bug manifested, but
also to determine the symbolic constraints on the user inputs
that are necessary to generate such execution paths.

By exploiting the presence of disjoint sets of alternative user
inputs/execution paths leading to the manifestation of the same
bug, MultiPathPrivacy allows achieving striking improvements
of the anonymization quality when compared to state of the
art solutions. Via an experimental study, based both on a real,
privacy-sensitive application and on publicly available software
repositories, we show that MultiPathPrivacy can achieve up to
87% reduction of the amount of user input information leaked
by the error report, evaluated in terms of bits of information
revealed, and percentage of residual non-anonymized input.

I. INTRODUCTION

Bugs have accompanied the development of software from
its inception and are a challenge for programmers. Empirical
observations suggest that the density of errors in industry code
has remained relatively constant while the size (in terms of
lines of code) of a software product has increased by several
orders of magnitude. This means that the overall number of
bugs is growing alarmingly [1]. In addition, errors can cause
tremendous costs and even be fatal to human life [2].

Although more than half of the resources in a typical
development cycle are invested in testing and bug fixing,
bugs manifest themselves after software is released and persist
long after [1]. A crucial factor in software errors is the
limited knowledge programmers have about the behavior of the
application when executed by its end-users and therefore the
limitation in testing they face [3]. It is therefore of paramount

importance to involve end users in the software maintenance
process, since they have insights on how the application is
used in reality. In fact, users do have interest in collaborating
with the goal of improving their user experience on software
that they already bought [4].

Unfortunately, existing tools for bug reporting are largely
unsatisfactory both from the perspective of the end users and
of the software maintenance team. Popular bug reporting tools,
such as the well known Microsoft Windows Error Reporting
(WER), which gathers information from millions of users
around the world, in fact, transmit to the team maintenance
information related to the system state at the time of failure.
From the end user perspective, however, the distribution of
such information raises important privacy issues, as explicitly
admitted in the “Privacy Statement for the Microsoft Error
Reporting Service 1”:

”For example, a report that contains a snapshot of
memory might include your name, part of a document you
were working on, or data that you recently submitted to a
website. If you are concerned that a report might contain
personal or confidential information, you should not send
the report.”

From the programmer perspective, however, the informa-
tion conveyed by the error report from WER may still be
insufficient to allow for the deterministic reproduction of the
failure, as the knowledge of the system’s state at the moment
of manifestation of the failure often does not provide sufficient
clues about its root sources. In fact, the search for the causes of
the state reported is one of the tasks in which the programmers
spend more time [5].

What would greatly benefit the debugging process is indeed
the availability of tools automating the deterministic replay
of the bug at the software maintenance site. Achieving this
result, however, would entail filtering out all sources of non-
determinism in the application, by logging every event that can
affect the reproducibility of the application run, transmitting
it and replaying it transparently from the log during the
debugging session.

Among all sources of non-determinism, user inputs (includ-
ing accessed files and data exchanged via the network) are
probably those associated with the higher risks of leakage
of privacy sensitive information. These entries may in fact

1http://oca.microsoft.com/en/dcp20.asp

1

contain user information either of personal (e.g. name, address,
credit card), professional (e.g. excerpts of documents), or
even behavioural (e.g. references to Web sites or running
applications) nature. In this paper we focus on this kind of
privacy-sensitive sources of non-determinism, assuming the
presence of orthogonal mechanisms to deal with additional
sources of non-determinism (for instance, thread scheduling
[6], [7]).

An interesting approach, which is at the core of several
recently proposed solutions [8], [9] to this problem, is based on
the idea of obfuscating input data “as much as possible”, while
still guaranteeing that it triggers the very same execution path
that led to the manifestation of the bug. These solutions rely on
symbolic execution techniques to derive automatically the so
called “path conditions”, namely a set of logical constraints
on the user inputs sufficient to ensure the deterministic re-
execution of the application. Data obfuscation is then per-
formed by replacing the original user input with any random
solution matching the path conditions clauses defined on the
input.

These approaches have been proven to have good potential,
even though their actual effectiveness depends on the structure
of the execution path leading to the bug, and, more precisely,
on the restrictiveness of the path conditions associated with
it (namely, on the dimension of the solution space for the
path conditions). In other words, as we will also confirm
experimentally in the following, the data obfuscation quality
achieved by these techniques can strongly vary depending on
the structure of the application’s code executed before actually
triggering the bug.

The solution presented in this paper, MultiPathPrivacy
(MPP), is based on an idea which is, to the best our knowledge,
still unexplored in literature: maximizing the achievable degree
of obfuscation by exploiting the presence of multiple execution
paths leading to the manifestation of the same bug.

Analogously to the aforementioned data obfuscation solu-
tions, also MPP relies on symbolic execution techniques to
identify the set of logical constraints on the user inputs asso-
ciated with code execution paths. Unlike, existing solutions,
however, MPP relies on an off-line reachability analysis phase
that is aimed at identifying, for each code block c in which a
bug can manifest, the set of alternative execution paths leading
to the execution of c, along with the symbolic constraints on
the user inputs that are necessary to generate such execution
paths. This allows the error reporting module, running on the
client side, to verify, via automatic re-execution, which ones,
among the set of alternative execution paths/user inputs, led
to the reproduction of the user experienced bug.

By exploiting the presence of disjoint sets of alternative user
inputs/execution paths, all leading to the manifestation of the
same bug, MPP can generate obfuscated input data choosing
from a (potentially) larger domain, defined by the disjunction
of the path conditions associated with the different execution
paths. This allows MPP to achieve striking improvements of
the anonymization quality when compared to state of the art
solutions for a twofold reason. On one hand, MPP can benefit

from the existence of alternative execution paths imposing less
restrictive path conditions (i.e. forcing to leak a minor amount
of information on the original user input). On the other hand,
MPP can enhance anonymization quality even if the individual
path conditions associated with alternative execution paths
(leading to the same bug) are not less restrictive than those as-
sociated with the original execution path. In fact, provided that
these alternative path conditions are at least partially disjoint,
their disjunction will yield a widening of the domain used to
generate obfuscated data, and, therefore, an enhancement of
the data obfuscation quality.

We quantify the enhancement of the obfuscation quality
achieved by MPP by means of an experimental study, based
both on a real, privacy-sensitive application, and on applica-
tions extracted from publicly available software repositories.
Our experimental data show that, when compared to state of
the art data obfuscation solutions analyzing exclusively the
conditions of the original execution path, MPP can achieve up
to 87% reduction of information leakage, evaluated in terms of
bits of information revealed, and percentage of residual non-
anonymized input.

The remainder of this paper is structured as follows. Section
II discusses related work in data obfuscation for error reporting
in software maintenance process. Section III overviews the
MPP solution, discussing the key rationale underlying this
proposal. The details of its architecture and implementation
are provided in Section IV. The results of the experimental
evaluation are reported in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Several approaches have been proposed with the primary
objective of ensuring user privacy when sending error reports
to reproduce failures. This section discusses the features and
limitations of the most relevant ones.

A. Scrash

In order to protect the user’s privacy, with regard to data that
is sent in bug reports, Scrash [10] was the first proposed tool.
The main goal of Scrash is to remove all sensitive information
contained in the report just before it is sent to the maintenance
team.

In the development phase of the application, all fields that
contain sensitive information are marked as such. During the
execution of the application, any field that relies on sensitive
information is also marked as sensitive. Thus, marked sensitive
data is propagated throughout the application. When a failure
occurs and an error report is created, it is inspected and all
sensitive information is removed. This is achieved since the
sensitive data is grouped in a memory area bounded by special
identifiers. As the error report contains the contents of memory
at the time of failure, Scrash simply removes from the report
any information that is included in memory areas marked by
special identifiers.

This technique’s main limitation is the fact that it requires
the programmers to mark the sensitive data, as it is clearly

2

not reasonable for the user to do it. On the other hand, relying
on programmers for this identification is equivalent to assume
their trustworthiness. It is also necessary to have access to
source code in order to make changes to it, which could be a
great inconvenience to applications already on sale, as well as
for those which do not have the code available. Additionally,
this technique removes sensitive information from the report,
which might mean a loss of relevant information that could po-
tentially hamper, or even prevent, the successful reproduction
of bugs.

B. Better Bug Report

Preventing the loss of relevant information to the failure
reproduction is one of the objectives of Better Bug Report
(BBR), a work proposed by Castro et al. [8]. This technique
assumes that the application is being continuously monitored
in order to log the input introduced by the user. When an error
is detected the log is used to replay the execution, previously
instrumented in order to gather the execution trace. The trace
contains the sequence of instructions executed by each thread
and the concrete values of source and destination operands
of each instruction. The detailed execution trace is then used
to perform a symbolic execution along the path followed by
the failed execution to compute path conditions. The path
conditions are the set of restrictions on the user input that
forces the execution along one path. Any input that satisfies
the same path conditions from the failed execution causes
the software to follow the same execution path until it fails.
BBR feed these path conditions to a Satisfiability Modulo
Theories (SMT) solver to compute a new input that satisfies
the path conditions, but is otherwise unrelated with the original
input. The new input is included in the error report to allow
software vendors to reproduce the bug. The report reveals only
the information in the path conditions: all inputs that satisfy
the path conditions generate the same error report. So the
entropy loss can be measured with the bits of information
revealed by the path conditions. This metric represents how
much information is revealed by the technique by calculating
how many inputs satisfy the path condition. The user privacy
depends on the input domain that satisfies the path conditions.
In some cases, even with the application of this technique, all
the input is revealed. This happens when there is only one
input solution that satisfies the path conditions that led to the
bug.

C. Camouflage

A very similar technique was performed in the tool Camou-
flage [9], which adopts the same approach of BBR, although
using different mechanisms for the generation of path condi-
tions and their resolution in the form of a new input. In order
to generate the path conditions that led to the failure, also
Camouflage performs symbolic execution in the application.
To this end, it makes use of an extension of Java PathFinder2, a
tool originally created for software model checking, which has

2http://babelfish.arc.nasa.gov/trac/jpf

Figure 1. Code example for the exploitation of multiple execution paths.

been extended to be applied as well to the area of symbolic ex-
ecution. In order to calculate the path conditions, Camouflage
uses the overloading capabilities of Java PathFinder to modify
the original application code, replicating its semantics but
making the necessary steps to record the path conditions. The
path conditions are then sent to YICES3, the SMT solver used
by Camouflage. For the assessment of the privacy loss, also
Camouflage uses the metric of bits of information revealed, as
Castro et al. This work also pointed out the shortcomings of
this metric, highlighting how it fails to provide any measure
of the actual portion of the disclosed user inputs. In order
to address this shortcoming, Camouflage proposes another
metric called residue. Residue represents the percentage of
the original input that remains unchanged after obfuscation.
Camouflage is only applicable to Java programs, while the
technique of Castro et al. can be used on any application that
runs directly on x86 family of processors.

III. OVERVIEW OF THE MULTIPATHPRIVACY SYSTEM

In general, in order for a bug to be replayed, the application
needs to reach a given erroneous state. In the particular appli-
cation execution in which the bug manifested, that erroneous
state was reached at the execution of a specific instruction
of the application (see for example the division by zero in
Figure1). MPP exploits the key idea that the same bug can
manifest itself at a given instruction of a program, even if that
instruction is reached via different execution paths.

Figure 1 illustrates a simple example of a scenario in
which the knowledge of the existence of alternative execution
paths triggering the same bug can be exploited to achieve
a significant enhancement of the data obfuscation quality
achieved by the deterministic fault replication system. In fact,
in approaches such as BBR or Camouflage, which consider
exclusively the original execution path, the path conditions
associated with the example in Figure 1, namely (a = 1),
would force to fully reveal the value of the user input. On
the other hand, in that example, even if the user input that is
assigned to variable a is not 1, and the else path is taken,
the bug manifests itself anyway.

MPP takes into account the existence of multiple execution
paths leading to the bug manifestation by deriving the path

3http://yices.csl.sri.com/tool-paper.pdf

3

Figure 2. Overview of the MultiPathPrivacy architecture.

conditions used to obfuscate the user input from the disjunc-
tion of the path conditions of all these execution paths. This
can (and normally does) lead to a relaxation of the original
path conditions and to the achievement of higher obfuscation
levels. In our example, being both (a = 1) and (a 6= 1)
path conditions leading to the same application fault, their
disjunction leads to a total relaxation of the constraint on a
with an associated increase of user privacy (as the resulting
error report can achieve full obfuscation of a’s value).

IV. MPP ARCHITECTURE

The MPP architecture (see Figure 2) contains two distinct
components, namely the client component and server com-
ponent, which run, respectively, on the user’s and on the
maintenance team’s execution environment. The division of
functionalities between the two components aims at offloading
computation-intensive tasks to the maintenance team’s infra-
structure.

When the client of the error report module detects a crash in
a given line of code, it inquires the server to obtain, for each
different execution path that leads to the execution of that line
of code, the set of logical constraints on the inputs that lead
to the execution path, as well as an instance of such inputs.

Next the client replays automatically, typically in back-
ground, the set of execution paths using the inputs provided
by the server component. This allows the client to determine
which execution paths actually lead to the replay of the
original fault, and to determine, as a disjunction (i.e. logical
union) of the corresponding path conditions, the domain of
alternative inputs that would lead to the fault reproduction.

Then, the obfuscated input is produced and displayed to the
final user, along with compact statistics quantifying the amount
of information leaked from the original input. The transmission
of the error log to the server remains conditioned, as usual, to
a final approval by the end user.

If this authorization is granted, the application developers
will be able to automatically replay the same bug experienced
by the user (namely, a bug occurring at the same line of
code, and of the same nature) but using obfuscated input data
possibly associated with (possibly very) different execution
paths.

A. Server Component

In MPP the server component has the function of transfer-
ring some of the computational effort from the client to the
maintenance side. The key role role of the server component
(in addition to receiving the final error report from the client) is
to externalize a service allowing clients to obtain information
on the alternative execution paths leading to the execution of
a given code block.

The implementation of the server component was performed
taking into account four fundamental requirements for this
component:

1) Search for alternative paths that traverse a given line of
code.

2) Computation of the path conditions for those alternative
executions.

3) Generation of alternative user inputs satisfying each of
the alternative path conditions.

4) Deterministic replay of the execution received as an error
report.

Regarding the first two requirements, it is necessary to make
a path space traversal of a given application while storing
the path conditions. These path conditions not only serve to
uniquely identify a given path, but are later used to generate a
input that traverses that path. In MPP, these requirements are
satisfied by relying on symbolic execution [11], a program
analysis technique that represents the inputs with symbolic
values instead of concrete ones, and executes the application
while manipulating the conditions that are being applied to
the symbolic variables. To support the symbolic execution in
MultiPathPrivacy, we used Symbolic Pathfinder (SPF) [12],
a tool that executes Java bytecode symbolically through a
customized interpretation that adds the symbolic logic in
a totally transparent fashion. This tool was created as an
extension of Java PathFinder [13], a model checker that is
used in our case, to systematically generate and execute the
symbolic tree of code under analysis.

Given that the symbolic execution of an entire application
can become too heavy in terms of memory and time, SPF was
built in order to be able to run the application in concrete mode
(i.e. disabling symbolic execution), and switch to symbolic
mode execution only inside relevant methods. SPF receives as
input the application to examine and information about which
methods should be executed symbolically. SPF also offers the
choice to specify, which ones, among the parameters of a
method, should be treated as symbolic or as concrete. At the
end of its execution, SPF provides a summary of the symbolic
execution of each method. This summary contains, among
others, the execution paths represented by their conditions and
the instance of a possible input that can trigger the execution
of each one of these paths.

As already mentioned, In MPP we use the SPF symbolic
execution engine to extract information on the set of logical
constraints on user input (with the logical conditions expressed
considering the input binary encoding, analogously to what is
done in [8], [9]) leading to the execution of a given line of

4

code of the (part of) application under debugging. This implied
altering SPF’s modus operandi in several directions.

A first step towards the integration of SPF within the MPP
system was to automatically identify the portions of Java
applications that can collect user inputs during execution,
and to ensure that SPF was instructed to treat the variables
used to store user inputs as symbolic. In fact, originally
SPF was conceived to receive, as its sole input, the input
parameters of the method for which symbolic execution was
requested. This result was achieved in a modular way, by
exploiting a number of extension mechanisms offered by JPF
(a detailed description of these mechanisms can be found in
[14]), and intercepting a (relatively) small number of lower
level methods in the Java library (e.g. the nextInt() from
the Java.Util.Scanner library).

A more structural change to SPF was instead required
to derive the conditions of the execution paths that pass
through any line of code of the program. SPF was in fact
originally designed to present just a summary of the differ-
ent execution paths as a result of the symbolic analysis of
individual methods. In order to achieve the desired result, we
altered SPF’s behavior to make it store, during the symbolic
execution of a Java bytecode instruction, the corresponding
line of code (identified uniquely by the class which it belongs
to, and its line number) and associated path condition in an
ad-hoc structure. At the end of the full symbolic analysis,
this structure can be used to identify all the distinct path
conditions associated with a line of code in the application.
Furthermore, it is necessary to solve the path conditions on
each of the symbolic variables that stored the original user
inputs (that as we have mentioned will be used by the client
applications during the replay phase). Given that the path
conditions stored in the structure during symbolic analysis
phase may be redundant, in order to maximize performance,
we implemented also a cache for solved conditions. Thus,
before solving a given condition, it is first tested whether it
has been already solved and, if so, the solution is retrieved
from the cache. As a result, the modified version of SPF that
we integrated in the MPP system produces, for each line of
code, the set of path conditions that cross it, and, for each path
condition, an input instance exercising that execution path is
also calculated.

Finally, in order to support the deterministic replay of the
application fed with the obfuscated inputs eventually produced
by the client module, we integrated in our solution the replayer
module of LEAP [6], a recent framework for the deterministic
replay of concurrency bug that has served also as the basis for
the client component of MPP, as it will be detailed in Section
IV-B.

B. Client Component

Upon the failure of an application (we here consider only
fail-stop bugs, detectable and classifiable by intercepting un-
caught Java exceptions), the client module gathers the corre-
sponding exception type and line number (LN) from the ap-
plication’s local crash report. The LN is then sent to the server

component that returns the set of distinct execution paths
that include that LN, encoded by means of the corresponding
conditions on the user inputs, as well as an instance of the
inputs that trigger each of these execution paths. These inputs
are individually tested through re-runs of the application. In
each re-execution, it is checked whether the application incurs
in the same kind of crash or not. If it does, the tested execution
path reproduces the failure and, therefore, the domain of
possible inputs that reproduce the failure is extended to include
the corresponding path conditions. In fact, the full domain
of inputs that produce the same failure can be computed as
the disjunction of the path conditions of all the paths, among
those returned by the server, that actually reproduce the failure.
For example, in the case of Fig.1 when we expand the path
conditions from (a == 1) to (a == 1)∨ (a 6= 1), we expand
the domain of the user input variable a from the specific
value 1 to all possible values of the variable. The level of
privacy provided to the user is then calculated, by means of
various metrics quantifying the amount of information about
the original input that can be inferred from the error report.

The design of the client component was aimed at supporting
two fundamental requirements:

1) Deterministic recording and replay
2) Measuring privacy loss.

Deterministic Recording and Replay. The starting point for
the development of the deterministic recording and replay
functionality in the MPP system has been LEAP [6], a recent
system to support deterministic replay of concurrent programs
written in Java. The main focus of LEAP is the deterministic
replay of programs in multiprocessor environment and, to this
end, LEAP records the order of shared memory accesses by
different threads of execution.

The LEAP architecture is divided into three different com-
ponents, namely the transformer, the recorder and the re-
player. The input for the transformer is a Java application
that results in two differently instrumented versions, one for
the recording of relevant information during the execution, and
another used during the bug replaying phase, called, respec-
tively, record and replay versions. In short terms, the trans-
former chooses the points of the application code that must
be manipulated to record/replay sources of non-determinism
associated to concurrent memory accesses on shared memory
elements.

LEAP, however, does not consider different sources of non-
determinism, and, in particular, does not support deterministic
recording/replaying of user inputs. This is clearly an essential
feature for the MPP system, which was supported by having
the LEAP transformer instrument the replay version so to
intercept the calls to methods of the Java library related to
input management, and to inject code for automatically feeding
the user inputs returned by the server component.

Measuring Privacy Loss. From the set of path conditions
corresponding to the executions that reproduce the failure, it
is necessary to calculate the loss of privacy associated with

5

the disclosure of an error report. Note that, the error report
contains only one randomly chosen failing input. However, the
loss of privacy is calculated based on all the possible inputs
that reproduce the failure.

A major advantage of the MPP approach is that, in addition
to allowing for identifying alternative execution paths impos-
ing less stringent restrictions on the domain of user inputs, it
also allows for determining the cardinality of the set composed
by all possible inputs leading to a manifestation of the bug.

Indeed, the number of distinct possible inputs that trigger
the bug represents an accurate measure of user privacy as, the
larger the domain of possible inputs is, the less sure an attacker
on the MPP server side will be of whether the submitted input
has any relation to the original input.

Previous systems [8], [9], [15] use the metric of bits of
information revealed to quantify privacy. This is a measure
of entropy, which quantifies uncertainty in terms of number
of bits [16]. Intuitively, thi metric measures the amount of
information that is revealed by calculating the number of
different inputs that satisfy the restrictions on the input in
order to replay a failure. Specifically, suppose that a variable
A can assume, with equal probability, m different values. The
entropy of A is calculated as log2 m. If the client reveals that
the possible values of A are constrained at a proportion p of
m, the information disclosed is measured in bits as:

log2 m− log2 pm = − log2 p

An obfuscated input I ′ reveals
∑
i∈I′

| log2(xi)| bits of infor-

mation about the original input I , where xi is the number
of solutions for the conditions that involve the variable i
divided by the size of its input domain. For example, assuming
that i0 is an 8-bit character (i.e., its input domain contains
256 values) and that 100 of the 256 possible values satisfy
the constraints on i0. In this case, i0 reveals approximately∑
i∈I′

| log2(100/256)| = 1, 36 bits of the 8 total bits of

information about i0.
The bits of information revealed metric provides a good

starting point for assessing the strength of the user input
obfuscation mechanism. However, its results can be mislead-
ing. For example, it is possible to decrease the amount of
bits revealed while leaving large portions of the input non-
obfuscated. To illustrate this situation, consider a program
that reads 10 characters as input. Assume that the constraints
on each of the last 5 characters have 10 possible solutions,
while the first 5 characters must remain the same (i.e. cannot
be obfuscated). If the number of possible solutions for the
last 5 characters is increased from 10 to 200, the amount of
information revealed decreases from 63,3 bits to 41,7 bits.
This decrease correctly indicates that it is now more difficult
to recover the original input, but it fails to indicate that it was
necessary to fully disclose half of the input, which that may
be important, especially if the first half of the input happens
to disclose more sensitive information than the second half.

In order to address this shortcoming, Clause et al. pro-

posed a new metric to measure privacy loss, which they
called residue. Residue is essentially the percentage of input
that remains unchanged after obfuscation. For the example
mentioned in the last paragraph, the percentage of residue
would not change if the number of possible solutions for the
last 5 characters increased from 10 to 200, indicating that
obfuscation may not be as effective as bits of information
revealed metric would suggests.

These metrics were used by various input anonymization
techniques having in common their application to one path
condition. In MultiPathPrivacy, which takes advantage of
multiple execution paths to increase the user’s privacy, it is
necessary to adapt the evaluation to multiple path conditions.
Intuitively, it is easy to see that if the input can be calculated
from a larger domain (derived from the greater diversity of
paths), it will be more difficult to infer the original input. In
practice, this is done through the logical disjunction of the
conditions of each of the paths that reproduce the failure.
In particular, in the metric of bits of information revealed,
the logical disjunction of the path conditions means that, for
each user input i, the number of values, xi, leading to the
manifestation of the bug, is calculated taking into account
the different, unique input values satisfying the conditions
associated with each execution path, i.e. counting only once
any input value that may satisfy the conditions associated with
more that one execution path. These two metrics were applied
to MultiPathPrivacy, and their results presented and analyzed
in section V.

V. EVALUATION

MultiPathPrivacy has been evaluated experimentally and
compared to existing anonymization techniques. It is important
to refer that the aim of MultiPathPrivacy is to increase user
privacy in fault replication, through the analysis of multiple
paths that reproduce the failure. The analysis of multiple
paths is performed by the development team using symbolic
execution before the application is deployed, while the mon-
itoring and testing of execution paths is done in the user
environment. Given these characteristics, the chosen evaluation
criteria were:
• Privacy Loss: Quantifies the level of privacy that the cus-

tomer takes when sending an error report. It is primarily
with this criteria that we will compare the performace
of MultiPathPrivacy with techniques which do not take
advantage of the multiple paths that reproduce the failure.

• Performance Overhead: Observation of performance
cost imposed by the implementation of MultiPathPrivacy
in the client’s environment both in the application moni-
toring and in the path testing.

• Scalability: The symbolic execution technique, applied
in the maintenance team’s environment to calculate alter-
native paths, has known scalability limitations which we
will analise in the case of MultiPathPrivacy.

All experiments were performed on a AMD Phenom II x2
555 at 3.2 GHz machine, with 4 GB of RAM and Windows
7 64-bit operating system.

6

A. Subjects

To evaluate MultiPathPrivacy, we used a set of eleven case
tests from three Java applications. The first two applications
were made for [17] and are available at the Software-Artifact
Infrastructure Repository [18]. The faults required for evalu-
ation purposes were injected into the applications by creating
mutant versions of these applications with MuJava [19] which
change, for example, relational and conditional operators that
may lead to failures in applications. The chosen applications
were:

• Cruise Control: a program that simulates the engine
and cruise control speed of a car. The failure in this
application is triggered when it is requested to resume
cruise control without it having been started before.

• Elevator: a program for controlling a set of elevators
that serve a given number of floors. The failure in this
application is triggered when a user selects a floor stop at
a floor number that is greater than the total floor count.

To complete the assessment carried out with this test set,
was also used a real application, iDate4. iDate is an application
for mobile devices that aims to find people with a given
profile chosen by the user criteria, for example, age, sex
or height. iDate was adapted to run locally on a desktop
computer. The failure exercised in this application is related to
an implementation change between two different versions of
the iDate. The representation of boolean values in the message
that is exchanged between users. This representation is no
longer done through a pre-defined text (eg yes or no), but
with text that can be processed to boolean values (i.e. true,
false). So when two users communicate, with different iDate
version, there is a failure when processing the information.

Application # Classes LOC Control Flow Instructions
Cruise Control 4 358 33

Elevator 8 581 56
iDate 3 1225 112

Table I
DESCRIPTION OF THE SUBJECTS USED TO EVALUATE

MULTIPATHPRIVACY.

Table I characterizes each test application’s source code.
It is important to highlight that, although the Cruise Control
and Elevator applications do not have an input that can be
considered sensitive, they have a complex state machine in
terms of number of states and transitions by events that
become relevant to this assessment. This characteristic can be
verified by the percentage of control flow instructions which
are the main source of branching in program execution and
consequently the main source of different states in the state
machine representation of the program. iDate was chosen
because it is a real world application of real use and handles
extremely sensitive data.

Figure 3. Results of bits of information revealed percentage in the test cases
with MPP and Better Bug Reporting

Figure 4. Results of residue percentage in the test cases with MPP and
Better Bug Reporting

B. Results

This section presents the results of applying MultiPath-
Privacy to the test cases presented in the previous section,
measured by the metric of bits of information revealed and
residue as explained in section IV-B. Its results will be
compared to a set of analytical results from the anonymization
techniques which do not take advantage of multiple paths to
the failure presented in BBR [8].

Figure 3 exhibits the number of bits revealed, in percentage
of the total input size. The percentage of the original input that
remains unchanged is shown in the residue metric, presented
in figure 4. Regarding the residue it should also be mentioned
that the identification of the bits of the original input that
remain unchanged, allows applications or error reporting tools
to show users exactly what part of their original inputs will
be included in the error report.

In the iDate test cases, the bug is at the end of a method

4http://idate.sourceforge.net/

7

that takes a profile of another user and compares it with the
local profile. The only fault requirement is the use of different
versions among the users. The comparison of the profiles
is performed with a sequence of ifs whose outcome is
irrelevant to the failure reproduction. The BBR’s technique that
only takes advantage of the original execution path, leaks a lot
of information that is not relevant to the failure reproduction
and, in this case, very sensitive data as, for example, the user’s
sexual orientation. As MultiPathPrivacy takes advantage of
various possible paths to the point of failure, the improvement
of privacy is significant.

The failure exercised in the Cruise Control test cases is ac-
tivated when it receives the order to resume the cruise control
speed without any previous activation. Thus, any sequence of
input that has the order to resume the cruise control speed
without previously having activated the command causes the
application failure. The test cases were performed with an
input that diminishes until the Cruise Control4 test case which
only contain the resume command. Thus, the percentage of bits
of information revealed will rise to reach 100% in the case
where the input contains only essential information for the
application failure. The residue has a similar growth. BBR’s
technique reveals 100% of the information in all the Cruise
Control test cases because it reproduces exactly the original
execution path that, in this case, only have one possible input.

In the Elevator test cases, failure occurs when a stop is
requested for a floor number that is higher than the number of
floors in the system. Similar to what was done in the Cruise
Control test cases, the number of valid values introduced be-
fore introducing the invalid one, decrease along the test cases.
This happens until Elevator3 test case that consists only in the
invalid value. In this case, the results does not show a large
improvement in privacy values between MultiPathPrivacy and
BBR’s technique, since the original path has a large domain
of input which, by itself, guarantee a good level of privacy to
the user.

C. Overhead

The use of deterministic replay system is constrained by
the imposed overhead while monitoring the execution and
processing the information to be included in the error report.
In MultiPathPrivacy, particularly in the client component that
is running on the user’s machine, there are two crucial points
to measure the MultiPathPrivacy’s performance impact. The
first is related to the monitoring process, during the normal
application execution, in which MultiPathPrivacy only records
the final line of code. Since this feature is achieved by
surrounding the original application code with a try/catch
block, the performance penalty is almost imperceptible. In all
tests this cost is constant and is 12 ms per run.

The second point of analysis is the cost of systematic
reproduction of execution paths to divide the set of possible
execution paths is the ones that crash the application and
those that don’t. The component that makes the replay on the
client, LEAP replayer, test the various possibilities of paths
to the point of failure in order to collect the set of paths that

reproduce the failure. This component has a constant initial
cost of about 70 ms, which is added the time of replaying
each of the possible paths. Table II shows the values for
the overhead of running the three applications used in the
evaluation.

Application Original Execution # Paths Total Replay
Cruise Control 0.011s 343 4.15s

Elevator 0.023s 32 0.78s
iDate 0.191s 1260 294.30s

Table II
PATH REPLAYING OVERHEAD

To achieve the privacy levels presented in the last section is
necessary to make the re-runs of all possible paths to the point
of failure, shown in table II. The user’s privacy is incremented
every time that a replay of the application crashes and the
corresponding path condition is less restrictive than the union
of all previous successful replays. Although the high cost of
reproduction time for all paths that pass through the point of
failure, the user can define an acceptable level of privacy, from
which there is no longer necessary to do more re-executions.
Moreover, this computation can be performed during periods
when the computer is idle.

D. Scalability

The search of several possible execution paths in an applica-
tion, is performed, in the server component, with the technique
of symbolic execution. This technique has a known scalability
issues due to the combinatorial explosion of paths. To try to
control this combinatorial explosion of paths, the symbolic
execution performed in MultiPathPrivacy, is applied to pre-
viously chosen methods and not for the entire application.
Still, in iDate, the heaviest test case, the symbolically executed
method contains a set of if clauses which causes a rapid
growth in the number of path possibilities. Table III shows
the evolution of several execution results along the growth of
the number of if clauses, namely the number of states visited,
the number of instructions, the maximum memory used and
time spent.

if States Instructions Max memory Execution time
1 4 3027 77MB 2,01s
2 8 3101 77MB 2,09s
4 24 3285 77MB 2,20s
6 72 3549 303MB 3,03s
8 396 6033 381MB 9,07s
10 2016 16293 383MB 5min08s
11 4536 60393 383MB 26min89s
12 9576 103233 383MB 2h36min64s

Table III
EXECUTION RESULTS EVOLUTION WITH THE GROWTH OF THE NUMBER OF

IF CLAUSES.

8

VI. CONCLUSIONS

This paper introduced MultiPathPrivacy, a system that pro-
vides fault replication with privacy for the user. MultiPath-
Privacy stands out among the anonymization techniques of
reference [8], [9] with the use of multiple execution paths
in the failure’s reproduction. Privacy guaranteed by these
techniques depends solely on the domain size imposed by the
conditions of the original path, that is, the number of inputs
that satisfy the path conditions. With MultiPathPrivacy, the
privacy level is enhanced not only by the domain size of the
original path conditions, but also with the domain size of other
failure leading path conditions.

To quantify the levels of privacy and analyze the full
application of MultiPathPrivacy, we compare it with the so-
lutions that take advantage on only one execution path. An
experimental study was conducted with a total of eleven test
cases in three different applications, one being used in the
world real. The level of privacy was quantified using two
metrics, namely bits of information revealed and residue.
The first metric is a pure measure of entropy and the latter
represents the percentage of the original input that remains
unchanged after the anonymization. The results clearly show
the benefit of using MultiPathPrivacy as it improved up to 87%
in the both privacy metrics and, in the worst case, matched the
state of the art results.

Although the evaluation presented shows limitations in
terms of scalability, this approach can be extended in order
to cope with scale limitations. One obvious approach is to
perform the search of the path conditions of all possible
execution flows not at the level of a whole application but
using some modularity criterium, e.g. perform the analysis for
each one of the listeners of an event based application. Another
possibility, which we are currently exploring, is replacing
the symbolic analysis done before deployment, during the
development process, by a dynamic execution performed at the
client device after the application crashes. In this alternative,
the application is executed symbolically starting from the
execution path that led to the failure and exploring alternative
paths that may leak less user input data than the original path.

ACKNOWLEDGMENTS

This work was partially supported by FCT (INESC-ID
multi-annual funding) through the PIDDAC program funds,
and by the European Union “FastFix” project (FP7-ICT-2009-
5). Parts of this work have been performed in collaboration
with other members of the Distributed Systems Group at
INESC-ID, namely, Luı́s Rodrigues, Nuno Machado and João
Matos.

REFERENCES

[1] G. Candea, “Exterminating bugs via collective information recycling,”
Dependable Systems and Networks Workshops, vol. 0, pp. 200–204,
2011.

[2] M. Zhivich and R. Cunningham, “The Real Cost
of Software Errors,” IEEE Security & Privacy,
vol. 7, no. 2, pp. 87–90, 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812166
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4812166

[3] B. R. Liblit, “Cooperative bug isolation,” Ph.D. dissertation, University
of California at Berkeley, 2004.

[4] K. Saeed, “It is that Dreaded Error Report: An Empirical Assessment
of Error Reporting Behavior,” in Proceedings of the 2005 SIGHCI,
2005. [Online]. Available: http://aisel.aisnet.org/sighci2005/7

[5] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proceedings of the 29th
international conference on Software Engineering, ser. ICSE ’07.
IEEE Computer Society, 2007, pp. 344–353. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.45

[6] J. Huang, P. Liu, and C. Zhang, “LEAP: lightweight deterministic
multi-processor replay of concurrent java programs,” in Proceedings of
the 18th ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 207–216. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1882323

[7] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. Lee, and S. Lu,
“Pres: probabilistic replay with execution sketching on multiprocessors,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. ACM, 2009, pp. 177–192. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1629593

[8] M. Castro, M. Costa, and J.-P. Martin, “Better bug reporting
with better privacy,” ACM SIGARCH Computer Architecture
News, vol. 36, no. 1, p. 319, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1353534.1346322

[9] J. Clause and A. Orso, “Camouflage: automated anonymization of
field data,” in Proceeding of the 33rd international conference on
Software engineering, ser. ICSE ’11. ACM, 2011, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985797

[10] P. Broadwell, M. Harren, and N. Sastry, “Scrash: a system for generating
secure crash information,” in Proceedings of the 12th conference on
USENIX Security Symposium, vol. 12. USENIX Association, 2003,
pp. 19–19.

[11] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, pp. 385–394, 1976.

[12] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa software,”
in Proceedings of the 2008 international symposium on Software testing
and analysis, ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp.
15–26.

[13] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering, vol. 10, pp. 203–232,
2003.

[14] P. Louro, “Privacy in fault replication (original title: Privacidade em
replicação de falhas),” Master’s thesis, Instituto Superior Técnico, Tech-
nical University of Lisboa, 2011.

[15] R. Wang, X. Wang, and Z. Li, “Panalyst: privacy-
aware remote error analysis on commodity software,” in
Proceedings of the 17th conference on Security symposium.
USENIX Association, 2008, pp. 291–306. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1496711.1496731

[16] C. E. Shannon, “The mathematical theory of communication,” Bell
System Technical Journal, vol. 27, no. 4, pp. 379–423, 623–656, 1948.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9230594

[17] S. Mouchawrab, L. Briand, Y. Labiche, and M. Di Penta, “Assessing,
Comparing, and Combining State Machine-Based Testing and Structural
Testing: A Series of Experiments,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 161–187, 2010. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416729
http://www.computer.org/portal/web/csdl/doi/10.1109/TSE.2010.32

[18] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Software Engineering,
vol. 10, no. 4, pp. 405–435, 2005. [Online]. Available:
http://www.springerlink.com/index/PJ43552632155738.pdf

[19] Y. Ma, J. Offutt, and Y. Kwon, “MuJava: An automated class
mutation system,” Software Testing, Verification and Reliability,
vol. 15, no. 2, pp. 97–133, 2005. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/stvr.308/abstract

9

