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ABSTRACT
In this paper we introduce TAS (Transactional Auto Scaler), a sys-
tem for automating elastic-scaling of in-memory transactional data
grids, such as NoSQL data stores or Distributed Transactional Mem-
ories. Applications of TAS range from on-line self-optimization
of in-production applications to automatic generation of QoS/cost
driven elastic scaling policies, and support for what-if analysis on
the scalability of transactional applications.

The key innovation at the core of TAS is a novel performance
forecasting methodology that relies on the joint usage of analytical
modeling and machine-learning. By exploiting these two, classi-
cally competing, methodologies in a synergic fashion, TAS achieves
the best of the two worlds, namely high extrapolation power and
good accuracy even when faced with complex workloads deployed
over public cloud infrastructures.

We demonstrate the accuracy and feasibility of TAS via an ex-
tensive experimental study based on a fully fledged prototype im-
plementation, integrated with a popular open-source transactional
in-memory data store (Red Hat’s Infinispan), and industry-standard
benchmarks generating a breadth of heterogeneous workloads.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems—
Modeling techniques,Measurement techniques,Performance attributes

Keywords
Analytical Models, Performance Evaluation, Autonomic Provision-
ing, Distributed Software Transactional Memory

1. INTRODUCTION
Context. The advent of commercial cloud computing platforms

has led to the proliferation of a new generation of in-memory, trans-
actional data platforms, often referred to as NoSQL data grids.
This new breed of distributed transactional platforms (that includes
products such as Red Hat’s Infinispan, Oracle’s Coherence and
Apache Cassandra [19]) is designed from the ground up to meet the
elasticity requirements imposed by the pay-as-you-go cost model
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at the basis of the cloud computing paradigm. By relying on a
simple data model (key-value vs relational), employing efficient
mechanisms to achieve data durability (in-memory replication vs
disk-based logging) and dynamically resizing the cluster on top of
which they are deployed, these platforms allow non-expert users to
provision a cluster of virtually any size within minutes.This gives
tremendous power to the average user, while placing a major bur-
den on her shoulders. Removing the classic capacity planning pro-
cess from the loop means in fact shifting the non-trivial responsi-
bility of determining a good cluster configuration to the non-expert
user [26].

Motivations. Unfortunately, forecasting the scalability trends of
real-life, complex applications deployed on distributed transactional
platforms is an extremely challenging task. In fact, as the num-
ber of nodes in the system grows, the performance of these plat-
forms exhibits strong non-linear behaviors. Such behaviors are im-
putable to the simultaneous, and often inter-dependent, effects of
contention affecting both physical (computational, memory, net-
work) and logical (conflicting data accesses by concurrent transac-
tions) resources.

These effects are visible in Figure 1, which shows results ob-
tained by running two transactional benchmarking frameworks on
top of the Infinispan data grid platform [25]: Radargun1 and TPC-
C2[35]. We deployed Infinispan over a private cluster encompass-
ing a variable number of nodes and ran benchmarks generating het-
erogeneous workloads for what concerns the number of (read/write)
operations executed within each transaction, the percentage of read-
only transactions, the number of items in the whole dataset, as well
as the size of the individual objects manipulated by each operation.

As shown in Figure 1a, the scalability trends (in terms of the
maximum throughput) for the three considered workloads are quite
heterogeneous. The TPC-C benchmark scales almost linearly and
the plots in Figure 1b and Figure 1c show that scalability is hin-
dered by a steady increase of contention at both network and data
(i.e., lock) levels. This leads to a corresponding increase of the net-
work round trip time (RTT) and of the transaction abort probability.
On the other hand the two Radargun workloads clearly demonstrate
how the effects of high contention levels on logical and physical re-
sources can lead to strongly non-linear scalability trends.

Contributions. In this paper, we present Transactional Auto Scaler
(TAS), a system that introduces a novel performance prediction
methodology based on the joint usage of analytical and machine

1http://sourceforge.net/apps/trac/radargun/wiki/WikiStart
2TPC-C is designed to operate on a relational database, hence we
implemented a porting running directly on top of a key-value store
such as Infinispan.
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Figure 1: Performance analysis of different data grid applications.

learning (statistical) models. The analytical model (AM) employed
by TAS exploits knowledge of the dynamics of the concurrency
control/replication algorithm to forecast the effects of data con-
tention using a white-box approach. On the other hand, TAS ex-
ploits black-box, machine-learning (ML) methods to forecast the
impact on performance due to shifts in the utilization of system
level resources (e.g,. CPU and network) imputable to variations of
the system’s scale.

The synergic usage of AM and ML techniques allows TAS to
take the best of these two, typically competing, worlds. On the one
hand, the black-box nature of ML spares from the burden of explic-
itly modeling the interactions with system resources that would be
otherwise needed using white-box, analytical models. This is not
only a time-consuming and error-prone task given the complexity

of current hardware architectures. It would also constrain the porta-
bility of our system (to a specific infrastructural instance), as well
as its practical viability in virtualized Cloud environments where
users have little or no knowledge of the underlying infrastructure.

On the other hand, analytical modeling allows to address two
well known drawbacks of ML, namely its limited extrapolation
power (i.e., the ability to predict scenarios that have not been pre-
viously observed) and lengthy training phase [5]. By exploiting a
priori knowledge of the dynamics of data consistency mechanisms,
AMs can achieve good forecasting accuracy even when operating
in still unexplored regions of the parameters’ space. Further, by
narrowing the scope of the problem tackled via ML techniques,
AM allows to reduce the dimensionality of the ML input features’
space, leading to a consequent reduction of the training phase du-
ration [5].

While the hybrid AM/ML methodology presented in this paper
can be applied to a plethora of alternative replication/concurrency
control mechanisms, one of the main contributions of this paper
is the design of an innovative analytical performance model that
targets the replication/concurrency control mechanisms used in In-
finispan. Similarly to other recent transactional data grids, e.g., [6,
19], Infinispan opts for guaranteeing a weaker consistency seman-
tics than classic serializability.Specifically, Infinispan ensures Re-
peatable Read [2] by using an encounter time based write locking
strategy and Two-Phase Commit.

One of the key innovative elements of the analytical performance
model presented in this paper consists in the methodology intro-
duced to characterize the probability distribution of transactions’
access to data items. In fact, existing white-box models of transac-
tional systems [8, 10, 28] rely on strong approximations on the data
accesses distribution, e.g., uniformly distributed accesses on one or
more sets of data items of fixed cardinality, which require complex
and time-consuming workload characterization studies in order to
derive the parameters characterizing the data access distributions.
Conversely, in the presented model, we capture the dynamics of the
application’s data access patterns via a novel abstraction, which we
call Application Contention Factor (ACF). ACF exploits queuing
theory arguments and a series of lock-related statistics measured in
(and dependent on) the current workload/system configuration, in
order to derive, in a totally automatic fashion, a probabilistic model
of the application’s data access pattern that is independent of both
the current level of parallelism (e.g., number of concurrently active
threads/nodes) and the utilization of physical resources (e.g., CPU
or network).

We demonstrate the viability and high accuracy of the proposed
solution via a large scale evaluation study using both a private clus-
ter and public cloud infrastructures (Amazon EC2), and relying on
benchmarks that generate a breadth of heterogeneous workloads for
what concerns contention on both logical and physical resources.
The results also highlight that the overhead introduced by TAS’
monitoring system is negligible, and that the time required to solve
the performance forecasting model is on the order of at most a few
hundreds of milliseconds on commodity hardware.

The remainder of this paper is structured as follows. In Section
2 we discuss related research. The target data grid architecture of
the TAS system is described in Section 3. Section 4 presents the
forecasting methodology that we integrated in TAS, and Section 5
validates it via an extensive experimental study. Finally, Section 6
concludes this paper.

2. RELATED WORK
The present work is related to the literature on performance

modeling and prediction for transactional systems. This includes



performance models for traditional database systems and related
concurrency control mechanisms (see, e.g., [28, 21, 34, 1]), ap-
proaches targeting more recent Software Transactional Memory
architectures (see, e.g., [11]), and solutions dealing with dis-
tributed/replicated transaction processing systems, such as [8].
With respect to these approaches, TAS presents two key differ-
ences: i) it relies on analytical modeling only for capturing data
contention dynamics, whereas it relies on black-box statistical
methods to model the effects of contention on physical resources;
ii) from an analytical modeling perspective, in TAS we introduce a
novel abstraction (ACF) that allows to concisely characterize and
effectively reason about arbitrary transactional data access patterns.

Our work has also relationships with systems that rely solely on
ML techniques to automate resource provisioning both in transac-
tional [7, 15, 27, 33] and non-transactional application domains,
such as MapReduce [17] and VM sizing [30]. As it will be shown
in Section 5, the joint usage of AM and ML, which represents one
of the key innovative characteristics of TAS, allows enhancing the
extrapolation power and reducing the training time of pure ML-
based performance predictors.

Control theory techniques are also at the basis of several works
in the area of self-tuning of application performance. These solu-
tions often assume a linear performance model, which is possibly
updated adaptively as the system moves from one operating point to
another. For example, first-order autoregressive models are used to
manage CPU allocation for Web servers [31]. Linear multi-input-
multi-output (MIMO) models have been applied to manage differ-
ent kinds of resources in multi-tier applications [23], as well as
to allocate CPU resource for minimizing the interference between
VMs deployed on the same physical node [22]. Compared to these
adaptive linear models, the continuous non-linear models used by
TAS to forecast both the logical and physical contention can ac-
curately capture the system’s entire behavior and allow optimized
resource allocation over the entire operating space.

3. SYSTEM ARCHITECTURE
The architecture of TAS is depicted in Figure 2. Incoming trans-

actions are dispatched by a front-end load-balancer towards the set
of nodes composing the data grid. Periodically, statistics concern-
ing load and resource utilization across the set of nodes in the data
grid are gathered by a, so called, aggregator module.

Aggregated statistics are then fed to the load predictor, which
serves the twofold purpose of forecasting future workload vol-
umes and characteristics (e.g., ratio between read-only and update
transactions, average number of read/write operations for read-
only/update transactions), as well as detecting relevant workload
shifts. The current TAS prototype relies on the Kalman filter algo-
rithm [32] for load forecasting, and on the CUSUM [9] algorithm
for distinguishing, in a robust manner, actual workload shifts from
transient statistical fluctuations. Similar techniques have been em-
ployed in prior systems for automatic resource provisioning [7, 15],
and have been shown to enhance the stability of the auto-scaling
process.

The key innovative point of TAS, which represents the focus of
this paper, is the methodology employed for predicting the perfor-
mance of transactional applications when varying the number of
nodes of the underlying data grid. More in detail, the performance
predictor employed by TAS takes as input the workload character-
istics (as output by the load predictor and/or aggregator) and the
platform scale (i.e., the number of nodes to be used by the data
grid), and outputs predictions on several key performance indica-
tors (KPIs), including average response time, maximum sustain-
able throughput, transaction abort probability. As shown in Figure
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Figure 2: TAS reference architecture.

2, TAS relies on the joint usage of a white-box AM (to forecast the
effects of data contention) and black-box ML techniques (to fore-
cast the effects of contention on physical resources). A detailed
description of the proposed performance forecasting methodology
will be provided in Section 4.

The component in charge of querying the performance predictor
is the SLA enforcer, which identifies the optimal platform configu-
ration (in terms of number of nodes) on the basis of user-specified
SLA and cost constraints. Our current prototype supports elastic-
scaling policies that take into account constraints on cost, average
response time and throughput. However, given that the perfor-
mance predictor can forecast a number of additional KPIs (such as
commit probability, or response time of read-only vs update trans-
actions), our system lends itself to support more complex optimiza-
tion policies involving constraints on additional performance met-
rics.

Finally, the actuator reconfigures the system by adding or re-
moving (virtual) servers from the data grid. In order to maximize
portability, TAS relies on δ-cloud3, an abstraction layer which ex-
poses a uniform API to automate provisioning of resources from
heterogeneous IaaS providers (such as Amazon EC2, OpenNebula,
RackSpace). The addition/removal of nodes needs of course to be
coordinated also at the data grid level (not only at the IaaS level).
To this end, TAS assumes the availability of APIs to request the
join/departure of nodes from the data grid, which is a feature com-
monly supported by modern NoSQL data stores, such as Infinispan.

3.1 Infinispan Overview
As already mentioned, we selected as target platform for TAS a

popular open source in-memory NoSQL data grid, namely Infin-
ispan, which is developed by JBoss/Red Hat. At the time of writ-
ing, Infinispan is the reference NoSQL data platform and clustering
technology for the JBoss AS, a mainstream open source J2EE ap-
plication server. As TAS employs a white-box analytical model for
capturing the effects of data contention on system’s performance,
in the following we provide an overview of the main mechanisms
employed by Infinispan to ensure transactional consistency.

Infinispan exposes a key-value store data model, and maintains
data entirely in-memory relying on replication as its primary mech-
anism to ensure fault-tolerance and data durability.

As other recent NoSQL platforms, Infinispan opts for weaken-
ing consistency in order to maximize performance. Specifically, it
does not ensure serializability [3], but only guarantees the Repeat-
able Read ANSI/ISO isolation level [2]. More in detail, Infinispan
implements a non-serializable variant of the multi-version concur-
3δCloud, http://http://deltacloud.apache.org/



rency control algorithm, which never blocks or aborts a transac-
tion upon a read operation, and relies on an encounter-time locking
strategy to detect write-write conflicts. Write locks are first ac-
quired locally during the transaction execution phase, which does
not entail any interaction with remote nodes. At commit time, Two
Phase Commit (2PC) [3] is executed. During the first phase (also
called prepare phase), lock acquisition is attempted at all replicas,
in order to detect conflicts with transactions concurrently executing
on other nodes, as well as for guaranteeing transaction atomicity. If
the lock acquisition phase is successful on all nodes, the transac-
tion originator broadcasts a commit message, in order to apply the
transaction’s modifications on the remote nodes, and then it com-
mits locally.

In presence of conflicting, concurrent transactions, however, the
lock acquisition phase (taking place either during the local trans-
action execution or during the prepare phase) may fail due to the
occurrence of (possibly distributed) deadlocks. Deadlocks are de-
tected using a simple, user-tunable, timeout based approach. In this
paper, we consider the scenario in which the timeout on deadlock
detection is set to 0, which is a typical approach for state of the art
transactional memories [13] to achieve deadlock freedom. In fact,
distributed deadlocks represent a major threat to system scalability,
as highlighted by the seminal work in [16] and confirmed by our
experimental results.

4. PERFORMANCE PREDICTOR
This section describes the performance prediction methodology

employed by TAS. In Section 4.1, we introduce the analytical
model used to capture data contention among transactions. Next, in
Section 4.2, we present the machine learning based approach used
to forecast the effects of contention on physical resources. Finally,
in Section 4.3, we describe how to couple the two approaches.

4.1 Analytical Model
Our analytical model uses mean-value analysis techniques to

forecast the probability of transaction commit, the mean transac-
tion duration, and the maximum system throughput. This allows
supporting what-if analysis on parameters like the degree of par-
allelism (number of nodes and possibly number of threads) in the
system or shifts of workload characteristics, such as changes of the
transactions’ data access patterns.

The model treats the number of nodes in the system (denoted as
ν) and the number of threads processing transactions at each node
(denoted as θ) as input parameters. For the sake of simplicity, we
will assume these nodes to be homogeneous in terms of computa-
tional power and available RAM, and distinguish only two classes
of transactions, namely read-only vs update transactions. A discus-
sion on how to extend the model and relax these assumptions will
be provided in Section 4.1.4.

We denote with λTx the mean arrival rate of transactions, and
with w the percentage of update transactions, which perform, on
average, a numberNl of write operations before requesting to com-
mit. Note that, at this abstraction level, any operation that updates
the state of the key-value store, e.g., put or remove operations, is
considered a write operation. We say that a transaction is “local” to
a node if it was activated on that node. Otherwise, we say that it is
“remote”.

We do not model explicitly the issuing of read operations, as
the concurrency control of Infinispan ensures that these are never
blocked and can never induce an abort. However, we denote with
TlocalRO , resp. TlocalWR, the average time to execute a read-only,
resp. update, transaction, namely since its beginning till the time in

which it requests to commit, assuming that it does not abort earlier
due to lock contention (in case it is a write transaction).

We denote with Tprep the mean time for the transaction coordi-
nator to complete the first phase of 2PC, which includes broadcast-
ing the prepare message, acquiring locks at all replicas, and gath-
ering their replies. Note that the value of Tprep (and, in principle,
also of TlocalWR/TlocalRO) can vary as the system scale changes,
as an effect of the shift of the level of contention on physical re-
sources (network in primis, but also CPU and memory). As these
phenomena are captured in TAS via machine-learning techniques
(described in Section 4.2), the analytical model treats Tprep and
TlocalWR/TlocalRO simply as input parameters.

Finally, we assume that the system is stable, with the meaning
that i) all the parameters are defined to be either long-run averages
or steady-state quantities and ii) the arrival rate of transactions does
not exceed the service rate.

4.1.1 Data Access Pattern Characterization
In order to compute the response time for a transaction, we need

first to obtain the probability that it experiences local or remote
lock contention, that is whether it requires a lock currently held
by another transaction. Note that in the modeled concurrency con-
trol algorithm, lock contention leads to an abort of the transaction,
hence the probability of lock contention, Plock, and of transaction
abort, Pa, coincide.

As in other AMs of locking [34, 11], in order to derive the lock
contention probability we model each data item as a server that re-
ceives locking requests at an average rate λlock, and which takes an
average time TH before completing the “service of a lock request”
(i.e., freeing the lock) . This level of abstraction allows to approx-
imate the probability of experiencing lock contention upon issuing
a write operation on a given data item with the utilization of the
corresponding server (namely, the percentage of time the server is
busy serving a lock request), which is computable as U = λlockTH
[18] (assuming λlockTH < 1).

The key innovative element of our AM is that it does not rely on
any a priori knowledge about the probability of a write operation
to insist on a specific datum. Existing techniques, in fact, assume
uniformly distributed accesses on one [11] (or more [28]) set(s) of
data items of cardinality D (where D is assumed to be a priori
known) and compute the probability of lock contention on any of
the data items simply as:

Plock =
1

D
λlockTH (1)

Unfortunately, the assumption on the uniformity of the data ac-
cess patterns strongly limit the employment of these models in
complex applications, especially if these exhibit dynamic shifts in
the data access distributions. We overcome these limitations by
introducing a powerful abstraction that allows the on-line charac-
terization of the application data access pattern in a lightweight
and pragmatical manner. We call this abstraction Application Con-
tention Factor (ACF) and define it as:

ACF =
Plock
λlockTH

(2)

ACF has two attractive features that make it an ideal candidate
to characterize the data access patterns of complex transactional
applications:

1. It is computable on-line, on the basis of the values of
Plock, λlock and TH measured in the current platform config-
uration. By Eq. 1, it is possible to see that 1

ACF
can be alter-

natively interpreted as the size D of an “equivalent” dataset



accessed with uniform probability. Here, equivalent means
that, if the application had generated a uniform access pat-
tern over a dataset of size D = 1

ACF
, it would have incurred

in the same contention probability experienced during its ac-
tual execution (in which it generated arbitrary, non-uniform
access patterns).

2. As we will show in Section 5, even for applications with arbi-
trary, complex data access patterns (such as in TPC-C, whose
access pattern is very hard to model analytically), ACF is an
invariant with respect to the arrival rate, degree of concur-
rency in the system (i.e., number of nodes/threads generating
transactions) and physical hardware infrastructure (e.g., pri-
vate cluster vs public cloud platform).

The ACF abstraction represents the foundation on top of which
we built the AM of the lock contention dynamics, to be discussed
shortly. This model allows to predict the contention probability that
would be experienced by an application in presence of different
scenarios of workloads (captured by shifts of λlock or ACF), as
well as of different levels of contention on physical resources (that
would lead to changes of the execution time of the various phases
of the transaction life-cycle, captured by shifts of TH ).

4.1.2 Lock Contention Model
Denoting with λllock, respectively λrlock, the lock request rate

generated by local, respectively remote transactions, on a given
node, we can compute them as:

λllock =
λTx · w · Ñl

ν
, λrlock = Ñr · λTx · w ·

ν − 1

ν
· Pp

where we have denoted with Pp the probability for a transaction
to reach the prepare phase (i.e., not to abort earlier), and with
Ñl, respectively Ñr , the number of locks successfully acquired on
average by local, respectively remote, transactions, regardless of
whether they abort or commit.

When a transaction executes locally, it can experience lock con-
tention (and therefore abort) both with other local transactions and
remote ones. By using Eq. 1, we can therefore compute the proba-
bility of abort during local transaction execution, P la, as:

P la = P llock = (λllock + λrlock) ·ACF · TH (3)

The probability P ra for a remote transaction T to experience con-
tention upon any lock request issued during its prepare phase with
a transaction T ′ on any node of the data grid can be instead approx-
imated by considering exclusively the probability for T to contend
with T ′ on the node νT ′ that generated the latter transaction. In
fact, if T were to contend with T ′ at a node different from νT ′ ,
then, with very high probability, T would experience lock con-
tention with T ′ also when trying to complete its prepare phase on
νT ′ . As a consequence we can compute P ra as:

P ra = λllock ·ACF · T lH
where T lH denotes the mean lock hold time for a local transaction.
Thanks to this approximation, we can consider the remote abort
probabilities for a transaction on different nodes as independent.

By the above probabilities, we can compute the probability that
i) a transaction reaches its prepare phase (Pp), ii) successfully com-
pletes its prepare phase on all theN−1 remote nodes (Pcoher), and
iii) commits (Pc):

Pp = (1− P la)Nl

Pcoher = (1− P ra )Nl·(ν−1)

Pc = Pp · Pcoher

We can now compute the mean number of locks successfully
acquired by a transaction, Ñl, taking into account that it can abort
during its execution:

Ñl = Pp ·Nl +
Nl∑
i=1

P la · (1− P la)i−1 · (i− 1)

In order to compute Ñr we use a similar reasoning:

Ñr = (1− P †a )Nl ·Nl +
Nl∑
i=1

P †a · (1− P †a )i−1 · (i− 1)

with the exception that in this case we estimate the probability to
incur in lock contention taking into account that there cannot be
remote contention between two transactions originated by the same
node:

P †a = (λllock + λrlock ·
(ν − 2)

(ν − 1)
) ·ACF · T †H

Where we denoted with T †H the average lock holding time of the
transactions with which it is possible to experience contention dur-
ing the prepare phase, which we estimate as:

T †H =
λllock · T lH + λrlock ·

(ν−2)
(ν−1)

· T rH
λllock + λrlock ·

(ν−2)
(ν−1)

In order to compute the aforementioned probabilities, we need to
obtain the mean holding time for a lock. To this end let us define as
G(i) the sum of the lock hold time over i consecutive lock requests
(recalling that we are assuming that the average time between two
lock requests is equal to TlocalWR

Nl
):

G(i) =

Nl∑
i=1

TlocalWR

Nl
· i

We can then compute the local lock hold time as the weighted aver-
age of three different lock holding times, referring to the case that
a transaction aborts locally (Hla

l ), remotely (Hra
l ) or successfully

completes (Hc
l ):

T lH = Hla
l +Hra

l +Hc
l

Hla
l =

Nl∑
i=2

P la · (1− P la)i−1 · G(i− 1)

i− 1

Hra
l = Pp · (1− PCoher) · [Tprep +

G(Nl)

Nl
]

Hc
l = Pp · PCoher · [Tprep +

G(Nl)

Nl
]

Let us now compute the remote lock hold time, T rh . We neglect
the lock holding times for transactions that abort while acquiring
a lock on a remote node, as in this case locks are acquired con-
secutively (without executing any business logic between two lock
requests). On the other hand, if a remote transaction succeeds in
acquiring all its locks, then it holds them until it receives either a
commit or an abort message from the coordinator. Therefore we
compute T rh as:

T rh = (1− P †a )Nl · [Tprep + (1− P ra )Nl·(ν−2) · Tcom]

where (1 − P †a )Nl represents the probability for a remote transac-
tion T executing its prepare phase at node n to successfully acquire
all the locks it requests on n, and (1− P ra )Nl·(ν−2) represents the
probability for T to successfully acquire its remote locks on the
remaining ν − 2 nodes.



Given that an update transaction can terminate its execution (ei-
ther aborting or committing) in three different phases, its mean ser-
vice time, denoted as TW , can be expressed as:

TW = Tc + T la + T ra

where

Tc = Pc · (TlocalWR + Tprep + Tcomm)

T la =

Nl∑
i=1

[Troll + (
TlocalWR

Nl
· i)] · P la · (1− P la)i−1

T ra = Pp · (1− Pcoher) · (TlocalWR + Tprep)

Considering also read-only transaction, the average service time of
a transaction, denoted as T , is:

T = w · TW + (1− w) · T localRO (4)

4.1.3 AM Resolution and Predicted KPIs
As in previous analytical models of transactional data contention

[34, 12], also our model exhibits a mutual dependency between
the abort probabilities and other parameters, such as the mean hold
time. Prior art copes with this issue by using an iterative scheme
in which abort probabilities are first initialized to zero. Next, the
depending parameters are computed, and, on the basis of their val-
ues, a new set of abort probabilities is obtained and used in the next
iteration; the process continues till the relative difference between
the abort probabilities at two subsequent iterations becomes smaller
than a given threshold.

It is known [34] that this iterative solution technique can suf-
fer from convergence problems at high contention rates. We tackle
this issue by adopting a binary search in the bi-dimensional space
[0, 1] × [0, 1] associated with the abort probabilities (local and
remote), which is guaranteed to converge at a desired precision
ε ∈ (0, 1] after a number of steps n ≤ 1+ d−log2εe. This analysis
was confirmed by our evaluation study, reported in Section 5, for
which we set ε = 0.001 and observed convergence in at most 11
iterations.

Once obtained the commit probability and the average transac-
tion service time, the model can be employed to compute additional
KPIs typically employed in SLA definition, such as maximum sys-
tem throughput or percentiles on response times.

The maximum throughput can be computed by exploiting Lit-
tle’s law [20] in an iterative fashion. At the first step of the itera-
tion, an upper-bound on system throughput is provided as input to
the model, which is computed by assuming no conflicts and that all
threads in the system constantly execute transactions. This corre-
sponds to setting:

λ =
νθ

w · (TlocalWR + Tprep + Tcomm) + (1− w) · TlocalRO

At each step, a new value of λ is fed in input to the model, replacing
the denominator of the above equation with the value of T (see
Eq. 4) computed in the previous iteration, till convergence to the
desired precision is reached.

In order to compute response time percentiles, it is possible to
model each data grid node as a G/G/θ queuing system, i.e., a queue
with θ servers subjected to arbitrary service and arrival rate dis-
tributions. One can then exploit the Köllerström’s approximation
[4] for the waiting time distribution of G/G/θ queues in the heavy-
traffic case, namely when the queue utilization ρ ' 1. This result
states that the approximate distribution of the waiting time, w, of a

G/G/θ queue in heavy traffic is exponential and is given by:

P (w ≤ t) ' 1− e
− 2(1/λ−Ts)

σ2u+
σ2v
θ2

t

where σu is the inter-arrival time variance, σ2
b is the service time

variance (both measurable at run-time, as done in other systems
for automated resource provisioning, such as [27]), λ is the request
arrival rate, and Ts is the average service time. The above formula
can hence be used to compute the maximum arrival rate λ such that
the response time is less than a given threshold y with probability
k.

4.1.4 Extensions of the AM
The presented model lends itself to be extended in several

directions. In the following we briefly overview some of the most
interesting possible extensions.

Mix-aware modeling: extending our approach to account for mul-
tiple transaction classes having different characteristics (for in-
stance in terms of data access pattern or duration of local execution)
would require two main steps.

1. Extracting a characterization of the different transactional
classes, including per-class information on ACF, abort prob-
ability, mean number of locks requested per transaction and
local execution time, and of the ratio of each class in the
mix. Identification of different transactional classes can be
performed in a transparent way using classic clustering tech-
niques, such as the one used, e.g., in [15].

2. Specializing the analytical model to forecast the contention
probability (and depending statistics, such as throughput) per
transaction-class. This result can be achieved in a relatively
simple way by employing a methodology, similar to the one
proposed in [34], in which the transaction conflict probabil-
ity is computed taking into account the data access patterns
(in our case captured by the ACF) of each single transaction
class.

Heterogeneous platforms: as in prior approaches for automated
resource provisioning for the Cloud [27, 26], heterogeneous plat-
forms can be handled by using simple multiplication factors be-
tween servers depending on their hardware characteristics. For
example, Amazon EC2 offers various instances (small, medium,
large, etc.), each equipped with different hardware resources. Via
a preliminary benchmarking study (using synthetic workloads, as
in [26], or, whether possible, directly the target application, as in
[27]), it is easy to determine scaling factors relating the perfor-
mance achieved when deploying the application on different type
of instances. For example, a medium instance performs 1.5 times
better than a small instance, or a large instance provides 2x the
throughput of a small instance. These scaling factors can then be
applied to forecast the values of the parameters associated with
the duration of local transaction execution, namely TlocalRO and
TlocalWR, when deploying the application on a different instance
type.

4.2 Machine-Learning-Based Modeling
TAS relies on black-box, machine-learning-based modeling

techniques to forecast the impact on performance due to shifts of
the level of contention on physical resources depending on work-
load’s fluctuations or to the re-sizing of the data grid. Developing
white-box models capable of capturing accurately the effects on
performance due to contention on hardware resources can in fact be
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Figure 3: Accuracy of the machine-learning based Tprep predictions on the private cluster (left) and on EC2 (right).

very complex (or even non-feasible, especially in virtualized cloud
infrastructures), given the difficulty to gain access to detailed infor-
mation on the exact dynamics of hardware-level components.

In TAS we exploit the availability of a complementary white-box
model to formulate the machine-learning based forecasting prob-
lem in a way that differs significantly from traditional, pure black-
box approaches. Conventional machine learning based techniques,
e.g., [26], try to forecast some performance metric p2 in an un-
known system configuration c2, given the performance level p1 and
the demand of physical resources d1 in the current configuration
c1. In TAS, instead, the analytical model can provide the machine
learner with valuable estimates of the demand of physical resources
d2 in the target configuration c2. Specifically, we use the analytical
model to forecast what will be, in the target configuration c2, the
rate of transactions that will initiate a 2PC scheme (once reached
their commit phase) as well as the percentage of CPU time con-
sumed by the threads in charge of processing local transactions.

As already mentioned, contention on physical resources can have
a direct impact on the execution time of two key phases of transac-
tions’ execution, namely the duration of the local transaction pro-
cessing phase, denoted as TlocalWR and TlocalRO , and the network
latency incurred in by transactions while executing the 2PC proto-
col, denoted as Tprep. We are here faced with a non-linear re-
gression problem, in which we want to learn the value of contin-
uous functions defined on multivariate domains. Given the nature
of the problem, we used, as machine learner, Cubist, a decision-
tree regressor that approximates non-linear multivariate functions
by means of piece-wise linear approximations. Analogously to
classic decision tree based classifiers, such as C4.5 and ID3 [24],
Cubist builds decision trees choosing the branching attribute such
that the resulting split maximizes the normalized information gain.
However, unlike C4.5 and ID3, which contain elements in a finite
discrete domain (i.e., the predicted class) as leaves of the decision
tree, Cubist places a multivariate linear model at each leaf.

In order to build an initial knowledge base to train the machine
learner, TAS relies on a suite of synthetic benchmarks that gener-
ate heterogeneous transactional workloads in terms of mean size of
messages, memory footprint at each node and network load (num-
ber of transactions that activate 2PC per second). Additional de-
tails on the criteria used to perform feature selection are provided,
for space constraints, in [14]. During the initial, off-line, training
phase, the benchmark suite injects workload while varying the size
of the cluster and the number of threads concurrently processing
local transactions at each node. In our experiments we found that
using a simple uniform sampling strategy allowed to achieve rather
quickly (in about one hour) a satisfactory coverage of the parame-
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Figure 4: ACF for heterogeneous benchmarks.

ters’ space, which is the reason why we did not decide to integrate
more advanced sampling mechanisms, like adaptive sampling [29].

Once deployed on a data grid, the statistical gathering system of
TAS periodically collects new samples of the workload and perfor-
mance of the system. This allows to support periodic re-training
of the machine learner and to incorporate in its knowledge base
profiling data specific to the target user level applications.

4.3 AM and ML Coupling
By the above discussion, it is clear that the AM and the ML are

tightly intertwined: the AM relies on the predictions of the ML
to obtain the values of Tprep and TlocalWR/TlocalRO as input; the
ML, on the other hand, uses as one of the input features of its model
the transaction throughput forecast by the AM, which represents an
estimate on the level of resource contention in the target configura-
tion.

For simplicity, the current prototype solves this problem by us-
ing the following fixed point iterative solution, which, in our ex-
periments, has never shown convergence problems: the AM is ini-
tialized with the current values of Tprep and TlocalWR/TlocalRO ,
it outputs the estimated throughput in the target configuration, and
provides it as input feature to the ML to obtain a new value of Tprep
and TlocalWR/TlocalRO . The process is repeated till the requested
precision is reached. Note that, also in this case, we may have em-
ployed a binary search technique analogous to the one described
in Section 4.1.3. Such a technique provides stronger convergence
properties, at the cost of a higher complexity since, in this scenario,
it would need to operate on a three-dimensional space.

5. VALIDATION
In this section we report the results of an experimental study
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Figure 5: Validation using the TPC-C benchmark.

aimed at evaluating the accuracy and viability of TAS. Before pre-
senting the results, we describe the workloads and experimental
platforms used in our study.

Workloads. We consider two well-known benchmarks, already
mentioned in Section 1, namely TPC-C and Radargun. The for-
mer is a standard benchmark for OLTP systems, which portrays
the activities of a wholesale supplier and generates mixes of read-
only and update transactions with strongly skewed access patterns
and heterogeneous durations. Radargun, instead, is a benchmark-
ing framework specifically designed to test the performance of dis-
tributed, transactional key-value stores. The workloads generated
by Radargun are simpler and less diverse than TPC-C’s ones, but
have the advantage of being very easily tunable, thus allowing as-
sessing the accuracy of TAS in a wider range of workload settings.

For TPC-C we consider two different workload scenarios. The
first, which we denote as TPCC-R, is a read dominated workload
(containing 90% read-only transactions) that generates reduced
contention on both physical and data resources as the scale of the
cluster grows. The second (TPCC-W) includes around 50% of up-
date transactions and generates a high data contention level.

For Radargun we also consider two workloads, denoted as RG-
LA and RG-SM. Both workloads generate uniform data access pat-
terns, but RG-LA performs, in each transaction, a single put oper-
ation over a set of 100K data items, yielding a very low contention
rate. RG-SM, instead, updates in each transaction 10 data items
selected over a set of cardinality 1K, thus generating a very high
contention probability. We decided to use the Radargun workloads
in our evaluation study because their data access patterns are par-
ticularly simple and easily predictable, thus allowing us to validate
the correctness and semantics of the ACF abstraction.

Experimental Platforms. We use, as experimental test-beds for
this study, both a private cluster and Amazon EC2. The private

cluster is composed of 10 servers equipped with two 2.13 GHz
Quad-Core Intel(R) Xeon(R) processors and 8 GB of RAM and
interconnected via a private Gigabit Ethernet. For EC2 we used
up to 20 Extra Large Instances, which are equipped with 15GB of
RAM and 4 virtual cores with 2 EC2 Compute Units each.

ML validation. We start by assessing the accuracy of the machine
learners built using the synthetic benchmarking suite described in
Section 4.2. We focus on the forecasting of Tprep, since in all
the explored settings we observed negligible shifts of the value of
TlocalRO/TlocalWR in face of changes of the cluster size. This is
due to the fact that, in the considered settings, the system bottleneck
is consistently the network rather than the CPU.

In order to evaluate the accuracy of the machine learning model
in isolation (i.e., decoupling it from the analytical model), in this
experiment we provide the machine learners with the correct guess
of the target throughput. The scatter-plots in Figure 3 report the re-
sults of 10-fold cross validation, highlighting that, on both the pri-
vate cluster and on EC2, the ML attains a high prediction accuracy.
Specifically, the correlation factor was around 99% in both cases,
with an average absolute error equal to 500 micro-seconds for EC2
and around 60 micro-seconds for the private cluster. Note that, in
practice, the relative error is similar on both platforms, since, on
EC2, the maximum value of Tprep is around 10 times greater than
the maximum Tprep value on the private cluster.

ACF validation. In Figure 4 we report the ACFs obtained when
running both the TPC-C and Radargun workloads on EC2 and on
the private cluster (note that we tag the curves obtained on the pri-
vate cluster with the suffix “-P”). The plots confirm our finding,
namely that, once fixed an application workload, the ACF repre-
sents an invariant across platforms of different scale, even when
deployed on infrastructures of different nature (private vs public).
It is noteworthy to highlight that the ACF value is equal to 1E-5,
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Figure 6: Comparing TAS with a pure ML approach.

resp. 1E-3, for the workloads RG-LA, resp. RG-SM. We recall
that these workloads generate uniform accesses to datasets of size
100K, resp. 1K, items. Therefore, these results confirm that ACF
can be interpreted as the inverse of the size of an equivalent, uni-
formly accessed, dataset.

AM/ML validation. Let us now evaluate the accuracy of the fi-
nal performance predictions output by TAS when jointly using the
AM and the ML. We use as KPIs the maximum throughput and
commit probability. We report in Figure 5 the forecasts for the
TPC-C workloads. For space constraints, we cannot include the
plots for Radargun, however they show analogous trends. The ex-
perimental data demonstrate the ability of TAS to predict with high
accuracy not only the maximum transaction throughput, but also
important intermediate statistics such as commit probability. More
in detail, TAS achieves a remarkable average relative error (defined
as |real − prediction|/real) on the predicted throughput of 2%,
with a maximum of 3.5%.

Comparison with a pure ML approach. We conclude by com-
paring the accuracy of TAS with that of a pure ML-based solution,
namely the approach at the basis of several recent works in the
area of elastic scaling [7, 15]. To this end, we trained Cubist on
the TPCC-R workload, varying the number of nodes from 2 to 20
and the incoming load from 100 requests per second until reaching
the maximum throughput. The input features for the ML included
CPU, memory and network utilization, the percentage of update
transactions and the mean number of locks they request, the trans-
action arrival rate, number of nodes and active threads per node.
As in the previous evaluation study, we use maximum throughput
as the output variable. These experiments were performed using
Amazon EC2.

As test dataset, we use TPCC-W, which, we recall, generates a
significantly higher data contention level with respect to TPCC-R.
Further, unlike TPCC-R, TPCC-W exhibits a non-linear scalability
trend. As expected [7], in these conditions, the pure ML-based ap-
proach manifests its limits in terms of reduced extrapolation power.
In fact, the plots in Figure 6 clearly highlight that the pure ML-
based solution tends to mimic the linear scalability trend that it
observed during its training phase. As a consequence, it blunders
when faced with workloads, like the TPCC-W, that i) have previ-
ously unobserved input characteristics, and ii) exhibit significantly
different performance trends. This problem might be, to some ex-
tent, addressed by increasing the coverage of the training phase.
However, achieving a good accuracy across a wide range of work-
loads may require a prohibitive increase of the ML training time. In
fact, data contention dynamics in a (distributed) transactional sys-

tem are influenced by a wide range of parameters [12, 3], and it is
well known that the training time of ML techniques grows expo-
nentially with the number of input features (the, so called, curse of
dimensionality problem [5]).

The AM employed by TAS, on the other hand, can exploit the a
priori knowledge on the dynamics of data consistency mechanisms
to achieve a higher extrapolation power. Further, it allows to narrow
the scope of (and hence to simplify) the problem tackled via ML
techniques, reducing the dimensionality of the ML input features’
space and, consequently, the duration of the training phase.

As a final remark, it is noteworthy to highlight that, in all our
experiments, the performance attained with or without the monitor-
ing framework were indistinguishable. Also, the time required to
instantiate and solve a TAS query is on the order of a few hundreds
of milliseconds, highlighting the practical viability of the proposed
solution to support on-line what-if analysis and automate elastic
scaling.

6. CONCLUSIONS AND FUTURE WORK
In this paper we introduced TAS (Transactional Auto Scaler), a

system designed to accurately predict the performance achievable
by applications executing on top of transactional in-memory data
grids, in face of changes of the scale of the system.

TAS relies on a novel hybrid forecasting methodology that
jointly utilizes analytical modeling and machine learning tech-
niques according to a divide-and-conquer approach: availability of
precise knowledge of the concurrency control scheme/replication
protocol is exploited to derive a white-box analytical model of
data contention; black-block statistical techniques are instead used
to capture the effects of contention on physical resources (CPU,
memory, network) while avoiding explicit modeling of the interac-
tions with system resources, which is not only complex and time
consuming given the complexity of current hardware architectures,
but is also normally non-viable in virtualized Cloud environments
where users have little or no knowledge of the underlying infras-
tructure.

We demonstrated the viability and high accuracy of the proposed
solution via an extensive validation study based on industry stan-
dard benchmarks deployed both on a private cluster and on a public
cloud infrastructure (Amazon EC2).

Future work will be aimed at integrating analytical models for
different concurrency control schemes in TAS and in extending
TAS’ lightweight data access pattern characterization to encompass
also the case of partially replicated data sets.
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