T

INSTITUTO
SUPERIOR
TECNICO

- Distributed Software
. Transactional Memories

: Foundations, Algorithms and Tools

2 b e ~ Maria Couceiro
- ' (with Paolo Romano and Luis Rodrigues)
L8 ISTANESCID.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contents

Part I: (Non-Distributed) STMs
Part II: Distributed STMs
Part I1I: Case-studies

Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DI SRS el O

Contents

Part I: (Non-Distributed) STMs
Part II: Distributed STMs
Part I1I: Case-studies

Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

O Basic Concepts

O Example Algorithms

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

Concurrent programming has always been a challenge

One needs to control the concurrent access to shared data
by multiple threads

This is hard for most programmers.

Concurrent programming has been a “niche”

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

O In the past:

More performance via faster CPUs

O Now:

More performance via more CPUs

Concurrent programming has to become mainstream

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

O Ideally
Performance would scale linearly with the number of cores

(with 8 cores we would have a program 8 times faster)

O Reality:

Speed up limited by % serial code
O Small % can kill performance (Amdahl’s Law)

Say 25% of the program is serial
8 cores = 2.9 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

O Ideally
Performance would scale linearly with the number of cores

(with 8 cores we would have a program 8 times faster)

O Reality:
Small % of serial code can kill performance (Amdahl’s Law)
Say 25% of the program is serial
32 cores = 3.7 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

O Ideally
Performance would scale linearly with the number of cores

(with 8 cores we would have a program 8 times faster)

O Reality:
Small % of serial code can kill performance (Amdahl’s Law)
Say 25% of the program is serial
128 cores = 3.9 speedup.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Concepts

[t is hard or impossible to structure a program in a set of
parallel independent tasks.

We need efficient and simple mechanisms to manage

concurrency.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Explicit synchronization

O One of the most fundamental and simple synchronization
primitive is the lock

non-synchronized code;

lock ();
do stuff on shared data;
unlock ();

more non-synchronized code;

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many problems with locks

O Deadlock:

locks acquired in “wrong” order.

O Races:

due to forgotten locks

O Error recovery tricky:

need to restore invariants and release locks in exception

handlers

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Fine Grained Parallelism?

O Very complex:
Need to reason about deadlocks, livelocks, priority inversions.

Verification nightmare as bugs may be hard to reproduce.

O Make parallel programming accessible to the masses!!!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Concurrent Programming

Without Locks

Lock-free algorithms.
Hard to design and prove correct.
Only for very specialized applications.

Designed and implemented by top experts.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Abstractions for simplifying
concurrent programming...

WE WANT YOU!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic transactions

atomic {
access object 1;

access object 2;

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Transactional Memories

O Hide away synchronization issues from the programmer.

O Advantages:
avoid deadlocks, priority inversions, convoying;

simpler to reason about, verify, compose.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

O Theoretical Aspects

Formalization of adequate consistency guarantees, performance
bounds.

O Hardware support

Very promising simulation-based results, but no support in commercial
PIOCEssOTs.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

O Software-based implementations (STM)

Performance/scalability improving, but overhead still not satisfactory.

O Language integration

Advanced supports (parallel nesting, conditional synchronization) are
appearing...

...but lack of standard APIs & tools hampers industrial penetration.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TMs: where we are, challenges, trends

O Operating system support

Still in its infancy, but badly needed (conflict aware scheduling,
transactional 1/O).

O Recent trends:

Shift towards distributed environments to enhance scalability &

dependability.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Run-time

O How does it work?

The run time implements concurrency control in an
automated manner.

O Two main approaches:
Pessimistic concurrency control (locking).

Optimistic concurrency control.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Example of pessimistic
concurrency control

Each item has a read/write lock.

When an object is read, get the read lock.
Block if write lock is taken.

When an object is written, get the write lock.

Block if read or write lock is taken.

Upon commit/abort:
Release all locks.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Example of optimistic
concurrency control

Each item has a version number.
Read items and store read version.
Write local copy of items.

Upon commit do atomically:

[f all read items still have the read version (no other concurrent
transaction updated the items)

O then apply all writes (increasing the version number of written
items).

Else,
O abort.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many, many, variants exist

O For instance, assume that two phase locking is used and a
deadlock is detected. It is possible:

Abort both transactions.
Abort the oldest transaction.
Abort the newest transaction.

Abort the transaction that did less work.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Many, many, variants exist

0O For instance, assume that two phase locking is used and a
deadlock is detected. It is possible:

Abort both transactions

Abort the oldest transaction

Abort the newest transaction

Abort the transaction that did less work

Each alternative offers different performance with different
workloads.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

How to choose?

O What is a correct behavior!
O Which safety properties should be preserved!?

0O Which liveness properties should be preserved!?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

How to choose?

O What is a correct behavior!
O Which safety properties should be preserved!?

0O Which liveness properties should be preserved!?

To answer these questions we need a bit of theory.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Theoretical Foundations

O Safety:
What schedules are acceptable by an STM!

[s classic atomicity property appropriate’

O Liveness:

What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Theoretical Foundations

O Safety:
What schedules are acceptable by an STM?

Is classic atomicity property appropriate?

O Liveness:

What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Classic atomicity property

A transaction is a sequence of read/write operations on
variables:

sequence unknown a priori (otherwise called static
transactions).

asynchronous (we do not know a priori how long it takes to
execute each operation).

Every operation is expected to complete.

Every transaction is expected to abort or commit.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O The execution of a set of transactions on a set of objects is
modeled by a history

O A history is a total order of operation, commit and abort
events

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

0O Non-sequential:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two transactions are sequential (in a history) if one invokes
its first operation after the other one commits or aborts;
they are concurrent otherwise.

O Sequential:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O A history is sequential if it has only sequential transactions;
it is concurrent otherwise

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O A history is sequential if it has only sequential transactions;
it is concurrent otherwise.

O Sequential:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O A history is sequential if it has only sequential transactions;
it is concurrent otherwise.

O Non-sequential:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two histories are equivalent if they have the same transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two histories are equivalent if they have the same
transactions

0O Equivalent:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Histories

O Two histories are equivalent if they have the same
transactions

0O Non-equivalent:

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

What the programmer wants!

O Programmer does not want to be concerned about
concurrency issues.

O Execute transactions “as if” they were serial

O No need to be “serially executed” as long as results are the
same

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability’s definition

(Papa?9 - View Serializability)

O A history H of committed transactions is serializable if there is a

history S(H) that is:
equivalent to H

sequential

every read returns the last value written

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability

O Serializable?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability

O Serializable!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability

O Serializable?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Serializability

O Non-serializable!

Lo e

, P.Romano, L. Rodrigues, HPCS 2011

Opacity

O Serializable (blue aborts)?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity

O Serializable: only committed transactions matter!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity

O In a database environment, transactions run SQL:

no harm if inconsistent values are read as long as the
transaction aborts.

O This is not the same in a general programming language:

observing inconsistent values may crash or
hang an otherwise correct program!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

S =R = vt |

-T2: 2= 1/ (yx);

[f T1 and T2 are atomic, the program is correct.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

S =R = vt |

-T2: 2= 1/ (yx);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

S =R = vt |

-T2: 2= 1/ (yx);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

S =R = vt |

N)

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2

-T1: x = x+1; y := y+1

-T2: 2= 1/ (2x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2
After T1: x:=2; y:=3
-Tl: x:=x+1;y:=y+1

-T2: 2= 1/ (2x);

Otherwise...

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity: example

Initially: x:=1; y:=2
After T1: x:=2; y:=3
-T1: x:=x+1;y:=y+1

-T2:22= 1/ (2-2);

Otherwise...divide by zero!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity
|GKOS8]

O Intuitive definition:

every operation sees a consistent state
(even if the transaction ends up aborting)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Opacity
|GKOS8]

O Intuitive definition:

) every operation sees a consistent state
(even if the transaction ends up aborting)

O Following history is serializable but violates opacity!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Does classic optimistic concurrency
control guarantee opacity?

0O Writes are buffered to private workspace and applied atomically at
commit time

O Reads are optimistic and the transaction is validated at commit time.

O Opacity is not guaranteed!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Theoretical Foundations

O Safety:
What schedules are acceptable by an STM!

[s classic atomicity property appropriate’

O Liveness:

What progress guarantees can we expect from an STM?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Progress

STMs can abort transactions or block operations...

But we want to avoid implementations that abort all
transactions!

We want operations to return and transactions to commit!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Requirements

O Correct transactions:
commit is invoked after a finite number of operations

either commit or perform an infinite number of (low-level)
steps

O Wellformed histories:

every transaction that aborts is immediately repeated until it
commits

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conditional progress:
obstruction freedom

O A correct transaction that eventually does not encounter
contention eventually commits

O ...but what to do upon contention?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contention-managers

O Abort is unavoidable
O But want to maximize the number of commits

0O Obstruction freedom property: progress and correctness are
addressed by different modules.

Contention-managers encapsulate policies for dealing with contention
scenarios.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contention-managers

Let TA be executing and TB a new transaction that arrives and creates a

conflict with TA.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Aggressive

Let TA be executing and TB a new transaction that arrives and creates a

conflict with TA.

O Aggressive contention managetr:

always aborts TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Backoff

Let TA be executing and TB a new transaction that arrives and creates a

conflict with TA.

O Backoff contention manager:
TB waits an exponential backoff time

If conflict persists, abort TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Karma

Let TA be executing and TB a new transaction that arrives and creates a

conflict with TA.

O Karma contention manager:
Assign priority to TA and TB
O Priority proportional to work already performed

Let Ba be how many times TB has been aborted
Abort TA if Ba > (TA-TB)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CM: Greedy

Let TA be executing and TB a new transaction that arrives and creates a

conflict with TA.

O Greedy contention manager:
Assign priority to TA and TB based on start time
[f TB<TA and TA not blocked then wait

Otherwise abort TA

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

O Basic Concepts

O Example Algorithms
DSTM
JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

O Basic Concepts

O Example Algorithms
DSTM
JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM

Software transactional memory for dynamic-sized data
structures.

Herlihy, Luchangco, Moir, and Scherer, 2003.
Prior designs: static transactions.

DSTM: dynamic creation of transactional objects.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM

O Killer write:
Ownership.

O Careful read:
Validation.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Writes

O To write o, T requires a write-lock on o.

O T aborts T’ if some T’ acquired a write-lock on o:

Locks implemented via Compare & Swap.

O Contention manager can be used to reduce aborts.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Reads and Validation

Concurrent reads do not conflict.

To read o, T checks if all objects read remain valid;

else abort T.

Before committing, T checks if all objects read remain valid
and releases all its locks.

Make sure that the transaction observes a consistent state.

[f the validation fails, transaction is restarted.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Why is careful read needed?

O No lock is acquired upon a read:
invisible reads
visible read invalidate cache lines

bad performance with read-dominate workloads due to high
bus contention

O What if we validated only at commit time!

Serializability? Opacity?

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTM - Why is careful read needed?

O No lock is acquired upon a read:
invisible reads
visible read invalidate cache lines

bad performance with read-dominate workloads due to high
bus contention

O What if we validated only at commit time!

Serializability? Y Opacity? N

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

(Non-Distributed) STMs

O Basic Concepts

O Example Algorithms
DSTM
JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TVSTM

O Java Versioned Software Transactional Memory.
0O Cachopo and Rito-Silva. 2006.

0O Versioned boxes as the basis for memory transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM

O Optimized for read-only transactions:

O Never aborted or blocked;

O No overhead associated with readset tracking.
O How!

O Multi-version concurrency control.

O Local writes (no locking, optimistic approach)

0O Commit phase in global mutual exclusion.

O Recently introduced a parallel commit version [FC09].

O Global version number (GVN)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Versioned boxes

O Versioned boxes

body:

Each transactional location uses a versioned box to hold the

history of values for that location.

BeR LSolSE:

e suieie 2

WA S OF AT

87

previous: ———+>previous: null
value: 1 value: 0
ey O N G S version: 5

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

TVSTM - Algorithm

O Upon begin T, read GVN and assigned it to T snapshot ID
(sID).

O Upon read on object o:
[f o is in T’s writeset, return last value written,

else return the version of the data item whose sID is “the
largest sID to be smaller than the T sID”.

[f T is not read-only, add o to readset.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Algorithm

0O Upon write, just add to the writeset.

No early conflict detection.

O Upon commit:
Validate readset:
O Abort if any object read has changed.
Acquire new sID (atomic increase of GVN).

Apply writeset: add new version in each written VBox .

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

JVSTM - Execution

Tl 2
= 2
T3 | 2
« 3 K3
Time

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DI SRS el O

Contents

Part I: (Non-Distributed) STMs
Part II: Distributed STMs
Part I1I: Case-studies

Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

Origins
Goals
Distribution Strategies

Programming Models

Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Origins

O Convergence of two main areas:
Distributed Shared Memory

Database Replication

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed Shared Memory

O DSM aims at providing a single system image

Faulttolerance via checkpointing

O Strong consistency performs poorly
Myriad of weak-consistency models

Programming more complex

O Explicit synchronization

Locks, barriers, etc

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTMs vs DSM

DSTMs are simpler to program

Transactions introduce boundaries where synchronization is
required

By avoiding to keep memory consistency at every (page)
access or at the level of fine-grain locks, it may be possible to
achieve more efficient implementations

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Database Replication

Databases use transactions
Constrained programming model

Durability is typically a must
Database replication was considered too slow

In the last 10 years new database replication schemes have
emerged

Based on atomic broadcast and on a single coordination
phase at the beginning/ end of the transaction.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DSTMs vs DBMS

Transactions are often much shorter in the STM world

This makes coordination comparatively more costly

Durability is often not an issue

This makes coordination comparatively more costly

Database replication techniques can be used as a source of
inspiration to build fault-tolerant DSTMs

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

Origins
Goals
Distribution Strategies

Programming Models

Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Goals

O Better performance:
Doing reads in parallel on different nodes.

Computing writes in parallel on different items.

O Faulttolerance:

Replication the memory state so that it survives the failure of
a subset of nodes.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

Origins
Goals
Distribution Strategies

Potential Problems

Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distribution Strategies

O Single System Image
Distribution is hidden
Easier when full replication is implemented

No control of the data locality

0O Partitioned Global Address Space
Different nodes have different data
Distribution is visible to the programmer
Programmer has fine control of data locality

Complex programming model

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distribution Strategies

O Partitioned non-replicated
Max capacity
No faulttolerance

No load balancing for reads on multiple nodes

O Full replication
No extra capacity
Max fault-tolerance

Max potential load balancing for reads

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

Origins
Goals
Distribution Strategies

Programming Models

Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Dataflow Model

Transactions are immobile and objects move through the
network.

Write: processor locates the object and acquires ownership.

Read: processor locates the object and acquires a read-only
copy.

Avoids distributed coordination.

Locating objects can be very expensive.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Control Flow Model

O Data is statically assigned to a home node and does not
change over time.

O Manipulating objects:
O In the node (via RPC);

O First data is copied from the node then the are changes written back.

O Relies on fast data location mechanism.

O Static data placement may lead to poor data locality.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Distributed STMs

Origins
Goals
Distribution Strategies

Programming Models

Toolbox

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Toolbox

Atomic Commitment

Uniform Reliable Broadcast (URB)
Atomic Broadcast (AB)

Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic Commitment

Atomicity: all nodes either commit or abort the entire
transaction.

Set of nodes, each node has input:

CanCommit

MustAbort

All nodes output same value

Commit

Abort

Commit is only output if all nodes CanCommit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator

2-phase

prepare msg

vote msg (Yes or No)

participant

commit

\
validate/

acquire locks

e

e e

decision msg

(Commit or Abort)

.

A

B
apply

decision

o P

participant

validate/

acquire locks

apply

decision

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator

vote msg (Yes or No)

2PC is blocking

participant participant

prepare msg

\
validate/

acquire locks

e

e e

A

decision msg

(Commit or Abort)

"V

validate/

acquire locks

’-V

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

coordinator

Pre-decision msg

(Pre-Commit)

Decision msg
(Commit)

3PC

prepare msg

vote msg (Yes)

-

<}
rw/
\

participant

\
validate/

acquire locks

failC it =

| log precommit ————

P s e L

apply

decision

participant

validate/

acquire locks

log pre-commit

apply

decision

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

DI SRS el O

Toolbox

Atomic Commitment

Uniform Reliable Broadcast (URB)

Atomic Broadcast (AB)

Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Uniform Reliable Broadcast

O Allows to broadcast a message m to all replicas
O If a node delivers m, every correct node will deliver m

0O Useful to propagate updates

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Toolbox

Atomic Commitment

Uniform Reliable Broadcast (URB)

Atomic Broadcast (AB)

Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Atomic Broadcast

Reliable broadcast with total order

If replica R1 receives m1 before m2, any other correct
replica Ri also receives m1 before m2

Can be used to allow different nodes to obtain locks in the
same order.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sequencer-based ABcast

Assigns SN

final uniform order

Commit order
|

R3

Receive
Msg + order Commit order
| | |
Receive)
Commit order
Msg + order

I

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Abcast with optimistic delivery

Total order with optimistic delivery.

Unless the sequencer node crashes, final uniform total order
is the same as regular total order.

Application may start certificating the transaction locally
based on optimistic total order delivery.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ABcast with optimistic delivery

final uniform order

Assigns SN Commit order
|

Receive
Msg + order Commit order
| | I I
Receive .
N e o Commit order
R3 | |
Optimistic delivery Final delivery

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ABcast with optimistic delivery

final uniform order

Assigns SN Commit order
|

Spontaneous

Eder Receive SN Commit order
| | | |
Spontaneous Commit order
order Receive SN
R3 JI
Spontaneous Final delivery

order delivery

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Toolbox

Atomic Commitment

Uniform Reliable Broadcast (URB)
Atomic Broadcast (AB)

Replication Strategies

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Replicating a single lock

O In absence of replication, there’s no chance to fall into
deadlocks with a single lock... what if we add replication?

4 N

T1 — lock() H UpdateR1 ~ unlock()

v

T2 lock () - Update R1

N—

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Replicating a single lock
4 2

T2 lock () (
-~

g N
T1 lock () K
Tz 10(:1(() m Update R2 Waiting for R1 P

e/

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Replicating a single lock

4 I
T1 — lock(- unlock() —
T2 — ok e

- ..

’ <
T] — lock() Update R2 — unlock() >
Tz lOCk () - Update R1

e/

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Coordination is slow

O Drawback of previous approach:

Coordination among replicas needs to be executed at every
lock operation.

Atomic broadcast is an expensive primitive.

The system becomes too slow.

O Solution:

Limit the coordination among replicas to a single phase, at
the beginning of the transaction or commit time.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

O State machine replication
O Single master (primary-backup)

O Multiple master (certification)
Non-voting

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

State-machine replication

All replicas execute the same set of transactions, in the same
order.

Transactions are shipped to all replicas using atomic
broadcast.

Replicas receive transactions in the same order.

Replicas execute transaction by that order.

Transactions need to be deterministic!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

State-machine replication

AB of T1’s
input params T1 pre-
acquires
its locks T1 execs T1 commits
R1 1 =
[
T2 is blocked due to T1 T2 execs T2 commits
T1 pre-
acquires
its locks T1 execs T1 commits
-
T2 is blocked due to T1 T2 execs T2 commits

AB of T2’s

input params

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

O State machine replication
O Single master (primary-backup)

O Multiple master (certification)
Non-voting

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Primary-backup

Write transactions are executed entirely in a single replica
(the primary)

[f the transaction aborts, no coordination is required.

If the transaction is ready to commit, coordination is
required to update all the other replicas (backups).

Reliable broadcast primitive.

Read transactions may be executed on backup replicas.
Works fine for workloads with very few update transactions.

Otherwise the primary becomes a bottleneck.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Primary-backup

O Synchronous updates:
Updates are propagated during the commit phase:
O Data is replicated immediately
O Read transactions observe up to date data in backup replicas

O Commit must wait for reliable broadcast to finish

O Asynchronous updates:

The propagation of updates happens in the background:

O Multiple updates may be batched

O Commit is faster

O There is a window where a single failure may cause data to be lost
®)

Read transactions may read stale data

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

O State machine replication
O Single master (primary-backup)

O Multiple master (certification)
Non-voting

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Multi-master

A transaction is executed entirely in a single replica.
Different transactions may be executed on different replicas.
[f the transaction aborts, no coordination is required.

[f the transaction is ready to commit, coordination is
required:

To ensure serializability

To propagate the updates

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Multi-master

Two transactions may update concurrently the same data in
different replicas.

Coordination must detect this situation and abort at least
one of the transactions.

Two main alternatives:
Non-voting algorithm

Voting algorithm

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

O State machine replication
O Single master (primary-backup)

O Multiple master (certification)
Non-voting

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Non-voting

The transaction executes locally.

When the transaction is ready to commit, the read and
write set are sent to all replicas using atomic broadcast.

Transactions are certified in total order.

A transaction may commit if its read set is still valid (i.e., no
other transaction has updated the read set).

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Non-voting

AB Ole’S ABOf TZ’S

read & writeset read & writeset

Execution
Transaction T1
R1 |
Execution alidation& Commit T1 Validation&Abort
Transaction T2 T2
R2 | []
Validation&Abort
T2
R3 | |]

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Single-phase schemes

O State machine replication
O Single master (primary-backup)

O Multiple master (certification)
Non-voting

Voting

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Voting

The transaction executes locally at replica R

When the transaction is ready to commit, only the write set is
sent to all replicas using atomic broadcast

Transactions’ commit requests are processed in total order

A transaction may commit if its read set is still valid (i.e., no other
transaction has updated the read set):

Only R can certify the transaction!

R send the outcome of the transaction to all replicas:
Reliable broadcast

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Voting

(write set) ol
Execution T1’s
Transaction T1 validation commit
R1
wait for o
Rz Rl’s vote &0

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contents

Part I: (Non-Distributed) STMs
Part II: Distributed STMs

Part IIl: Case-studies

Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D?STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D?STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

Software Transactional Memory for Large Scale Clusters
Bocchino, Adve, and Chamberlain. 2008

Partitioned (word-based) address space

No persistency, no replication, no caching

Supports only single thread per node

Various lock acquisition schemes + 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

O Various methods for dealing with partitioned space

O Data movement (Dataflow model):
stm get(src proc, dest, work proc, src, size, open)

stm put(src proc, work proc, dest, src, size, open)

O Remote execution (Control flow model):

stm on(src proc, work proc, function, arg buf, arg buf size,
result buf, result buf size)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

increment (proc_t proc, int xaddr) {
atomic {

on(proc) {
++xaddr

}
}
}

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

increment (proc_t proc, intx addr) {
stm_start(MY_D)
stm_on (MY_ID, proc, increment_local ,
addr, sizeof(intx), 0, O0)
stm_commit(MY_ID)

¥

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

increment_local (proc_-t src_proc,

}

void* arg,

size_t arg._size ,

void =xresult ,

Si Z:er. 1T sl tshiz eiiasl
int xaddr = x((int=x) arg);
int tmp;
stm_open_read (src_proc , addr, sizeof(int))
stm_read (src_proc , &tmp, addr, sizeof(int))
++tmp ;
stm_open_write (src_proc , addr, sizeof(int))
stm_write (src_proc , addr, &tmp, sizeof(int))

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

O Read locks (RL) vs. read validation (RV)

O RL:
immediately acquire a lock as a read (local or remote) is issued
abort upon contention (avoid deadlock)

as coordinator ends transaction, it can be committed w/o 2PC

O Note: distributed model w/o caching:
each access to non local data implies remote access:
eager locking is for free

with caching only RV could be employable

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

O Read locks (RL) vs. read validation (RV)
O RV:

commit time validation (not opaque)

validity check requires 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

O Write buffering schemes

O UL undo log:
write is applied and an undo log is maintained

forced sync upon each write

O WB write buffering:

writes applied in local buffer
avoid communications for writes during exec phase

requires additional communication at commit time

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM

O Write buffering: two lock acquisition schemes

O LA: Late acquire
at commit time.

may allow for more concurrency

O EA: Early acquire
as the write is issued

may avoid wasted work by doomed transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM: Graph Analysis (SSCA?2)

3-5 I I I I I I I I I I

3

25

2

1.5

1

Ratio to locks (lower 1s better)

0.5

1 2 4 8 16 B2 64 128 025650

Number of processors
Il RL-EA-UL
B RV-EA—-UL
Il RL-EA—-WB
1 RL—LA—WB

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Cluster-STM: Graph Analysis (SSCA?2)

100 ¢ N A A A
Good scaling afterp =4

) | STM overhead about 2.5x
3 10 F %, .
S _E__-+-_ —— X 3
'g -+
o
3
E \ "X :
= e,]

01 1 1 | U T S N U S ST T U SN ST TN SN SHNNT SN SN S SN SN SN RN U SN SN RN N RN WY

1 2 4 8 16 32 64 128 256 512
Number of processors (log scale)
locks —+— STM ---x---

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D?STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

Sinfonia: A new paradigm for building scalable distributed
systems.

Aguilera, Merchant, Shah, Veitch, and Karamanolis, 2009.

Partitioned global (linear) address space

Optimized for static transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

O Mini-transactions:

A-priori knowledge on the data to be accessed

O Two types of nodes:
Application nodes

Memory nodes

O Faulttolerance via:
In-memory replication

Sync (log) + async checkpoint for persistency on memory
nodes

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

application application application application
node node node node

g IiLl;?:rry X zminitransactionszz& j
2O
memory memory memory
node node node

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Minitransaction

A

=

Sinfonia

compare items

mem-id | addr | len]| data)
mem-id | addr | len]| data)
read items 3
mem-id | addr | len
mem-id | addr | len
write items
mem-id | addr | len]| data)
mem-id | addr | len | data))

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

API

class Minitransaction {

public:

void cmp(memid,addr,len,data); // add cmp item
void read(memid,adar,len,buf); // add read item
void write(memid,addr, en,data); // add write item
int exec_and_commit(); // execute and commit

b

Example

t=new Minitransaction;
t->cmp(memid, addr, len, data);
t>write(memid, addr, len, newdata);
status = t->exec_and_commit()

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

O Global space is partitioned
Transaction may need to access different memory nodes
[t can only commit if it can commit at all memory nodes

2-phase commit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

participant 1

participant 2
participant 3

coordinator

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Sinfonia

O No support for caching:
delegated to application level

same applies for load balancing

O Replication:
aimed at fault-tolerance, not enhancing performance
fixed number of replicas per memory node

primary-backup scheme ran within first phase of 2PC

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D*STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

D2STM: Dependable Distributed STM
Couceiro, Romano, Rodrigues, Carvalho, 2009

Single-image system
Full replication

Strong consistency

Certification-based replication scheme

Based on Atomic Broadcast

Built on top of JVSTM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

Non-voting replication scheme
Transactions execute in a single replica
No communication during the execution
Writeset and readset AB at commit time

Deterministic certification executed in total order by all
replicas

No distributed deadlocks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

Execution AB of T1’s
Transaction T1 read & writeset
R1 | | X
Validation& Commit T'1
R2
Validation& Commit T'1
R3 | |

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

AB of both T1’s

readset & writeset

Problem:

(very) big message size

Validation &

Execution Gt

R1 S

Validation &

Commit

R2 L1

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O In STMs, transaction’s execution time is often 10-100 times

short than in DBs:
the cost of AB is correspondingly amplified

O Bloom Filter Certification:

space-efficient encoding (via Bloom Filter) to reduce message
size

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

[Application]
ard 1 N)
D2STM API

JVSTM

Replication Manager

i

[Generic Group Commmunication Service

[Network

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O Bloom filters
A set of n items is encoded through a vector of m bits

Each item is associated with k bits through k hash functions
having as image {1..m}:

O insert: set k bits to 1

O query: check if all k bits set to 1

Oj1j10jo01401J03110}1110

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O False Positives:

An item is wrongly identified as belonging to a given set

Depend on the number of bits used per item (m/n) and the
number of hash functions (k)

O D2STM computes the size of the Bloom filter based on:
0O User-defined false positive rate
O Number of items in the read set (known)

O Number of BF queries, estimated via moving average over
recently committed transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O Read-only transactions:

local execution and commit

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O Write transaction T:
Local validation (read set)

[f the transaction is not locally aborted, the read set is
encoded in a Bloom filter

Atomic broadcast of a message containing:
O the Bloom filter enconding of tx readset

O the tx write set

O the snapshotlD of the tx

Upon message delivery: validate tx using Bloom filter’s
information

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

for each committed T’ s.t. T”.snapshotID > T.snapshotID
for each data item d in the writeset of T’
if d is in Bloom filter associated with T’s readset

abort T
// otherwise...

commit T

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

D’STM

O STMBench7: Results

STMBench7 - % Execution Time Reduction of Write Transactions

S
085 Ko S e e T e
0.3 “”‘l"""‘“
035 | T e \‘/’ = N
02 = %
0.15 | —
0.1 b
0.05 | .
ol
8 “ Threads
Replicas °

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D?STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

Asynchronous Lease Certification Replication of Software
Transactional Memory

Carvalho, Romano, Rodrigues, 2010

Exploit data access locality by letting replicas dynamically
establish ownership of memory regions:

replace AB with faster coordination primitives:

no need to establish serialization order among non-
conflicting transactions

shelter transactions from remote conflicts

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

O Data ownership established by acquiring an Asynchronous
Lease

mutual exclusion abstraction, as in classic leases...
...but detached from the notion of time:
implementable in a partially synchronous system

Lease requests disseminated via AB to avoid distributed

deadlocks.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

O Transactions are locally processed

O At commit time check for leases:

An Asynchronous Lease may need to be established

O Proceed with local validation

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

O If local validation succeeds, its writeset is propagated using

Uniform Reliable Broadcast (URB):
No ordering guarantee, 30-60% faster than AB

O If validation fails, upon re-execution the node holds the
lease:

Transaction cannot be aborted due to a remote conflict!

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P

P2

P3

4 N /7 N\ 4)
Lease Request Lease Ensured Apply
(AB) (URB) (URB)
4 44 7 AN ¥
/ W / W /oy
/ vy ! ! Wy
/ YAN; / W
/ Y / AN
/ ni 'y
/ Ry * oy \
\ . : A N
\ vivy 1/ \/ ,(
\ VoY 7 AN
\ [n ! DR
\ Iy 1, 1SN
\\ Ih 1, /// Vo
< N | P B
\- J . J & J

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

P

P2

P3

4 N) 4 N\
Lease Request Lease Ensured Apply
(AB) (URB) (URB)
4 44 7 AN ¥
/ Wl / W /oy
/ vy ! ! Wy
/ YAN; / W
/ Y / AN
/ nt 'y
/ IR R |
\ . R A |
\ vivy 1/ \/ ,(
\ VoY 7 AN
\ L n ! DR
\ Iy 1, 1SN
\\ Ih 1, /// Vo
< /Y| — |) P B
\- AN J B J

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

P1

P2

P3

| ~N s ~N
Leaser | case Ensured ?Jplsg
((URB) ()
N >
4 |\ 414
/ W /oy
/ \\X /
/l /’\\ ‘kl
/ R
I, 4 ‘\ /“\‘
! // \/ /
1/ /A’ \\
1,/ /)\ \
\ // /// \ \
— Y 7NN
I Y/
+— | - >

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

P1

P2

P3

| ~N s ~N
Leaser | case Ensured ﬁplgg
((URB) ()
N >
4 |\ 414
/ W /oy
! \\X /
/I /’\\ ‘kl
!
' R
I, 4 ‘\ /“\‘
! // \/ /
1/ /A’ \\
1,/ /)\ \
\ / / /// \ \
— Y 7NN
I Y/
+— | - >

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

P1

P2

P3

.
-1 >
(1 —>

/i >

Certification

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

O If applications exhibit some access locality:
avoid, or reduce frequency of AB

locality improved via conflictaware load balancing

O Ensure transactions are aborted at most once due to remote
conflicts:

essential to ensure liveness of long running transactions

benefic at high contention rate even with small running
transactions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

Application

. 5 \

Distributed STM APl Wrapper

: o
e

JVSTM

Replication
Manager

[Lease Manager]<1—|>

l Group Communication Service |

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

ALC

O Synthetic “Best case” scenario

Replicas accessing distinct memory regions

2500

2000

1500

1000

Throughput (commits/sec)

500

ALC
CERT

3 4 5 6 7

8

- 10

ReMi%‘ﬁceim, P. Romano, L. Rodrigues, HPCS 2011

Throughput (commits/sec)

ALC

0O Synthetic “Worst case” scenario

All replicas accessing the same memory region

100 %

ALC - % abort -
CERT - % abort

1600 | ALC - through'put
CERT - throughput

1400

\ 80 % D

1000 60 % /,

Abort rate (%)

800 \
600

/
\
SN v

\ 20 % /
200 e Ve B8 /
0 0 %
2 3 4 5 6 7 8 2 3 4 5
Replicas # Replicas

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Speed-up (ALC vs CERT)

4.5

3.5

2.5

1.5

O Lee Benchmark

ALC

Abort rate (%)

Replicas

Replicas

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Part III: Case-Studies

O Partitioned Non-Replicated
STM for clusters (Cluster-STM)

O Partitioned (Replicated)

Static Transactions (Sinfonia)

O Replicated Non-Partitioned
Certification-based with Bloom Filters (D?STM)
Certification with Leases (ALC)
Active Replication with Speculation (AGGRO)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO

O AGGRO: Boosting STM Replication via Aggressively

Optimistic Transaction Processing
O R. Palmieri, Paolo Romano and F. Quaglia, 2010

O Active Replication for STMs
Multiple replicas
All replicas execute update transactions
Read-only transactions can execute in any replica

Data survives failures of replicas

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Basic Active Replication

Tx Exec l

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

With Optimistic Delivery

Opt

Tx Exec Hold Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Improvement

Tx Exec

Hold Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

But...

Hold Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Speculative

Hold Locks

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO

Transactions are started in speculative order immediately
after the optimistic delivery

Whrites kill all transactions that have read stale data

[tems touched by speculative transactions Tspec are marked
as “work-in-progress (WIP)” while Tspec executes

When Tspec terminates (but not yet committed) items are

unmarked as WIP.

Transaction only read values from terminated transactions.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon opt-Deliver(T1)

start transaction T1i in a speculative fashion

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon write(Ti, X, v)
if (X not already in Ti.WS)
add X to Ti.WS
mark X as WIP // C&S
for each Tj that follows Ti in OAB order:
if (Tj read X from Tk preceding Ti) abort Tj
else

update X in Ti.WS

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon read(Ti, X)
if (X in T1i.WS) return X.value from Ti.WS
if (X in Ti.RS) return X.value from Ti.RS
wait while (X is marked WIP)

let Tj be tx preceding Ti in OAB order that wrote X

Ti.readFrom.add(Tj)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon completed (T1)

atomically {

for each X in Ti.WS: unmark X as WIP by Ti
}

upon commit(T1)

atomically {

for each X in Ti.WS: mark X as committed

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Algorithm

upon abort(T1i)
abort any transaction that read from Ti
restart Ti
upon TO-Deliver(T1)
append Ti to TO-order
wait until all xacts preceding Ti in TO-order committed

if (validation of Ti’s readset fails) abort (T1)

else commit(Ti)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

AGGRO Performance

0O Performance speed-up
(20% reordering, only one SO explored)

no speculation List speculation
8000 T T T T T T T
; ; Opt-p=1 —— S
s s Opt - =4 —&— .
000 [l Opt-p=8 —<—— ... gl
. : : Aggro - =1 ——— : .
a Aggro - =4 e
9,,; 6000 Aggro - =8 < b
Y i -
e D A S i
E 5000 =
@ /
(2] F
S Y S R
8_ 4000 """""""""""] / 7
(7] sl
D g
oC
3000 ';’;’6/";; :*f """"""""""""""""""" -
-
o0 O B e R S —— e — -

10000 15000 20000 25000 30000 35000
Transactions per Second (X))

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Contents

Part I: (Non-Distributed) STMs
Part II: Distributed STMs
Part I1I: Case-studies

Part IV: Conclusions

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conclusions

Replication helps in read-dominated workloads or when
writes have low conflicts

Replication provides fault-tolerance

Some techniques have promising results

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Conclusions

No technique outperforms the others for all workloads,
networks, number of machines, etc

Autonomic management of the distributed consistency and
replication protocols

Change the protocols in runtime, in face of changing
workloads

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

A bit of publicity

O Time for the commercials

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

CLOUD-TM

O DTMs: a programming paradigm
for the Cloud ?

O Stay tuned on www.cloudtm.eu

SEVENTH FRAMEWORK
PROGRAMME

Cloud T™M

A novel programming 4
paradigm for the Cloud

B / / » y Y,

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Euro-IM

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Euro-TM Cost Action

Research network bringing together leading European
experts in the area of TMs

Contact us if you are interested in joining it:
romano@inesc-id.pt

ler@inesc-id.pt

www.eurotm.org

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

[AGHKO6] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami

Tamir, * Transactional contention management as a non-clairvoyant

scheduling problem” PODC 2006.

[AKWKLJO8] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel
Lujan, Chris Kirkham, and Ian Watson, Lee-TM: A Non-trivial
Benchmark for Transactional Memory, In Proceedings of the 8th
International Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP 2008), Aiya Napa, Cyprus, June 2008.

[AMSVKO9] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair
Veitch, and Christos Karamanolis. 2009. Sinfonia: A new paradigm for
building scalable distributed systems. ACM Trans. Comput. Syst. 27, 3,
Article 5 (November 2009)

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

[BACO8] Robert L. Bocchino, Vikram S. Adve, and Bradford L.
Chamberlain. 2008. Software transactional memory for large scale
clusters. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming (PPoPP '08).
ACM, New York, NY, USA, 247-258

[CRRCO09] M. Couceiro, Paolo Romano, L. Rodrigues and N.
Carvalho, D2STM: Dependable Distributed Software
Transactional Memory, Proc. IEEE 15th Pacific Rim International
Symposium on Dependable Computing (PRDC’09)

[CS06] Joao Cachopo and Antonio Rito-Silva. 2006. Versioned
boxes as the basis for memory transactions. Sci. Comput.

Program. 63, 2 (December 2006), 172-185.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

[DSS06] D. Dice, O.Shalev, N. Shavit, Transactional Locking II,
In In Proc. of the 20th Intl. Symp. on Distributed Computing

(2006)

[FC10] Sérgio Fernandes and Jodao Cachopo, A scalable and
efficient commit algorithm for the JVSTM, 5th ACM SIGPLAN

Workshop on Transactional Computing

|GKO8] Rachid Guerraoui and Michal Kapalka. 2008. On the

correctness of transactional memory. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and practice of parallel
programming (PPoPP '08). ACM, New York, NY, USA, 175-184.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

|GHPO5] Rachid Guerraoui, Maurice Herlihy, Bastian Pochon:
Toward a theory of transactional contention managers. PODC

2005: 258-264

[GUO9] Rachid Guerraoui, Tutorial on transactional memory,

CAV 2009

[HLMSO03] Maurice Herlihy, Victor Luchangco, Mark Moir, and
Wailliam N. Scherer, III. 2003. Software transactional memory for
dynamic-sized data structures. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing

(PODC '03). ACM, New York, NY, USA, 92-101.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

[JKVO7] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007.
STMBench7: a benchmark for software transactional memory. SIGOPS

Oper. Syst. Rev. 41, 3 (March 2007), 315-324.

[IMCKOO8] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis,
Kunle Olukotun, STAMP: Stanford Transactional Applications for

Multi-Processing, In IISWC '08: Proceedings of The IEEE International
Symposium on Workload Characterization, Sept. 2008.

IMMAOQ6] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza.
2006. Exploiting distributed version concurrency in a transactional
memory cluster. In Proceedings of the eleventh ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP

'06). ACM, New York, NY, USA, 198-208.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

O

Bibliography

[KAJLKWO08] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel
Lujan, Chris Kirkham and Ian Watson, DiSTM: A Software Transactional

Memory Framework for Clusters, In the 37th International Conference on

Parallel Processing (ICPP'08), September 2008
[PQR10] R. Palmieri, Paolo Romano and F. Quaglia, AGGRO: Boosting

STM Replication via Aggressively Optimistic Transaction Processing, Proc.
9th IEEE International Symposium on Network Computing and
Applications (NCA), Cambridge, Massachussets, USA, IEEE Computer
Society Press, July 2010

[RPQCRI10] Paolo Romano, R. Palmieri, F. Quaglia, N. Carvalho and L.
Rodrigues, An Optimal Speculative Transactional Replication Protocol,
Proc. 8th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), Taiwan, Taipei, IEEE Computer

Society Press, September 2010

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

Bibliography

0O [RRCC10] Paolo Romano, L. Rodrigues, N. Carvalho and J.
Cachopo, Cloud-TM: Harnessing the Cloud with
Distributed Transactional Memories , ACM SIGOPS
Operating Systems Review, Volume 44 , Issue 2, April 2010

O [SR11] Saad and Ravindran, Distributed Transactional
Locking II, Technical Report, Virgina Tech, 2011.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

The End

Thank you.

M. Couceiro, P. Romano, L. Rodrigues, HPCS 2011

