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Basic Concepts 

!   Concurrent programming has always been a challenge 

!   One needs to control the concurrent access to shared data 
by multiple threads 

!   This is hard for most programmers. 

!   Concurrent programming has been a “niche”  
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Basic Concepts 

!   In the past: 
!   More performance via faster CPUs 

!   Now: 
!   More performance via more CPUs 

!   Concurrent programming has to become mainstream 
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Basic Concepts 

!   Ideally 
!   Performance would scale linearly with the number of cores 

!   (with 8 cores we would have a program 8 times faster) 

!   Reality: 
!   Speed up limited by % serial code 

!   Small % can kill performance (Amdahl’s Law) 

!   Say 25% of the program is serial 

!   8 cores = 2.9 speedup. 
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!   Ideally 
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!   Reality: 
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Basic Concepts 

!   Ideally 
!   Performance would scale linearly with the number of cores 

!   (with 8 cores we would have a program 8 times faster) 

!   Reality: 
!   Small % of serial code can kill performance (Amdahl’s Law) 

!   Say 25% of the program is serial 

!   128 cores = 3.9 speedup. 
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Basic Concepts 

!   It is hard or impossible to structure a program in a set of 
parallel independent tasks. 

!   We need efficient and simple mechanisms to manage 
concurrency. 
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Explicit synchronization 

!   One of the most fundamental and simple synchronization 
primitive is the lock 

non-synchronized code; 

lock (); 

do stuff on shared data;  

unlock (); 

more non-synchronized code; 
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Many problems with locks 

!   Deadlock:  
!   locks acquired in “wrong” order. 

!   Races:  
!   due to forgotten locks 

!   Error recovery tricky:  
!   need to restore invariants and release locks in exception 

handlers 
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Fine Grained Parallelism? 

!   Very complex: 
!   Need to reason about deadlocks, livelocks, priority inversions. 

!   Verification nightmare as bugs may be hard to reproduce. 

!   Make parallel programming accessible to the masses!!! 
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Concurrent Programming 
Without Locks 

!   Lock-free algorithms. 

!   Hard to design and prove correct. 

!   Only for very specialized applications. 

!   Designed and implemented by top experts. 
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Abstractions for simplifying 
concurrent programming… 
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Atomic transactions 

 

atomic { 

 access object 1; 

 access object 2; 

} 
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Transactional Memories 

!   Hide away synchronization issues from the programmer. 

!   Advantages: 
!   avoid deadlocks, priority inversions, convoying; 

!   simpler to reason about, verify, compose. 
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TMs: where we are, challenges, trends 

!   Theoretical Aspects 
!   Formalization of adequate consistency guarantees, performance 

bounds. 

!   Hardware support 
!   Very promising simulation-based results, but no support in commercial 

processors. 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



TMs: where we are, challenges, trends 

!   Software-based implementations (STM) 
!   Performance/scalability improving, but overhead still not satisfactory. 

!   Language integration 
!   Advanced supports (parallel nesting, conditional synchronization) are 

appearing... 

!   ...but lack of standard APIs & tools hampers industrial penetration. 
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TMs: where we are, challenges, trends 

!   Operating system support 
!   Still in its infancy, but badly needed (conflict aware scheduling, 

transactional I/O). 

!   Recent trends: 
!   Shift towards distributed environments to enhance scalability & 

dependability. 
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Run-time 

!   How does it work? 
!   The run time implements concurrency control in an 

automated manner. 

!   Two main approaches: 
!   Pessimistic concurrency control (locking). 

!   Optimistic concurrency control. 
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Example of pessimistic 
concurrency control 

!   Each item has a read/write lock. 

!   When an object is read, get the read lock. 
!   Block if write lock is taken. 

!   When an object is written, get the write lock. 
!   Block if read or write lock is taken. 

!   Upon commit/abort: 
!   Release all locks. 
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Example of optimistic 
concurrency control 

!   Each item has a version number. 

!   Read items and store read version. 

!   Write local copy of items. 

!   Upon commit do atomically: 
!   If all read items still have the read version (no other concurrent 

transaction updated the items)  
!   then apply all writes (increasing the version number of written 

items). 

!   Else,  
!   abort. 
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Many, many, variants exist 

!   For instance, assume that two phase locking is used and a 
deadlock is detected. It is possible: 
!   Abort both transactions. 

!   Abort the oldest transaction. 

!   Abort the newest transaction. 

!   Abort the transaction that did less work. 
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!   For instance, assume that two phase locking is used and a 
deadlock is detected. It is possible: 
!   Abort both transactions 
!   Abort the oldest transaction 
!   Abort the newest transaction 
!   Abort the transaction that did less work 

 

Each alternative offers different performance with different 
workloads. 
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How to choose? 

!   What is a correct behavior? 

!   Which safety properties should be preserved? 

!   Which liveness properties should be preserved? 
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How to choose? 

!   What is a correct behavior? 

!   Which safety properties should be preserved? 

!   Which liveness properties should be preserved? 

To answer these questions we need a bit of theory. 
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Theoretical Foundations 

!   Safety: 
!   What schedules are acceptable by an STM? 

!   Is classic atomicity property appropriate? 

!   Liveness: 
!   What progress guarantees can we expect from an STM? 

 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Theoretical Foundations 

!   Safety: 
!   What schedules are acceptable by an STM? 

!   Is classic atomicity property appropriate? 

!   Liveness: 
!   What progress guarantees can we expect from an STM? 
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Classic atomicity property 

!   A transaction is a sequence of read/write operations on 
variables: 
!   sequence unknown a priori (otherwise called static 

transactions). 

!   asynchronous (we do not know a priori how long it takes to 
execute each operation). 

!   Every operation is expected to complete. 

!   Every transaction is expected to abort or commit. 
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Histories 

!   The execution of a set of transactions on a set of objects is 
modeled by a history 

!   A history is a total order of operation, commit and abort 
events 

OP OP C C OP OP 
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Histories 

!   Two transactions are sequential (in a history) if one invokes 
its first operation after the other one commits or aborts; 
they are concurrent otherwise. 
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Histories 

!   Two transactions are sequential (in a history) if one invokes 
its first operation after the other one commits or aborts; 
they are concurrent otherwise. 

!   Non-sequential: 

OP OP C C OP OP 
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Histories 

!   Two transactions are sequential (in a history) if one invokes 
its first operation after the other one commits or aborts; 
they are concurrent otherwise. 

!   Sequential: 

OP OP C C OP OP 
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Histories 

!   A history is sequential if it has only sequential transactions; 
it is concurrent otherwise 
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Histories 

!   A history is sequential if it has only sequential transactions; 
it is concurrent otherwise. 

!   Sequential: 

 

 

OP OP C OP C C OP 
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Histories 

!   A history is sequential if it has only sequential transactions; 
it is concurrent otherwise. 

!   Non-sequential: 

 

 

OP OP C OP C C OP 
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Histories 
!   Two histories are equivalent if they have the same transactions. 
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Histories 

!   Two histories are equivalent if they have the same 
transactions 

!   Equivalent: 

OP OP C OP C C OP 

OP OP C OP C C OP 
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Histories 

!   Two histories are equivalent if they have the same 
transactions 

!   Non-equivalent: 

OP OP C OP C C OP 

OP OP C OP C C OP 
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What the programmer wants? 

!   Programmer does not want to be concerned about 
concurrency issues. 

!   Execute transactions “as if” they were serial 

!   No need to be “serially executed” as long as results are the 
same 
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Serializability’s definition 
(Papa79 - View Serializability) 

!   A history H of committed transactions is serializable if there is a 
history S(H) that is: 
!   equivalent to H  

!   sequential 

!   every read returns the last value written 
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Serializability 

!   Serializable? 
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Serializability 

!   Serializable! 
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Serializability 

!   Serializable? 
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Serializability 

!   Non-serializable! 
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Opacity 

!   Serializable (blue aborts)? 
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Opacity 

!   Serializable: only committed transactions matter! 
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Opacity 

!   In a database environment, transactions run SQL:  
!   no harm if inconsistent values are read as long as the 

transaction aborts. 

!   This is not the same in a general programming language: 
!   observing inconsistent values may crash or  

hang an otherwise correct program! 
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Opacity: example 

Initially: x:=1; y:=2 

 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (y-x); 

 

If T1 and T2 are atomic, the program is correct. 
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Opacity: example 

Initially: x:=1; y:=2 

 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (y-x); 

 

Otherwise... 
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Opacity: example 

Initially: x:=1; y:=2 

 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (y-x); 
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Opacity: example 

Initially: x:=1; y:=2 

 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (2-x); 

 

Otherwise... 
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Opacity: example 

Initially: x:=1; y:=2 

 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (2-x); 

 

Otherwise... 
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Opacity: example 

Initially: x:=1; y:=2 

After T1: x:=2; y:=3 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (2-x); 

 

Otherwise... 
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Opacity: example 

Initially: x:=1; y:=2 

After T1: x:=2; y:=3 

 - T1: x := x+1; y := y+1 

 - T2: z:= 1 / (2-2); 

 

Otherwise...divide by zero! 
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Opacity  
[GK08] 

!   Intuitive definition: 
!   every operation sees a consistent state  

(even if the transaction ends up aborting) 
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Opacity  
[GK08] 

!   Intuitive definition: 
!   every operation sees a consistent state  

(even if the transaction ends up aborting) 

!   Following history is serializable but violates opacity! 
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Does classic optimistic concurrency 
control guarantee opacity? 

!   Writes are buffered to private workspace and applied atomically at 
commit time  

!   Reads are optimistic and the transaction is validated at commit time. 

!   Opacity is not guaranteed! 
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Theoretical Foundations 

!   Safety: 
!   What schedules are acceptable by an STM? 

!   Is classic atomicity property appropriate? 

!   Liveness: 
!   What progress guarantees can we expect from an STM? 
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Progress 

!   STMs can abort transactions or block operations… 

!   But we want to avoid implementations that abort all 
transactions! 

!   We want operations to return and transactions to commit! 
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Requirements 

!   Correct transactions: 
!   commit is invoked after a finite number of operations 

!   either commit or perform an infinite number of (low-level) 
steps  

!   Well-formed histories: 
!   every transaction that aborts is immediately repeated until it 

commits 
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Conditional progress:  
obstruction freedom 

!   A correct transaction that eventually does not encounter 
contention eventually commits 

 

!   …but what to do upon contention? 
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Contention-managers 

!   Abort is unavoidable 

!   But want to maximize the number of commits 

!   Obstruction freedom property: progress and correctness are 
addressed by different modules. 

Contention-managers encapsulate policies for dealing with contention 
scenarios. 
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Contention-managers 
Let TA be executing and TB a new transaction that arrives and creates a 
conflict with TA. 
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CM: Aggressive 
Let TA be executing and TB a new transaction that arrives and creates a 
conflict with TA. 

!   Aggressive contention manager:  
!   always aborts TA 
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CM: Backoff 
Let TA be executing and TB a new transaction that arrives and creates a 
conflict with TA. 

! Backoff contention manager:  
!   TB waits an exponential backoff time 

!   If conflict persists, abort TA 
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CM: Karma 
Let TA be executing and TB a new transaction that arrives and creates a 
conflict with TA. 

!   Karma contention manager:  
!   Assign priority to TA and TB 

!   Priority proportional to work already performed 

!   Let Ba be how many times TB has been aborted 

!   Abort TA if Ba > (TA-TB) 
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CM: Greedy 
Let TA be executing and TB a new transaction that arrives and creates a 
conflict with TA. 

!   Greedy contention manager:  
!   Assign priority to TA and TB based on start time 

!   If TB<TA and TA not blocked then wait 

!   Otherwise abort TA 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



(Non-Distributed) STMs 

!   Basic Concepts 

!   Example Algorithms 
!   DSTM 

!   JVSTM 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



(Non-Distributed) STMs 

!   Basic Concepts 

!   Example Algorithms 
!   DSTM 

!   JVSTM 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



DSTM 

!   Software transactional memory for dynamic-sized data 
structures.  

! Herlihy, Luchangco, Moir, and Scherer, 2003.  

!   Prior designs: static transactions. 

!   DSTM: dynamic creation of transactional objects. 
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DSTM 

!   Killer write: 
!   Ownership. 

!   Careful read: 
!   Validation. 
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DSTM - Writes 

!   To write o, T requires a write-lock on o. 

!   T aborts T’ if some T’ acquired a write-lock on o: 
!   Locks implemented via Compare & Swap. 

!   Contention manager can be used to reduce aborts. 
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DSTM – Reads and Validation 

!   Concurrent reads do not conflict. 

!   To read o, T checks if all objects read remain valid;  
!    else abort T. 

!   Before committing, T checks if all objects read remain valid 
and releases all its locks. 
!   Make sure that the transaction observes a consistent state. 

!   If the validation fails, transaction is restarted. 
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DSTM - Why is careful read needed? 

!   No lock is acquired upon a read: 
!   invisible reads 

!   visible read invalidate cache lines 

!   bad performance with read-dominate workloads due to high 
bus contention 

!   What if we validated only at commit time? 

Serializability?     Opacity? 
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!   No lock is acquired upon a read: 
!   invisible reads 

!   visible read invalidate cache lines 

!   bad performance with read-dominate workloads due to high 
bus contention 

!   What if we validated only at commit time? 

Serializability?     Opacity? 
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(Non-Distributed) STMs 

!   Basic Concepts 

!   Example Algorithms 
!   DSTM 

!   JVSTM 
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JVSTM 

!   Java Versioned Software Transactional Memory. 

!   Cachopo and Rito-Silva. 2006.  

!   Versioned boxes as the basis for memory transactions. 
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JVSTM 

!   Optimized for read-only transactions: 

!   Never aborted or blocked; 

!   No overhead associated with readset tracking. 

!   How? 

!   Multi-version concurrency control. 

!   Local writes (no locking, optimistic approach) 

!   Commit phase in global mutual exclusion. 

!   Recently introduced a parallel commit version [FC09]. 

!   Global version number (GVN) 
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JVSTM - Versioned boxes 

!   Versioned boxes 
!   Each transactional location uses a versioned box to hold the 

history of values for that location. 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 

B 
body: 

previous: 

value: 2 

version: 87 

previous: 

value: 1 

version: 23 

previous: null 

value: 0 

version: 5 



JVSTM - Algorithm 

!   Upon begin T, read GVN and assigned it to T snapshot ID 
(sID). 

!   Upon read on object o: 
!   If o is in T’s writeset, return last value written, 

!   else return the version of the data item whose sID is “the 
largest sID to be smaller than the T’ sID”. 

!   If T is not read-only, add o to readset. 
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JVSTM - Algorithm 

!   Upon write, just add to the writeset. 
!   No early conflict detection. 

!   Upon commit: 
!   Validate readset: 

!   Abort if any object read has changed. 

!   Acquire new sID (atomic increase of GVN). 

!   Apply writeset: add new version in each written VBox . 
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JVSTM - Execution 
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Distributed STMs 

!   Origins 

!   Goals 

!   Distribution Strategies 

!   Programming Models 

!   Toolbox 
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Origins 

!   Convergence of two main areas: 
!   Distributed Shared Memory 

!   Database Replication 
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Distributed Shared Memory 

!   DSM aims at providing a single system image 
!   Fault-tolerance via checkpointing 

!   Strong consistency performs poorly 
!   Myriad of weak-consistency models 

!   Programming more complex 

!   Explicit synchronization 
!   Locks, barriers, etc 
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DSTMs vs DSM 

!   DSTMs are simpler to program 

!   Transactions introduce boundaries where synchronization is 
required 

!   By avoiding to keep memory consistency at every (page) 
access or at the level of fine-grain locks, it may be possible to 
achieve more efficient implementations 
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Database Replication 

!   Databases use transactions 
!   Constrained programming model 

!   Durability is typically a must 

!   Database replication was considered too slow 

!   In the last 10 years new database replication schemes have 
emerged 
!   Based on atomic broadcast and on a single coordination 

phase at the beginning/ end of the transaction. 
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DSTMs vs DBMS 

!   Transactions are often much shorter in the STM world 
!   This makes coordination comparatively more costly 

!   Durability is often not an issue 
!   This makes coordination comparatively more costly 

!   Database replication techniques can be used as a source of 
inspiration to build fault-tolerant DSTMs 
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Distributed STMs 

!   Origins 

!   Goals 

!   Distribution Strategies 

!   Programming Models 

!   Toolbox 
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Goals 

!   Better performance: 
!   Doing reads in parallel on different nodes. 

!   Computing writes in parallel on different items. 

!   Fault-tolerance: 
!   Replication the memory state so that it survives the failure of 

a subset of nodes. 
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Distributed STMs 

!   Origins 

!   Goals 

!   Distribution Strategies 

!   Potential Problems 

!   Toolbox 
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Distribution Strategies 

!   Single System Image 
!   Distribution is hidden 

!   Easier when full replication is implemented 

!   No control of the data locality 

!   Partitioned Global Address Space 
!   Different nodes have different data 

!   Distribution is visible to the programmer 

!   Programmer has fine control of data locality 

!   Complex programming model 
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Distribution Strategies 

!   Partitioned non-replicated 
!   Max capacity 

!   No fault-tolerance 

!   No load balancing for reads on multiple nodes 

!   Full replication 
!   No extra capacity 

!   Max fault-tolerance 

!   Max potential load balancing for reads 
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Distributed STMs 

!   Origins 

!   Goals 

!   Distribution Strategies 

!   Programming Models 

!   Toolbox 
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Dataflow Model 

!   Transactions are immobile and objects move through the 
network. 

!   Write: processor locates the object and acquires ownership. 

!   Read: processor locates the object and acquires a read-only 
copy. 

!   Avoids distributed coordination. 

!   Locating objects can be very expensive. 
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Control Flow Model 

!   Data is statically assigned to a home node and does not 
change over time. 

!   Manipulating objects: 

!   In the node (via RPC); 

!   First data is copied from the node then the are changes written back. 

!   Relies on fast data location mechanism. 

!   Static data placement may lead to poor data locality. 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Distributed STMs 

!   Origins 

!   Goals 

!   Distribution Strategies 

!   Programming Models 

!   Toolbox 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Toolbox 

!   Atomic Commitment 

!   Uniform Reliable Broadcast (URB) 

!   Atomic Broadcast (AB) 

!   Replication Strategies 
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Atomic Commitment 

!   Atomicity: all nodes either commit or abort the entire 
transaction. 

!   Set of nodes, each node has input:  
! CanCommit 
! MustAbort 

!   All nodes output same value 
!   Commit 
!   Abort 

!   Commit is only output if all nodes CanCommit 
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2-phase commit 
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2PC is blocking 
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coordinator participant participant 
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acquire locks 

? ? 



3PC 
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coordinator participant participant 

prepare msg 

validate/ 
acquire locks vote msg (Yes) 

Pre-decision msg  
(Pre-Commit) 

validate/ 
acquire locks 

log pre-commit 

apply 
decision 

log pre-commit 
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Toolbox 

!   Atomic Commitment 

!   Uniform Reliable Broadcast (URB) 

!   Atomic Broadcast (AB) 

!   Replication Strategies 
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Uniform Reliable Broadcast 

!   Allows to broadcast a message m to all replicas 

!   If a node delivers m, every correct node will deliver m 

!   Useful to propagate updates 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Toolbox 

!   Atomic Commitment 

!   Uniform Reliable Broadcast (URB) 

!   Atomic Broadcast (AB) 

!   Replication Strategies 
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Atomic Broadcast 

!   Reliable broadcast with total order 

!   If replica R1 receives m1 before m2, any other correct 
replica Ri also receives m1 before m2 

!   Can be used to allow different nodes to obtain locks in the 
same order. 
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Sequencer-based ABcast 
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R1: sequencer 

R2 

R3 

Assigns SN 

Sends message 

Commit order 

Commit order 

Commit order 

final uniform order 

Receive  
Msg + order 

Receive  
Msg + order 



Abcast with optimistic delivery 

!   Total order with optimistic delivery. 

!   Unless the sequencer node crashes, final uniform total order 
is the same as regular total order. 

!   Application may start certificating the transaction locally 
based on optimistic total order delivery. 
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ABcast with optimistic delivery 
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ABcast with optimistic delivery 
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Toolbox 

!   Atomic Commitment 

!   Uniform Reliable Broadcast (URB) 

!   Atomic Broadcast (AB) 

!   Replication Strategies 
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Replicating a single lock 

!   In absence of replication, there’s no chance to fall into 
deadlocks with a single lock… what if we add replication? 
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Replicating a single lock 
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T1 

T2 

lock() 

lock () 

Update R1 

T2 lock() Update R2 

T1 lock () 

Waiting for R2 

Waiting for R1 
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Replicating a single lock 
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T1 

T2 

lock() 

lock () 

Update R1 
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lock() Update R2 T1 

lock () 

unlock() 

unlock() 

Update R1 

Update R1 
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Coordination is slow 

!   Drawback of previous approach: 
!   Coordination among replicas needs to be executed at every 

lock operation. 

!   Atomic broadcast is an expensive primitive. 

!   The system becomes too slow. 

!   Solution:   
!   Limit the coordination among replicas to a single phase, at 

the beginning of the transaction or commit time. 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Single-phase schemes 

!   State machine replication 

!   Single master (primary-backup) 

!   Multiple master (certification) 
!   Non-voting 

!   Voting 
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State-machine replication 

!   All replicas execute the same set of transactions, in the same 
order. 

!   Transactions are shipped to all replicas using atomic 
broadcast. 

!   Replicas receive transactions in the same order. 

!   Replicas execute transaction by that order. 
!   Transactions need to be deterministic! 
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State-machine replication 
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Single-phase schemes 

!   State machine replication 

!   Single master (primary-backup) 

!   Multiple master (certification) 
!   Non-voting 

!   Voting 
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Primary-backup 

!   Write transactions are executed entirely in a single replica 
(the primary) 

!   If the transaction aborts, no coordination is required. 

!   If the transaction is ready to commit, coordination is 
required to update all the other replicas (backups). 
!   Reliable broadcast primitive. 

!   Read transactions may be executed on backup replicas. 
!   Works fine for workloads with very few update transactions. 
!   Otherwise the primary becomes a bottleneck. 
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Primary-backup 

!   Synchronous updates: 
!   Updates are propagated during the commit phase: 

!   Data is replicated immediately 
!   Read transactions observe up to date data in backup replicas 
!   Commit must wait for reliable broadcast to finish 

!   Asynchronous updates: 
!   The propagation of updates happens in the background: 

!   Multiple updates may be batched 
!   Commit is faster 
!   There is a window where a single failure may cause data to be lost 
!   Read transactions may read stale data 
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Single-phase schemes 

!   State machine replication 

!   Single master (primary-backup) 

!   Multiple master (certification) 
!   Non-voting 

!   Voting 
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Multi-master 

!   A transaction is executed entirely in a single replica.  

!   Different transactions may be executed on different replicas. 

!   If the transaction aborts, no coordination is required. 

!   If the transaction is ready to commit, coordination is 
required: 
!   To ensure serializability 

!   To propagate the updates 
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Multi-master 

!   Two transactions may update concurrently the same data in 
different replicas. 

!   Coordination must detect this situation and abort at least 
one of the transactions. 

!   Two main alternatives: 
!   Non-voting algorithm 

!   Voting algorithm 
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Single-phase schemes 

!   State machine replication 

!   Single master (primary-backup) 

!   Multiple master (certification) 
!   Non-voting 

!   Voting 
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Non-voting 

!   The transaction executes locally. 

!   When the transaction is ready to commit, the read and 
write set are sent to all replicas using atomic broadcast. 

!   Transactions are certified in total order. 

!   A transaction may commit if its read set is still valid (i.e., no 
other transaction has updated the read set). 
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Non-voting 
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Single-phase schemes 

!   State machine replication 

!   Single master (primary-backup) 

!   Multiple master (certification) 
!   Non-voting 

!   Voting 
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Voting 

!   The transaction executes locally at replica R 

!   When the transaction is ready to commit, only the write set is 
sent to all replicas using atomic broadcast 

!   Transactions’ commit requests are processed in total order 

!   A transaction may commit if its read set is still valid (i.e., no other 
transaction has updated the read set): 
!   Only R can certify the transaction! 

!   R send the outcome of the transaction to all replicas: 
!   Reliable broadcast 
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Voting 
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia) 

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia)  

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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Cluster-STM 

!   Software Transactional Memory for Large Scale Clusters 

!   Bocchino,  Adve, and Chamberlain. 2008 

!   Partitioned (word-based) address space 

!   No persistency, no replication, no caching 

!   Supports only single thread per node 

!   Various lock acquisition schemes + 2PC 
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Cluster-STM 

!   Various methods for dealing with partitioned space 

!   Data movement (Dataflow model): 
!   stm get(src proc, dest, work proc, src, size, open) 

!   stm put(src proc, work proc, dest, src, size, open) 

!   Remote execution (Control flow model): 
!   stm on(src proc, work proc, function, arg buf, arg buf size, 

result buf, result buf size) 
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Cluster-STM (a)

i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
a tomic {
on ( p roc ) {
++∗ addr

}
}

}

(b)
i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f ( i n t ∗ ) , 0 , 0 )
stm commit (MY ID)

}

i n c r em e n t l o c a l ( p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e ) {

i n t ∗addr = ∗ ( ( i n t ∗) a r g ) ;
i n t tmp ;
s tm open r e a d ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm read ( s r c p r o c , &tmp , addr , s i z e o f ( i n t ) )
++tmp ;
s tm op e n w r i t e ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm wri te ( s r c p r o c , addr , &tmp , s i z e o f ( i n t ) )

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is
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Cluster-STM 

(a)

i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
a tomic {
on ( p roc ) {
++∗ addr

}
}

}

(b)
i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f ( i n t ∗ ) , 0 , 0 )
stm commit (MY ID)

}

i n c r em e n t l o c a l ( p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e ) {

i n t ∗addr = ∗ ( ( i n t ∗) a r g ) ;
i n t tmp ;
s tm open r e a d ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm read ( s r c p r o c , &tmp , addr , s i z e o f ( i n t ) )
++tmp ;
s tm op e n w r i t e ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm wri te ( s r c p r o c , addr , &tmp , s i z e o f ( i n t ) )

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is
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Cluster-STM (a)

i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
a tomic {
on ( p roc ) {
++∗ addr

}
}

}

(b)
i n c r emen t ( p r o c t proc , i n t ∗ addr ) {
s tm s t a r t (MY ID)
stm on (MY ID , proc , i n c r eme n t l o c a l ,

addr , s i z e o f ( i n t ∗ ) , 0 , 0 )
stm commit (MY ID)

}

i n c r em e n t l o c a l ( p r o c t s r c p r o c ,
vo id∗ arg ,
s i z e t a r g s i z e ,
vo id ∗ r e s u l t ,
s i z e t r e s u l t s i z e ) {

i n t ∗addr = ∗ ( ( i n t ∗) a r g ) ;
i n t tmp ;
s tm open r e a d ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm read ( s r c p r o c , &tmp , addr , s i z e o f ( i n t ) )
++tmp ;
s tm op e n w r i t e ( s r c p r o c , addr , s i z e o f ( i n t ) )
s tm wri te ( s r c p r o c , addr , &tmp , s i z e o f ( i n t ) )

}

Figure 2. The remote increment example of Figure 1 in Chapel-like pseudocode, implemented using the atomic and on constructs (a) and translated to our
STM interface (b). STM API functions are marked in bold.

ity. The put and get operations may be on any number of contiguous
bytes (up to some implementation-defined maximum) and may be
local or remote. Operations known to be local should be done with
stm read or stm write for performance. The function stm put
moves data from local memory on the processor invoking the func-
tion to transactional memory on the destination processor, and the
function stm get does the reverse. In each case, the remote data
may be optionally opened first, to avoid the overhead of a separate
remote open.
Remote work. We provide an stm on construct for performing

a user-defined function on the specified processor. The stm on
function may be called within a transaction, and it may start its
own transactions. In both cases, the src proc parameter of stm on
specifies on behalf of what processor the operations are occurring.
Any operations inside the stm on function that access transactional
memory must be done with the appropriate transactional functions
given in Table 1. Nested stm on constructs are possible; in this
case the src proc parameter is threaded through the sequence of
stm on calls, identifying the processor that started the sequence.
stm on reads its arguments from and writes its output to local
private memory.
Figure 2 illustrates the implementation of the remote incre-

ment function using our STM interface. Note that increment
starts a transaction and uses stm on to invoke increment local
on proc on behalf of the execution processor. Note also that
increment local does some work on behalf of the caller (rep-
resented by src proc). All the work done here is local to proc.

4. Algorithm Design
In this section we describe the algorithmic choices that we inves-
tigated for implementing the interface described in the previous
section. We first discuss the design choices motivated by previous
work on cc-STMs. Then we discuss choices specific to PGAS com-
puting and clusters.

4.1 Choices from the cc-STM Design Space

A key part of designing the Cluster-STM algorithm was to make
suitable design choices that researchers have already considered
for cc-STM, but which may require a different choice on large-
scale clusters. To do this systematically, we studied the cc-STM
literature and distilled the space of design choices represented
there into eight dimensions. We used this study to ascertain which
conclusions from the cc-STM research were likely to carry over to

Cluster-STM, and which deserved further investigation in the new
domain. A secondary benefit is that many current cc-STM designs,
including at least those described in [17, 15, 14, 24, 23, 1, 32, 16],
can be represented as a combination of choices from the eight
axes, i.e., are points within this design space. Below we describe
each of the eight dimensions, the choices made by the previous
cc-STM designs in each dimension, the choices we made for our
implementation within that dimension, and the motivations for our
choices.
1. Transactional view of the heap. “Word-based” STMs [1, 32,

16, 15] read and write data words directly on the heap, while
“object-based” STMs [23, 17, 24, 14] use an extra level of pointer
indirection. The object-based design enables elegant synchroniza-
tion mechanisms but requires that all data be accessed as objects.
For our Cluster-STM we chose a word-based design because of its
stronger support for numerical and array-based computations.
2. Read synchronization. Most STMs use “read validation”:

when transaction A reads location x, then transaction B writes
x before A commits, A detects the violation at commit time
and aborts [15, 32, 16]. An alternative is to use concurrent-read
exclusive-write (CREW) locks to preventB from writing [32]. Pre-
vious researchers have concluded that, for cc-STM, locks are worse
than read validation because the lock operations create extra cache
misses and hence potentially significant scalar overhead [15, 32].
However, in a distributed memory context, the remote lock oper-
ations can be piggybacked on the explicit messages required to
access remote data, lessening or eliminating the penalty of reader
locks. Further, read validation requires an extra remote validation
at commit, which may increase overhead. For Cluster-STM, we im-
plemented both read locking and read validation to quantify these
tradeoffs.
3. Write synchronization. In most STMs, a transaction T writ-

ing to location x attempts to acquire x for exclusive access, and
either the writer or the lockholder is aborted in the presence of con-
tention [1, 32, 23, 17, 24, 16]. Alternatively, the writing transaction
can maintain both “before” and “after” state for the written loca-
tion, so other transactions may read the value while T is holding
it [15, 14]. For Cluster-STM, we implemented exclusive-access ac-
quire, because the single-writer, multiple-reader implementation is
complicated, and its benefit has not been proved. As future work, it
may be interesting to study the effects of these two design choices,
both for cc-STM and Cluster-STM.
4. Recovery mechanism. Some STMs use a write buffer: Each

transaction buffers its writes until commit, so no global state is
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Cluster-STM 

!   Read locks (RL) vs. read validation (RV) 

!   RL: 
!   immediately acquire a lock as a read (local or remote) is issued 

!   abort upon contention (avoid deadlock) 

!   as coordinator ends transaction, it can be committed w/o 2PC 

!   Note: distributed model w/o caching: 
!   each access to non local data implies remote access: 

!   eager locking is for free 

!   with caching only RV could be employable 
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!   Read locks (RL) vs. read validation (RV) 

!   RV: 
!   commit time validation (not opaque) 

!   validity check requires 2PC 
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Cluster-STM 

!   Write buffering schemes 

!   UL undo log: 
!   write is applied and an undo log is maintained 

!   forced sync upon each write 

!   WB write buffering: 
!   writes applied in local buffer 

!   avoid communications for writes during exec phase 

!   requires additional communication at commit time 
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Cluster-STM 

!   Write buffering: two lock acquisition schemes 

!   LA: Late acquire 
!   at commit time. 

!   may allow for more concurrency 

!   EA: Early acquire 
!    as the write is issued 

!   may avoid wasted work by doomed transactions 
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Figure 5. (a) Runtimes for SSCA2 kernel 4 implemented with locks. (b) Ratios of STM runtime to lock runtime for each STM implementation.

of candidate vertices, the straightforward implementation is to send
out one message per vertex. However, this incurs unacceptable
communication cost. In our version, we sort the vertices by pro-
cessor, marshal the data for all vertices on one processor into a
buffer, and then send a single request to get the adjacency sets of
all the vertices via the on clause discussed in Section 3.4. There-
fore, the on clause was essential to getting good performance on
this benchmark.

5.2.2 Performance Results
We ran our SSCA2 kernel 4 implementations on a graph with 220

vertices and a maximum clique size of 8. Figure 5(a) shows a plot
of the runtimes for the lock implementation, for 1–512 processors.
The overall shape of the graph is similar to the graphs for the micro
benchmarks, except that the “bump” in execution time for small p
is less dramatic, because this application is well tuned, with a better
communication to computation ratio.
Figure 5(b) compares the STM versions, again expressed as

ratios to the lock runtimes, using a CDU size of 4 (n = 2).
Again, the RL-EA implementations perform better, for the reasons
discussed above in connection with the hashmap swap benchmark.
The STM overhead is lower than in the micro benchmarks for
p = 1, because much of the computation is private and incurs
no STM overhead. However, unlike for the micro benchmarks, the
STM overhead remains significant for large p. We believe that this
result occurs for two reasons. First, our SSCA2 is better tuned than
our micro benchmarks, and wastes fewer cycles waiting for remote
computation. Thus, less of the scalar STM overhead is hidden.
Second, the lock implementation is able to fold the remote write
and unlock operations into one message, whereas the STM version
requires separate write and commit operations.
We may be able to improve the scalar overhead with more ag-

gressive use of optimization techniques such as those discussed
in [16, 1]. Hardware support could also be used to reduce the per-
formance penalty of the local scalar operations. Because Cluster-
STM uses at most two more remote operations than the locking im-
plementation per transaction, the performance of a hardware sup-
ported Cluster-STM should approach that of locks. In any event,
these graphs show excellent STM scalability to 512 processors for
a realistic application with poor locality and demanding remote ac-
cess patterns.
We also ran this experiment using the RL-EA-UL STM imple-

mentation for CDU sizes of 1, 2, 8, 16, and 32, for p = 16, 64,

and 128. We observed that the runtime was extremely insensitive
to CDU size in these experiments. We believe this result occurs for
two reasons. First, in this application, any read-write or write-write
sharing of a single allocation between transactions causes a “gen-
uine” (semantically required) conflict. Second, because we allocate
transactional data on a CDU boundary, no two allocations can share
a CDU. Therefore, increasing the CDU size does not increase the
number of conflicts for this benchmark.

6. Conclusion and Future Work
We have presented Cluster-STM, the first STM we know of explic-
itly designed for high performance on large-scale distributed archi-
tectures. Cluster-STM incorporates several novel features, includ-
ing distribution of metadata and aggregation of computation, that
allow it to execute STM operations with minimal overhead, mea-
sured in terms of remote accesses. We validate our design experi-
mentally and show excellent scalability up to 512 processors. We
also characterize the existing space of cc-STM designs and show
that, on clusters, several design tradeoffs come out differently.
We have several plans for future work. In the algorithm itself,

we would like to improve the scalar overhead and exploit shared
memory within multiprocessor nodes to make intra-node commu-
nication faster. We would also like to test Cluster-STM with addi-
tional HPC workloads containing long and short transactions. Fi-
nally, we would like to add support for non-blocking remote oper-
ations inside a transaction, and for dynamic spawning of threads.
These issues complicate both the semantic definition of the STM
operations and the handling of distributed metadata in the STM
implementation. However, they are important for supporting more
general and dynamic parallel programming models.
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia) 

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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Sinfonia 

!   Sinfonia: A new paradigm for building scalable distributed 
systems. 

!   Aguilera, Merchant, Shah, Veitch, and Karamanolis, 2009. 

!   Partitioned global (linear) address space 

!   Optimized for static transactions 
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Sinfonia 

!   Mini-transactions: 
!   A-priori knowledge on the data to be accessed  

!   Two types of nodes: 
!   Application nodes 
!   Memory nodes 

!   Fault-tolerance via: 
!   In-memory replication 
!   Sync (log) + async checkpoint for persistency on memory 

nodes 
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Sinfonia: a new paradigm for
building scalable distributed systems
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ABSTRACT
We propose a new paradigm for building scalable distributed sys-
tems. Our approach does not require dealing with message-passing
protocols—a major complication in existing distributed systems.
Instead, developers just design and manipulate data structures
within our service called Sinfonia. Sinfonia keeps data for appli-
cations on a set of memory nodes, each exporting a linear address
space. At the core of Sinfonia is a novel minitransaction primitive
that enables efficient and consistent access to data, while hiding the
complexities that arise from concurrency and failures. Using Sinfo-
nia, we implemented two very different and complex applications
in a few months: a cluster file system and a group communication
service. Our implementations perform well and scale to hundreds
of machines.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications; E.1 [Data Structures]: Dis-
tributed data structures

General Terms
Algorithms, Design, Experimentation, Performance, Reliability

Keywords
Distributed systems, scalability, fault tolerance, shared memory,
transactions, two-phase commit

1. INTRODUCTION
Developers often build distributed systems using the message-

passing paradigm, in which processes share data by passing mes-
sages over the network. This paradigm is error-prone and hard to
use because it involves designing, implementing, and debugging
complex protocols for handling distributed state. Distributed state
refers to data that application hosts need to manipulate and share
with one another, such as metadata, tables, and configuration and
status information. Protocols for handling distributed state include
protocols for replication, file data and metadata management, cache
consistency, and group membership. These protocols are highly
non-trivial to develop.

Permission to make digital or hard copies of all or part of this work for
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bear this notice and the full citation on the first page. To copy otherwise, to
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SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
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Figure 1: Sinfonia allows application nodes to share data in a fault
tolerant, scalable, and consistent manner.

We propose a new paradigm for building scalable distributed
systems. With our scheme, developers do not have to deal with
message-passing protocols. Instead, developers just design and ma-
nipulate data structures within our service, called Sinfonia. We
therefore transform the problem of protocol design into the much
easier problem of data structure design. Our approach targets par-
ticularly data center infrastructure applications, such as cluster file
systems, lock managers, and group communication services. These
applications must be fault-tolerant and scalable, and must provide
consistency and reasonable performance.
In a nutshell, Sinfonia is a service that allows hosts to share ap-

plication data in a fault-tolerant, scalable, and consistent manner.
Existing services that allow hosts to share data include database
systems and distributed shared memory (DSM). Database systems
lack the performance needed for infrastructure applications, where
efficiency is vital. This is because database systems provide more
functionality than needed, resulting in performance overheads. For
instance, attempts to build file systems using a database system [24]
resulted in an unusable system due to poor performance. Existing
DSM systems lack the scalability or fault tolerance required for
infrastructure applications. Section 8 discusses some of the DSM
systems closest to Sinfonia.
Sinfonia seeks to provide a balance between functionality and

scalability. The key to achieving scalability is to decouple opera-
tions executed by different hosts as much as possible, so that op-
erations can proceed independently. Towards this goal, Sinfonia
provides fine-grained address spaces on which to store data, with-
out imposing any structure, such as types, schemas, tuples, or ta-
bles, which all tend to increase coupling. Thus, application hosts
can handle data in Sinfonia relatively independently of each other.
To prevent Sinfonia from becoming a bottleneck, Sinfonia itself is
distributed over multiple memory nodes (Figure 1), whose number
determines the space and bandwidth capacity of Sinfonia.
At the core of Sinfonia is a lightweightminitransaction primitive

that applications use to atomically access and conditionally modify
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addr datalenmem-id
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addr datalenmem-id

addr datalenmem-id
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read items

...

addr lenmem-id

addr lenmem-id

class Minitransaction {
public:
void cmp(memid,addr,len,data); // add

void write(memid,addr,len,data); // add
int exec_and_commit(); // execute and commit

};

cmp item

write item
void read(memid,addr,len,buf); // add read item

...
t = new Minitransaction;
t->cmp(memid, addr, len, data);
t->write(memid, addr, len, newdata);
status = t->exec_and_commit();
...

API Example

!

!

check data indicated by
(equality comparison)
if all match then

retrieve data indicated by
modify data indicated by

compare items

read items
write items

Semantics of a minitransaction

Figure 2: Minitransactions have compare items, read items, and
write items. Compare items are locations to compare against given
values, while read items are locations to read and write items are
locations to update, if all comparisons match. All items are speci-
fied before the minitransaction starts executing. The example code
creates a minitransaction with one compare and one write item on
the same location—a compare-and-swap operation. Methods cmp,
read, and write populate a minitransaction without communication
with memory nodes until exec_and_commit is invoked.

and commit. Roughly speaking, a coordinator executes a transac-
tion by asking participants to perform one or more transaction ac-
tions, such as retrieving or modifying data items. At the end of
the transaction, the coordinator executes two-phase commit. In the
first phase, the coordinator asks all participants if they are ready to
commit. If they all vote yes, in the second phase the coordinator
tells them to commit; otherwise the coordinator tells them to abort.
In Sinfonia, coordinators are application nodes and participants are
memory nodes.
We observe that it is possible to optimize the execution of some

transactions, as follows. If the transaction’s last action does not
affect the coordinator’s decision to abort or commit then the coor-
dinator can piggyback this last action onto the first phase of two-
phase commit (e.g., this is the case if this action is a data update).
This optimization does not affect the transaction semantics and
saves a communication round-trip.
Even if the transaction’s last action affects the coordinator’s de-

cision to abort or commit, if the participant knows how the coor-
dinator makes this decision, then we can also piggyback the action
onto the commit protocol. For example, if the last action is a read
and the participant knows that the coordinator will abort if the read
returns zero (and will commit otherwise), then the coordinator can
piggyback this action onto two-phase commit and the participant
can read the item and adjust its vote to abort if the result is zero.
In fact, it might be possible to piggyback the entire transaction

execution onto the commit protocol. We designed minitransactions
so that this is always the case and found that it is still possible to
get fairly powerful transactions.
More precisely, a minitransaction (Figure 2) consists of a set of

compare items, a set of read items, and a set of write items. Each
item specifies a memory node and an address range within that
memory node; compare and write items also include data. Items
are chosen before the minitransaction starts executing. Upon exe-

cution, a minitransaction does the following: (1) compare the loca-
tions in the compare items, if any, against the data in the compare
items (equality comparison), (2) if all comparisons succeed, or if
there are no compare items, return the locations in the read items
and write to the locations in the write items, and (3) if some com-
parison fails, abort. Thus, the compare items control whether the
minitransaction commits or aborts, while the read and write items
determine what data the minitransaction returns and updates.
Minitransactions are a powerful primitive for handling dis-

tributed data. Examples of minitransactions include the following:

1. Swap. A read item returns the old value and a write item
replaces it.

2. Compare-and-swap. A compare item compares the current
value against a constant; if equal, a write item replaces it.

3. Atomic read of many data. Done with multiple read items.
4. Acquire a lease. A compare item checks if a location is set
to 0; if so, a write item sets it to the (non-zero) id of the
leaseholder and another write item sets the time of lease.

5. Acquire multiple leases atomically. Same as above, except
that there are multiple compare items and write items. Note
that each lease can be in a different memory node.

6. Change data if lease is held. A compare item checks that a
lease is held and, if so, write items update data.

A frequent minitransaction idiom is to use compare items to vali-
date data and, if data is valid, use write items to apply some changes
to the same or different data. These minitransactions are common
in SinfoniaFS: the file system caches inodes and metadata aggres-
sively at application nodes, and relevant cached entries are vali-
dated before modifying the file system. For example, writing to a
file requires validating a cached copy of the file’s inode and chain-
ing list (the list of blocks comprising the file) and, if they are valid,
modifying the appropriate file block. This is done with compare
items and write items in a minitransaction. Figure 7 shows a mini-
transaction used by SinfoniaFS to set a file’s attributes.
Another minitransaction idiom is to have only compare items to

validate data, without read or write items. Such a minitransaction
modifies no data, regardless of whether it commits or aborts. But
if it commits, the application node knows that all comparisons suc-
ceeded and so the validations were successful. SinfoniaFS uses
this type of minitransaction to validate cached data for read-only
file system operations, such as stat (NFS’s getattr).
In Section 4 we explain how minitransactions are executed and

committed efficiently. It is worth noting that minitransactions can
be extended to include more general read-modify-write items (not
just write items) and generic conditional items (not just compare
items) provided that each item can be executed at a single memory
node. For example, there could be an increment item that atomi-
cally increments a location; and a minitransaction could have mul-
tiple increment items, possibly at different memory nodes, to in-
crement all of them together. These extensions were not needed
for the applications in this paper, but they may be useful for other
applications.

3.4 Caching and consistency
Sinfonia does not cache data at application nodes, but provides

support for applications to do their own caching. Application-
controlled caching has three clear advantages: First, there is greater
flexibility on policies of what to cache and what to evict. Second, as
a result, cache utilization potentially improves, since applications
know their data better than what Sinfonia can infer. And third,
Sinfonia becomes a simpler service to use because data accessed
through Sinfonia is always current (not stale). Managing caches in
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};
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void read(memid,addr,len,buf); // add read item

...
t = new Minitransaction;
t->cmp(memid, addr, len, data);
t->write(memid, addr, len, newdata);
status = t->exec_and_commit();
...

API Example

!

!
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Semantics of a minitransaction

Figure 2: Minitransactions have compare items, read items, and
write items. Compare items are locations to compare against given
values, while read items are locations to read and write items are
locations to update, if all comparisons match. All items are speci-
fied before the minitransaction starts executing. The example code
creates a minitransaction with one compare and one write item on
the same location—a compare-and-swap operation. Methods cmp,
read, and write populate a minitransaction without communication
with memory nodes until exec_and_commit is invoked.

and commit. Roughly speaking, a coordinator executes a transac-
tion by asking participants to perform one or more transaction ac-
tions, such as retrieving or modifying data items. At the end of
the transaction, the coordinator executes two-phase commit. In the
first phase, the coordinator asks all participants if they are ready to
commit. If they all vote yes, in the second phase the coordinator
tells them to commit; otherwise the coordinator tells them to abort.
In Sinfonia, coordinators are application nodes and participants are
memory nodes.
We observe that it is possible to optimize the execution of some

transactions, as follows. If the transaction’s last action does not
affect the coordinator’s decision to abort or commit then the coor-
dinator can piggyback this last action onto the first phase of two-
phase commit (e.g., this is the case if this action is a data update).
This optimization does not affect the transaction semantics and
saves a communication round-trip.
Even if the transaction’s last action affects the coordinator’s de-

cision to abort or commit, if the participant knows how the coor-
dinator makes this decision, then we can also piggyback the action
onto the commit protocol. For example, if the last action is a read
and the participant knows that the coordinator will abort if the read
returns zero (and will commit otherwise), then the coordinator can
piggyback this action onto two-phase commit and the participant
can read the item and adjust its vote to abort if the result is zero.
In fact, it might be possible to piggyback the entire transaction

execution onto the commit protocol. We designed minitransactions
so that this is always the case and found that it is still possible to
get fairly powerful transactions.
More precisely, a minitransaction (Figure 2) consists of a set of

compare items, a set of read items, and a set of write items. Each
item specifies a memory node and an address range within that
memory node; compare and write items also include data. Items
are chosen before the minitransaction starts executing. Upon exe-

cution, a minitransaction does the following: (1) compare the loca-
tions in the compare items, if any, against the data in the compare
items (equality comparison), (2) if all comparisons succeed, or if
there are no compare items, return the locations in the read items
and write to the locations in the write items, and (3) if some com-
parison fails, abort. Thus, the compare items control whether the
minitransaction commits or aborts, while the read and write items
determine what data the minitransaction returns and updates.
Minitransactions are a powerful primitive for handling dis-

tributed data. Examples of minitransactions include the following:

1. Swap. A read item returns the old value and a write item
replaces it.

2. Compare-and-swap. A compare item compares the current
value against a constant; if equal, a write item replaces it.

3. Atomic read of many data. Done with multiple read items.
4. Acquire a lease. A compare item checks if a location is set
to 0; if so, a write item sets it to the (non-zero) id of the
leaseholder and another write item sets the time of lease.

5. Acquire multiple leases atomically. Same as above, except
that there are multiple compare items and write items. Note
that each lease can be in a different memory node.

6. Change data if lease is held. A compare item checks that a
lease is held and, if so, write items update data.

A frequent minitransaction idiom is to use compare items to vali-
date data and, if data is valid, use write items to apply some changes
to the same or different data. These minitransactions are common
in SinfoniaFS: the file system caches inodes and metadata aggres-
sively at application nodes, and relevant cached entries are vali-
dated before modifying the file system. For example, writing to a
file requires validating a cached copy of the file’s inode and chain-
ing list (the list of blocks comprising the file) and, if they are valid,
modifying the appropriate file block. This is done with compare
items and write items in a minitransaction. Figure 7 shows a mini-
transaction used by SinfoniaFS to set a file’s attributes.
Another minitransaction idiom is to have only compare items to

validate data, without read or write items. Such a minitransaction
modifies no data, regardless of whether it commits or aborts. But
if it commits, the application node knows that all comparisons suc-
ceeded and so the validations were successful. SinfoniaFS uses
this type of minitransaction to validate cached data for read-only
file system operations, such as stat (NFS’s getattr).
In Section 4 we explain how minitransactions are executed and

committed efficiently. It is worth noting that minitransactions can
be extended to include more general read-modify-write items (not
just write items) and generic conditional items (not just compare
items) provided that each item can be executed at a single memory
node. For example, there could be an increment item that atomi-
cally increments a location; and a minitransaction could have mul-
tiple increment items, possibly at different memory nodes, to in-
crement all of them together. These extensions were not needed
for the applications in this paper, but they may be useful for other
applications.

3.4 Caching and consistency
Sinfonia does not cache data at application nodes, but provides

support for applications to do their own caching. Application-
controlled caching has three clear advantages: First, there is greater
flexibility on policies of what to cache and what to evict. Second, as
a result, cache utilization potentially improves, since applications
know their data better than what Sinfonia can infer. And third,
Sinfonia becomes a simpler service to use because data accessed
through Sinfonia is always current (not stale). Managing caches in
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Sinfonia 

!   Global space is partitioned 
!   Transaction may need to access different memory nodes 

!   It can only commit if it can commit at all memory nodes 

!   2-phase commit 
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Sinfonia 

4.1 Basic architecture
Recall that Sinfonia comprises a set of memory nodes and a

user library at each application node. The user library communi-
cates with memory nodes through remote procedure calls, on top
of which we run the minitransaction protocol. Memory nodes run
a server process that keeps Sinfonia data and the minitransaction
redo-log; it also runs a replication protocol.

4.2 Minitransaction protocol overview
Our minitransaction protocol integrates execution of the mini-

transaction into the commit protocol for efficiency. The idea is to
piggyback the transaction into the first phase of two-phase com-
mit. This piggybacking is not possible for arbitrary transactions,
but minitransactions were defined so that it is possible for them.
Our two-phase commit protocol also reflects new system fail-

ure assumptions. In standard two-phase commit, if the coordina-
tor crashes, the system has to block until the coordinator recovers.
This is undesirable in Sinfonia: if the coordinator crashes, we may
need to recover without it because coordinators run on application
nodes, not Sinfonia memory nodes, and so they may be unstable,
subject to reboots, or their recovery could be unpredictable and un-
sure. The traditional way to avoid blocking on coordinator crashes
is to use three-phase commit [32], but we want to avoid the extra
phase.
We accomplish this by blocking on participant crashes instead of

coordinator crashes. This is reasonable for Sinfonia because partic-
ipants are memory nodes that keep application data, so if they go
down and the application needs to access data, the application has
to block anyway. Furthermore, Sinfonia can optionally replicate
participants (memory nodes), so that minitransactions are blocked
only if there is a crash of the “logical participant”, as represented
by all its replicas.
In our two-phase commit protocol, the coordinator has no log,

and we consider a transaction to be committed if all participants
have a yes vote in their log. Standard two-phase commit requires
a yes vote in the coordinator log. This modification, however,
complicates the protocols for recovery and log garbage collection,
which we cover in Sections 4.4–4.7.
To ensure serializability, participants lock the locations accessed

by a minitransaction during phase 1 of the commit protocol. Locks
are only held until phase 2 of the protocol, a short time. Lock gran-
ularity is a word, but we use range data structures to efficiently
keep track of locked ranges. To avoid deadlocks, we use a simple
scheme: a participant tries to acquire locks without blocking; if it
fails, it releases all locks and votes “abort due to busy lock”. This
vote causes the coordinator to abort the minitransaction and retry
after some random exponentially-increasing delay. This scheme is
not appropriate when there is high contention, but otherwise it is
efficient. Another deadlock-avoidance scheme is to acquire locks
in some predefined order, but with that scheme, the coordinator in
phase 1 has to contact participants in series (to ensure lock order-
ing), which could incur many extra network round-trips.

4.3 Minitransaction protocol details
Recall that a minitransaction has compare items, read items, and

write items (Figure 2). Compare items are locations to be tested for
equality against supplied data; if any test fails, the minitransaction
aborts. If the minitransaction commits, read items are locations to
be read and returned, while write items are locations to be written.
Application nodes execute and commit minitransactions using

the two-phase protocol in Figure 4. Phase 1 executes and prepares
the minitransaction, while phase 2 commits it. More precisely, in
phase 1, the coordinator (application node) generates a new transac-

Code for coordinator p:
To execute and commit minitransaction (cmpitems, rditems,writems)
1 tid ← new unique identifier for minitransaction

{ Phase 1 }
2 D ← set of memory nodes referred in cmpitems ∪ rditems ∪ writems
3 pfor each q ∈ D do { pfor is a parallel for }
4 send (EXEC&PREPARE , tid, D,

πq(cmpitems), πq(rditems), πq(writems)) to q
5 { πq denotes the projection to the items handled by q }
6 replies ← wait for replies from all nodes inD

7 { Phase 2 }
8 if ∀q∈D : replies[q].vote=OK then action ← true { commit }
9 else action ← false { abort }
10 pfor each q ∈ D do send (COMMIT , tid, action) to q
11 return action { does not wait for reply of COMMIT }

Code for each participant memory node q:
upon receive (EXEC&PREPARE , tid, D, cmpitems, rditems,writems) from p do
12 in-doubt ← in-doubt ∪ {(tid, cmpitems, rditems,writems)}
13 if try-read-lock(cmpitems ∪ rditems)=fail or try-write-lock(writems)=fail
14 then vote ← BAD-LOCK
15 else if tid ∈ forced-abort then vote ← BAD-FORCED
16 { forced-abort is used with recovery }
17 else if cmpitems do not match data then vote ← BAD-CMP
18 else vote ← OK
19 if vote=OK then
20 data ← read rditems
21 add (tid, D, writems) to redo-log and add tid to all-log-tids
22 else
23 data ← ∅
24 release locks acquired above
25 send-reply (tid, vote, data) to p

upon receive (COMMIT , tid, action) from p do { action: true=commit, false=abort }
26 (cmpitems, rditems,writems) ← find (tid, ∗, ∗, ∗) in in-doubt
27 if not found then return { recovery coordinator executed first }
28 in-doubt ← in-doubt − {(tid, cmpitems, rditems,writems)}
29 if tid ∈ all-log-tids then decided ← decided ∪ {(tid, action)}
30 if action then apply writems
31 release any locks still held for cmpitems ∪ rditems ∪ writems

participant 1

participant 2

participant 3

coordinator
A C

B

EX
EC

&P
RE

PA
RE

CO
M

M
ITvote

D
assemble minitransactionA

acquire locks, perform comparisons,
choose vote, if voting to commit then
read and log minitransaction,
otherwise release locks

read items

B

choose outcomeC

if committing apply
release locks held for minitransaction

write itemsthenD

Figure 4: Protocol for executing and committing minitransactions.

tion id (tid) and sends the minitransaction to the participants (mem-
ory nodes). Each participant then (a) tries to lock the addresses of
its items in the minitransaction (without blocking), (b) executes the
comparisons in the compare items and, if all comparisons succeed,
performs the reads in the read items and buffers the write items, and
(c) decides on a vote as follows: if all locations could be locked and
all compare items succeeded, the vote is for committing, otherwise
it is for aborting. In phase 2, the coordinator tells participants to
commit if and only if all votes are for committing. If committing,
a participant applies the write items, otherwise it discards them. In
either case, the participant releases all locks acquired by the mini-
transaction. The coordinator never logs any information, unlike in
standard two-phase commit. If the minitransaction aborts because
some locks were busy, the coordinator retries the minitransaction
after a while using a new tid. This retrying is not shown in the
code.
Participants log minitransactions in the redo-log in the first phase

(if logging is enabled); logging occurs only if the participant votes
to commit. Only write items are logged, not compare or read items,
to save space. The redo-log in Sinfonia also serves as a write-ahead
log to improve performance.
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Sinfonia 

!   No support for caching: 
!   delegated to application level 

!   same applies for load balancing 

!   Replication: 
!   aimed at fault-tolerance, not enhancing performance  

!   fixed number of replicas per memory node 

!   primary-backup scheme ran within first phase of 2PC 
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia) 

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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D2STM 

!   D2STM: Dependable Distributed STM  

!   Couceiro, Romano, Rodrigues, Carvalho, 2009 

!   Single-image system 
!   Full replication 

!   Strong consistency 

!   Certification-based replication scheme 
!   Based on Atomic Broadcast  

!   Built on top of JVSTM 
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D2STM 

!   Non-voting replication scheme 

!   Transactions execute in a single replica 

!   No communication during the execution 

!   Writeset and readset AB at commit time 

!   Deterministic certification executed in total order by all 
replicas 

!   No distributed deadlocks 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



D2STM 
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D2STM 
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D2STM 

!   In STMs, transaction’s execution time is often 10-100 times 
short than in DBs: 
!   the cost of AB is correspondingly amplified 

!   Bloom Filter Certification:  
!   space-efficient encoding (via Bloom Filter) to reduce message 

size 
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D2STM 

Application

Generic Group Commmunication Service

Network

D2STM API

JVSTM

Replication Manager
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D2STM 

!   Bloom filters 
!   A set of n items is encoded through a vector of m bits 

!   Each item is associated with k bits through k hash functions 
having as image {1..m}: 
!   insert: set k bits to 1 

!   query: check if all k bits set to 1 
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D2STM 

!   False Positives:  
!   An item is wrongly identified as belonging to a given set 

!   Depend on the number of bits used per item (m/n) and the 
number of hash functions (k) 

!   D2STM computes the size of the Bloom filter based on: 
!   User-defined false positive rate 

!   Number of items in the read set (known) 

!   Number of BF queries, estimated via moving average over 
recently committed transactions 
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D2STM 

!   Read-only transactions:  
!   local execution and commit 
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D2STM 

!   Write transaction T: 
!   Local validation (read set) 

!   If the transaction is not locally aborted, the read set is 
encoded in a Bloom filter 

!   Atomic broadcast of a message containing: 
!   the Bloom filter enconding of tx readset 

!   the tx write set  

!   the snapshotID of the tx 

!   Upon message delivery: validate tx using Bloom filter’s 
information 
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D2STM 

for each committed T’ s.t. T’.snapshotID > T.snapshotID 
for each data item d in the writeset of T’ 

 if d is in Bloom filter associated with T’s readset 

  abort T  

// otherwise… 

commit T 
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D2STM 

!   STMBench7: Results 
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia) 

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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ALC 

!   Asynchronous Lease Certification Replication of Software 
Transactional Memory 

!   Carvalho, Romano, Rodrigues, 2010 

!   Exploit data access locality by letting replicas dynamically 
establish ownership of memory regions: 
!   replace AB with faster coordination primitives: 

!   no need to establish serialization order among non-
conflicting transactions 

!   shelter transactions from remote conflicts 
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ALC 

!   Data ownership established by acquiring an Asynchronous 
Lease 
!   mutual exclusion abstraction, as in classic leases… 

!   …but detached from the notion of time: 

!   implementable in a partially synchronous system 

!   Lease requests disseminated via AB to avoid distributed 
deadlocks. 
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ALC 

!   Transactions are locally processed 

!   At commit time check for leases: 
!   An Asynchronous Lease may need to be established 

!   Proceed with local validation 
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ALC 

!   If local validation succeeds, its writeset is propagated using 
Uniform Reliable Broadcast (URB): 
!   No ordering guarantee, 30-60% faster than AB  

!   If validation fails, upon re-execution the node holds the 
lease: 
!   Transaction cannot be aborted due to a remote conflict! 
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ALC 
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ALC 
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ALC 

P1

P2

P3

Lease Request
(AB)

Certification

Lease Ensured
(URB)

Apply
(URB)

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



ALC 

!   If applications exhibit some access locality: 
!   avoid, or reduce frequency of AB 

!   locality improved via conflict-aware load balancing 

!   Ensure transactions are aborted at most once due to remote 
conflicts: 
!   essential to ensure liveness of long running transactions 

!   benefic at high contention rate even with small running 
transactions 
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ALC 
!   Synthetic “Best case” scenario 

!   Replicas accessing distinct memory regions 
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ALC 

!   Synthetic “Worst case” scenario 
!   All replicas accessing the same memory region 
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ALC 

!   Lee Benchmark 
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Part III: Case-Studies 

!   Partitioned Non-Replicated 
!   STM for clusters (Cluster-STM) 

!   Partitioned (Replicated) 
!   Static Transactions (Sinfonia) 

!   Replicated Non-Partitioned 
!   Certification-based with Bloom Filters (D2STM) 

!   Certification with Leases (ALC) 

!   Active Replication with Speculation (AGGRO) 
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AGGRO 

!   AGGRO: Boosting STM Replication via Aggressively 
Optimistic Transaction Processing 

!   R. Palmieri, Paolo Romano and F. Quaglia, 2010 

!   Active Replication for STMs 
!   Multiple replicas 

!   All replicas execute update transactions 

!   Read-only transactions can execute in any replica  

!   Data survives failures of replicas 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



Basic Active Replication 

Atomic Broadcast

Tx Exec C
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With Optimistic Delivery 

Atomic Broadcast

Tx Exec C

Opt

Hold Locks
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Improvement 

Atomic Broadcast

Tx Exec C
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Atomic Broadcast

Tx Exec C

Opt
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But… 

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

Opt Atomic Broadcast

Tx Exec CWait for Locks
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Speculative 

Atomic Broadcast

Tx Exec C

Opt

Hold Locks

Opt Atomic Broadcast

CSpec Exec
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AGGRO 

!   Transactions are started in speculative order immediately 
after the optimistic delivery  

!   Writes kill all transactions that have read stale data 

!   Items touched by speculative transactions Tspec are marked 
as “work-in-progress (WIP)” while Tspec executes 
!   When Tspec terminates (but not yet committed) items are 

unmarked as WIP. 

!   Transaction only read values from terminated transactions. 
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AGGRO Algorithm 

upon opt-Deliver(Ti) 

  start transaction Ti in a speculative fashion 
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AGGRO Algorithm 
upon write(Ti, X,  v) 

 if (X not already in Ti.WS) 

  add X to Ti.WS 

  mark X as WIP // C&S 

  for each Tj that follows Ti in OAB order: 

   if (Tj read X from Tk preceding  Ti) abort Tj 

 else 

  update X in Ti.WS 
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AGGRO Algorithm 

upon read(Ti, X) 

 if (X in Ti.WS) return X.value from Ti.WS 

 if (X in Ti.RS) return X.value from Ti.RS 

 wait while (X is marked WIP) 

 let Tj be tx preceding Ti in OAB order that wrote X 

 Ti.readFrom.add(Tj) 
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AGGRO Algorithm 
upon completed (Ti) 

 atomically {   

  for each X in Ti.WS: unmark X as WIP by Ti  

 } 

upon commit(Ti) 

 atomically {   

  for each X in Ti.WS: mark X as committed  

 } 
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AGGRO Algorithm 
upon abort(Ti) 

 abort any transaction that read from Ti 

 restart Ti 

upon TO-Deliver(Ti) 

 append Ti to TO-order 

 wait until all xacts preceding Ti in TO-order committed 

 if (validation of Ti’s readset fails) abort (Ti) 

 else commit(Ti) 
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AGGRO Performance 

!   Performance speed-up 
(20% reordering, only one SO explored) 
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Contents 

!   Part I: (Non-Distributed) STMs 

!   Part II: Distributed STMs 

!   Part III: Case-studies 

!   Part IV: Conclusions 
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Conclusions 

!   Replication helps in read-dominated workloads or when 
writes have low conflicts 

!   Replication provides fault-tolerance 

!   Some techniques have promising results 
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Conclusions 

!   No technique outperforms the others for all workloads, 
networks, number of machines, etc 

!   Autonomic management of the distributed consistency and 
replication protocols 
!   Change the protocols in runtime, in face of changing 

workloads 

M. Couceiro,  P. Romano, L. Rodrigues, HPCS 2011 



A bit of publicity 

!   Time for the commercials 
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CLOUD-TM 

!   DTMs: a programming paradigm  
for the Cloud ? 

!   Stay tuned on www.cloudtm.eu 
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Euro-TM 
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Euro-TM Cost Action 

!   Research network bringing together leading European 
experts in the area of TMs 

!   Contact us if you are interested in joining it: 
!   romano@inesc-id.pt 

!   ler@inesc-id.pt 

!   www.eurotm.org 
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