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1 Context and Motivation

Transactional memory (TM) [?] has been widely studied
over the last decade as it provides a scalable and easy-
to-use alternative to locks. Over the last years, a wide
body of literature has been published on TM, and sev-
eral variants have been developed, including hardware-
based (HTM), software-based (STM), and distributed
(DTM) [?]. One of the key results highlighted by existing
research is that, independently of the nature of the syn-
chronization scheme adopted by a TM platform, its ac-
tual performance is strongly workload dependent and af-
fected by a number of complex, often intertwined factors
(e.g. duration of transactions, level of data contention,
ratio of update vs read-only transactions).

This work is based on the belief that most workloads
have a natural degree of parallelism, i.e., there is a
workload-specific threshold below which adding more
threads will improve transaction throughput, and over
which new threads will not help and might even degrade
performance because of higher contention and aborts
rates, even if sufficiently many cores are available.

In this position paper we discuss on the importance of
adapting the concurrency level to the workload (which
we call elastic scaling) in various application settings.
Note that related problems have been already addressed
in previous research. For instance, Felber et al. [?] tack-
led the problem of how to tune at run time the number of
“locks” and their coverage of the whole address space in
the TINYSTM library. Wang et al. [?] exploit machine
learning techniques to select which STM implementation
to adopt on the basis of the application workload. Ansari
et al. [?] adapt the parallelism of STM applications in or-
der to maintain the transaction abort rate under a prede-
fined level. In the area of replicated relational databases,
recent works [?, ?] have proposed mechanisms for sup-
porting elastic scaling, namely automatically adapting, in
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face of varying workloads, the number of nodes the plat-
form is deployed onto. So far, however, limited attention
has been devoted to dynamically identifying the optimal
degree of parallelism for a (D)TM platform, namely the
degree of local (i.e., number of active threads) and possi-
bly global (i.e., number of nodes in a DTM) concurrency
that maximizes the throughput of complex (D)TM appli-
cations.

In this paper we present experimental results obtained
considering two extreme scenarios: on shared-memory
systems with a low-level STM library written in C, and
in distributed systems with a high-level DSTM infras-
tructure written in Java.

We first show that realistic benchmarks exhibit widely
different performance depending on the degree of par-
allelism, and that adapting the number of threads at run-
time can improve performance of some applications over
any execution with a fixed number of threads. By apply-
ing small modifications to the benchmarks and the under-
lying STM runtime in a shared-memory system, one can
straightforwardly optimize the concurrency level using
exploration-based on-line optimization techniques, e.g.,
using hill climbing or gradient descent algorithms.

In distributed settings, however, the cost of testing
configurations with a different number of threads (i.e.,
nodes) is prohibitive, as it requires transferring state,
generates additional traffic, and takes orders of magni-
tude more time than in centralized settings. Therefore, in
such settings, one should instead rely on modeling tech-
niques to predict the expected gains from adding or re-
moving nodes for adapting the concurrency level.

We argue that, to cover the complete spectrum of
TM systems, one should combine exploration-based and
model-driven methods: exploration-based techniques al-
lows us to perform accurate local observations, while
models help predicting the evolution of performance at
a large scale. In other words, on-line exploration can
improve accuracy of models, while models can improve
scalability of on-line techniques. We present experimen-



tal results that back our claims in both centralized and
distributed settings, and open the way to further research
in adaptive mechanisms for elastic scaling of TM within
and across nodes.

2 Exploration-based Scaling

Ideally, it is desired to run applications at their natural de-
gree of parallelism, i.e., a point where each thread does
“sufficient” useful work without inducing “too much”
contention. The exact definition of both quantities varies
depending on the context and it is generally not obvious
to find this natural degree of parallelism for a given ap-
plication. For workloads where contention due to data
synchronization does not change throughout the applica-
tion execution, the best level of parallelism can be found
offline by repeatedly restarting the application with dif-
ferent sets of parameters. However, the contention a
workload generates may vary during the lifetime of the
application, i.e., the natural degree of parallelism rep-
resented by the workload varies as the application exe-
cutes. Hence, a general solution to this problem would
need to track the workload generated by the application
on-line.

Before dwelling on the actual exploration algorithm,
let us briefly consider the benefits of such adaptive tech-
niques on the application intruder, part of the widely
used STAMP benchmark suite [?]. This application em-
ulates a signature-based network intrusion detection sys-
tem and exhibits a workload that evolves over time.
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Figure 1: Speedup of the intruder benchmark as compared to
sequential (non-STM) version, using static and dynamically evolv-
ing numbers of threads.

Figure ?? indicates the performance of the bench-
mark when executed with varying number of threads
(dashed line), or when dynamically changing the number
of threads (plain straight line corresponding to a constant
value). One can observe that performance is significantly
better when dynamically adapting concurrency than with
any fixed number of threads. Note that the experiment
was run on a 48-core machine, i.e., the number of physi-
cal cores was not the limiting factor.

Our exploration-based approach performs on-line
monitoring of key performance metrics. It allows us to
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Figure 2: The principle of the exploration-based algorithm is akin
a feedback control loop. The three phases are shown in rectangles
with solid lines.

find the natural degree of parallelism of an application
by running it with an iterative algorithm controlling its
concurrency level. The algorithm terminates when all
the work to be performed by the application is accom-
plished. Each iteration of the algorithm has three phases,
as illustrated in Figure ??:

• Measurement phase: In this phase, the application
runs with a fixed number of threads. Key perfor-
mance metrics (numbers of commits and aborts) are
measured during a certain time period. The commit
rate gives an indication of raw transaction through-
put, while the abort rate is a good measure of con-
tention.

• Decision phase: In this phase the algorithm de-
cides between two actions: increasing or decreas-
ing the number of threads. If the last measurement
phase shows improvements in terms of commit rate,
the action performed in the previous iteration is re-
peated (addition or removal of threads); otherwise,
it is reversed. The decision taken in this phase
corresponds to a hill climbing technique maximiz-
ing transaction throughput, i.e., commit rate. The
technique explores configurations in the vicinity of
the current one by dynamically adding or remov-
ing threads, until a (local) maximum is reached.
Even when reaching such a point, the configura-
tion is tested for adapting to possible variations in
the workload that would shift the optimal configu-
ration(s) 1.

• Transition phase: An external controller thread
adds or removes threads to/from the application ac-
cording to outcome of the decision phase.

For faster adaptation to the workload, we tune the du-
ration of the measurement phase such that we have suffi-
ciently many samples (i.e., commits) to take sound deci-
sions but without wasting too much time. In this way, the
algorithm reacts fast by quickly collecting measurements
with applications composed by short transactions while

1One should note at this point that none of the benchmarks we ex-
perimented with (STAMP applications and various micro-benchmarks)
exhibits multiple maxima when observing throughput as a function of
the number of threads, up to the hardware limit of our 48-core test ma-
chine.
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it will take more time to adapt, but will still take correct
decisions, for applications with long transactions.

Inserting the application inside the iterative algorithm
required us to introduce (i) code observing performance,
for the measurement phase, and (ii) a controller thread
that performs decision and transition phases to modify
the parameters of the application based on the measured
performance. This extra thread controls the main exe-
cution loop of the application and can add or remove as
many transactional threads as required during run time.
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Figure 3: Evolution of the number of threads with the intruder
benchmark using exploration-based scaling.

Figure ?? shows the behavior of the exploration-based
algorithm with the intruder application. As one can
observe, the number of threads (values averaged over 2-
second periods for clarity) increases in the first half of
the execution to reach 13, then drops sharply to account
for changes in the workload. The last part of the exe-
cution uses only few threads, which reduces the commit
throughput but limits contention and avoids most aborts.
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Figure 4: Variations in transaction sizes during execution of the
intruder benchmark.

To better understand what triggers such changes in the
workload, we show in Figure ?? the variations in transac-
tion lengths, as reported by the size of the read and write
sets, during the execution of intruder. Values are av-
eraged over groups of 10,000 transactions and sizes are

shown on a logarithmic scale. The application repeatedly
executes a sequence of 3 transactions. Two of them, de-
noted as T2 and T3 in the graph, do not vary much over
time. The third one, T1, exhibits an interesting trend that
explains why our approach is so effective: transactions
read more and more data, with a sharp spike in the end,
while their number of writes first decreases before stabi-
lizing and increasing steeply in the end. Therefore, the
last transactions to execute are very long and, hence, are
expected to encounter much contention. Limiting con-
currency increases the likelihood of commit and, in turn,
improves overall performance.

Note that we modified and experimented with other
applications of the STAMP benchmark suite. We found
out that, while intruder benefits most from dynamic
adaptation of the concurrency level because of the wide
variations in its workload, our exploration-based algo-
rithm is also effective with other applications and can
quickly find the optimal number of threads.

3 Model-driven Scaling

When considering DTM platforms [?], the problem of
identifying the natural degree of parallelism for a given
workload grows in complexity, turning into a bi-variate
optimization problem. In distributed settings, in fact, the
degree of concurrency is affected not only by the number
of threads deployed on each node, but also by the number
of nodes composing the distributed TM platform. The
plots in Figure ?? clearly show the complex, non-linear
interdependencies that can arise between the maximum
throughput achievable by a DTM platform and both the
number of nodes over which it is deployed and the num-
ber of threads running on every node. The DTM platform
used in this study is Infinispan [?], a popular in-memory
distributed transactional key-value store implemented in
Java. Infinispan is the reference NoSQL data platform
and clustering solution for JBoss AS, one of the market
leading open source J2EE application servers, where it
is used for replicating HTTP and EJB sessions states, as
well as a second-level cache for Hibernate [?]. Infinispan
supports different data replication/distribution strategies
[?], and in this experiment we configured it to use a two-
phase commit (2PC) based full-replication protocol. The
workload was generated using the well known TPC-C
benchmark [?], and we used, as experimental testbed, a
cluster of 8 servers, each equipped with 8 cores and in-
terconnected via a private Gigabit Ethernet.

As shown in Figure ??, there is a non-trivial corre-
lation between throughput, number of nodes in the sys-
tem and number of threads per node. The plots high-
light that, when fixing the number of nodes, performance
varies significantly depending on the amount of active
threads on each node. This depends on the intertwining
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Figure 5: Analyzing the performance of different configurations
of the TPC-C benchmark when deployed on distributed TMs of
variable sizes and local concurrency levels.

of effects associated with contention at both the data and
physical level. As the number of nodes in the system in-
creases, the latency of the 2PC-based replication protocol
grows accordingly, which, in turn, leads to an increase
of the time threads spend idle waiting for the comple-
tion of replica synchronization activities. Clearly, a way
to increase the utilization level of the cores available at
each node is to activate additional threads on each node.
However, this can lead to a raise of the level of data con-
tention that can outweigh the performance gains achiev-
able by pursuing higher levels of utilization of the avail-
able computational resources. As depicted by Figure ??,
this is precisely what happens in this case, as increasing
the number of active threads per nodes in configurations
with more than 4 nodes leads to thrashing due to the rapid
growth of the transaction abort rate.

Note that the problem of identifying the natural de-
gree of parallelism in a DTM is not only more complex
due to the inherent growth in the dimensionality of the
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Figure 6: Accuracy of TAS performance predictions.

solution space. An additional factor that contributes to
exacerbate the complexity of this problem is that, unlike
in non-distributed TMs, exploratory steps that are at the
basis of on-line learning techniques (such as the one pre-
sented in Section ??) can be very costly. The addition
of nodes to a DTM platform, in fact, requires expen-
sive state-transfer phases aimed to ensure that the joining
nodes install an updated snapshot of the TM before start-
ing processing transactions. The actual duration of the
state transfer phase depends on the extent of the topology
change and on the amount of data maintained by the TM
but, as shown in [?], it is not uncommon for it to take up
to several minutes in complex applications deployed on
large clusters. Throughout these phases, the DTM plat-
form can be subject to a significant additional load [?, ?]
and suffer from severe performance degradation [?].

In the light of these considerations, we argue that
mechanisms for self-tuning the degree of concurrency in
distributed TM platforms should employ model-driven
techniques capable of predicting the performance of the
TM platform when deployed on a different number of
nodes. To the best of our knowledge, there is no solu-
tion which tackles the problem of determining simultane-
ously the optimal degree of local and global concurrency
level in a DTM.

TAS (Transactional Auto Scaler) [?] represents a first
step towards filling this gap. TAS relies on a perfor-
mance prediction methodology based on the joint us-
age of analytical and off-line trained machine learning
models. The analytical models employed by TAS ex-
ploit the knowledge of the dynamics of the concurrency
control/replication algorithm in order to forecast the ef-
fects of data contention via a white-box approach. Black-
box machine-learning models, on the other hand, are
employed to forecast the impact on performance due to
shifts in the utilization of system level resources (e.g.,
CPU and network) caused by variations of the scale of
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the platform. This avoids modeling the interactions with
system resources, which is a time-consuming task given
the complexity of current hardware architectures, and
also makes this methodology viable for virtualized envi-
ronments where little or no knowledge is available on the
underlying physical infrastructure. In order to build an
initial knowledge base for training the machine learners,
TAS relies on a suite of off-line synthetic benchmarks
that generate a breadth of heterogeneous transactional
workloads (e.g., in terms of size of the generated mes-
sages, memory footprint at each node, throughput and
execution duration of the transactional business logic),
and which are executed under varying local and global
degree of concurrency.

The plots in Figure ?? compare the actual performance
of the system with the performance predictions gener-
ated by TAS. To this end, TAS was provided with in-
formation concerning utilization of logical and physical
resources while running in a configuration with 2 nodes
and 2 threads, and was queried in order to obtain per-
formance forecasts while varying the number of nodes
and threads in the system. The plots highlight the abil-
ity of TAS to forecast correctly not only the performance
trends for the considered workload as a function of the
degree of concurrency in the system, but also the con-
figuration that maximizes system’s throughput. On the
other hand, the plots also highlight the existence of sys-
tem configurations in which the accuracy of the perfor-
mance predictions output by TAS can decrease signifi-
cantly. We argue that this can depend on two main fac-
tors.

The first one is that the analytical model employed
in TAS for capturing the effect of data contention re-
lies on assumptions whose validity can be challenged at
extremely high levels of contention. This claim is con-
firmed by correlating the plots of Figure ?? with the abort
probability reported in Figure ??, and noting that the ac-
curacy of TAS prediction degrades in regions where the
system’s throughput starts dropping in settings exhibit-
ing extreme levels of data contention (higher than 80%);
note that this loss of accuracy in such scenarios is natural
for analytical models, as shown in[?].

The second factor that may contribute to degrade the
quality of TAS’ predictions is imputable to the loss of
accuracy of its machine-learning based models. Off-
line learners’ predictive power strongly depends on the
representativeness of the samples observed during their
training phase; however, the parameters’ space associ-
ated with all possible workloads and concurrency levels
in a DTM is extremely vast, thus exploring it in an ex-
haustive fashion is prohibitive. Thus, in TAS we use a
uniform sampling of the features’ space, and limit the
duration of the off-line benchmarking to one hour. The
downside of this approach is that it can lead to a degra-

dation of the predictions’ accuracy especially in those re-
gions in which small fluctuations of the input variables
lead to strong variations of the output variables (e.g., in
case new threads are added in high CPU utilization sce-
narios).

4 Towards a Combined Approach

The self-tuning approaches presented in the two previ-
ous sections rely on opposite methodologies for identify-
ing the optimal degree of concurrency of (D)TM appli-
cations; these two adaptation methodologies have com-
plementary strengths and weaknesses.

As shown in Section ??, exploration-based techniques
shine in determining the optimal degree of local con-
currency, avoiding the usage of time-consuming off-line
training phases, or the design and validation of analyti-
cal models, which are instead necessary for model-driven
techniques, such as the one presented in Section ??. The
other side of the coin is that, approaches based exclu-
sively on exploration-based techniques result cumber-
some and unattractive to determine the optimum num-
ber of nodes to use in a DTM, due to the high overheads
associated with state transfer.

Model-based performance forecasting techniques, on
the other hand, lend themselves better to tackle this prob-
lem. However, their accuracy is ultimately dependent on
the quality of the models they employ, which can be af-
fected by several factors, as pointed out in Section ??.

A possible way to combine the two approaches
might be to use model-based techniques to initialize the
knowledge base of on-line learning mechanisms. This
would allow to guide their exploration in order to avoid
dwelling in regions that are clearly identified as unfavor-
able by model-based oracles, or to adjust dynamically
the granularity adopted for on-line exploration. A sim-
ilar approach has been proposed in different application
domains, such as tuning the level of message packing
in group communication systems [?], and has shown to
boost considerably the convergence speed of pure on-line
learning schemes. We are not aware, however, of appli-
cations adopting such techniques to identify the optimal
degree of concurrency for (D)TM platforms.

Another way of composing exploration-based and
model-based self-tuning approaches would be to use
them according to a divide-and-conquer fashion. With
this approach, the problem of identifying the optimal de-
gree of concurrency in a DTM platform would be decou-
pled into two simpler sub-problems (namely determining
the optimal number of distributed nodes vs. the optimal
number of threads active per node), which could then
be solved using the most appropriate methodology. For
instance, model-driven techniques, such as TAS, could
trigger a global reconfiguration of the system, which
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could then be followed by exploration-based approaches
aimed at adjusting the local concurrency level at each
node in order to compensate possible errors of the model.
Clearly, the key challenge here is devising methodolo-
gies capable of assessing, in an effective way, the quality
of the solution identified via the divide-and-conquer ap-
proach.

Another research direction that we are currently ex-
ploring concerns how to incorporate the feedbacks gath-
ered using on-line exploration techniques into perfor-
mance forecasting models, with the ultimate goal of con-
tinuously enhancing their predictive power and overall
robustness. Conventional white-box models of transac-
tional platforms [?, ?, ?, ?], for instance, are built on
rigid assumptions (e.g., exponential arrival rate of lock-
requests) and are not conceived to adapt themselves to
cope with scenarios in which such assumptions are not
(or are only partially) met.

In conclusion, we argue that further research is re-
quired in order to design hybrid methodologies, combin-
ing exploration-based and model-driven approaches with
the goal of letting the two cooperate in synergy and hav-
ing the strengths of one compensate the weaknesses of
the other, and vice versa.
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