
Distributed Software
Transactional Memories
Foundations, Algorithms and Tools

Maria Couceiro
(with Paolo Romano and Luís Rodrigues)
IST/ INESC-ID

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011 1

Contents

!   Part I: (Non-Distributed) STMs

!   Part II: Distributed STMs

!   Part III: Case-studies

!   Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contents

!   Part I: (Non-Distributed) STMs

!   Part II: Distributed STMs

!   Part III: Case-studies

!   Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

!   Basic Concepts

!   Example Algorithms

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   Concurrent programming has always been a challenge

!   One needs to control the concurrent access to shared data
by multiple threads

!   This is hard for most programmers.

!   Concurrent programming has been a “niche”

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   In the past:
!   More performance via faster CPUs

!   Now:
!   More performance via more CPUs

!   Concurrent programming has to become mainstream

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   Ideally
!   Performance would scale linearly with the number of cores

!   (with 8 cores we would have a program 8 times faster)

!   Reality:
!   Speed up limited by % serial code

!   Small % can kill performance (Amdahl’s Law)

!   Say 25% of the program is serial

!   8 cores = 2.9 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   Ideally
!   Performance would scale linearly with the number of cores

!   (with 8 cores we would have a program 8 times faster)

!   Reality:
!   Small % of serial code can kill performance (Amdahl’s Law)

!   Say 25% of the program is serial

!   32 cores = 3.7 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   Ideally
!   Performance would scale linearly with the number of cores

!   (with 8 cores we would have a program 8 times faster)

!   Reality:
!   Small % of serial code can kill performance (Amdahl’s Law)

!   Say 25% of the program is serial

!   128 cores = 3.9 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

!   It is hard or impossible to structure a program in a set of
parallel independent tasks.

!   We need efficient and simple mechanisms to manage
concurrency.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Explicit synchronization

!   One of the most fundamental and simple synchronization
primitive is the lock

non-synchronized code;

lock ();

do stuff on shared data;

unlock ();

more non-synchronized code;

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many problems with locks

!   Deadlock:
!   locks acquired in “wrong” order.

!   Races:
!   due to forgotten locks

!   Error recovery tricky:
!   need to restore invariants and release locks in exception

handlers

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Fine Grained Parallelism?

!   Very complex:
!   Need to reason about deadlocks, livelocks, priority inversions.

!   Verification nightmare as bugs may be hard to reproduce.

!   Make parallel programming accessible to the masses!!!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Concurrent Programming
Without Locks

!   Lock-free algorithms.

!   Hard to design and prove correct.

!   Only for very specialized applications.

!   Designed and implemented by top experts.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Abstractions for simplifying
concurrent programming…

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic transactions

atomic {

 access object 1;

 access object 2;

}

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Transactional Memories

!   Hide away synchronization issues from the programmer.

!   Advantages:
!   avoid deadlocks, priority inversions, convoying;

!   simpler to reason about, verify, compose.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

!   Theoretical Aspects
!   Formalization of adequate consistency guarantees, performance

bounds.

!   Hardware support
!   Very promising simulation-based results, but no support in commercial

processors.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

!   Software-based implementations (STM)
!   Performance/scalability improving, but overhead still not satisfactory.

!   Language integration
!   Advanced supports (parallel nesting, conditional synchronization) are

appearing...

!   ...but lack of standard APIs & tools hampers industrial penetration.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

!   Operating system support
!   Still in its infancy, but badly needed (conflict aware scheduling,

transactional I/O).

!   Recent trends:
!   Shift towards distributed environments to enhance scalability &

dependability.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Run-time

!   How does it work?
!   The run time implements concurrency control in an

automated manner.

!   Two main approaches:
!   Pessimistic concurrency control (locking).

!   Optimistic concurrency control.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Example of pessimistic
concurrency control

!   Each item has a read/write lock.

!   When an object is read, get the read lock.
!   Block if write lock is taken.

!   When an object is written, get the write lock.
!   Block if read or write lock is taken.

!   Upon commit/abort:
!   Release all locks.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Example of optimistic
concurrency control

!   Each item has a version number.

!   Read items and store read version.

!   Write local copy of items.

!   Upon commit do atomically:
!   If all read items still have the read version (no other concurrent

transaction updated the items)
!   then apply all writes (increasing the version number of written

items).

!   Else,
!   abort.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many, many, variants exist

!   For instance, assume that two phase locking is used and a
deadlock is detected. It is possible:
!   Abort both transactions.

!   Abort the oldest transaction.

!   Abort the newest transaction.

!   Abort the transaction that did less work.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

!   For instance, assume that two phase locking is used and a
deadlock is detected. It is possible:
!   Abort both transactions
!   Abort the oldest transaction
!   Abort the newest transaction
!   Abort the transaction that did less work

Each alternative offers different performance with different
workloads.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many, many, variants exist

How to choose?

!   What is a correct behavior?

!   Which safety properties should be preserved?

!   Which liveness properties should be preserved?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

How to choose?

!   What is a correct behavior?

!   Which safety properties should be preserved?

!   Which liveness properties should be preserved?

To answer these questions we need a bit of theory.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Theoretical Foundations

!   Safety:
!   What schedules are acceptable by an STM?

!   Is classic atomicity property appropriate?

!   Liveness:
!   What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Theoretical Foundations

!   Safety:
!   What schedules are acceptable by an STM?

!   Is classic atomicity property appropriate?

!   Liveness:
!   What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Classic atomicity property

!   A transaction is a sequence of read/write operations on
variables:
!   sequence unknown a priori (otherwise called static

transactions).

!   asynchronous (we do not know a priori how long it takes to
execute each operation).

!   Every operation is expected to complete.

!   Every transaction is expected to abort or commit.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   The execution of a set of transactions on a set of objects is
modeled by a history

!   A history is a total order of operation, commit and abort
events

OP OP C C OP OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

!   Non-sequential:

OP OP C C OP OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

!   Sequential:

OP OP C C OP OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   A history is sequential if it has only sequential transactions;
it is concurrent otherwise

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   A history is sequential if it has only sequential transactions;
it is concurrent otherwise.

!   Sequential:

OP OP C OP C C OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   A history is sequential if it has only sequential transactions;
it is concurrent otherwise.

!   Non-sequential:

OP OP C OP C C OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories
!   Two histories are equivalent if they have the same transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   Two histories are equivalent if they have the same
transactions

!   Equivalent:

OP OP C OP C C OP

OP OP C OP C C OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

!   Two histories are equivalent if they have the same
transactions

!   Non-equivalent:

OP OP C OP C C OP

OP OP C OP C C OP

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

What the programmer wants?

!   Programmer does not want to be concerned about
concurrency issues.

!   Execute transactions “as if” they were serial

!   No need to be “serially executed” as long as results are the
same

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

OP OP C OP C C OP

Serializability’s definition
(Papa79 - View Serializability)

!   A history H of committed transactions is serializable if there is a
history S(H) that is:
!   equivalent to H

!   sequential

!   every read returns the last value written

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability

!   Serializable?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) C C RO1(0) RO2(1) WO1(1)

Serializability

!   Serializable!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1)

WO2(1) C C RO1(0) RO2(1) WO1(1)

RO1(0) C RO2(1) WO1(1) C

Serializability

!   Serializable?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) C C RO1(0) RO2(0) WO1(1)

Serializability

!   Non-serializable!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) C C RO1(0) WO1(1)

WO2(1) RO1(0) C

RO2(0)

WO1(1) RO2(0) C

WO1(1) RO2(0) C WO2(1) RO1(0) C

Opacity

!   Serializable (blue aborts)?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) A C RO1(0) RO2(1) WO1(1)

Opacity

!   Serializable: only committed transactions matter!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) A C RO1(0) RO2(1) WO1(1)

C RO2(1) WO1(1)

Opacity

!   In a database environment, transactions run SQL:
!   no harm if inconsistent values are read as long as the

transaction aborts.

!   This is not the same in a general programming language:
!   observing inconsistent values may crash or

hang an otherwise correct program!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (y-x);

If T1 and T2 are atomic, the program is correct.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (y-x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (y-x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (2-x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (2-x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

After T1: x:=2; y:=3

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (2-x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

After T1: x:=2; y:=3

 - T1: x := x+1; y := y+1

 - T2: z:= 1 / (2-2);

Otherwise...divide by zero!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity
[GK08]

!   Intuitive definition:
!   every operation sees a consistent state

(even if the transaction ends up aborting)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity
[GK08]

!   Intuitive definition:
!   every operation sees a consistent state

(even if the transaction ends up aborting)

!   Following history is serializable but violates opacity!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) C A RO1(0) RO2(0) WO1(1)

Does classic optimistic concurrency
control guarantee opacity?

!   Writes are buffered to private workspace and applied atomically at
commit time

!   Reads are optimistic and the transaction is validated at commit time.

!   Opacity is not guaranteed!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

WO2(1) C A RO1(0) RO2(0) WO1(1)

Theoretical Foundations

!   Safety:
!   What schedules are acceptable by an STM?

!   Is classic atomicity property appropriate?

!   Liveness:
!   What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Progress

!   STMs can abort transactions or block operations…

!   But we want to avoid implementations that abort all
transactions!

!   We want operations to return and transactions to commit!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Requirements

!   Correct transactions:
!   commit is invoked after a finite number of operations

!   either commit or perform an infinite number of (low-level)
steps

!   Well-formed histories:
!   every transaction that aborts is immediately repeated until it

commits

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conditional progress:
obstruction freedom

!   A correct transaction that eventually does not encounter
contention eventually commits

!   …but what to do upon contention?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contention-managers

!   Abort is unavoidable

!   But want to maximize the number of commits

!   Obstruction freedom property: progress and correctness are
addressed by different modules.

Contention-managers encapsulate policies for dealing with contention
scenarios.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contention-managers
Let TA be executing and TB a new transaction that arrives and creates a
conflict with TA.

RO1(0) RO2(0) WO1(1)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Aggressive
Let TA be executing and TB a new transaction that arrives and creates a
conflict with TA.

!   Aggressive contention manager:
!   always aborts TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Backoff
Let TA be executing and TB a new transaction that arrives and creates a
conflict with TA.

! Backoff contention manager:
!   TB waits an exponential backoff time

!   If conflict persists, abort TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Karma
Let TA be executing and TB a new transaction that arrives and creates a
conflict with TA.

!   Karma contention manager:
!   Assign priority to TA and TB

!   Priority proportional to work already performed

!   Let Ba be how many times TB has been aborted

!   Abort TA if Ba > (TA-TB)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Greedy
Let TA be executing and TB a new transaction that arrives and creates a
conflict with TA.

!   Greedy contention manager:
!   Assign priority to TA and TB based on start time

!   If TB<TA and TA not blocked then wait

!   Otherwise abort TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

!   Basic Concepts

!   Example Algorithms
!   DSTM

!   JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

!   Basic Concepts

!   Example Algorithms
!   DSTM

!   JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM

!   Software transactional memory for dynamic-sized data
structures.

! Herlihy, Luchangco, Moir, and Scherer, 2003.

!   Prior designs: static transactions.

!   DSTM: dynamic creation of transactional objects.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM

!   Killer write:
!   Ownership.

!   Careful read:
!   Validation.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Writes

!   To write o, T requires a write-lock on o.

!   T aborts T’ if some T’ acquired a write-lock on o:
!   Locks implemented via Compare & Swap.

!   Contention manager can be used to reduce aborts.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM – Reads and Validation

!   Concurrent reads do not conflict.

!   To read o, T checks if all objects read remain valid;
!   else abort T.

!   Before committing, T checks if all objects read remain valid
and releases all its locks.
!   Make sure that the transaction observes a consistent state.

!   If the validation fails, transaction is restarted.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Why is careful read needed?

!   No lock is acquired upon a read:
!   invisible reads

!   visible read invalidate cache lines

!   bad performance with read-dominate workloads due to high
bus contention

!   What if we validated only at commit time?

Serializability? Opacity?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

!   No lock is acquired upon a read:
!   invisible reads

!   visible read invalidate cache lines

!   bad performance with read-dominate workloads due to high
bus contention

!   What if we validated only at commit time?

Serializability? Opacity?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Why is careful read needed?

(Non-Distributed) STMs

!   Basic Concepts

!   Example Algorithms
!   DSTM

!   JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM

!   Java Versioned Software Transactional Memory.

!   Cachopo and Rito-Silva. 2006.

!   Versioned boxes as the basis for memory transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM

!   Optimized for read-only transactions:

!   Never aborted or blocked;

!   No overhead associated with readset tracking.

!   How?

!   Multi-version concurrency control.

!   Local writes (no locking, optimistic approach)

!   Commit phase in global mutual exclusion.

!   Recently introduced a parallel commit version [FC09].

!   Global version number (GVN)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Versioned boxes

!   Versioned boxes
!   Each transactional location uses a versioned box to hold the

history of values for that location.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

B
body:

previous:

value: 2

version: 87

previous:

value: 1

version: 23

previous: null

value: 0

version: 5

JVSTM - Algorithm

!   Upon begin T, read GVN and assigned it to T snapshot ID
(sID).

!   Upon read on object o:
!   If o is in T’s writeset, return last value written,

!   else return the version of the data item whose sID is “the
largest sID to be smaller than the T’ sID”.

!   If T is not read-only, add o to readset.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Algorithm

!   Upon write, just add to the writeset.
!   No early conflict detection.

!   Upon commit:
!   Validate readset:

!   Abort if any object read has changed.

!   Acquire new sID (atomic increase of GVN).

!   Apply writeset: add new version in each written VBox .

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Execution

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contents

!   Part I: (Non-Distributed) STMs

!   Part II: Distributed STMs

!   Part III: Case-studies

!   Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

!   Origins

!   Goals

!   Distribution Strategies

!   Programming Models

!   Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Origins

!   Convergence of two main areas:
!   Distributed Shared Memory

!   Database Replication

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed Shared Memory

!   DSM aims at providing a single system image
!   Fault-tolerance via checkpointing

!   Strong consistency performs poorly
!   Myriad of weak-consistency models

!   Programming more complex

!   Explicit synchronization
!   Locks, barriers, etc

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTMs vs DSM

!   DSTMs are simpler to program

!   Transactions introduce boundaries where synchronization is
required

!   By avoiding to keep memory consistency at every (page)
access or at the level of fine-grain locks, it may be possible to
achieve more efficient implementations

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Database Replication

!   Databases use transactions
!   Constrained programming model

!   Durability is typically a must

!   Database replication was considered too slow

!   In the last 10 years new database replication schemes have
emerged
!   Based on atomic broadcast and on a single coordination

phase at the beginning/ end of the transaction.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTMs vs DBMS

!   Transactions are often much shorter in the STM world
!   This makes coordination comparatively more costly

!   Durability is often not an issue
!   This makes coordination comparatively more costly

!   Database replication techniques can be used as a source of
inspiration to build fault-tolerant DSTMs

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

!   Origins

!   Goals

!   Distribution Strategies

!   Programming Models

!   Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Goals

!   Better performance:
!   Doing reads in parallel on different nodes.

!   Computing writes in parallel on different items.

!   Fault-tolerance:
!   Replication the memory state so that it survives the failure of

a subset of nodes.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

!   Origins

!   Goals

!   Distribution Strategies

!   Potential Problems

!   Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distribution Strategies

!   Single System Image
!   Distribution is hidden

!   Easier when full replication is implemented

!   No control of the data locality

!   Partitioned Global Address Space
!   Different nodes have different data

!   Distribution is visible to the programmer

!   Programmer has fine control of data locality

!   Complex programming model

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distribution Strategies

!   Partitioned non-replicated
!   Max capacity

!   No fault-tolerance

!   No load balancing for reads on multiple nodes

!   Full replication
!   No extra capacity

!   Max fault-tolerance

!   Max potential load balancing for reads

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

!   Origins

!   Goals

!   Distribution Strategies

!   Programming Models

!   Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Dataflow Model

!   Transactions are immobile and objects move through the
network.

!   Write: processor locates the object and acquires ownership.

!   Read: processor locates the object and acquires a read-only
copy.

!   Avoids distributed coordination.

!   Locating objects can be very expensive.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Control Flow Model

!   Data is statically assigned to a home node and does not
change over time.

!   Manipulating objects:

!   In the node (via RPC);

!   First data is copied from the node then the are changes written back.

!   Relies on fast data location mechanism.

!   Static data placement may lead to poor data locality.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

!   Origins

!   Goals

!   Distribution Strategies

!   Programming Models

!   Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Toolbox

!   Atomic Commitment

!   Uniform Reliable Broadcast (URB)

!   Atomic Broadcast (AB)

!   Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic Commitment

!   Atomicity: all nodes either commit or abort the entire
transaction.

!   Set of nodes, each node has input:
! CanCommit
! MustAbort

!   All nodes output same value
!   Commit
!   Abort

!   Commit is only output if all nodes CanCommit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

2-phase commit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator participant participant

prepare msg

validate/
acquire locks

vote msg (Yes or No)

decision msg
(Commit or Abort)

validate/
acquire locks

apply
decision

apply
decision

2PC is blocking

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator participant participant

prepare msg

validate/
acquire locks

vote msg (Yes or No)

decision msg
(Commit or Abort)

validate/
acquire locks

? ?

3PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator participant participant

prepare msg

validate/
acquire locks vote msg (Yes)

Pre-decision msg
(Pre-Commit)

validate/
acquire locks

log pre-commit

apply
decision

log pre-commit

Decision msg
(Commit)

apply
decision

Toolbox

!   Atomic Commitment

!   Uniform Reliable Broadcast (URB)

!   Atomic Broadcast (AB)

!   Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Uniform Reliable Broadcast

!   Allows to broadcast a message m to all replicas

!   If a node delivers m, every correct node will deliver m

!   Useful to propagate updates

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Toolbox

!   Atomic Commitment

!   Uniform Reliable Broadcast (URB)

!   Atomic Broadcast (AB)

!   Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic Broadcast

!   Reliable broadcast with total order

!   If replica R1 receives m1 before m2, any other correct
replica Ri also receives m1 before m2

!   Can be used to allow different nodes to obtain locks in the
same order.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sequencer-based ABcast

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1: sequencer

R2

R3

Assigns SN

Sends message

Commit order

Commit order

Commit order

final uniform order

Receive
Msg + order

Receive
Msg + order

Abcast with optimistic delivery

!   Total order with optimistic delivery.

!   Unless the sequencer node crashes, final uniform total order
is the same as regular total order.

!   Application may start certificating the transaction locally
based on optimistic total order delivery.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ABcast with optimistic delivery

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1: sequencer

R2

R3

Assigns SN

Sends message
Receive

Msg + order

Commit order

Commit order

Commit order

Optimistic delivery Final delivery

Receive
Msg + order

final uniform order

ABcast with optimistic delivery

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1: sequencer

R2

R3

Assigns SN

Sends message

Commit order

Commit order

Commit order

Spontaneous
order delivery

Final delivery

Spontaneous
order

Spontaneous
order

Receive SN

Receive SN

final uniform order

Toolbox

!   Atomic Commitment

!   Uniform Reliable Broadcast (URB)

!   Atomic Broadcast (AB)

!   Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Replicating a single lock

!   In absence of replication, there’s no chance to fall into
deadlocks with a single lock… what if we add replication?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

T1

T2

lock() unlock()

lock () Update R1

Update R1

Replicating a single lock

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

T1

T2

lock()

lock ()

Update R1

T2 lock() Update R2

T1 lock ()

Waiting for R2

Waiting for R1

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Replicating a single lock

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

T1

T2

lock()

lock ()

Update R1

T2

lock() Update R2 T1

lock ()

unlock()

unlock()

Update R1

Update R1

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Coordination is slow

!   Drawback of previous approach:
!   Coordination among replicas needs to be executed at every

lock operation.

!   Atomic broadcast is an expensive primitive.

!   The system becomes too slow.

!   Solution:
!   Limit the coordination among replicas to a single phase, at

the beginning of the transaction or commit time.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

!   State machine replication

!   Single master (primary-backup)

!   Multiple master (certification)
!   Non-voting

!   Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

State-machine replication

!   All replicas execute the same set of transactions, in the same
order.

!   Transactions are shipped to all replicas using atomic
broadcast.

!   Replicas receive transactions in the same order.

!   Replicas execute transaction by that order.
!   Transactions need to be deterministic!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

State-machine replication

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1

R2

AB of T1’s
input params

T1 execs

T1 pre-
acquires
its locks T1 commits

AB of T2’s
input params

T2 is blocked due to T1 T2 execs T2 commits

T2 is blocked due to T1 T2 execs T2 commits

T1 execs

T1 pre-
acquires
its locks T1 commits

Single-phase schemes

!   State machine replication

!   Single master (primary-backup)

!   Multiple master (certification)
!   Non-voting

!   Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Primary-backup

!   Write transactions are executed entirely in a single replica
(the primary)

!   If the transaction aborts, no coordination is required.

!   If the transaction is ready to commit, coordination is
required to update all the other replicas (backups).
!   Reliable broadcast primitive.

!   Read transactions may be executed on backup replicas.
!   Works fine for workloads with very few update transactions.
!   Otherwise the primary becomes a bottleneck.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Primary-backup

!   Synchronous updates:
!   Updates are propagated during the commit phase:

!   Data is replicated immediately
!   Read transactions observe up to date data in backup replicas
!   Commit must wait for reliable broadcast to finish

!   Asynchronous updates:
!   The propagation of updates happens in the background:

!   Multiple updates may be batched
!   Commit is faster
!   There is a window where a single failure may cause data to be lost
!   Read transactions may read stale data

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

!   State machine replication

!   Single master (primary-backup)

!   Multiple master (certification)
!   Non-voting

!   Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Multi-master

!   A transaction is executed entirely in a single replica.

!   Different transactions may be executed on different replicas.

!   If the transaction aborts, no coordination is required.

!   If the transaction is ready to commit, coordination is
required:
!   To ensure serializability

!   To propagate the updates

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Multi-master

!   Two transactions may update concurrently the same data in
different replicas.

!   Coordination must detect this situation and abort at least
one of the transactions.

!   Two main alternatives:
!   Non-voting algorithm

!   Voting algorithm

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

!   State machine replication

!   Single master (primary-backup)

!   Multiple master (certification)
!   Non-voting

!   Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Non-voting

!   The transaction executes locally.

!   When the transaction is ready to commit, the read and
write set are sent to all replicas using atomic broadcast.

!   Transactions are certified in total order.

!   A transaction may commit if its read set is still valid (i.e., no
other transaction has updated the read set).

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Non-voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1

R2

R3

Execution
Transaction T1

Execution
Transaction T2

AB of T1’s
read & writeset

Validation&Commit T1

Validation&Commit T1

Validation&Abort
T2

Validation&Abort
T2

ABof T2’s
read & writeset

Single-phase schemes

!   State machine replication

!   Single master (primary-backup)

!   Multiple master (certification)
!   Non-voting

!   Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Voting

!   The transaction executes locally at replica R

!   When the transaction is ready to commit, only the write set is
sent to all replicas using atomic broadcast

!   Transactions’ commit requests are processed in total order

!   A transaction may commit if its read set is still valid (i.e., no other
transaction has updated the read set):
!   Only R can certify the transaction!

!   R send the outcome of the transaction to all replicas:
!   Reliable broadcast

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1

R2

Execution
Transaction T1

 T1’s AB
(write set)

T1’s

validation

 T1’s RB
(vote)

wait for
R1’s vote

commit

commit

Contents

!   Part I: (Non-Distributed) STMs

!   Part II: Distributed STMs

!   Part III: Case-studies

!   Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

!   Software Transactional Memory for Large Scale Clusters

!   Bocchino, Adve, and Chamberlain. 2008

!   Partitioned (word-based) address space

!   No persistency, no replication, no caching

!   Supports only single thread per node

!   Various lock acquisition schemes + 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

!   Various methods for dealing with partitioned space

!   Data movement (Dataflow model):
!   stm get(src proc, dest, work proc, src, size, open)

!   stm put(src proc, work proc, dest, src, size, open)

!   Remote execution (Control flow model):
!   stm on(src proc, work proc, function, arg buf, arg buf size,

result buf, result buf size)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM (a)

i n c r emen t (p r o c t proc , i n t ∗ addr) {
a tomic {
on (p roc) {
++∗ addr

}
}

}

(b)
i n c r emen t (p r o c t proc , i n t ∗ addr) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f (i n t ∗) , 0 , 0)
stm commit (MY ID)

}

i n c r em e n t l o c a l (p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e) {

i n t ∗addr = ∗ ((i n t ∗) a r g) ;
i n t tmp ;
s tm open r e a d (s r c p r o c , addr , s i z e o f (i n t))
s tm read (s r c p r o c , &tmp , addr , s i z e o f (i n t))
++tmp ;
s tm op e n w r i t e (s r c p r o c , addr , s i z e o f (i n t))
s tm wri te (s r c p r o c , addr , &tmp , s i z e o f (i n t))

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is

251

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

(a)

i n c r emen t (p r o c t proc , i n t ∗ addr) {
a tomic {
on (p roc) {
++∗ addr

}
}

}

(b)
i n c r emen t (p r o c t proc , i n t ∗ addr) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f (i n t ∗) , 0 , 0)
stm commit (MY ID)

}

i n c r em e n t l o c a l (p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e) {

i n t ∗addr = ∗ ((i n t ∗) a r g) ;
i n t tmp ;
s tm open r e a d (s r c p r o c , addr , s i z e o f (i n t))
s tm read (s r c p r o c , &tmp , addr , s i z e o f (i n t))
++tmp ;
s tm op e n w r i t e (s r c p r o c , addr , s i z e o f (i n t))
s tm wri te (s r c p r o c , addr , &tmp , s i z e o f (i n t))

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is

251

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM (a)

i n c r emen t (p r o c t proc , i n t ∗ addr) {
a tomic {
on (p roc) {
++∗ addr

}
}

}

(b)
i n c r emen t (p r o c t proc , i n t ∗ addr) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f (i n t ∗) , 0 , 0)
stm commit (MY ID)

}

i n c r em e n t l o c a l (p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e) {

i n t ∗addr = ∗ ((i n t ∗) a r g) ;
i n t tmp ;
s tm open r e a d (s r c p r o c , addr , s i z e o f (i n t))
s tm read (s r c p r o c , &tmp , addr , s i z e o f (i n t))
++tmp ;
s tm op e n w r i t e (s r c p r o c , addr , s i z e o f (i n t))
s tm wri te (s r c p r o c , addr , &tmp , s i z e o f (i n t))

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is

251

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

!   Read locks (RL) vs. read validation (RV)

!   RL:
!   immediately acquire a lock as a read (local or remote) is issued

!   abort upon contention (avoid deadlock)

!   as coordinator ends transaction, it can be committed w/o 2PC

!   Note: distributed model w/o caching:
!   each access to non local data implies remote access:

!   eager locking is for free

!   with caching only RV could be employable

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

!   Read locks (RL) vs. read validation (RV)

!   RV:
!   commit time validation (not opaque)

!   validity check requires 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

Cluster-STM

!   Write buffering schemes

!   UL undo log:
!   write is applied and an undo log is maintained

!   forced sync upon each write

!   WB write buffering:
!   writes applied in local buffer

!   avoid communications for writes during exec phase

!   requires additional communication at commit time

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

!   Write buffering: two lock acquisition schemes

!   LA: Late acquire
!   at commit time.

!   may allow for more concurrency

!   EA: Early acquire
!   as the write is issued

!   may avoid wasted work by doomed transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM: Graph Analysis (SSCA2)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

 0.1

 1

 10

 4 8 16 32 64 128 256 512

Ti
m

e
(s

ec
on

ds
, lo

g
sc

ale
)

Number of processors (log scale)

(a) Locks

RL−EA−UL
RV−EA−UL
RL−EA−WB
RL−LA−WB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16 32 64 128 256 512

Ra
tio

 to
 lo

ck
s (

low
er

is
be

tte
r)

Number of processors

(b) STM

Figure 5. (a) Runtimes for SSCA2 kernel 4 implemented with locks. (b) Ratios of STM runtime to lock runtime for each STM implementation.

of candidate vertices, the straightforward implementation is to send
out one message per vertex. However, this incurs unacceptable
communication cost. In our version, we sort the vertices by pro-
cessor, marshal the data for all vertices on one processor into a
buffer, and then send a single request to get the adjacency sets of
all the vertices via the on clause discussed in Section 3.4. There-
fore, the on clause was essential to getting good performance on
this benchmark.

5.2.2 Performance Results
We ran our SSCA2 kernel 4 implementations on a graph with 220

vertices and a maximum clique size of 8. Figure 5(a) shows a plot
of the runtimes for the lock implementation, for 1–512 processors.
The overall shape of the graph is similar to the graphs for the micro
benchmarks, except that the “bump” in execution time for small p
is less dramatic, because this application is well tuned, with a better
communication to computation ratio.
Figure 5(b) compares the STM versions, again expressed as

ratios to the lock runtimes, using a CDU size of 4 (n = 2).
Again, the RL-EA implementations perform better, for the reasons
discussed above in connection with the hashmap swap benchmark.
The STM overhead is lower than in the micro benchmarks for
p = 1, because much of the computation is private and incurs
no STM overhead. However, unlike for the micro benchmarks, the
STM overhead remains significant for large p. We believe that this
result occurs for two reasons. First, our SSCA2 is better tuned than
our micro benchmarks, and wastes fewer cycles waiting for remote
computation. Thus, less of the scalar STM overhead is hidden.
Second, the lock implementation is able to fold the remote write
and unlock operations into one message, whereas the STM version
requires separate write and commit operations.
We may be able to improve the scalar overhead with more ag-

gressive use of optimization techniques such as those discussed
in [16, 1]. Hardware support could also be used to reduce the per-
formance penalty of the local scalar operations. Because Cluster-
STM uses at most two more remote operations than the locking im-
plementation per transaction, the performance of a hardware sup-
ported Cluster-STM should approach that of locks. In any event,
these graphs show excellent STM scalability to 512 processors for
a realistic application with poor locality and demanding remote ac-
cess patterns.
We also ran this experiment using the RL-EA-UL STM imple-

mentation for CDU sizes of 1, 2, 8, 16, and 32, for p = 16, 64,

and 128. We observed that the runtime was extremely insensitive
to CDU size in these experiments. We believe this result occurs for
two reasons. First, in this application, any read-write or write-write
sharing of a single allocation between transactions causes a “gen-
uine” (semantically required) conflict. Second, because we allocate
transactional data on a CDU boundary, no two allocations can share
a CDU. Therefore, increasing the CDU size does not increase the
number of conflicts for this benchmark.

6. Conclusion and Future Work
We have presented Cluster-STM, the first STM we know of explic-
itly designed for high performance on large-scale distributed archi-
tectures. Cluster-STM incorporates several novel features, includ-
ing distribution of metadata and aggregation of computation, that
allow it to execute STM operations with minimal overhead, mea-
sured in terms of remote accesses. We validate our design experi-
mentally and show excellent scalability up to 512 processors. We
also characterize the existing space of cc-STM designs and show
that, on clusters, several design tradeoffs come out differently.
We have several plans for future work. In the algorithm itself,

we would like to improve the scalar overhead and exploit shared
memory within multiprocessor nodes to make intra-node commu-
nication faster. We would also like to test Cluster-STM with addi-
tional HPC workloads containing long and short transactions. Fi-
nally, we would like to add support for non-blocking remote oper-
ations inside a transaction, and for dynamic spawning of threads.
These issues complicate both the semantic definition of the STM
operations and the handling of distributed metadata in the STM
implementation. However, they are important for supporting more
general and dynamic parallel programming models.

Acknowledgments
The authors wish to thank Wayne Wong, Steve Deitz, and Mary
Beth Hribar for their assistance with this work. We also wish
to thank the National Center for Supercomputing Applications
(NCSA) at the University of Illinois for granting time and support
on the Tungsten cluster.

References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,

and T. Shpeisman. Compiler and runtime support for efficient software
transactional memory. In ACM Conf. on Prog. Lang. Design and

256

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM: Graph Analysis (SSCA2)

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

!   Sinfonia: A new paradigm for building scalable distributed
systems.

!   Aguilera, Merchant, Shah, Veitch, and Karamanolis, 2009.

!   Partitioned global (linear) address space

!   Optimized for static transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

!   Mini-transactions:
!   A-priori knowledge on the data to be accessed

!   Two types of nodes:
!   Application nodes
!   Memory nodes

!   Fault-tolerance via:
!   In-memory replication
!   Sync (log) + async checkpoint for persistency on memory

nodes

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

Sinfonia: a new paradigm for
building scalable distributed systems

Marcos K. Aguilera∗ Arif Merchant∗ Mehul Shah∗ Alistair Veitch∗ Christos Karamanolis†
∗HP Laboratories, Palo Alto, CA, USA †VMware, Palo Alto, CA, USA

ABSTRACT
We propose a new paradigm for building scalable distributed sys-
tems. Our approach does not require dealing with message-passing
protocols—a major complication in existing distributed systems.
Instead, developers just design and manipulate data structures
within our service called Sinfonia. Sinfonia keeps data for appli-
cations on a set of memory nodes, each exporting a linear address
space. At the core of Sinfonia is a novel minitransaction primitive
that enables efficient and consistent access to data, while hiding the
complexities that arise from concurrency and failures. Using Sinfo-
nia, we implemented two very different and complex applications
in a few months: a cluster file system and a group communication
service. Our implementations perform well and scale to hundreds
of machines.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications; E.1 [Data Structures]: Dis-
tributed data structures

General Terms
Algorithms, Design, Experimentation, Performance, Reliability

Keywords
Distributed systems, scalability, fault tolerance, shared memory,
transactions, two-phase commit

1. INTRODUCTION
Developers often build distributed systems using the message-

passing paradigm, in which processes share data by passing mes-
sages over the network. This paradigm is error-prone and hard to
use because it involves designing, implementing, and debugging
complex protocols for handling distributed state. Distributed state
refers to data that application hosts need to manipulate and share
with one another, such as metadata, tables, and configuration and
status information. Protocols for handling distributed state include
protocols for replication, file data and metadata management, cache
consistency, and group membership. These protocols are highly
non-trivial to develop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

application
node

application
node

application
node

application
node

minitransactions

Si
nf

on
ia user

library

memory
node

memory
node

memory
node

Figure 1: Sinfonia allows application nodes to share data in a fault
tolerant, scalable, and consistent manner.

We propose a new paradigm for building scalable distributed
systems. With our scheme, developers do not have to deal with
message-passing protocols. Instead, developers just design and ma-
nipulate data structures within our service, called Sinfonia. We
therefore transform the problem of protocol design into the much
easier problem of data structure design. Our approach targets par-
ticularly data center infrastructure applications, such as cluster file
systems, lock managers, and group communication services. These
applications must be fault-tolerant and scalable, and must provide
consistency and reasonable performance.
In a nutshell, Sinfonia is a service that allows hosts to share ap-

plication data in a fault-tolerant, scalable, and consistent manner.
Existing services that allow hosts to share data include database
systems and distributed shared memory (DSM). Database systems
lack the performance needed for infrastructure applications, where
efficiency is vital. This is because database systems provide more
functionality than needed, resulting in performance overheads. For
instance, attempts to build file systems using a database system [24]
resulted in an unusable system due to poor performance. Existing
DSM systems lack the scalability or fault tolerance required for
infrastructure applications. Section 8 discusses some of the DSM
systems closest to Sinfonia.
Sinfonia seeks to provide a balance between functionality and

scalability. The key to achieving scalability is to decouple opera-
tions executed by different hosts as much as possible, so that op-
erations can proceed independently. Towards this goal, Sinfonia
provides fine-grained address spaces on which to store data, with-
out imposing any structure, such as types, schemas, tuples, or ta-
bles, which all tend to increase coupling. Thus, application hosts
can handle data in Sinfonia relatively independently of each other.
To prevent Sinfonia from becoming a bottleneck, Sinfonia itself is
distributed over multiple memory nodes (Figure 1), whose number
determines the space and bandwidth capacity of Sinfonia.
At the core of Sinfonia is a lightweightminitransaction primitive

that applications use to atomically access and conditionally modify

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

write items

compare items

...

addr datalenmem-id

addr datalenmem-id

...
addr datalenmem-id

addr datalenmem-id

Min
itra

nsa
ctio

n

read items

...

addr lenmem-id

addr lenmem-id

class Minitransaction {
public:
void cmp(memid,addr,len,data); // add

void write(memid,addr,len,data); // add
int exec_and_commit(); // execute and commit

};

cmp item

write item
void read(memid,addr,len,buf); // add read item

...
t = new Minitransaction;
t->cmp(memid, addr, len, data);
t->write(memid, addr, len, newdata);
status = t->exec_and_commit();
...

API Example

!

!

check data indicated by
(equality comparison)
if all match then

retrieve data indicated by
modify data indicated by

compare items

read items
write items

Semantics of a minitransaction

Figure 2: Minitransactions have compare items, read items, and
write items. Compare items are locations to compare against given
values, while read items are locations to read and write items are
locations to update, if all comparisons match. All items are speci-
fied before the minitransaction starts executing. The example code
creates a minitransaction with one compare and one write item on
the same location—a compare-and-swap operation. Methods cmp,
read, and write populate a minitransaction without communication
with memory nodes until exec_and_commit is invoked.

and commit. Roughly speaking, a coordinator executes a transac-
tion by asking participants to perform one or more transaction ac-
tions, such as retrieving or modifying data items. At the end of
the transaction, the coordinator executes two-phase commit. In the
first phase, the coordinator asks all participants if they are ready to
commit. If they all vote yes, in the second phase the coordinator
tells them to commit; otherwise the coordinator tells them to abort.
In Sinfonia, coordinators are application nodes and participants are
memory nodes.
We observe that it is possible to optimize the execution of some

transactions, as follows. If the transaction’s last action does not
affect the coordinator’s decision to abort or commit then the coor-
dinator can piggyback this last action onto the first phase of two-
phase commit (e.g., this is the case if this action is a data update).
This optimization does not affect the transaction semantics and
saves a communication round-trip.
Even if the transaction’s last action affects the coordinator’s de-

cision to abort or commit, if the participant knows how the coor-
dinator makes this decision, then we can also piggyback the action
onto the commit protocol. For example, if the last action is a read
and the participant knows that the coordinator will abort if the read
returns zero (and will commit otherwise), then the coordinator can
piggyback this action onto two-phase commit and the participant
can read the item and adjust its vote to abort if the result is zero.
In fact, it might be possible to piggyback the entire transaction

execution onto the commit protocol. We designed minitransactions
so that this is always the case and found that it is still possible to
get fairly powerful transactions.
More precisely, a minitransaction (Figure 2) consists of a set of

compare items, a set of read items, and a set of write items. Each
item specifies a memory node and an address range within that
memory node; compare and write items also include data. Items
are chosen before the minitransaction starts executing. Upon exe-

cution, a minitransaction does the following: (1) compare the loca-
tions in the compare items, if any, against the data in the compare
items (equality comparison), (2) if all comparisons succeed, or if
there are no compare items, return the locations in the read items
and write to the locations in the write items, and (3) if some com-
parison fails, abort. Thus, the compare items control whether the
minitransaction commits or aborts, while the read and write items
determine what data the minitransaction returns and updates.
Minitransactions are a powerful primitive for handling dis-

tributed data. Examples of minitransactions include the following:

1. Swap. A read item returns the old value and a write item
replaces it.

2. Compare-and-swap. A compare item compares the current
value against a constant; if equal, a write item replaces it.

3. Atomic read of many data. Done with multiple read items.
4. Acquire a lease. A compare item checks if a location is set
to 0; if so, a write item sets it to the (non-zero) id of the
leaseholder and another write item sets the time of lease.

5. Acquire multiple leases atomically. Same as above, except
that there are multiple compare items and write items. Note
that each lease can be in a different memory node.

6. Change data if lease is held. A compare item checks that a
lease is held and, if so, write items update data.

A frequent minitransaction idiom is to use compare items to vali-
date data and, if data is valid, use write items to apply some changes
to the same or different data. These minitransactions are common
in SinfoniaFS: the file system caches inodes and metadata aggres-
sively at application nodes, and relevant cached entries are vali-
dated before modifying the file system. For example, writing to a
file requires validating a cached copy of the file’s inode and chain-
ing list (the list of blocks comprising the file) and, if they are valid,
modifying the appropriate file block. This is done with compare
items and write items in a minitransaction. Figure 7 shows a mini-
transaction used by SinfoniaFS to set a file’s attributes.
Another minitransaction idiom is to have only compare items to

validate data, without read or write items. Such a minitransaction
modifies no data, regardless of whether it commits or aborts. But
if it commits, the application node knows that all comparisons suc-
ceeded and so the validations were successful. SinfoniaFS uses
this type of minitransaction to validate cached data for read-only
file system operations, such as stat (NFS’s getattr).
In Section 4 we explain how minitransactions are executed and

committed efficiently. It is worth noting that minitransactions can
be extended to include more general read-modify-write items (not
just write items) and generic conditional items (not just compare
items) provided that each item can be executed at a single memory
node. For example, there could be an increment item that atomi-
cally increments a location; and a minitransaction could have mul-
tiple increment items, possibly at different memory nodes, to in-
crement all of them together. These extensions were not needed
for the applications in this paper, but they may be useful for other
applications.

3.4 Caching and consistency
Sinfonia does not cache data at application nodes, but provides

support for applications to do their own caching. Application-
controlled caching has three clear advantages: First, there is greater
flexibility on policies of what to cache and what to evict. Second, as
a result, cache utilization potentially improves, since applications
know their data better than what Sinfonia can infer. And third,
Sinfonia becomes a simpler service to use because data accessed
through Sinfonia is always current (not stale). Managing caches in

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia
write items

compare items

...

addr datalenmem-id

addr datalenmem-id

...

addr datalenmem-id

addr datalenmem-id
M

in
it

ra
n

s
a
c
ti

o
n

read items

...

addr lenmem-id

addr lenmem-id

class Minitransaction {
public:
void cmp(memid,addr,len,data); // add

void write(memid,addr,len,data); // add
int exec_and_commit(); // execute and commit

};

cmp item

write item
void read(memid,addr,len,buf); // add read item

...
t = new Minitransaction;
t->cmp(memid, addr, len, data);
t->write(memid, addr, len, newdata);
status = t->exec_and_commit();
...

API Example

!

!

check data indicated by
(equality comparison)
if all match then

retrieve data indicated by
modify data indicated by

compare items

read items
write items

Semantics of a minitransaction

Figure 2: Minitransactions have compare items, read items, and
write items. Compare items are locations to compare against given
values, while read items are locations to read and write items are
locations to update, if all comparisons match. All items are speci-
fied before the minitransaction starts executing. The example code
creates a minitransaction with one compare and one write item on
the same location—a compare-and-swap operation. Methods cmp,
read, and write populate a minitransaction without communication
with memory nodes until exec_and_commit is invoked.

and commit. Roughly speaking, a coordinator executes a transac-
tion by asking participants to perform one or more transaction ac-
tions, such as retrieving or modifying data items. At the end of
the transaction, the coordinator executes two-phase commit. In the
first phase, the coordinator asks all participants if they are ready to
commit. If they all vote yes, in the second phase the coordinator
tells them to commit; otherwise the coordinator tells them to abort.
In Sinfonia, coordinators are application nodes and participants are
memory nodes.
We observe that it is possible to optimize the execution of some

transactions, as follows. If the transaction’s last action does not
affect the coordinator’s decision to abort or commit then the coor-
dinator can piggyback this last action onto the first phase of two-
phase commit (e.g., this is the case if this action is a data update).
This optimization does not affect the transaction semantics and
saves a communication round-trip.
Even if the transaction’s last action affects the coordinator’s de-

cision to abort or commit, if the participant knows how the coor-
dinator makes this decision, then we can also piggyback the action
onto the commit protocol. For example, if the last action is a read
and the participant knows that the coordinator will abort if the read
returns zero (and will commit otherwise), then the coordinator can
piggyback this action onto two-phase commit and the participant
can read the item and adjust its vote to abort if the result is zero.
In fact, it might be possible to piggyback the entire transaction

execution onto the commit protocol. We designed minitransactions
so that this is always the case and found that it is still possible to
get fairly powerful transactions.
More precisely, a minitransaction (Figure 2) consists of a set of

compare items, a set of read items, and a set of write items. Each
item specifies a memory node and an address range within that
memory node; compare and write items also include data. Items
are chosen before the minitransaction starts executing. Upon exe-

cution, a minitransaction does the following: (1) compare the loca-
tions in the compare items, if any, against the data in the compare
items (equality comparison), (2) if all comparisons succeed, or if
there are no compare items, return the locations in the read items
and write to the locations in the write items, and (3) if some com-
parison fails, abort. Thus, the compare items control whether the
minitransaction commits or aborts, while the read and write items
determine what data the minitransaction returns and updates.
Minitransactions are a powerful primitive for handling dis-

tributed data. Examples of minitransactions include the following:

1. Swap. A read item returns the old value and a write item
replaces it.

2. Compare-and-swap. A compare item compares the current
value against a constant; if equal, a write item replaces it.

3. Atomic read of many data. Done with multiple read items.
4. Acquire a lease. A compare item checks if a location is set
to 0; if so, a write item sets it to the (non-zero) id of the
leaseholder and another write item sets the time of lease.

5. Acquire multiple leases atomically. Same as above, except
that there are multiple compare items and write items. Note
that each lease can be in a different memory node.

6. Change data if lease is held. A compare item checks that a
lease is held and, if so, write items update data.

A frequent minitransaction idiom is to use compare items to vali-
date data and, if data is valid, use write items to apply some changes
to the same or different data. These minitransactions are common
in SinfoniaFS: the file system caches inodes and metadata aggres-
sively at application nodes, and relevant cached entries are vali-
dated before modifying the file system. For example, writing to a
file requires validating a cached copy of the file’s inode and chain-
ing list (the list of blocks comprising the file) and, if they are valid,
modifying the appropriate file block. This is done with compare
items and write items in a minitransaction. Figure 7 shows a mini-
transaction used by SinfoniaFS to set a file’s attributes.
Another minitransaction idiom is to have only compare items to

validate data, without read or write items. Such a minitransaction
modifies no data, regardless of whether it commits or aborts. But
if it commits, the application node knows that all comparisons suc-
ceeded and so the validations were successful. SinfoniaFS uses
this type of minitransaction to validate cached data for read-only
file system operations, such as stat (NFS’s getattr).
In Section 4 we explain how minitransactions are executed and

committed efficiently. It is worth noting that minitransactions can
be extended to include more general read-modify-write items (not
just write items) and generic conditional items (not just compare
items) provided that each item can be executed at a single memory
node. For example, there could be an increment item that atomi-
cally increments a location; and a minitransaction could have mul-
tiple increment items, possibly at different memory nodes, to in-
crement all of them together. These extensions were not needed
for the applications in this paper, but they may be useful for other
applications.

3.4 Caching and consistency
Sinfonia does not cache data at application nodes, but provides

support for applications to do their own caching. Application-
controlled caching has three clear advantages: First, there is greater
flexibility on policies of what to cache and what to evict. Second, as
a result, cache utilization potentially improves, since applications
know their data better than what Sinfonia can infer. And third,
Sinfonia becomes a simpler service to use because data accessed
through Sinfonia is always current (not stale). Managing caches in

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

!   Global space is partitioned
!   Transaction may need to access different memory nodes

!   It can only commit if it can commit at all memory nodes

!   2-phase commit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

4.1 Basic architecture
Recall that Sinfonia comprises a set of memory nodes and a

user library at each application node. The user library communi-
cates with memory nodes through remote procedure calls, on top
of which we run the minitransaction protocol. Memory nodes run
a server process that keeps Sinfonia data and the minitransaction
redo-log; it also runs a replication protocol.

4.2 Minitransaction protocol overview
Our minitransaction protocol integrates execution of the mini-

transaction into the commit protocol for efficiency. The idea is to
piggyback the transaction into the first phase of two-phase com-
mit. This piggybacking is not possible for arbitrary transactions,
but minitransactions were defined so that it is possible for them.
Our two-phase commit protocol also reflects new system fail-

ure assumptions. In standard two-phase commit, if the coordina-
tor crashes, the system has to block until the coordinator recovers.
This is undesirable in Sinfonia: if the coordinator crashes, we may
need to recover without it because coordinators run on application
nodes, not Sinfonia memory nodes, and so they may be unstable,
subject to reboots, or their recovery could be unpredictable and un-
sure. The traditional way to avoid blocking on coordinator crashes
is to use three-phase commit [32], but we want to avoid the extra
phase.
We accomplish this by blocking on participant crashes instead of

coordinator crashes. This is reasonable for Sinfonia because partic-
ipants are memory nodes that keep application data, so if they go
down and the application needs to access data, the application has
to block anyway. Furthermore, Sinfonia can optionally replicate
participants (memory nodes), so that minitransactions are blocked
only if there is a crash of the “logical participant”, as represented
by all its replicas.
In our two-phase commit protocol, the coordinator has no log,

and we consider a transaction to be committed if all participants
have a yes vote in their log. Standard two-phase commit requires
a yes vote in the coordinator log. This modification, however,
complicates the protocols for recovery and log garbage collection,
which we cover in Sections 4.4–4.7.
To ensure serializability, participants lock the locations accessed

by a minitransaction during phase 1 of the commit protocol. Locks
are only held until phase 2 of the protocol, a short time. Lock gran-
ularity is a word, but we use range data structures to efficiently
keep track of locked ranges. To avoid deadlocks, we use a simple
scheme: a participant tries to acquire locks without blocking; if it
fails, it releases all locks and votes “abort due to busy lock”. This
vote causes the coordinator to abort the minitransaction and retry
after some random exponentially-increasing delay. This scheme is
not appropriate when there is high contention, but otherwise it is
efficient. Another deadlock-avoidance scheme is to acquire locks
in some predefined order, but with that scheme, the coordinator in
phase 1 has to contact participants in series (to ensure lock order-
ing), which could incur many extra network round-trips.

4.3 Minitransaction protocol details
Recall that a minitransaction has compare items, read items, and

write items (Figure 2). Compare items are locations to be tested for
equality against supplied data; if any test fails, the minitransaction
aborts. If the minitransaction commits, read items are locations to
be read and returned, while write items are locations to be written.
Application nodes execute and commit minitransactions using

the two-phase protocol in Figure 4. Phase 1 executes and prepares
the minitransaction, while phase 2 commits it. More precisely, in
phase 1, the coordinator (application node) generates a new transac-

Code for coordinator p:
To execute and commit minitransaction (cmpitems, rditems,writems)
1 tid ← new unique identifier for minitransaction

{ Phase 1 }
2 D ← set of memory nodes referred in cmpitems ∪ rditems ∪ writems
3 pfor each q ∈ D do { pfor is a parallel for }
4 send (EXEC&PREPARE , tid, D,

πq(cmpitems), πq(rditems), πq(writems)) to q
5 { πq denotes the projection to the items handled by q }
6 replies ← wait for replies from all nodes inD

7 { Phase 2 }
8 if ∀q∈D : replies[q].vote=OK then action ← true { commit }
9 else action ← false { abort }
10 pfor each q ∈ D do send (COMMIT , tid, action) to q
11 return action { does not wait for reply of COMMIT }

Code for each participant memory node q:
upon receive (EXEC&PREPARE , tid, D, cmpitems, rditems,writems) from p do
12 in-doubt ← in-doubt ∪ {(tid, cmpitems, rditems,writems)}
13 if try-read-lock(cmpitems ∪ rditems)=fail or try-write-lock(writems)=fail
14 then vote ← BAD-LOCK
15 else if tid ∈ forced-abort then vote ← BAD-FORCED
16 { forced-abort is used with recovery }
17 else if cmpitems do not match data then vote ← BAD-CMP
18 else vote ← OK
19 if vote=OK then
20 data ← read rditems
21 add (tid, D, writems) to redo-log and add tid to all-log-tids
22 else
23 data ← ∅
24 release locks acquired above
25 send-reply (tid, vote, data) to p

upon receive (COMMIT , tid, action) from p do { action: true=commit, false=abort }
26 (cmpitems, rditems,writems) ← find (tid, ∗, ∗, ∗) in in-doubt
27 if not found then return { recovery coordinator executed first }
28 in-doubt ← in-doubt − {(tid, cmpitems, rditems,writems)}
29 if tid ∈ all-log-tids then decided ← decided ∪ {(tid, action)}
30 if action then apply writems
31 release any locks still held for cmpitems ∪ rditems ∪ writems

participant 1

participant 2

participant 3

coordinator
A C

B

EX
EC

&P
RE

PA
RE

CO
M

M
ITvote

D
assemble minitransactionA

acquire locks, perform comparisons,
choose vote, if voting to commit then
read and log minitransaction,
otherwise release locks

read items

B

choose outcomeC

if committing apply
release locks held for minitransaction

write itemsthenD

Figure 4: Protocol for executing and committing minitransactions.

tion id (tid) and sends the minitransaction to the participants (mem-
ory nodes). Each participant then (a) tries to lock the addresses of
its items in the minitransaction (without blocking), (b) executes the
comparisons in the compare items and, if all comparisons succeed,
performs the reads in the read items and buffers the write items, and
(c) decides on a vote as follows: if all locations could be locked and
all compare items succeeded, the vote is for committing, otherwise
it is for aborting. In phase 2, the coordinator tells participants to
commit if and only if all votes are for committing. If committing,
a participant applies the write items, otherwise it discards them. In
either case, the participant releases all locks acquired by the mini-
transaction. The coordinator never logs any information, unlike in
standard two-phase commit. If the minitransaction aborts because
some locks were busy, the coordinator retries the minitransaction
after a while using a new tid. This retrying is not shown in the
code.
Participants log minitransactions in the redo-log in the first phase

(if logging is enabled); logging occurs only if the participant votes
to commit. Only write items are logged, not compare or read items,
to save space. The redo-log in Sinfonia also serves as a write-ahead
log to improve performance.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

!   No support for caching:
!   delegated to application level

!   same applies for load balancing

!   Replication:
!   aimed at fault-tolerance, not enhancing performance

!   fixed number of replicas per memory node

!   primary-backup scheme ran within first phase of 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   D2STM: Dependable Distributed STM

!   Couceiro, Romano, Rodrigues, Carvalho, 2009

!   Single-image system
!   Full replication

!   Strong consistency

!   Certification-based replication scheme
!   Based on Atomic Broadcast

!   Built on top of JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   Non-voting replication scheme

!   Transactions execute in a single replica

!   No communication during the execution

!   Writeset and readset AB at commit time

!   Deterministic certification executed in total order by all
replicas

!   No distributed deadlocks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1

R2

R3

Execution
Transaction T1

AB of T1’s
read & writeset

Validation&Commit T1

Validation&Commit T1

D2STM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

R1

R2

Execution
Validation &

Commit

Validation &
Commit

AB of both T1’s
readset & writeset Problem:

(very) big message size

D2STM

!   In STMs, transaction’s execution time is often 10-100 times
short than in DBs:
!   the cost of AB is correspondingly amplified

!   Bloom Filter Certification:
!   space-efficient encoding (via Bloom Filter) to reduce message

size

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

Application

Generic Group Commmunication Service

Network

D2STM API

JVSTM

Replication Manager

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   Bloom filters
!   A set of n items is encoded through a vector of m bits

!   Each item is associated with k bits through k hash functions
having as image {1..m}:
!   insert: set k bits to 1

!   query: check if all k bits set to 1

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   False Positives:
!   An item is wrongly identified as belonging to a given set

!   Depend on the number of bits used per item (m/n) and the
number of hash functions (k)

!   D2STM computes the size of the Bloom filter based on:
!   User-defined false positive rate

!   Number of items in the read set (known)

!   Number of BF queries, estimated via moving average over
recently committed transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   Read-only transactions:
!   local execution and commit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   Write transaction T:
!   Local validation (read set)

!   If the transaction is not locally aborted, the read set is
encoded in a Bloom filter

!   Atomic broadcast of a message containing:
!   the Bloom filter enconding of tx readset

!   the tx write set

!   the snapshotID of the tx

!   Upon message delivery: validate tx using Bloom filter’s
information

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

for each committed T’ s.t. T’.snapshotID > T.snapshotID
for each data item d in the writeset of T’

 if d is in Bloom filter associated with T’s readset

 abort T

// otherwise…

commit T

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D2STM

!   STMBench7: Results

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

STMBench7 - % Execution Time Reduction of Write Transactions

 1
 2

 3
 4

Threads

 2 3 4 5 6 7 8

Replicas

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

!   Asynchronous Lease Certification Replication of Software
Transactional Memory

!   Carvalho, Romano, Rodrigues, 2010

!   Exploit data access locality by letting replicas dynamically
establish ownership of memory regions:
!   replace AB with faster coordination primitives:

!   no need to establish serialization order among non-
conflicting transactions

!   shelter transactions from remote conflicts

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

!   Data ownership established by acquiring an Asynchronous
Lease
!   mutual exclusion abstraction, as in classic leases…

!   …but detached from the notion of time:

!   implementable in a partially synchronous system

!   Lease requests disseminated via AB to avoid distributed
deadlocks.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

!   Transactions are locally processed

!   At commit time check for leases:
!   An Asynchronous Lease may need to be established

!   Proceed with local validation

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

!   If local validation succeeds, its writeset is propagated using
Uniform Reliable Broadcast (URB):
!   No ordering guarantee, 30-60% faster than AB

!   If validation fails, upon re-execution the node holds the
lease:
!   Transaction cannot be aborted due to a remote conflict!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P1

P2

P3

Lease Ensured
(URB)

Apply
(URB)

Lease Request
(AB)

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P1

P2

P3

Lease Ensured
(URB)

Apply
(URB)

Lease Request
(AB)

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P1

P2

P3

Apply
(URB)

Lease Request
(AB)

Certification

Lease Ensured
(URB)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P1

P2

P3

Apply
(URB)

Lease Request
(AB)

Certification

Lease Ensured
(URB)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P1

P2

P3

Lease Request
(AB)

Certification

Lease Ensured
(URB)

Apply
(URB)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

!   If applications exhibit some access locality:
!   avoid, or reduce frequency of AB

!   locality improved via conflict-aware load balancing

!   Ensure transactions are aborted at most once due to remote
conflicts:
!   essential to ensure liveness of long running transactions

!   benefic at high contention rate even with small running
transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STM API Wrapper

JVSTM

Replication
Manager

Lease Manager

Group Communication Service

Application

ALC
!   Synthetic “Best case” scenario

!   Replicas accessing distinct memory regions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

 0

 500

 1000

 1500

 2000

 2500

 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(c

o
m

m
its

/s
e

c)

Replicas

ALC
CERT

Paolo Romano and Luis Rodrigues - Tutorial on Distributed Transactional Memories – EMDC - Sitges 7/2/2011

ALC

!   Synthetic “Worst case” scenario
!   All replicas accessing the same memory region

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(c

o
m

m
its

/s
e

c)

Replicas

ALC - throughput
CERT - throughput

0 %

20 %

40 %

60 %

80 %

100 %

 2 3 4 5 6 7 8
A

b
o

rt
 r

a
te

 (
%

)

Replicas

ALC - % abort
CERT - % abort

ALC

!   Lee Benchmark

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8

Sp
ee

d-
up

 (A
LC

 v
s

CE
RT

)

Replicas

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8

Ab
or

t r
at

e
(%

)

Replicas

ALC
CERT

Part III: Case-Studies

!   Partitioned Non-Replicated
!   STM for clusters (Cluster-STM)

!   Partitioned (Replicated)
!   Static Transactions (Sinfonia)

!   Replicated Non-Partitioned
!   Certification-based with Bloom Filters (D2STM)

!   Certification with Leases (ALC)

!   Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO

!   AGGRO: Boosting STM Replication via Aggressively
Optimistic Transaction Processing

!   R. Palmieri, Paolo Romano and F. Quaglia, 2010

!   Active Replication for STMs
!   Multiple replicas

!   All replicas execute update transactions

!   Read-only transactions can execute in any replica

!   Data survives failures of replicas

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Active Replication

Atomic Broadcast

Tx Exec C

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

With Optimistic Delivery

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Improvement

Atomic Broadcast

Tx Exec C

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

But…

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

Opt Atomic Broadcast

Tx Exec CWait for Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Speculative

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

Opt Atomic Broadcast

CSpec Exec

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO

!   Transactions are started in speculative order immediately
after the optimistic delivery

!   Writes kill all transactions that have read stale data

!   Items touched by speculative transactions Tspec are marked
as “work-in-progress (WIP)” while Tspec executes
!   When Tspec terminates (but not yet committed) items are

unmarked as WIP.

!   Transaction only read values from terminated transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon opt-Deliver(Ti)

 start transaction Ti in a speculative fashion

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm
upon write(Ti, X, v)

 if (X not already in Ti.WS)

 add X to Ti.WS

 mark X as WIP // C&S

 for each Tj that follows Ti in OAB order:

 if (Tj read X from Tk preceding Ti) abort Tj

 else

 update X in Ti.WS

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon read(Ti, X)

 if (X in Ti.WS) return X.value from Ti.WS

 if (X in Ti.RS) return X.value from Ti.RS

 wait while (X is marked WIP)

 let Tj be tx preceding Ti in OAB order that wrote X

 Ti.readFrom.add(Tj)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm
upon completed (Ti)

 atomically {

 for each X in Ti.WS: unmark X as WIP by Ti

 }

upon commit(Ti)

 atomically {

 for each X in Ti.WS: mark X as committed

 }

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm
upon abort(Ti)

 abort any transaction that read from Ti

 restart Ti

upon TO-Deliver(Ti)

 append Ti to TO-order

 wait until all xacts preceding Ti in TO-order committed

 if (validation of Ti’s readset fails) abort (Ti)

 else commit(Ti)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Performance

!   Performance speed-up
(20% reordering, only one SO explored)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5000 10000 15000 20000 25000 30000 35000

Re
sp

on
se

 Ti
me

 (µ
se

cs)

Transactions per Second (�)

List

Opt - �=1
Opt - �=4
Opt - �=8

Aggro - �=1
Aggro - �=4
Aggro - �=8

no speculation speculation

 speedup

Contents

!   Part I: (Non-Distributed) STMs

!   Part II: Distributed STMs

!   Part III: Case-studies

!   Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conclusions

!   Replication helps in read-dominated workloads or when
writes have low conflicts

!   Replication provides fault-tolerance

!   Some techniques have promising results

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conclusions

!   No technique outperforms the others for all workloads,
networks, number of machines, etc

!   Autonomic management of the distributed consistency and
replication protocols
!   Change the protocols in runtime, in face of changing

workloads

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

A bit of publicity

!   Time for the commercials

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CLOUD-TM

!   DTMs: a programming paradigm
for the Cloud ?

!   Stay tuned on www.cloudtm.eu

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Euro-TM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Euro-TM Cost Action

!   Research network bringing together leading European
experts in the area of TMs

!   Contact us if you are interested in joining it:
!   romano@inesc-id.pt

!   ler@inesc-id.pt

!   www.eurotm.org

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [AGHK06] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami
Tamir, `Transactional contention management as a non-clairvoyant
scheduling problem” PODC 2006.

!   [AKWKLJ08] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel
Luján, Chris Kirkham, and Ian Watson, Lee-TM: A Non-trivial
Benchmark for Transactional Memory, In Proceedings of the 8th
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2008), Aiya Napa, Cyprus, June 2008.

!   [AMSVK09] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair
Veitch, and Christos Karamanolis. 2009. Sinfonia: A new paradigm for
building scalable distributed systems. ACM Trans. Comput. Syst. 27, 3,
Article 5 (November 2009)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [BAC08] Robert L. Bocchino, Vikram S. Adve, and Bradford L.
Chamberlain. 2008. Software transactional memory for large scale
clusters. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming (PPoPP '08).
ACM, New York, NY, USA, 247-258

!   [CRRC09] M. Couceiro, Paolo Romano, L. Rodrigues and N.
Carvalho, D2STM: Dependable Distributed Software
Transactional Memory, Proc. IEEE 15th Pacific Rim International
Symposium on Dependable Computing (PRDC’09)

!   [CS06] João Cachopo and Antonio Rito-Silva. 2006. Versioned
boxes as the basis for memory transactions. Sci. Comput.
Program. 63, 2 (December 2006), 172-185.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [DSS06] D. Dice, O.Shalev, N. Shavit, Transactional Locking II,
In In Proc. of the 20th Intl. Symp. on Distributed Computing
(2006)

!   [FC10] Sérgio Fernandes and João Cachopo, A scalable and
efficient commit algorithm for the JVSTM, 5th ACM SIGPLAN
Workshop on Transactional Computing

!   [GK08] Rachid Guerraoui and Michal Kapalka. 2008. On the
correctness of transactional memory. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel
programming (PPoPP '08). ACM, New York, NY, USA, 175-184.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [GHP05] Rachid Guerraoui, Maurice Herlihy, Bastian Pochon:
Toward a theory of transactional contention managers. PODC
2005: 258-264

!   [GU09] Rachid Guerraoui, Tutorial on transactional memory,
CAV 2009

!   [HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer, III. 2003. Software transactional memory for
dynamic-sized data structures. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing
(PODC '03). ACM, New York, NY, USA, 92-101.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [JKV07] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007.
STMBench7: a benchmark for software transactional memory. SIGOPS
Oper. Syst. Rev. 41, 3 (March 2007), 315-324.

!   [MCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis,
Kunle Olukotun, STAMP: Stanford Transactional Applications for
Multi-Processing, In IISWC '08: Proceedings of The IEEE International
Symposium on Workload Characterization, Sept. 2008.

!   [MMA06] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza.
2006. Exploiting distributed version concurrency in a transactional
memory cluster. In Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming (PPoPP
'06). ACM, New York, NY, USA, 198-208.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography
!   [KAJLKW08] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel

Luján, Chris Kirkham and Ian Watson, DiSTM: A Software Transactional
Memory Framework for Clusters, In the 37th International Conference on
Parallel Processing (ICPP'08), September 2008

!   [PQR10] R. Palmieri, Paolo Romano and F. Quaglia, AGGRO: Boosting
STM Replication via Aggressively Optimistic Transaction Processing, Proc.
9th IEEE International Symposium on Network Computing and
Applications (NCA), Cambridge, Massachussets, USA, IEEE Computer
Society Press, July 2010

!   [RPQCR10] Paolo Romano, R. Palmieri, F. Quaglia, N. Carvalho and L.
Rodrigues, An Optimal Speculative Transactional Replication Protocol,
Proc. 8th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), Taiwan, Taipei, IEEE Computer
Society Press, September 2010

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

!   [RRCC10] Paolo Romano, L. Rodrigues, N. Carvalho and J.
Cachopo, Cloud-TM: Harnessing the Cloud with
Distributed Transactional Memories , ACM SIGOPS
Operating Systems Review, Volume 44 , Issue 2, April 2010

!   [SR11] Saad and Ravindran, Distributed Transactional
Locking II, Technical Report, Virgina Tech, 2011.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

The End

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Thank you.

