
Transparent Speculation in
Geo-Replicated Transactional Data Stores

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

ABSTRACT

This work presents Speculative Transaction Replication (STR),
a protocol that exploits transparent speculation techniques to
enhance performance of geo-distributed, partially replicated
transactional data stores. In addition, we define a new con-
sistency model, Speculative Snapshot Isolation (SPSI), that
extends the semantics of Snapshot Isolation (SI) to shelter
applications from the subtle anomalies that can arise from
using speculative transaction processing. SPSI extends SI
in an intuitive and rigorous fashion by specifying desirable
atomicity and isolation guarantees that must hold when using
speculative execution.

STR provides a form of speculation that is fully transparent
for programmers (it does not expose the effects of misspecu-
lations to clients). Since the speculation techniques employed
by STR satisfy SPSI, they can be leveraged by application
programs in a transparent way, without requiring any source-
code modification to applications designed to operate using
SI. STR combines two key techniques: speculative reads,
which allow transactions to observe pre-committed versions,
which can reduce the ‘effective duration’ of pre-commit locks
and enhance throughput; Precise Clocks, a novel timestamp-
ing mechanism designed to enhance the chance of successful
speculation.

We assess STR’s performance on up to nine geo-distributed
Amazon EC2 data centers, using both synthetic benchmarks
as well as realistic benchmarks (TPC-C and RUBiS). Our
evaluation shows that STR achieves throughput gains up to
11× and latency reduction up to 10×, in workloads character-
ized by low inter-data center contention. Furthermore, thanks
to a self-tuning mechanism that dynamically and transpar-
ently enables and disables speculation, STR offers robust
performance even when faced with unfavourable workloads
that suffer from high misspeculation rates.

ACM Reference Format:

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆ †Université
catholique de Louvain ⋆Instituto Superior Técnico . 2018.
Transparent Speculation in Geo-Replicated Transactional Data

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-5785-2/18/06. . . $15.00
https://doi.org/10.1145/3208040.3208055

Stores. In HPDC ’18: The 27th International Symposium on High-
Performance Parallel and Distributed Computing, June 11–15,

2018, Tempe, AZ, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3208040.3208055

1 INTRODUCTION

Modern large scale storage systems are increasingly deployed
over geographically-scattered data centers [6, 16, 22]. Geo-
replication allows storage systems to remain available even
in the presence of outages affecting entire data centers and
it reduces access latency by bringing data closer to clients.
On the down side, though, the performance of geographically
distributed data stores is challenged by large communication
delays between data centers.

To provide ACID transactions, a desirable feature that can
greatly simplify application development [34], some form of
global (i.e., inter-data center) certification is needed to safely
detect conflicts between concurrent transactions executing
at different data centers. The adverse performance impact of
global certification is twofold: (i) system throughput can be
severely impaired, as transactions need to hold pre-commit
locks during their global certification phase, which can cripple
the effective concurrency that these systems can achieve;
and (ii) client-perceived latency is increased, since global
certification lies in the critical path of transaction execution.

Transparent speculation. This work investigates the use
of speculative processing techniques to alleviate both of the
above problems. We focus on geo-distributed partially repli-
cated transactional data stores that provide Snapshot Iso-
lation, a widely employed consistency criterion [7, 11] (SI),
and propose a novel distributed concurrency control scheme,
Speculative Snapshot Isolation (SPSI), that supports a form
of transparent speculative execution called speculative reads.

Speculative reads allow transactions to observe the data
item versions produced by pre-committed transactions, in-
stead of blocking until they are committed or aborted. As
such, speculative reads can reduce the “effective duration”
of pre-commit locks (i.e., as perceived by conflicting trans-
actions), thus reducing transaction execution time and en-
hancing the maximum degree of parallelism achievable by
the system — and, ultimately, throughput. We say that
speculative reads are a transparent speculation technique,
as misspeculations caused by it never surface to the clients
and can be dealt with by simply re-executing the affected
transaction.

Avoiding the pitfalls of speculation. Past work has
demonstrated how the use of speculation, either transparently
or requiring source-code modification [13, 15, 20, 28, 37], can

https://doi.org/10.1145/3208040.3208055
https://doi.org/10.1145/3208040.3208055

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

significantly enhance the performance of distributed [20, 28–
30, 37] and single-site [13] transactional systems. However,
these approaches suffer from several limitations:

1. Unfit for geo-distribution/partial replication.
Some existing works in this area [20, 30, 37] were not de-
signed for partially replicated geo-replicated data stores. On
the contrary, they target different data models (i.e., full repli-
cation [30, 37]) or rely on techniques that impose prohibitive
costs in WAN environments, such as the use of centralized
sequencers to totally order transactions [20].

2. Subtle concurrency anomalies. Existing partially
replicated geo-distributed transactional data stores that allow
speculative reads [13, 17, 29] expose applications to anom-
alies that do not arise in non-speculative systems and that
can severely undermine application correctness. Figure 1 il-
lustrates two examples of concurrency anomalies that may
arise with these systems. The root cause of the problem
is that existing systems allow speculative reads to observe
any pre-committed data version. This exposes applications
to data snapshots that reflect only partially the updates of
transactions (Fig. 1a) and/or include versions created by
conflicting concurrent transactions (Fig. 1b). These anom-
alies have the following negative impacts: (i) transaction
execution may be affected to the extent to generate anoma-
lous/unexpected behaviours (e.g., crashing the application
or hanging it in infinite loops); and (ii) they can externalize
non-atomic/non-isolated snapshots to clients.

3. Performance robustness. If used injudiciously, spec-
ulation can hamper performance. As we will show, in adverse
scenarios (e.g., large likelihood of transaction aborts and high
system load) misspeculations can significantly penalize both
user-perceived latency and system throughput.

Contributions. This paper presents the following contribu-
tions:

• Speculative Transaction Replication (STR), a novel
speculative transactional protocol for partially repli-
cated geo-distributed data stores (§5). STR shares sev-
eral key design choices with state-of-the-art strongly
consistent data stores [6, 7, 31], which contribute
to its efficiency and scalability. These include:
multi-versioning, which maximizes efficiency in read-
dominated workloads [4], purely decentralized concur-
rency control based on loosely synchronized physi-
cal clocks [6, 7, 32], and support for partial replica-
tion [6, 21]. The key contribution of STR is its inno-
vative, fully decentralized, concurrency control mecha-
nism, which aims not only to ensure (SPSI-)safe spec-
ulations in a lightweight and scalable fashion, but also
to enhance the chances of successful speculation via
a novel transaction timestamping mechanism that we
called Precise Clocks.

• Speculative Snapshot Isolation (SPSI), a novel con-
sistency model that is the foundation of STR (§4).
Besides guaranteeing the familiar Snapshot Isolation
(SI) to committed transactions, SPSI provides clear
and rigorous guarantees on the atomicity and isolation

Read(B) ->B0

N1

N2
B

T1 Exec

N3

A

C

Prepare(C1)

Prepare(B1)

T2 Exec

Read(C) ->C1

Invariant: B!=C
Init: B=4, C=2
T1: B+=2
 C+=2
T2: c=read(C)
 b=read(B)
 d=1/(b-c)

(a) Atomicity violation — T2 observes T1’s pre-committed version
of data item C, but not of B. This breaks the application invariant
(B ̸=C), causing an unexpected division by zero exception that could
crash the application at node N3.

N1

N2
B

T1 Exec

N3

A

C

Prepare(B1)
Prepare(B2)

T2 Exec

Prepare(A1)
Prepare(A2)

Read(B)->B2

Read(A)->A1

T3 Exec

 Invariant:A=B*2
 Init: A=2, B=1
 T1: A=4, B=2
 T2: A=10, B=5
 T3: a=read(A)
 b=read(B)
 while (b!=a)
 ++b
 <Loop body>

(b) Isolation violation — T3 observes the pre-committed updates
of two conflicting transactions, namely T1 and T2. T3 enters an
infinite loop, as the application invariant (A=B*2) is broken due to
the concurrency anomaly.

Figure 1: Examples illustrating possible concurrency

anomalies caused by speculative reads. T1, T2 and T3
are transactions; N1, N2 and N3 are three nodes that

store data items A, B and C, respectively.

of the snapshots observed and produced by executing
transactions. In a nutshell, SPSI requires an execut-
ing transaction to read data item versions committed
before it started (as in SI), but it also allows to atomi-
cally observe the effects of non-conflicting transactions
that originated on the same node and pre-committed
before the transaction started. This shelters program-
mers from having to reason about complex concurrency
anomalies that can otherwise arise in speculative sys-
tems.

• A lightweight yet effective self-tuning mechanism, based
on a feedback control loop, that dynamically enables
or disables speculation based on the workload charac-
teristics (§5.5).

• We evaluate STR on up to nine geo-distributed Ama-
zon EC2 data centers, using both synthetic and realistic
benchmarks (TPC-C and RUBiS) (§6). Our experimen-
tal study shows that the use of transparent specula-
tion (speculative reads) yields up to 11× throughput
improvements and 10× latency reduction in a fully
transparent way, i.e., requiring no compensation logic.

2 RELATED WORK

Geo-replication. The problem of designing efficient mecha-
nisms to ensure strong consistency semantics in geo-replicated
data stores has been extensively studied. One class of geo-
replicated systems [8, 39] is based on the state-machine repli-
cation (SMR) [23] approach, in which replicas first agree on
the serialization order of transactions and then execute them

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

without further coordination. Other recent systems [6, 7, 22]
adopt the deferred update (DU) [19] approach, in which trans-
actions are first locally executed and then globally certified.
This approach is more scalable than SMR in update inten-
sive workloads [19, 41] and, unlike SMR, it can seamlessly
support non-deterministic transactions [33]. The main down
side of the DU approach is that locks must be maintained
for the whole duration of transactions’ global certification,
which can severely hinder throughput [38]. STR builds on
the DU approach and tackles its performance limitation via
speculative techniques.

The property introduced in this work, SPSI, is related to
PSI (Parallel Snapshot Isolation) [35], a consistency criterion
that relaxes SI in order to reduce latency in geo-distributed
data stores. When compared with SPSI, PSI specifies a weaker
consistency criterion for final committed transactions: PSI
requires that transactions read the most recent committed
version of some data only if this is created by a transaction
that originated at the same site. This allows for anomalies
that are not possible in SI (called long forks [35]), and that
are also excluded by SPSI, which guarantees SI-semantics
for final committed transactions, i.e., they only observe the
most recent committed version independently from the site in
which it was originated. Further, PSI prohibits transactions
from reading any version that is not final committed, which
represents one of the key motivations underlying the definition
of SPSI: sparing transactions from waiting for pre-commit
locks to be released, while still providing rigorous consistency
guarantees to shelter applications from arbitrary concurrency
anomalies.

Speculation. The idea of letting transactions “optimisti-
cally” borrow, in a controlled manner, data updated by con-
current transactions has already been investigated in the past.
SPECULA [30] and Aggro [26] have applied this idea to local
area clusters in which data is fully replicated via total-order
based coordination primitives; Jones et. al. [20] applied this
idea to partially replicated/distributed databases, by relying
on a central coordinator to totally order distributed trans-
actions. These solutions provide consistency guarantees on
executing transactions (and not only on committed ones) that
are similar in spirit to the ones specified by SPSI. However,
some of these systems [26, 30] adopt a full-replication scheme,
which requires all replicas to store the full dataset and apply
all updates. This significantly hinders their scalability. Other
systems, e.g., [20], instead, rely on the use of a global se-
quencer, which can become a system bottleneck and imposes
unacceptably large latency in geo-distributed settings.

Other works in the distributed database literature, e.g., [13,
17, 29], have explored the idea of speculative reads (sometimes
referred to as early lock release) in decentralized transactional
protocols for partitioned databases, i.e., the same system
model assumed by STR. However, these protocols provide no
guarantees on the consistency of the snapshots observed by
transactions (that eventually abort) during their execution
and may expose applications to subtle concurrency bugs,
such as the ones exemplified in Figure 1.

Another form of speculation that strives to reduce
perceived-latency by exposing preliminary results to external
clients, i.e., speculative commits, has been explored by various
works. Helland et. al. advocated the guesses and apologies
programming paradigm [18], in which systems expose prelim-
inary results of requests (guesses), but reconcile the exposed
results if they are different from final results (apologies).
A similar approach is adopted also in other recent works,
like PLANET [28] and ICG [15]. Unlike STR, which is to-
tally transparent to programmers, these approaches employ a
form of external speculation, which requires source-code mod-
ification to incorporate compensation logics. Furthermore,
these approaches are designed to operate on conventional
storage systems, which do not support speculative reads of
pre-committed data. As such, although these approaches may
reduce user-perceived latency, they do not tackle the problem
of reducing transaction blocking time, as STR does. We will
provide experimental evidence supporting this claim in § 6.

Some of the speculative transaction processing systems
mentioned above, e.g., SPECULA [30] and PLANET [28], rely
on self-tuning mechanisms aimed at autonomously determin-
ing whether the use of speculation may be beneficial or not.
As already mentioned, STR employs an ad-hoc self-tuning
mechanism that aims at pursuing an analogous goal, i.e.,
dynamically enabling or disabling speculation based on the
workload characteristics. More in general, there exists a large
literature on self-tuning of transactional systems [9, 25, 27],
which has shown the feasibility of using automatic techniques
to predict and/or react timely to workload changes.

3 SYSTEM AND DATA MODEL

Our target system model consists of a set of geo-distributed
data centers, each hosting a set of nodes. In the following, we
assume a key-value data model. This is done for simplicity and
since our current implementation of STR runs on a key-value
store. However, the protocol we present is agnostic to the
underlying data model (e.g., relational or object-oriented).

Data and replication model. The dataset is split into
multiple partitions, each of which is responsible for a disjoint
key range and maintains multiple timestamped versions for
each key. Partitions may be scattered across the nodes in the
system using arbitrary data placement policies. Each node
may host multiple partitions, but no node or data center is
required to host all partitions.

A partition can be replicated within a data center and
across data centers. STR employs synchronous master-slave
replication to enforce fault tolerance and transparent fail over,
as used, e.g., in [2, 6]. A partition has a master replica and
several slave replicas. We say that a key/partition is remote
for a node, if the node does not replicate that key/partition.

Synchrony assumptions. STR requires that nodes be
equipped with loosely synchronized, conventional hardware
clocks, which we only assume to monotonically move forward.
Additional synchrony assumptions are required to ensure
the correctness of the synchronous master-slave replication

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

scheme used by STR in presence of failures [12]. STR in-
tegrates a classic single-master replication protocol, which
assumes perfect failure detection capabilities [5]. We note,
though, that it would be possible to replace the replication
scheme currently employed in STR to use techniques, like
Paxos [10], which require weaker synchrony assumptions.

Transaction execution model. A transaction is executed,
by a process called its coordinator, in the node where it was
originated. When it requests to commit, it undergoes a local
certification phase, which checks for conflicts with concurrent
transactions in the local node. If the local certification phase
succeeds, we say that the transaction local commits and is
attributed a local commit timestamp, noted LC. Next, it
executes a global certification phase that detects conflicts
with transactions originated at any other node in the system.
Transactions that pass the global certification phase are said
to final commit and are attributed a final commit timestamp,
noted FC. Commit requests are confirmed to applications
only if the transaction is final committed, which guarantees
that speculative states never surface to clients. However, the
versions created by a local committed transaction T can
be exposed to other transactions via the speculative read
mechanism. We say that these transactions data depend on
T .

4 THE SPSI CONSISTENCY MODEL

We introduce Speculative Snapshot Isolation (SPSI), a con-
sistency model that generalizes the well-known SI criterion to
define a set of guarantees that shelter applications from the
subtle anomalies (§Fig. 1) that may arise when using specu-
lative techniques. Before presenting the SPSI specification,
we first recall the definition of SI [40]:

• SI-1. (Snapshot Read) All operations read the most
recent committed version as of the time when the
transaction began.

• SI-2. (No Write-Write Conflicts) The write-sets of any
committed concurrent transactions must be disjoint.

We now introduce the SPSI specification:

• SPSI-1. (Speculative Snapshot Read) A transaction
T originated at a node N at time t must observe the
most recent versions created by transactions that i)
final commit with timestamp FC ≤ t (independently
of the node where these transactions originated), and
ii) local commit with timestamp LC ≤ t and originated
at node N .

• SPSI-2. (No Write-Write Conflicts among Final Com-
mitted Transactions) The write-sets of any final com-
mitted concurrent transactions must be disjoint.

• SPSI-3. (No Write-Write Conflicts among Transac-
tions in a Speculative Snapshot) Let S be the set of
transactions included in a snapshot. The write-sets of
any concurrent transactions in S must be disjoint.

• SPSI-4. (No Dependencies from Uncommitted Trans-
actions) A transaction can only be final committed

if it does not data depend on any local-committed or
aborted transaction.

SPSI-1 extends the notion of snapshot, at the basis of the
SI definition, to provide the illusion that transactions execute
on immutable snapshots, which reflect the execution of all
the transactions that local committed before their activation
and originated on the same node. By demanding that the
snapshots over which transactions execute reflect only the
effects of locally activated transactions, SPSI allows for effi-
cient implementations, like STR’s, which can decide whether
it is safe to observe the effects of a local committed transac-
tion based solely on local information. Note that property
SPSI-1 is specified for any transaction, including the ones
that eventually abort (because some other SPSI property is
violated). Hence, SPSI-1 must hold throughout the execution
of transactions. This has also another relevant implication:
assume that a transaction T , which started at time t, reads
speculatively from a local committed transaction T ′ with
timestamp LC ≤ t, and that, later on, T ′ final commits with
timestamp FC > t; at this point T violates the first sub-
property of SPSI-1. Hence, T must be aborted before T ′ is
allowed to final commit. The same applies in case T ′ aborts:
since SPSI-4 prohibits developing data dependencies from
aborted transactions, also in this case, T must be aborted
before T ′ is.

SPSI-2 coincides with SI-2, ensuring the absence of write-
write conflicts among concurrent final committed transactions.
SPSI-3 complements SPSI-1 by ensuring that the effects of
conflicting transactions can never be observed. Finally, SPSI-
4 ensures that a transaction can be final committed only if it
does not depend on transactions that may eventually abort.

Which anomalies does SPSI allow? SPSI provides iden-
tical guarantees to SI for final committed transactions. As for
local committed and active transactions, SPSI allows for his-
tories that would be rejected by SI, e.g., observing a version
locally committed by a transaction that eventually aborts
due to a conflict with some remote transaction. However, we
argue that these anomalies allowed by SPSI are unharmful
for applications designed to operate using SI. This is easy to
show if one considers that SPSI ensures that any transaction
T behaves like if it had executed under SI in a history that
includes only the transactions known by the node in which
T originated at the time in which T was activated. More
formally, the snapshot observable by T in any SPSI-compliant
history H is equivalent to the one that T would observe in
some SI-compliant history H′, which differs from H only be-
cause H′ may omit some remote transaction concurrent with
T . In other words, any snapshot observable with SPSI can be
obtained via a (possible) history that would be legal using
SI. Clearly, if an application works correctly with SI, i.e., it
is correct with any SI-compliant history (including history
H′), the application will be also be correct when faced with
history H′ — and, thus, when executing the SPSI-compliant
history H.

Which anomalies does SPSI prevent? In Fig. 1 we have
already exemplified some of the concurrency anomalies that

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

SPSI prevents, and which could lead applications to hang or
crash. Interestingly, while analyzing the TPC-C and RUBiS
benchmarks, we have identified several concurrency bugs that
may arise and cause application crashes, if SPSI’s guarantees
are not enforced.

// New-Order
...
Order order;
storage->Put(order);
for (int i = 0; i < order.ol_count; i++) {
OrderLine order_line = create_ol(order, i);
storage->Put(order_line);
...

}

// Order-Status
...
Order order = storage->Read(customer.last_order);
for (int i = 0; i < order.ol_count; i++) {
OrderLine ol = storage->Read(order.ol, i)
// Parse throws a Null Pointer Exception if ol is null
parse(ol);
...

}

Listing 1: Potential anomaly prevented by SPSI in
TPC-C.

Listing 1 illustrates one of the anomalies we spotted in
TPC-C benchmark, which involves the New Order (NO) and
Order Status (OS) transactions. NO inserts a new order for
a customer and then creates some number of corresponding
order lines. OS fetches the identifies of the last order of a
given customer, and the retrieves the corresponding order
lines. In a partially-replicated setting, the order record may
be stored in the node where the NO transaction was activated,
but the order lines may be stored in some different node. An
injudicious use of speculative reads may allow a OS transac-
tion to read the pre-committed order record of a concurrent
NO, but then allow the OS to miss the corresponding order
lines (an atomicity violation that is prevented by SPSI-1). In
this case, the parse method in OS would be fed with a null
pointer and generate an unexpected exception, which would
never occur with SI (or SPSI) and could lead to a crash of
the application.

5 THE STR PROTOCOL

This section introduces the Speculative Transaction Repli-
cation (STR) protocol. For reasons of clarity, we present
the design of STR incrementally. We first present a non-
speculative base protocol that implements a SI-compliant
transaction system. This base protocol is then extended with
a set of mechanisms aimed to support speculation in an effi-
cient and SPSI-compliant way. Finally, we discuss the fault
tolerance of STR. Due to space constraints, we place the
correctness proof in our technical report [24].

5.1 Base non-speculative protocol

The base protocol is a multi-versioned, SI-compliant algo-
rithm that relies on a fully decentralized concurrency control
scheme similar to that employed by recent, highly scalable
systems, like Spanner or Clock-SI [6, 7]. In the following, we
describe the main phases of STR’s base protocol.

Execution. When a transaction is activated, it is attributed
a read snapshot, noted as RS, equal to the physical time of the
node in which it was originated. The read snapshot determines
which data item versions are visible to the transaction. Upon
a read, a transaction T observes the most recent version v
having final commit timestamp v.FC ≤ T.RS. However, if
there exists a pre-committed version v′ with a timestamp
smaller than T.RS, then T must wait until the pre-committed
version is committed/aborted. In fact, as will become clear
shortly, the pre-committed version may eventually commit
with a timestamp FC ≤ RS — in which case T should
include it in snapshot — or FC > RS — in which case it
should not be visible to T .

Note that read requests can be sent to any replica that
maintains the requested data item. Also, if a node receives a
read request with a read snapshot RS higher than its current
physical time, the node delays serving the request until its
physical clock catches up with RS. Instead, writes are always
processed locally and are maintained in a transaction’s private
buffer during the execution phase.

Certification. Read-only transactions can be immediately
committed after they complete execution. Update transac-
tions, instead, first check for write-write conflicts with con-
current local transactions. If T passes this local certification
stage, it activates a, 2PC-based, global certification phase by
sending a pre-commit request to the master replicas of any
key it updated and for which the local node is not a master
replica. If a master replica detects no conflict, it acquires
pre-commit locks, and proposes its current physical time for
the pre-commit timestamp.

Replication. If a master replica successfully pre-commits
a transaction, it synchronously replicates the pre-commit
request to its slave replicas. These, in their turn, send to
the coordinator their physical time as proposed pre-commit
timestamps.

Commit. After receiving replies from all the replicas of
updated partitions, the coordinator calculates the commit
timestamp as the maximum of the received pre-commit times-
tamps. Then it sends a commit message to all the replicas of
updated partitions and replies to the client. Upon receiving
a commit message, replicas mark the version as committed
and release the pre-commit locks.

This protocol has a potential for high scalability. Unfortu-
nately, though, in geo-distributed settings, its throughput can
be severely limited by convoy effects caused by the pre-commit
locks. These locks are held throughout the transactions’ cer-
tification phase, which in geo-distributed data stores entail
the latency of at least one inter-data center RTT —- or more
if data partitions are replicated in different data-centers to
allow for disaster recovery. Throughout this period, concur-
rent transactions attempting to read pre-committed data are
conservatively blocked, which inherently limits the maximum
degree of concurrency (and hence throughput) achievable by
the system.

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

As we mentioned, the idea at the basis of STR is to
tackle this problem by allowing transactions to observe pre-
committed versions. Materializing this idea to build STR
raised several technical challenges: guaranteeing (SPSI-)safe
speculations (§ 5.2), maximizing the likelihood of successful
speculation (§ 5.3) and ensuring robust performance even in
adverse workload settings (§ 5.5) .

5.2 Enabling SPSI-safe speculations

Let us discuss how to extend the base protocol described
above to incorporate speculative reads, while preserving SPSI
semantics. The example executions in Fig. 1 illustrate two pos-
sible anomalies that could lead transactions to observe non-
atomic snapshots, which violate property SPSI-1 (Fig. 1.a),
or snapshots reflecting the execution of two conflicting trans-
actions, which violate property SPSI-3 (Fig. 1.b).

STR tackles these issues as follows. First, it restricts the
use of speculative reads, as mandated by SPSI-1, by allow-
ing to observe only pre-committed versions created by local
transactions. To this end, when a transaction local commits,
it stores in the local node the (pre-committed) versions of
the data items that it updated and that are also replicated
by the local node. This is sufficient to rule out the anomalies
illustrated in Fig. 1, but it still does not suffice to ensure prop-
erties SPSI-1 and SPSI-3. There are, in fact, two other subtle
scenarios that have to be taken into account, both involv-
ing speculative reads of versions created by local committed
transactions that updated some remote key.

The first scenario, illustrated in Fig. 2, is associated with
the possibility of including in the same snapshot a local
committed transaction, T1 — which will eventually abort
due to a remote conflict, say with T2 — and a remote,
final committed transaction, T3, that has read from T2. In
fact, the totally decentralized nature of STR’s concurrency
protocol, in which no node has global knowledge of all the
transactions committed in the system, makes it challenging
to detect scenarios like the ones illustrated in Fig. 2 and to
distinguish them, in an exact way, from executions that did
not include transaction T2 — in which case the inclusion of
T1 and T3 in T4 would have been safe.

The mechanism that STR employs to tackle this issue
is based on the observation that such scenarios can arise
only in case a transaction, like T4, attempts to read specula-
tively from a local committed transaction, like T1, which has
updated some remote key. The latter type of transactions,
which we call “unsafe” transactions, may have in fact devel-
oped a remote conflict with some concurrent final committed
transaction (which may only be detected during their global
certification phase), breaking property SPSI-3. In order to
detect these scenarios, STR maintains two additional data
structures per transaction: OLC (Oldest Local-Commit) and
FFC (Freshest Final Commit), which track, respectively,
the read snapshot of the oldest “unsafe” local committed
transaction and the commit timestamp of the most recent
remote final committed transaction, which the current trans-
action has read from (either directly or indirectly). Thus,

N1

N2
C, D

T1 Local-commit
A, B

Write(A=A1)
Write(C=C1)

Write(C=C2)
Write(E=E2)
T2 Final Commit Prepare C1: Abort

T4 Exec

Read(A)->A1

Read(B)->B3

N3
E, F

T3 Final Commit

Read(E)->E2

Write(B=B3)

C= C2

E= E2

B= B3

Figure 2: History exemplifying indirect conflicts be-

tween a local committed transaction, T1, and a final com-
mitted transaction originated at a different node, T3. If

T4 included both T1 and T3 in its snapshot, it would

violate SPSI property 3.

STR blocks transactions when they attempt to read versions
that would cause FFC to become larger than OLC. This
mechanism prevents including in the same snapshot unsafe
local committed transactions along with remote final com-
mitted transactions that are concurrent and may conflict
with them. For example, in Fig. 2, STR blocks T4 when
attempting to read B from T3, until the outcome of T1 is
determined (not shown in the figure).

The second scenario arises in case a transaction T attempts
to speculatively read a data item d that was updated by a
local committed transaction T ′, where d is not replicated
locally. In this case, if T attempted to remotely read d, it
may risk to miss the version of d created by T ′, which would
violate SPSI-1. To cope with this scenario, whenever an
unsafe transaction local commits, it temporarily (until it
final commits or aborts) stores the remote keys it updated in
a special cache partition, tagging them with the same local
commit timestamp. This grants prompt and atomic (i.e., all
or nothing) access to these keys to any local transaction that
may attempt to speculatively read them.

5.3 Promoting successful speculation via
Precise Clocks

Recall that, SPSI-1 requires that if a transaction T reads
speculatively from a local committed transaction T ′, and T ′

eventually final commits with a commit timestamp that is
larger than the read snapshot of T , then T has to be aborted.
Thus, in order to increase the chance of success of speculative
reads, it is important that the commit timestamps attributed
to final committed transactions are “as small as possible”.

To this end, STR proposes a new timestamping mechanism,
i.e., Precise Clocks, which is based on the following observa-
tion. The smallest final commit timestamp, FC, attributable
to a transaction T that has read snapshot RS must ensure
the following properties:
• P1. T.FC > T.RS, which guarantees that if T reads a
data item version with timestamp RS and updates it, the
versions it generates has larger timestamp than the one it
read.
• P2. T.FC is larger than the read snapshot of all the trans-
actions T1, . . . , Tn, which (a) read, before T final committed,

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

any of the keys updated by T , and (b) did not see the ver-
sions created by T , i.e., T.FC >max{T1.RS, . . . , Tn.RS}.
This condition is necessary to ensure that T is serialized
after the transactions T1, . . . , Tn, or, in other words, to track
write-after-read dependencies among transactions correctly.

Ensuring property P1 is straightforward: instead of propos-
ing the value of the physical clock at its local node as pre-
commit timestamp, the transaction coordinator proposes
T.RS + 1. In order to ensure property P2, STR associates to
each data item an additional timestamp, called LastReader,
which tracks the read snapshot of the most recent transac-
tion that has read that data item. Hence, in order to ensure
property P2, the nodes involved in the global certification
phase of transaction T propose, as pre-commit timestamp,
the maximum among the LastReader timestamps of any key
updated by T on that node.

It can be easily seen that the Precise Clocks mechanism
allows to track write-after-read dependencies among transac-
tion at a finer granularity than the timestamping mechanism
used in the base protocol — which, we recall, is also the mech-
anism used by non-speculative protocols like, e.g., Spanner [6]
or Clock-SI [7]. Indeed, as we will show in §6, the reduction
of commit timestamps achievable via Precise Clocks does not
only increase the chances of successful speculation, but also
reduces abort rate for non-speculative protocols.

5.4 Algorithmic definition

The pseudocode of the STR protocol is reported in Algo-
rithms 1 and 2, which describe, respectively, the behavior of
transaction coordinators and of data partitions.

Start transaction. Upon activation, a transaction is as-
signed a read snapshot (RS) equal to the current value of
the node’s physical clock. Its FFC is set to 0 and its OLCSet,
i.e., the set storing the identifiers and read timestamps of the
unsafe transactions from which the transaction reads from,
to {< ⊥,∞ >} (Alg1, 1-6).

Speculative read. Read requests to locally-replicated keys
are served by local partitions. A read request to a non-local
key is first served at the cache partition to check for updates
from previous local-committed transactions. If no appropriate
version is found, the request is sent to any (remote) replica of
the partition that contains this key (Alg1, 8-12). Upon a read
request for a key, a partition updates the LastReader of the
key and fetches the latest version of the key with a timestamp
no larger than the reader’s read snapshot (Alg2, 6-7). If the
fetched version is committed, or it is local-committed and the
reader is reading locally, then the partition returns the value
and id of the transaction that created the value; otherwise,
the reader is blocked until the transaction’s final outcome
is known (Alg2, 8-14). The reader transaction updates its
OLCSet and FFC, and only reads the value if the minimum
value in its OLCSet is greater than or equal than its FFC.
If not, the transaction waits until the minimum value in its
OLCSet becomes larger than its FFC (Alg1, 13-15). This
condition may never become true if the transaction that
created the fetched value conflicts with transactions already

Algorithm 1: Coordinator protocol

1 function transaction startTx()
2 Tx.RS←current time()
3 Tx.Coord←self()
4 Tx.OLCSet← {< ⊥,∞ >}
5 Tx.FFC←0
6 return Tx

7 function value read(transaction Tx, key Key)
8 if Key is locally replicated or in cache then
9 <Value, Tw> ← local partition(Key).readFrom(Tx, Key)
10 else
11 send {read,Tx,Key}to any p ∈ Key.partitions()
12 wait receive <Value, Tw>
13 Tx.OLCSet.put(Tw, min value(Tw.OLCSet)}
14 Tx.FFC←max(Tx.FFC, Tw.FFC)
15 return Value when min value(Tx.OLCSet) >= Tx.FFC

16 function result commitTx(transaction Tx)
// Local certification

17 LCTime←Tx.RS+1
18 for P, Keys ∈ Tx.WriteSet
19 if local replica(P).prepare(Tx) = <prepared, TS>
20 LCTime← max(LCTime, TS)
21 else
22 abort(Tx)
23 if Tx updates non-local keys
24 Tx.OLCSet.put(self(), Tx.RS)
25 send local commit requests to local replicas of updated partitions

// Global certification
26 send prepare requests to remote master of updated partitions
27 wait receive [prepared, TS] from Tx.InvolvedReplicas
28 wait until all dependencies are resolved
29 CommitTime←max(all received TS)
30 commit(Tx, CommitTime)
31 return committed
32 wait receive aborted
33 abort(Tx)
34 return aborted

34 function void commit(transaction Tx, timestamp CT)
35 Tx.FFC←CT
36 Tx.OLCSet← {< ⊥,∞ >}
37 for Tr with data dependencies from Tx
38 if Tr.RS >= CT then
39 remove Tx from Tr’s read dependency
40 Tr.OLCSet.remove(Tx)
41 Tr.FFC←max(Tr.FFC, CT)
42 else
43 abort(Tr)
44 atomically commit Tx’s local committed updates

and remove Tx’s cached updates
45 send commit requests to remote replicas of updated partitions

46 function void abort(transaction Tx)
47 abort transactions with dependencies from Tx
48 atomically remove Tx’s local committed updates
49 send abort requests to remote replicas of updated partitions

contained in the reader’s snapshot. In that case, the reader
will be aborted after this conflict is detected and stop waiting.

Local certification. After the transaction finishes execu-
tion, its write-set is locally certified. The local certification is
essentially a local 2PC across all local partitions that contain
keys in the transaction’s write-set, including the cache parti-
tion if the transaction updated non-local keys (Alg1, 18-22).
Each partition prepares the transaction if no write-write is
detected, and proposes a prepare timestamp according to the
Precise Clocks rule (Alg2, 15-24). Upon receiving replies from
all updated local partitions (including the cache partition),
the coordinator calculates the local-commit timestamp as
the maximum between the received prepare timestamps and
the transaction’s read snapshot plus one. Then, it notifies all
the updated local partitions. A notified partition converts
the pre-committed record to local-committed state with the

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

local commit timestamp (Alg1, 25 and Alg2, 25-29). If the
transaction updates non-local keys, the transaction is an ‘un-
safe’ transaction, so it adds its snapshot time to its OLCSet
(Alg1, 23-24).

Global certification and replication. After local certifi-
cation, the keys in the transaction’s write-set that have a
remote master are sent to their corresponding master parti-
tions for certification (Alg1, 26). As for the local certification
phase, master partitions check for conflicts, propose a pre-
pare timestamp and pre-commit the transaction (Alg2, 15-21).
Then, a master partition replicates the prepare request to
its slave replicas and replies to the coordinator (Alg2, 22-24).
After receiving a replicated prepare request, the slave parti-
tion aborts any conflicting local-committed transactions and
stores the prepare records. As slave replicas can be directly
read bypassing their master replica, slave replicas also track
the LastReader for keys; so, each slave also proposes a pre-
pare timestamp for the transaction to the coordinator (Alg2,
31-35).

Final commit/abort. A transaction coordinator can final
commit a transaction, if (i) it has received prepare replies
from all replicas of updated partitions, and (ii) all data
dependencies and flow dependencies are resolved. The commit
decision, along with the commit timestamp, is sent to to all
non-local replicas of updated partitions. T ’s FFC is updated
to its own commit timestamp, and its OLCSet is set to
infinity (Alg1, 35-45). Upon abort, the coordinator removes
any local-committed updated version, triggers the abort of
any dependent transaction and sends the decision to remote
replicas (Alg1, 46-49).

5.5 Dynamically tuning speculation

Speculative reads are based on the optimistic assumption
that local-committed transactions are unlikely to experience
contention with remote transactions. Although our experi-
ments in §6 show that this assumption is met in well-known
benchmarks such as TPC-C and RUBiS, this is an application-
dependent property. In fact, the unrestrained use of specula-
tion in adverse workloads can lead to excessive misspeculation
and degrade performance.

In order to enhance the performance robustness of STR, we
coupled it with a lightweight self-tuning mechanism that dy-
namically decides whether to enable or disable the speculative
mechanisms, depending on the workload characteristics. The
tuning scheme takes a black-box approach that is agnostic of
the data store implementation and also totally transparent to
application developers. It relies on a simple feedback-driven
control loop, steered by a centralized process that gathers
measurements from all nodes in a periodic fashion, compares
the throughput achieved with speculative reads enabled and
disabled, and accordingly configures the system.

We opted for a simple and quickly converging scheme,
instead of more complex approaches (e.g., based on off-line
trained classifiers or more sophisticated on-line search strate-
gies [36]), since our experimental findings confirm that, for a

Algorithm 2: Partition protocol

1 upon receiving [read, Tx, Key] by partition P
2 reply P.readFrom(Tx, Key)

3 upon receiving [prepare, Tx, Updates] by partition P
4 reply P.prepare(Tx, Updates)

30 upon receiving [replicate, Tx, Updates]
31 abort all conflicting pre-committed transactions

and transactions read from them
32 PT←max(K.LastReader+1 for K ∈ Updates)
33 for <K, V> ∈ Updates do
34 KVStore.insert(K, <Tx, pre-committed, PT, V>)
35 reply [prepared, PT]to Tx.Coord

5 function <value, transaction> readFrom(tx Tx, key Key)
6 Key.LastReader←max(Key.LastReader, Tx.RS)
7 <Tw, State, Value>←KVStore.latest before(Key, Tx.RS)
8 if State = committed
9 return <Value, Tw>
10 else if State = local-committed and local read()
11 add data dependence from Tx to Tw
12 return <Value, Tw>
13 else
14 Tw.WaitingReaders.add(Tx)

15 function <state, timestamp> prepare(tx Tx, set Updates)
16 if exists any concurrent conflicting transaction
17 return <aborted, ⊥ >
18 else
19 PT←max(K.LastReader+1 for K ∈ Updates)
20 for {K, V} ∈ Updates do
21 KVStore.insert(K, <Tx, pre-committed, PT, V>)
22 if P.isMaster() = true
23 send <replicate, Tx> to its replicas
24 return <prepared, PrepTime>

25 function void localCommit(transaction Tx, timestamp LCT,
set Updates)

26 for <K, V> ∈ Updates do
27 KVStore.update(K, <Tx, local-committed, LCT, V>)
28 unblock waiting preparing transactions
29 reply to waiting readers

given workload, the decision whether or not to use specula-
tion has a straightforward effect on throughput (no jitterlike
behavior).

Our current implementation allows system administrators
to initiate the self-tuning process periodically or upon re-
quest. The current self-tuning scheme could thus be naturally
extended to detect statistically meaningful changes of the
average input load via robust change detection algorithms,
like CUSUM [3], and react to these events by re-initiating
the self-tuning mechanism.

5.6 Fault tolerance

With respect to conventional/non-speculative 2PC based
transactional systems, STR does not introduce additional
sources of complexity for the handling of failures. Like any
other approach, e.g., [6, 7, 31, 32], based on 2PC, some
orthogonal mechanism (typically based on replication [14])
has to be adopted to ensure the high availability of the
coordinator state.

6 EVALUATION

This section presents an extensive experimental study aimed
at answering the following key questions:

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

(1) What performance gains can be achieved by STR
by allowing transactions to speculatively read pre-
committed data?

(2) How does STR compare with systems, like
PLANET [28], which employ external specula-
tion techniques and that, unlike STR, require
programmers to develop compensation logics to deal
with possible misspeculations?

(3) Which workload characteristics have the strongest im-
pact on the performance of STR?

(4) How relevant is the Precise Clocks technique, when
used in conjunction with both speculative and non-
speculative protocols?

(5) How effective is STR’s self-tuning mechanism to ensure
robust performance in presence of workloads that are
not favourable to speculative techniques?

Baselines. The first baseline protocol we consider is Clock-
SI [7], which we extended to support replication, as explained
in §5.1. We refer to this protocol as ClockSI-Rep. ClockSI-Rep
is representative of state of the art transactional protocols
based on decentralized physical clocks and it provides Snap-
shot Isolation, namely the consistency guarantee that SPSI
extends to accommodate speculation. Thus, ClockSI-Rep is
an appropriate baseline to evaluate the performance gains
achievable by STR thanks to the use of speculative reads and
Precise Clocks.

The second baseline we consider is representative of recent
approaches [15, 18, 28] that propose programming models
aimed to support external speculation techniques, i.e., expos-
ing uncommitted results to clients. Supporting it comes at
the cost of extra complexity for the programmers, who are
forced to identify the possible concurrency anomalies that
may affect their programs and develop the corresponding
compensation logics (which is not needed for STR). We build
this baseline, which we call Ext-Spec, by developing a variant
of ClockSI-Rep that externalizes to client the results of a
transaction, once it passes its local certification phase and is
still undergoing its global certification phase. Note that no
compensation logic is executed when using Ext-Spec: this is
done for simplicity and since in the considered benchmarks,
speculation can lead only to the production of incorrect replies
to clients, but does not compromise the internal consistency
of the server-side of the application. It should be noted that
this choice actually favors Ext-Spec, as it spares this baseline
from the additional overheads associated with the execution
of potentially complex compensation logic.

Since Ext-Spec and ClockSI-Rep share the same (dis-
tributed) concurrency control mechanism, as we will see,
they deliver very similar peak throughput, final latency and
abort rate. However, Ext-Spec’s use of external speculation
can reduce speculative (but not final) latency, with respect
to ClockSI-Rep.

Experimental setup. We implemented the baseline proto-
cols and STR in Erlang, based on Antidote1, an open-source

1
https://github.com/SyncFree/antidote

0.0

0.5

1.0

1.5

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(a) Synth-A.

0.0
0.2
0.4
0.6
0.8
1.0

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(b) Synth-B.

Figure 3: The performance of different protocols for

two synthetic workloads, representative of a favourable
(Synth-A) and an unfavourable (Synth-B) scenario for in-

ternal speculation. In the latency plot, we use solid lines

for final latency and dashed lines for speculative latency;
in the abort rate plot, we report total abort rate with

solid lines and misspeculation rate with dashed lines.

platform for evaluating distributed consistency protocols
(such as the one in [1]). More precisely, the in-memory back-
end of Antidote (which provides a key-value store interface)
has been extended to develop fully-fledged prototypal imple-
mentations of STR and of the aforementioned baselines. The
code of all protocols used in this study is publicly accessible
at https://github.com/marsleezm/STR.

Our experimental testbed is deployed across nine DCs of
Amazon EC2 spanning 4 continents. We use a replication
factor of six, so each partition has six replicas, and each
instance holds one master replica of a partition and slave
replicas of five other partitions.

Load is injected by spawning one thread per emulated
client in some node of the system. Each client issues transac-
tions to a pool of local transaction coordinators and retries a
transaction if it gets aborted. We use two metrics to evalu-
ate latency: the final latency of a transaction is calculated
as the time elapsed since its first activation until its final
commit (including possible aborts and retries); for Ext-Spec,

https://github.com/SyncFree/antidote
https://github.com/marsleezm/STR

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

Workload configurations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

No SR
SR
Auto

Synth-A, 2 clients Synth-A, 40 clients Synth-B, 2 clients Synth-B, 40 clients

Figure 4: Normalized throughput with respect to the

best performing static configuration. No SR/SR denote
enabling/disabling statically speculative reads in STR;

Auto denotes the use of the self-tuning technique pre-

sented in § 5.5.

we report also the speculative latency, which is defined as
the time since the first activation of a transaction until its
last speculative commit, i.e., the one after which it is final
committed. Besides reporting abort rate, for Ext-Spec we
also report the rate of external misspeculation, i.e., the per-
centage of transactions that were speculatively committed
but finally aborted triggering the activation of some compen-
sation logic (which we do not implement in this study, for
simplicity). Each reported result is obtained from the average
of at least three runs. As the standard deviations are low, we
omit reporting them in the plots to enhance readability.

Unless otherwise specified, STR uses the self-tuning mech-
anism described in §5.5 to enable and disable the use of
internal speculation. The self-tuning process gathers through-
put measurements with a 10 seconds frequency. The reported
results for STR refer to the final configuration identified by
the self-tuning process.

6.1 Synthetic workloads

Let us start by considering a synthetic benchmark, which
allows for generating workloads with precisely identifiable and
very heterogeneous characteristics. The synthetic benchmark
generates transactions with zero “think time”, i.e., client
threads issue a new transaction as soon as the previous one
is final committed.

Transaction and data access. A transaction reads and
updates 10 keys. When accessing a data partition, 10% of
the accesses goes to a small set of keys in that data parti-
tion, which we call a hotspot, and we adjust the size of the
hotspot to control contention rate. Each data partition has
two million keys, of which one million are only accessible
by locally-initiated transactions and the others are only ac-
cessible by remote transactions. This allows adjusting in an
independent way the likelihood of contention among trans-
actions initiated by the same local node (local contention)
and among transactions originated at remote nodes (remote
contention).

We consider two workloads2, which we obtain by varying
the size of the hotspot sizes in the local and remote data

2The evaluation results of additional workloads can be found in [24].

partitions in order to synthesize two extreme scenarios that
can be seen as representative of best and worst cases for
internal speculation:

(1) the “best case” workload, noted Synth-A, generates
very high local contention, by using a single key in
the hot spots of local partitions, but very low remote
contention, by using 800 keys in the hot spots of remote
partitions. Due to high likelihood of local contention,
transactions are very likely to speculatively read ver-
sions that were local committed by some concurrent
local transaction. Since remote contention is very low,
though, internal speculation is very likely to succeed.

(2) the “worst case” workload, noted Synth-B, has both
very high local and remote contention, by using 10,
resp. 3, keys in the hot spots of local, resp. remote,
partitions. Like in workload Synth-A, transactions fre-
quently use speculative reads, but, in this case, internal
speculation is almost certainly doomed to fail due to
the high remote contention.

Synth-A. Fig. 3.(a) clearly highlights the potential benefits
that internal speculation can provide in favourable workload
conditions. Both ClockSI-Rep and Ext-Spec fail to achieve
any scalability and thrash, due to high abort rates (see middle
plot), as soon as the degree of concurrency in the system
grows to more than 2 clients. Conversely, STR scales almost
linearly up to 20 clients and throughput saturates only at
around 40 clients, achieving a 11.5× gain with respect to
both baselines (which achieve very similar throughput levels).
Also, the abort rate of STR is significantly lower than for
the two baseline protocols. This is explicable considering
that, with the baselines, any transaction T that read a key
pre-committed by some concurrent transaction T ′ is forced
to block; when T ′ commits, it is very likely that T ′ generates
a commit timestamp larger the read snapshot of T , which
causes T to abort. In the same scenario, though, STR would
allow T to speculatively read from T ′; also, the commit
timestamp attributed to T ′ by Precise Clocks is likely to be
smaller in absolute terms, and, with a higher probability than
for the baselines, also smaller than the read timestamp of T .
In this case, STR spares T from aborting, as well as from
blocking — this allows STR not only to minimize the wasted
work due to transactions’ rollbacks, but also to enhance the
degree of parallelism sustainable by the system.

It should be noted that since local contention dominates
in this workload, most of the aborts occur during the local
certification phase of transactions. Also, if transactions pass
local certification, they are likely to avoid conflicts with
remote transactions and, hence, commit with high probability.
These considerations explain why Ext-Spec incurs an abort
rate that is very similar to the one of ClockSI-Rep and to
incur a very small external misspeculation rate.

As for the latency, the bottom plot shows about one order
magnitude smaller final latency for STR compared to the
baselines with more than 2 clients. This is due to the fact
that both ClockSI-Rep and Ext-Spec are thrashing due to
high contention in this load range. For analogous reasons,

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Techniques
of keys

10 20 40 100

Physical 1/59% 1/60% 1/60% 1/72%

Precise 1.07/38% 1.07/38% 1.1/35% 1.41/48%

Physical SR 0.68/84% 0.57/83% 0.59/77% 0.97/75%

Precise SR 1.22/47% 1.21/44% 1.31/36% 1.59/49%

Table 1: Normalized throughput/abort rate of different
techniques, varying a transaction’s number of keys to up-

date. Physical/Precise denotes the use of Physical Clock-
s/Precise Clocks; SR denotes that speculative reads are

enabled. Throughputs reported in each column are nor-

malized according to the throughput of ‘Physical’ in that
column.

the speculative latency of Ext-Spec is only lower than the
final latency of STR at very low load (2 clients), where the
abort rate is still relatively low.

Synth-B. Fig. 3.(b) shows that, even in such an unfavourable
workload for internal speculation, STR can provide robust
performance that is at par with the baseline protocols. Thanks
to its self-tuning capabilities, in fact, STR automatically
disables the use of speculative reads for 30 or more clients,
which correspond to load levels in which internal speculation
has an adverse effect on performance.

This is illustrated in Fig. 4, which reports the performance
achieved by STR when statically configured to enable or dis-
able speculative reads, as well as when using the self-tuning
mechanism to select between these two configurations. More
in detail, the y-axis of this figure reports the throughput of
each variant of STR normalized with respect to the through-
put of the variant that achieves best performance for the
considered workload and number of clients (on the x-axis).

By Fig. 4, we can observe that, indeed, the use of specula-
tive reads reduces throughput by around 40% in workload
Synth-B with 40 clients and that the proposed self-tuning
scheme can correctly identify the optimal configuration. By
this plot, we can also observe that the choice of enabling/dis-
abling internal speculation is not only affected by the work-
load type — as expected, speculative reads are beneficial in
Synth-A but they are not in Synth-B — but also by the level
load, fixed a given workload — speculative reads do not actu-
ally penalize throughput in Synth-B with 2 clients. Moreover,
Figure 4 shows that without enabling speculative techniques,
STR achieves similar throughput as the non-speculative base-
line. This represents an experimental evidence supporting
the efficiency of the proposed mechanism.

Benefits and overhead of Precise Clocks. This experi-
ment aims at quantifying the benefits stemming from the use
of the Precise Clocks mechanism, when used in conjunction
with both speculative and non-speculative protocols. To this
end, in Table 1, we consider four alternative systems obtained
by considering ClockSI-Rep (noted Physical) and extending
it to use Precise Clocks (noted Precise) and/or speculative
reads (noted SR). In this study we vary the transactions’
duration, and hence the corresponding abort cost, by varying
the number of keys updated by a transaction. To maintain

the contention level stable when increasing the number of
keys accessed by transactions, the key space is increased by
the same factor.

Table 1 shows that Precise Clocks significantly reduces
abort rate and can achieve as much as 38% of throughput gain
over Physical Clock for a non-speculative protocol. Generally,
the more keys transactions update, the larger is the abort cost
and the larger the throughput gain achieved by Precise Clocks.
Another interesting result is that enabling speculative reads
with Physical Clock actually has negative effects on abort
rate and throughput. In fact, as we have discussed in 5.3,
physical clock based protocols, like Clock-SI or Spanner [6, 7],
tend to generate large commit timestamp, which reduces the
chances that speculative reads succeed. Finally, the collective
use of Precise Clocks and speculative reads results in the best
throughput gain (59% for transactions updating 100 keys).

We also assessed the additional storage overhead intro-
duced by the use of Precise Clocks, which, we recall, requires
maintaining additional metadata (a timestamp) for each ac-
cessed key. Our measurement shows that for the TPC-C and
RUBiS benchmarks (§6.2), Precise Clocks requires about 9%
of extra storage.

6.2 Macro benchmarks

Next, we evaluate the performance of STR by implementing
two realistic benchmarks, namely TPC-C 3 and RUBiS 4. Un-
like the previous synthetic benchmarks, TPC-C and RUBiS
specify several seconds of “think time” between consecutive
operations issued by a client. Hence, we need to use a much
larger client population to saturate the system.

TPC-C. Our TPC-C workload consists of three representa-
tive transactions: the payment transaction, which has very
high local contention and low remote contention; new-order
transaction, which has low local contention and high remote
contention; and order-status, a read-only transaction. We con-
sider three workload mixes: 5% new-order, 83% payment and
12% order-status (TPC-C A, Fig. 5.(a)); 45% new-order, 43%
payment and 12% order-status (TPC-C B, Fig. 5.(b)) and
5% new-order, 43% payment and 52% order-status (TPC-C
C, Fig. 5.(c)). Each server is populated with five warehouses,
of which it is the master replica.

Figure 5 shows that speculative reads bring significant
throughput gains, as all three workloads have high de-
gree of local contention. Compared with the baseline proto-
cols (ClockSI-Rep and Ext-Spec), STR achieves significant
speedup especially for the TPC-C A (6.13×), which has the
highest degree of local contention due to having large pro-
portion of payment transaction. For TPC-C B and TPC-C
C, STR achieve 2.12× and 3× of speedup respectively. We
see that the use of external speculation in this case barely
brings any improvement on throughput over ClockSI-Rep.
We also observe that the use of external speculation can
significantly reduce the (speculative) latency perceived by

3
http://www.tpc.org/tpc documents current versions/pdf/tpc-c v5.11.0.

pdf
4
http://rubis.ow2.org/

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://rubis.ow2.org/

HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico

0.0
0.5
1.0
1.5
2.0
2.5

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 200 400 600 800 1000 1200

(a) 5% new order, 83% payment

100
101
102
103
104

La
te

n
cy

(m
s)

 i
n
 l
o
g

0 200 400 600 800 1000 1200 1400 1600

(b) 45% new order, 43% payment

0 200 400 600 800 1000 1200

(c) 5% new order, 43% payment
Number of clients per server

Figure 5: The performance of different protocols for three TPC-C workloads. In the latency plot, we use solid lines
for final latency and dashed lines for speculative latency; in the abort rate plot, we report total abort rate with solid

lines and misspeculation rate with dashed lines.

Figure 6: The performance of different protocols for RU-
BiS. In the latency plot, we use solid lines for final latency

and dashed lines for speculative latency; in the abort rate

plot, we report total abort rate with solid lines and mis-
speculation rate with dashed lines.

clients, but only in low load conditions. This can be explained
by looking at the abort rate plots, which clearly show that,
as load increases, the likelihood that external speculation is
successful quickly decreases.

In fact, with larger number of clients (more than 1000
clients per server), the latency of Ext-Spec and ClockSI-Rep
is on the order of 5-8 seconds, as a consequence of the high
abort rate incurred by these protocols. Conversely, STR still
delivers a latency of a few hundred milliseconds.

RUBiS. RUBiS models an online bidding system and en-
compasses 26 types of transactions, five of which are update
transactions. RUBiS is designed to run on top of a SQL data-
base, so we performed the following modifications to adapt
it to STR’s key-value store data model: (i) we horizontally
partitioned database tables across nodes, so that each node
contains an equal portion of data of each table; (ii) we created
a local index for each table shard, so that some insertion
operations that require a unique ID can obtain the ID locally
(instead of updating a table index shared by all shards by

default). We run RUBiS’s 15% update default workload and
use its default think time (from 2 to 10 seconds for different
transactions).

Also with this benchmark (see Figure 6) STR achieves
remarkable throughput gains and latency reduction. With
4000 clients (level at which we hit the memory limit and
were unable to load more clients), STR achieves about 43%
higher throughput. The final latency gains of STR over the
considered baselines extends up to 10× latency reduction
over ClockSI-Rep and Ext-Spec. Also in this case, external
speculation is effective in reducing speculative latency only at
very low load levels, before loosing effectiveness and collapsing
to the same performance of ClockSI-Rep.

7 CONCLUSION AND FUTURE WORK

This paper proposes STR, an innovative protocol that ex-
ploits speculative techniques to boost the performance of
distributed transactions in geo-replicated settings. STR is
based on a novel consistency criterion, which we call SPecu-
lative Snapshot Isolation (SPSI). SPSI extends the familiar
SI criterion and shelters programmers from subtle anom-
alies that can arise when adopting speculative transaction
processing techniques. Furthermore, using STR requires no
source-code modification, and for both of these reasons it is
fully transparent to programmers.

STR builds on recent, highly scalable transactional pro-
tocols based on physical clocks (like Clock-SI and Google’s
Spanner) and extends them with a set of new speculative
techniques (in particular, item-based timestamps to improve
the speculation) and a self-tuning mechanism. Via an ex-
tensive experimental study, we show that STR can achieve
striking gains (up to 11× throughput increase and 10× la-
tency reduction) in workloads characterized by low inter-data
center contention, while ensuring robust performance even
in adverse settings.

We identify two main avenues for future research. The first
research direction opened by this work is how to adapt both
the STR protocol and its underlying speculative correctness

Transparent Speculation in
Geo-Replicated Transactional Data Stores HPDC ’18, June 11–15, 2018, Tempe, AZ, USA

criterion to cope with alternative consistency semantics, like
Serializability or Strict Serializability. Another interesting re-
search opportunity raised by this work is related to the design
and evaluation of alternative self-tuning mechanisms, e.g.,
based on different modeling methodologies (e.g., relying on
white-box analytical models), aimed at optimizing multiple
KPIs (e.g., external mispeculation and throughput) or sup-
porting diverse speculation degrees for different transactions’
types or at different nodes in a heterogeneous cluster.

ACKNOWLEDGEMENT

We are grateful to our shepherd Ali R. Butt and the anony-
mous reviewers, who provided much useful feedback that
helped to improve the paper. This work is partially funded
by the LightKone project in the European Union Hori-
zon 2020 Framework Programme under grant agreement
732505, by the Erasmus Mundus Doctorate Programme un-
der grant agreement 2012-0030 and by FCT via projects
UID/CEC/50021/2013 and PTDC/EEISCR/1743/2014.

REFERENCES
[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bi-

eniusa, N. Preguiça, and M. Shapiro. Cure: Strong semantics
meets high availability and low latency. In ICDCS ’16, pages
405–414. IEEE, 2016.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive services.
In CIDR ’11, volume 11, pages 223–234, 2011.

[3] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
control and recovery in database systems. 1987.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. JACM, 43(2):225–267, 1996.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
et al. Spanner: Google’s globally distributed database. ACM
TOCS, 31(3):8, 2013.

[7] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-SI: Snapshot
isolation for partitioned data stores using loosely synchronized
clocks. In SRDS ’13, pages 173–184. IEEE, 2013.

[8] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone.
Clock-RSM: Low-latency inter-datacenter state machine replica-
tion using loosely synchronized physical clocks. In DSN ’14, pages
343–354. IEEE, 2014.

[9] S. Duan, V. Thummala, and S. Babu. Tuning database config-
uration parameters with ituned. PVLDB ’09, 2(1):1246–1257,
2009.

[10] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the pres-
ence of partial synchrony. JACM, 35(2):288–323, 1988.

[11] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication
using generalized snapshot isolation. In SRDS ’05, pages 73–84.
IEEE, 2005.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. JACM, 32(2):374–
382, 1985.

[13] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch.
Controlled lock violation. In SIGMOD ’13, pages 85–96. ACM,
2013.

[14] J. Gray and L. Lamport. Consensus on transaction commit. ACM
TODS, 31(1):133–160, 2006.

[15] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Incremental
consistency guarantees for replicated objects. In OSDI ’16, GA,
2016. USENIX Association.

[16] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal, et al. Mesa: Geo-
replicated, near real-time, scalable data warehousing. PVLDB
’14, 7(12):1259–1270, 2014.

[17] J. R. Haritsa, K. Ramamritham, and R. Gupta. The prompt
real-time commit protocol. IEEE TPDS, 11(2):160–181, Feb.
2000.

[18] P. Helland and D. Campbell. Building on quicksand. arXiv
preprint arXiv:0909.1788, 2009.

[19] R. Jiménez-Peris, M. Patiño Mart́ınez, B. Kemme, and G. Alonso.
Improving the scalability of fault-tolerant database clusters. In
ICDCS ’02, pages 477–484. IEEE, 2002.

[20] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead con-
currency control for partitioned main memory databases. In
SIGMOD ’10, pages 603–614. ACM, 2010.

[21] R. Kotla, M. Balakrishnan, D. Terry, and M. K. Aguilera. Trans-
actions with consistency choices on geo-replicated cloud storage.
Technical report, September 2013.

[22] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.
Mdcc: Multi-data center consistency. In Eurosys ’13, pages 113–
126. ACM, 2013.

[23] L. Lamport. The part-time parliament. ACM TOCS, 16(2):133–
169, May 1998.

[24] Z. Li, P. Van Roy, and P. Romano. Speculative transaction
processing in geo-replicated data stores. Technical Report 2,
INESC-ID, Feb. 2017.

[25] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues. Autoplacer:
Scalable self-tuning data placement in distributed key-value stores.
ACM TAAS, 9(4):19, 2015.

[26] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting stm
replication via aggressively optimistic transaction processing. In
NCA ’10, pages 20–27. IEEE, 2010.

[27] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho. Evaluating
database-oriented replication schemes in software transactional
memory systems. In IPDPSW ’10, pages 1–8. IEEE, 2010.

[28] G. Pang, T. Kraska, M. J. Franklin, and A. Fekete. Planet: making
progress with commit processing in unpredictable environments.
In SIGMOD ’14, pages 3–14. ACM, 2014.

[29] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for
optimizing transaction execution in parallel oltp systems. PVLDB
’11, 5(2):85–96, 2011.

[30] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues.
Specula: Speculative replication of software transactional memory.
In SRDS ’12, pages 91–100, 2012.

[31] S. Peluso, P. Romano, and F. Quaglia. Score: A scalable one-copy
serializable partial replication protocol. In Middleware ’12, pages
456–475. Springer-Verlag New York, Inc., 2012.

[32] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues.
When scalability meets consistency: Genuine multiversion update-
serializable partial data replication. In ICDCS ’12, pages 455–465.
IEEE, 2012.

[33] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the
advantages and disadvantages of deterministic database systems.
PVLDB ’14, 2014.

[34] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner,
et al. F1: A distributed sql database that scales. PVLDB ’13,
6(11):1068–1079, 2013.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP ’11, pages 385–400.
ACM, 2011.

[36] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in bayou,
a weakly connected replicated storage system. SOSP ’95, pages
172–182, New York, NY, USA, 1995. ACM.

[38] A. Thomson and D. J. Abadi. The case for determinism in
database systems. PVLDB ’10, 3(1-2):70–80, 2010.

[39] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD ’12, pages 1–12. ACM, 2012.

[40] G. Weikum and G. Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and
recovery. Elsevier, 2001.

[41] P. T. Wojciechowski, T. Kobus, and M. Kokocinski. State-machine
and deferred-update replication: Analysis and comparison. IEEE
TPDS, PP(99):1–1, 2016.

	Abstract
	1 Introduction
	2 Related Work
	3 System and data model
	4 The SPSI consistency model
	5 The STR protocol
	5.1 Base non-speculative protocol
	5.2 Enabling SPSI-safe speculations
	5.3 Promoting successful speculation via Precise Clocks
	5.4 Algorithmic definition
	5.5 Dynamically tuning speculation
	5.6 Fault tolerance

	6 Evaluation
	6.1 Synthetic workloads
	6.2 Macro benchmarks

	7 Conclusion and future work
	References

