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Abstract

In this paper we define the Weak Mutual Exclusion (WME)

problem. Analogously to classical Distributed Mutual Ex-

clusion (DME), WME serializes the accesses to a shared

resource. Differently from DME, however, the WME abstrac-

tion regulates the access to a replicated shared resource,

whose copies are locally maintained by every participating

process. Also, in WME, processes suspected to have crashed

are possibly ejected from the critical section

We prove that, unlike DME, WME is solvable in a partially

synchronous model, i.e. a system where the bounds on

communication latency and on relative process speeds are

not known in advance, or are known but only hold after an

unknown time.

Finally we demonstrate that ♦P is the weakest failure

detector for solving WME, and present an algorithm that

solves WME using ♦P with a majority of correct processes.

1. Introduction

Problem Statement and Motivations. The distributed mu-

tual exclusion problem (DME) [10], [11], [21] is consid-

ered a fundamental challenge associated with parallel and

distributed programming [28]. It captures the coordination

required for resolving conflicts resulting from several con-

current processes accessing a single, indivisible resource,

that can only support one user at a time. The user accessing

the resource is said to be in its critical section (CS), and the

(safety) property guaranteeing the existence of at most one

process in its CS at any time is known as mutual exclusion.

Over the years, the mutual exclusion problem has been

investigated both in the failure-free model [24], [31] and

under the assumption that the processes accessing the shared

resource can fail according to the crash-failure model [1],

[26]. However, in real life, failures do not only affect

the processes contending for the CS, but clearly also the

shared resource to be accessed in mutual exclusion. It is

therefore very often the case that the shared resource to

be accessed in mutual exclusion appears as a single and

indivisible object only at a logical level, while instead

being physically replicated for fault-tolerance, as well as

for scalability purposes. This class of systems is indeed
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extremely popular: consider, for instance, the wide range

of applications, spanning from the world wide web [13], to

databases [23] and distributed file systems [15], that rely

on various lease mechanisms aimed at simplifying and/or

optimizing the consistency mechanisms used for accessing

replicated version of the same logical (collection of) data.

The aforementioned lease based replication mechanisms

are clearly closely related to the DME problem as their base

goal is to provide to a single process exclusive access to a

replicated resource for a given period of time. On the other

hand, one key differentiation point between traditional lease

based mechanisms and the mutual exclusion problem lies in

that leases, being de facto time-based contracts, are tightly

coupled to the notion of real-time. Perhaps unsurprisingly,

lease schemes have in fact been traditionally designed

and implemented assuming strong, and hence restrictive,

synchrony levels (such as bounded communication delay

and clock skew across processes). Conversely, in the DME

problem, processes exit from the CS only by explicitly

releasing it (one relevant exception to this rule being

failures, which implicitly determine an eventual exit from

the CS). In this sense, the DME problem might appear

as if it was not directly bound to the notion of time.

Unfortunately, this is not the case, since the mutual

exclusion property is classically specified by explicitly

referring to global time, i.e., from [10]:

Mutual exclusion: No two different processes are in their

CSs at the same time.

As a direct consequence of this property, DME is known

to be solvable [10], in the presence of failures, only if the

underlying system model encapsulates sufficient synchrony

assumptions permitting to accurately (i.e. without the pos-

sibility of any false failure suspicion1) distinguish crashed

processes from slow, but correct, ones. Unfortunately, this is

possible only in the presence of strong synchrony assump-

tions, such as those guaranteed by the classical synchronous

system model [17], where communication latencies and

relative process speeds are a priori bounded. This is a rather

restrictive requirement which has significant implications,

both of theoretical and practical nature, as discussed below.

1. The work in [10] has actually shown that DME is solvable even if a
correct process p is falsely suspected during the initial phase by some other
process q, i.e. before p is “trusted” for the first time by q. This however
does not significantly relax the synchrony requirements of DME.



From a theoretical standpoint, the requirement of ac-

curate failure detection makes the DME problem harder

than another fundamental problem of distributed computing,

namely consensus [17]. Consensus is in fact determinis-

tically solvable even if the failure detector module stops

outputting false failure suspicions only eventually, namely

after a finite but not a priori known time2. This makes

the consensus problem solvable in more relaxed, and hence

general, system models with respect to DME, such as, e.g.,

in an eventually synchronous environment [5], [14] where

bounds on communication latency and relative process speed

are either unknown or are only guaranteed to hold starting at

some unknown time. With respect to the synchronous model,

partially synchronous models are hence much less restrictive

and better suited to capture phenomena such as congestions

or performance failures that represent not negligible aspects

of realistic systems.

On the other hand, from a more practical perspective,

the correctness of any algorithm solving the DME problem

cannot be guaranteed when deployed in a real-life distributed

system where temporary network partitions or overloads of

the processing nodes (caused, e.g., by unexpected work-

load’s fluctuations) may give raise to false failure suspicions.

In such scenarios, for instance, the algorithm proposed in

[10] to solve the DME problem could violate the mutual

exclusion property by allowing multiple processes to simul-

taneously enter the critical section.

Note, however, that the above impossibility result holds

for the traditional specification of the DME abstraction,

namely the one used to regulate the concurrent access

to a single and indivisible shared resource, whose mutual

exclusion property is defined as above.

We can then pose the following question: is there a

meaningful definition of the mutual exclusion problem for

a replicated shared resource that is solvable under more

relaxed assumptions on the system’s synchrony?

Contributions. In this paper, we show that the answer to

this question is yes.

First, we introduce the Weak Mutual Exclusion (WME)

problem, which is derived by extending the classical DME

specification [10] in a twofold direction.

On one hand, we explicitly model the interactions with the

replicated shared resource associated with the CS, which we

describe as a deterministic state machine which interacts by

exchanging operations’ invocations and responses events.

On the other hand, we relax the classical mutual exclusion

property in order to detach it from the notion of real-time

(which represents the crucial reason underlying the con-

straining requirements on systems’ synchrony characterizing

the DME problem) and bind it to the notion of logical time,

2. In other terms, DME is harder than consensus since the latter is
solvable with a failure detector that is strictly weaker [5] than the weakest
failure detector required for solving DME.

captured by the concept of critical section instance. Unlike

the classical DME, in the WME problem a CS instance can

be granted not only in case there is currently (i.e. at the

same time) no other process in their CS, but rather as long

as the whole sequence of established CS instances can be

reordered to yield a sequential history in which:

1) no two CS instances overlap over time,

2) the order of establishment of the CS instances and

of the operations executed on the (replicated) shared

resource does not contradict the (partial) order in the

original history,

3) the state trajectories of the set of replicas of the shared

resource are equivalent to a serial execution over a

single copy of the shared resource.

Also, unlike the classical DME, the specification of the

WME problem allows aborting already established CS in-

stances. In this case, we say that the process is ejected from

its CS and require that any pending operation fails (i.e. is not

executed on any replica of the shared resource) and that the

associated application is explicitly notified via the delivery

of an apposite call-back event.

We then show that the WME problem is solvable in an

eventually synchronous system [16], i.e. a system in which

bounds on communication latency and relative process speed

are either unknown or are only guaranteed to hold starting

at some unknown time. This result is achieved by proposing

an algorithm, modularly layered on top of the consensus

abstraction, which solves the WME problem in an asyn-

chronous system with a majority of correct processes and

an eventually perfect failure detector, namely ♦P [5]. An

eventually perfect failure detector ensures that all faulty

processes are eventually detected (Strong Completeness) and

that eventually no correct process is suspected by any correct

process (Eventual Strong Accuracy). ♦P was shown in [5]

to be implementable in an eventually synchronous system.

Finally, we prove than no algorithm can solve the problem

using a failure detector that is strictly weaker than ♦P [5]. In

other words, we identify in ♦P the minimum failure detector

for solving the WME problem in an asynchronous system

with a majority of correct processes. This result also implies

that WME is strictly harder than the consensus problem,

since the latter is known to be solvable with an eventually

strong failure detector, ♦S, which is strictly weaker than

♦P, according to the failure detector’s hierarchy defined in

[5].

Paper organization. The remainder of this paper is struc-

tured as follows. In Section 2 we discuss related research.

Section 3 describes the system model, and Section 4 in-

troduces terminology and notions which we use in the

remainder of the paper to reason about the correctness of

distributed algorithms. In Section 5 the specification of the

WME problem is provided. Section 6 presents an algorithm

that solves the WME problem using the ♦P failure detector



and tolerating the failure of a minority of process. In Section

7 we show that ♦P is the weakest failure detector for solving

the WME problem. Section 8 concludes the paper.

2. Related Research

There is a large body of research related to the mutual

exclusion problem. Traditional DME solutions coping with

the possibility of process crashes, e.g. [1], [26] assume

perfect information about failures, i.e. the ability to dis-

tinguish slow processes from crashed ones without making

any mistake. In other terms, these solutions either assume a

synchronous system or encapsulate the required synchrony

assumptions within a perfect failure detector, also called

P , [5] ensuring that all faulty processes are eventually

detected (Strong Completeness) and that no correct process

is (falsely) suspected to have crashed by any other process

(Strong Accuracy). More recently, [10] has shown that the

DME problem can be actually solved with a failure detector

that is strictly weaker than P , namely the trusting failure

detector, T . Informally, T guarantees to eventually and

permanently 1.a) trust (consider to be up) every correct

process, 1.b) not trust any crashed process, and that 2)

if T stops trusting a process, then the process must be

actually crashed. On the other hand, it is crucial to highlight

that, despite being strictly weaker than a perfect failure

detector, T , analogously to P , cannot be implemented in

an eventually synchronous system. In fact, any algorithm

implementing T has to be able to determine a (bounded)

time after which any trusted process that stops responding

(e.g., to heartbeat messages) can be certainly considered as

crashed, without the possibility to make any mistake (i.e.

false failure suspicions). Since [10] proves that T is the

weakest failure detector for DME, it follows that the DME

problem can not be solved in partially synchronous systems

where either the bounds bounds on communication latency

and on relative processors’ speeds exist but are not known

in advance, or are known but only start to hold after an

unknown time [14]. In this paper we relax the specification

of the classical DME problem, deriving an abstraction, the

Weak Mutual Exclusion, aimed at regulating the concurrent

access to a replicated shared resource through an interface

very similar to the one provided by conventional DME

but that, unlike DME, is implementable even in a partially

synchronous system, or, equivalently, in an asynchronous

system equipped with a ♦P failure detector.

The DME problem is also at the core of a number of

well-studied process synchronization problems, such as the

allocation of a set of distributed resources [12], [6], [7]. A

common characteristic of this class of problems is that they

require to ensure mutual exclusion and starvation freedom in

the access to a finite set of (not replicated) resources by some

competing processes. Conflict relations in the access of pro-

cesses to resources are normally captured via a conflict graph

[12] and a conventional measure of the failure resiliency of

a solution algorithm is failure-locality [8]. Failure locality

measures the impact of faults as the radius in the conflict

graph of the worst-case set of processes that are blocked

by a given fault, thus demarcating a halo outside of which

faults are masked. For instance, the (crash) failure locality

of the dining philosopher problem [12], i.e. the archetype

of distributed resource allocation problems, is known to be

2 in an asynchronous system [8] and 1 in an asynchronous

system augmented with a ♦P failure detector [27]. As it

will be later shown in this paper, the WME problem can

be solved in the latter system model, ensuring starvation

freedom of any participant process despite failures. In other

words, the (crash) failure locality of the WME problem is

0 in an asynchronous system augmented with a ♦P failure

detector.

The notion of lease [13], [15] is closely related to mutual

exclusion. Unfortunately, as already noted in Section 1, most

lease based approaches are explicitly tied to the notion

of physical time. Indeed, the only lease based solution

we are aware of that is designed for employment in an

asynchronous system is the one in [3]. This solution allows

processes to setup Asynchronous Leases over an a priori pre-

declared sequence of logical intervals, which can be used

to execute arbitrary operations. The motivations underlying

this approach, as well as its applications, are, in some sense,

common to those of WME: providing distributed users with

a tool that ensures the absence of conflicts while issuing op-

erations. On the other hand, there are a number of significant

differences between our Weak Mutual Exclusion and the

Asynchronous Lease abstraction in [3]. First, upon crash of a

process p that has successfully established an asynchronous

lease, in [3] the remaining processes are forced to block

until p recovers and “uses” all the intervals over which it

has acquired a lease. Also, the success in the acquisition of

an Asynchronous Lease is conditioned to the fact that there

are no contending requesters. The specification of the WME

problem, conversely, provides stronger liveness guarantees

which rule out the above blocking scenarios. Furthermore,

the Asynchronous Lease mechanism requires users to pre-

declare the number of logical intervals to allocate, whereas

the WME, deriving from the formulation of classical DME,

exposes an interface which closely resembles the one of a

pre-emptible lock.

Finally, since the proposed WME abstraction is, de facto,

a tool to ensure the consistent evolution of a replicated

shared resource, it is strongly related also to the vast lit-

erature on replication. The WME can be viewed as a higher

level abstraction, which can be implemented by leveraging

various well known techniques/building blocks developed by

previous research, such as consensus [18], atomic broad-

cast [9] etc. The main practical benefits of using WME

abstraction for maintaining the consistency of replicated

resources are twofold. On one hand, analogously to classical



centralized lock schemes, the WME abstraction allows to

mitigate the drawbacks related to the concurrent execution

of conflicting user level operations. In this sense the WME

abstraction can be applied to support database replication

schemes such as [20], [29], where it may be used to reduce

the frequency of aborts caused by conflicting data accesses.

Further, the ability of the WME abstraction to serialize the

sequences of operations issued by each user within the CS

can provide benefits for what concerns the performances

of some of the typical building blocks used by replication

schemes. For instance, it is known that the performance

of consensus can be strongly optimized (i.e. its decision

latency can be reduced to a single communication step [4],

[22]) if there are no two processes simultaneously proposing

different values. This is exactly the kind of guarantees that

the WME abstraction aims at providing.

3. System Model

We consider in this paper a crash-prone asynchronous

message passing system model augmented with the failure

detector abstraction [5]. The terminology used in this section

closely resembles the one in [10], [25].

System. The system consists of a set of n processes Π =

{1, . . . , n} (n > 1), communicating over reliable channels,

guaranteeing that messages are eventually delivered by the

intended receiver, unless the sender or the receiver crashes.

The asynchronous communication channels are modeled as

a message buffer which contains messages not yet received

by their destinations. To simplify the presentation of our

model, we assume the existence of a discrete global clock.

This is a fictional device, as the processes have no direct

access to it. We take the range N of the clock’s ticks to be

the set of natural numbers and denote the time instant in

which an event e is generated by a process as T (e).
We do not consider Byzantine failures: a process either

correctly executes the algorithm assigned to it, or crashes

and stops forever. We denote the crash of a process with the

event crashi. A process that does not crash is said to be

correct. The system is augmented with a distributed failure

detector oracle D in the sense that every process i has access
to a local failure detector module Di that provides i with

information about the failures in the system.

Users, stubs, and shared resource replicas. Each process

i hosts a user ui, a stub si, and a replica of the shared

resource ri. A user ui, which can be viewed as an application

program, interacts exclusively with its local stub si to

request exclusive access to the shared resource and to issue

operations on it. The stub si acts as a wrapper on the local

replica of the shared resource ri and coordinates with the

other processes to ensure that the operations executed on ri

are equivalent to an execution on a single copy of the shared

resource that is consistent with the order of establishment of

the mutual exclusion. Users, stubs and replica of the shared

resources are modeled as deterministic (possibly infinite

state) automata that communicate by exchanging input and

output events.

A stub si interacts with the local replica ri of the

replicated resource through the following classes of events

from the domain SRevents:

• invokei[op] is an input event of ri (resp. output event

of si), which triggers the execution of the operation

op ∈ Operations, where Operations is the set of

admissible operations for the replicated shared resource

automaton. We assume each op to be univocally iden-

tifiable (this is accomplishable by simply associating

an additional unique id with each operation, which we

omit to simplify presentation).

• responsei[op, res] is an output event of ri (resp.

input event of si) which notifies the stub about the

result res ∈ Results returned by the execution of a

previously issued operation op on ri, where Results
is the set of possible results that the shared resource

automaton can output.

The interaction with a replica ri is assumed to be non-

blocking, i.e. if ri receives a invokei[op] event it eventually
generates the corresponding responsei[op, res].
A user ui and its local stub si interact using the following

six classes of events from the domain USevents:

• tryi is an input event of si (resp. output event of ui)

which indicates the wish of ui to enter its CS. In this

case we say that i volunteers.
• criti[CS id], where CS id ∈ N, is an input event of

ui (resp. output event of si) which is used by si to

grant ui access to the critical section instance CS id.
• issuei[CS id, op], where CS id ∈ N and op ∈

Operations, is an input event of si (resp. output event

of ui), which is used by ui to issue an operation op on

the shared resource.

• outcomei[CS id, op, res], where CS id ∈ N, op ∈
Operations and res ∈ Results, is an input event of

ui (resp. output event of si) which notifies the result

res of the execution of operation op by ri.

• exiti[CS id] is an input event of si (resp. output event

of ui) which indicates the wish of ui to leave the

critical section instance CS id. In this case we say

that i resigns.
• remi[CS id] is an input event of ui (resp. output event

of si) which notifies ui that it can continue its work

out of its critical section instance.

• ejectedi[CS id] is an input event of ui (resp. output

event of process si) which notifies ui that si was forced

to exit from the critical section CS id (due to a failure

suspicion).

An operation that was issued by a user ui through a



issuei[CS id, op] event, and which is not followed neither

by the corresponding outcomei[CS id, op, res] event, nor
by an ejectedi[CS id] event is called a pending operation.

If si generates an outcomei[CS id, op, res] event for a

pending operation, we say that the operation was success-

fully executed, or simply succeeded. If si generates an

ejectedi[CS id] event for a pending operation, we say that

the operation failed to execute, or simply failed.

An event e is said to be associated with a CS instance

CS id if and only if i) e is an event exchanged between

a user and a stub (i.e. e ∈ USevents), and ii) e is either

the try event that determined the establishment of the CS

instance CS id or e has CS id as the value of its CS

instance identifier parameter.

The events issuei[CS id, op] and invokei[op
′], respec-

tively outcome[CS id, op, res] and responsei[op
′, res], are

said to be correlated if and only if op = op′, i.e. they

are associated with the same operation op (recall we are

assuming that each operation is univocally identified).

Algorithms, runs and solvability of problems. An al-

gorithm A is a collection of n (possibly infinite state)

deterministic automata, one for each of the stubs si in the

system. A(i) denotes the stub automaton running on process

i. Computation proceeds in steps of the given algorithm

A. In each step of A, process i performs atomically the

following three actions: (1) si processes one of the following

three input events, a) receives a single message addressed

to process i from the message buffer, or b) a null message,

denoted as λ, or c) an input event from either ri or ui; (2) si

queries and receives a value from its failure detector module;

(3) si changes its state and either sends a message to a single

process or generates an event for ui or ri, according to the

automaton A(i) and based on its state at the beginning of

the step, the behavior of si during phase (1) of the execution

step, and the value that i sees in the failure detector query

phase. Note that the input event chosen in phase (1) of each

execution step is chosen non-deterministically among those

currently enabled.

A configuration defines the current state of each process

in the system and the set of messages currently in the

message buffer. Initially, the message buffer is empty. A

step (i, e, d, A) of an algorithm A is uniquely determined

by the identity of the process i that takes the step, the event

processed during the step, and the failure detector value d
seen by i during the step. We say that a step (i, e, d, A)
is applicable to the current configuration if and only if the

incoming event e is enabled in the current configuration. A

schedule S of an algorithmA is a (finite or infinite) sequence

of steps of A. S⊤ denotes the empty schedule. A schedule

S is applicable to a configuration C if and only if (a) S
= S⊤, or (b) S[1] is applicable to C, S[2] is applicable to

S[1](C), etc.

A run of an algorithm A is a infinite schedule applicable

to an initial configuration of A. A problem M is a set

of properties PM that determines a set of legal runs. An

algorithm A solves a problem M , defined by the set of

properties PM , using a failure detector D, if all the runs

of A satisfy the properties PM . A failure detector D is said

to solve problem M if an algorithm A exists that solves M
using D.

4. Histories, subhistories and history equiva-

lences.

In this section we provide a set of definitions aimed at

formalizing the properties of sequences of events in our

distributed system model. Our aim is to define precise

formal foundations which will be used in the following

sections to specify the WME problem as well as to reason

on the correctness of algorithms that either implement a

WME abstraction or use such abstraction to solve different

problems. The notation used in this section is analogous to

the one in [19], but is adapted and extended to fit our system

model.

Histories and Sub-Histories. A history H is the (possibly

infinite) sequence of 1) events produced by the automata of

the system (i.e. users, processes and replicas of the shared

resource) and of, 2) all the process crash events. A history

H induces a time-based irreflexive partial ordering relation

<T
H on its events:

e0 <T
H e1 ⇔ T (e0) < T (e1)

A process subhistory, H |i (H at i), of a history H is the

subsequence of all events in H generated by process i.

We define the user-stub subhistory HUS as the subse-

quence of the history H restricted to the events exchanged

between stubs and users, i.e. HUS=H ∩ USevents. Anal-
ogously, the stub-resource subhistory HSR is defined as

the subsequence of the history H restricted to the events

exchanged between stubs and replicas of the shared resource,

i.e. HSR=H ∩ SRevents.
The subsequence of the user-stub subhis-

tory HUS restricted to the pairs of events

<issuei[CS id, op], outcome[CS id, op, res]> is called

the user-stub successful operations subhistory and denoted

as HUS|op.

We define a CS instance subhistory, HCS
id , as the sub-

sequence of the user-stub subhistory HUS restricted to the

events associated with CS instance id. We define the init
event of a CS instance subhistory HCS

id , as the try event

in H that determined the establishment of CS instance id,
and denote it as I(HCS

id ). The final event of a CS instance

subhistory HCS
id , denoted with F(HCS

id ), is defined as the

first event in the set {remi[CS id], ejecti[CS id], crashi}
occurring in H .



Well-formed CS instance subhistories. A CS instance

subhistory, HCS
id is said to be well-formed if and only if

it is a prefix of the cyclically ordered sequences S1 or S2,

where S1 is defined as:

S1 := ( tryi criti[id] OPS exiti[id] remi[id] )

OPS being any sequence of issuei[CS id, op] and

outcomei[CS id, op, res] events generated by the following
context free grammar:

OPS := (issuei[id, op] outcomei[id, op, res] OPS | ε )

and S2 is defined as:

S2 := ( tryi criti[id] INT OPS )

INT OPS being any sequence of issuei[id, op],
outcomei[id, op, res] and ejectedi[id] events generated

according to the following context free grammar:

INT OPS := ( issuei[id, op] outcomei[id, op, res] INT OPS |

issuei[id, op] ejectedi[id] | ejectedi[id]);

Informally, any well-formed CS instance subhistory HCS
id

starts with the establishment of a new critical section in-

stance, through the <tryi,criti[CS id]> pair of events.

Once entered the critical section instance, ui can issue an

arbitrary number (possibly null) of operations, through the

issuei[CS id, op] events. We require that operations are

issued sequentially, and that each issued operation is fol-

lowed, unless process i crashes, either by the corresponding

outcome or by an eject event, which implicitly notifies ui

about the failure of the pending operation and its exit from

the CS. While it would be feasible to extend our model

in order to support “pipelining” of operations within a CS,

this is out of the scope of this paper and represents subject

of future work. In case ui is not ejected by its CS, it can

explicitly resign through the exiti[CS id], remi[CS id]
events.

Finally, a user ui is called a well-formed user if it does

not violate the cyclic order of events defined by S1 and S2.

Complete CS instance subhistories. A well-formed CS

instance subhistory HCS
id is complete if:

1) it has no pending operations, and

2) the CS instance is concluded via either a voluntar-

ily resignation or an ejection or a crash, formally

F(HCS
id ) 6= ∅.

A legal completion of a well-formed history H is a

well-formed history obtained by completing or deleting any

not complete CS instance subhistory HCS
id by adding or

removing events from H according to the following rules:

1) if HCS
id = {tryi} then either append a criti[id]

event or remove tryi, deleting the whole CS instance

subhistory,

2) for any pending operation op issued by user ui within

CS instance CS id, append zero or more invokei[op],
responsei[op, res] and outcomei[CS id, op, res]
correlated events, preserving HCS

id ’s well-formedness,

3) if, after applying rules 1 and 2, HCS
id is not empty,

append either an ejecti[id] event or the pair of events
<exiti[id], remi[id]>, or the remi[id] so to complete

it while preserving its well-formedness.

Equivalent and Isomorphic Histories. Two histories H
and H ′ are said equivalent if and only if, for every process

i ∈ Π, H |i=H ′|i.
A stub-resource subhistory HSR is isomorphic to a user-

stub successful operations subhistory HUS|op if and only

if:

1) there exists a bijection B between HSR and HUS|op

such that ∀e ∈ HSR and ∀e′ ∈ HUS|op,B(e) = e′ ⇔
e and e′ are correlated events, and

2) B is an order isomorphism with respect to <T
H , i.e.

∀{e0, e1} ∈ HSR, e0 <T
H e1 ⇔ B(e0) <T

H B(e1).

Informally, a stub-resource subhistory and a user-stub

successful operations subhistory are isomorphic if each event

in HSR has a corresponding event in HUS|op (and vice

versa) (condition 1 above), and if the order of the issue and

outcome events exchanged between the users and the stubs

matches the order of the correlated invoke and response
events exchanged between the stubs and the replicas of the

shared resource (condition 2 above).

CS-sequential Histories. We define the irreflexive partial

order <CS
H on well-formed, complete CS instance subhisto-

ries of the history H as follows:

HCS
id <CS

H HCS
id′ ⇔ F(HCS

id ) <T
H I(HCS

id′ )

A well-formed history H is CS-sequential if and only

if <CS
H is a total order relation for its user-stub subhistory

HUS . Note that, by this definition, if a user-stub subhistory

is CS-sequential then two CS instances never overlap over

time. This is equivalent, in a sense, to the classical mu-

tual exclusion property [10] (which requires that “No two

processes are in the CS at the same time”) except from

that, unlike in the original DME problem, the “owner of

the CS” can be, in our case, pre-emptied by the delivery of

an ejected event.

5. The Weak Mutual Exclusion Problem

Based on the terminology introduced in Section 3 and

Section 4 we now provide the specification of the Weak

Mutual Exclusion (WME) problem.



We say that an algorithm solves the WME problem if,

under the assumption that every user is well-formed, any

run of the algorithm satisfies the following six correctness

properties, organized in two categories:

Safety.

Weak Mutual Exclusion: For every history H there exists

a legal completion H∗, such that:

WME1: HUS
∗ is equivalent to a CS-sequential user-stub

subhistory S.

WME2: <CS
H∗

⊆<CS
S

WME3: the stub-resource subhistory HSR
∗ is isomorphic

to the user-stub subhistory S.

1CS: The history of the replicated shared resource (i.e.

HSR
∗ ) is equivalent to a serial execution on a single replica

of the shared resource.

Well-formedness: For any i ∈ Π, the history describing the

interaction between ui and si is well-formed.

Liveness.

Starvation-Freedom A correct process i that volunteers

eventually enters the critical section, if no other process

stays forever in its critical section.

CS-Release Progress: If a correct process resigns, it enters

its remainder section.

Operation Progress: If a correct process issues an opera-

tion, eventually the operation either fails or succeeds, and

eventually all the operations it issues succeed.

The safety properties provide joint consistency guarantees

on the state of the distributed mutual exclusion protocol

and of the replicated shared resource, as well as on the

well-formedness of the interactions between users, stubs and

replicas of the shared resources. Termination properties, on

the other hand, ensure the non-blocking evolution of the

system.

Informally, the Weak Mutual Exclusion property requires

that the CS instance subhistories can be reordered to yield

a history in which no two CS instances overlap over time

(WME1) while preserving the real time ordering of ac-

quisitions of the critical sections (WME2). Further, WME3

constrains the order of execution of the operations on the

replicas of the shared resource to be consistent with the

execution order viewed by the user while interacting with

its stub.

Extending H to H∗ has a twofold purpose. On one hand

it allows us to consistently apply the <CS
H ordering on both

complete and incomplete CS instance subhistories of H ,

so to extend the correctness criteria even on incomplete

CS instance subhistories. On the other hand, it captures

the notion that some pending operation issued by user ui

may have taken effect (e.g. being observed by some other

process) even though the local stub si has not invoked the

operation on ri, yet.

Roughly speaking, one could say that WME1 and WME2

properties require the linearizability of a replicated “pre-

emptible exclusive lock” (see our discussion on CS-

sequential histories in Section 4 for an informal definition

of such a lock); applications use such a lock to regulate

the concurrent access to the replicated shared resource, or,

more precisely, to the local replica of the shared resource.

WME3, on the other hand, forces the order of execution of

the operations on each independent local replica to adhere

to the serial order imposed by the acquisition of the mutual

exclusion. Note that WME3 does not force processes to

exchange mutual information on the state of the local copies

of the shared resource, ri, whose state trajectories would be

therefore allowed to diverge arbitrarily.

Such runs are ruled out by the 1CS property which

guarantees that the history of the replicated shared resource

is 1-copy serializable [2]. Note that, by property WME3, the

stub-resource subhistory (HSR
∗ ) reflects the same ordering

of the correlated sequential user-stub successful operations

subhistory (SUS|op), and that the ordering of the operations

issued in SUS is imposed by the total order relation <CS
S

(determining the equivalent serial acquisition order of the

CS). Since, the ordering of operations in SUS is, by prop-

erty WME2, consistent with the time-based CS instance

acquisition order in H∗ (defined by the <CS
H∗

relation), it

directly follows that the stub-resource subhistory is indeed

linearizable [19].

Concerning the liveness properties, the CS-Release

Progress simply ensures that a process does not block while

exiting from the CS. Starvation-Freedom and Operation

Progress are, on the other hand, more subtly intertwined.

On the one hand, the Operation Progress property requires

that each operation issued by a correct process eventually

either fails or succeeds, as well as that a time exists after

which all the operations issued by a correct process suc-

ceed. The Starvation-Freedom property, on the other hand,

encodes a fairness property requiring that, independently

of the frequency or timing with which processes contend

for the CS, any process that does not crash is eventually

able to enter its CS, unless there is some other correct

process that acquires the CS and never resigns. Note that,

while conditioning the liveness of the CS acquisition to

the assumption that processes behave “altruistically” (i.e.

that they eventually resign) could apparently seem overly

restrictive, this is actually required in an asynchronous

system if one wants to jointly provide progress guarantees

on the successful execution of operations, as required by

the Operation Progress property. In fact, if we allowed an

“impatient” process to eject a process p that appears to be

correct but has not yet resigned, we could risk to constantly



cause the failures of p’s operations whose execution time,

being the system asynchronous, cannot be a priori bound.

This would clearly determine a violation of the Operation

Progress property.

6. Solving WME using ♦P

We now provide an algorithm that illustrates how WME

can be solved in an asynchronous system augmented with

a ♦P failure detector and a majority of correct processes.

Our solution uses a FIFO reliable broadcast and an uniform

consensus service [17] as building blocks. These services

(which are implementable under our assumptions [5], [14],

[18]) are defined below.

The uniform consensus problem is specified by the fol-

lowing properties: i) Validity: Any value decided is a value

proposed; ii) Uniform Agreement: No two processes decide

differently; iii) Termination: Every correct process eventu-

ally decides, iv) Integrity: No process decides twice.

The FIFO reliable broadcast problem is defined by the fol-

lowing properties: i) Validity: If a correct process broadcasts

a message m, then it eventually delivers m, ii) Integrity:

For any message m, every process delivers m at most once

and only if m was previously broadcast by some process;

iii) Agreement: If a correct process delivers m, then all

correct processes deliver m; iv) FIFO: Let m and m′ be two

messages sent by a given process p. If a process q delivers

message m before message m′, then p has sent m before

m′.

The core of the algorithm consists of a sequential exe-

cution of multiple instances of consensus, which we call

consensus rounds in the following to avoid ambiguity with

the notion of critical section instance. In each consensus

round, one of the following events can be proposed/decided:

i) to assign a CS instance to a given process; ii) to execute

an operation; iii) to exit a process from a CS instance or;

iv) to eject a process from a CS instance. Each consensus

round is identified by a sequence number rn. The global

total order defined by the sequence of consensus decisions

defines a linearization of the distributed execution, where

processes, in sequence, gain access to the CS, execute zero

or more operations, and exit (or are ejected from) the CS.

We start by illustrating a non-concurrent, failure-free,

execution of the algorithm in stable conditions. Assume that

the CS is free and a process p tries to enter in the CS.

The algorithm starts by having p RB-broadcast a “CS req”

message to every other process, including itself (l.3). This

request is eventually RB-delivered to every correct process

and inserted in a proposal list (l.11). Since the CS is free and

there is a pending proposal with the request, a consensus is

initiated to decide the owner of the next CS instance. In this

example, all correct processes propose p. The wait flag is

just used to prevent a new consensus instance to be initiated

before the previous instance has been decided. The decisions

queue, on the other hand, is used to filter out obsolete

incoming messages which have already been decided in

a previous consensus instance. Since all correct processes

propose p (and failed processes do not propose), the CS is

attributed to p as result of the consensus decision (l.24-29).

Basically, the same algorithm is executed for deciding the

outcome of an issued operation (l.30-36) or to decide to have

p exit the CS (l.37-42).

Consider now an execution where two processes p and q
try to enter the CS concurrently. The corresponding CS req

messages may be received by different processes in different

orders. Thus, different processes may propose a different

owner for the next CS instance. Still the Uniform Agreement

property of consensus ensures that a single value will be

decided and a single process will be granted access to the

CS.

Consider also that a process p, that owns a CS instance,

fails. Eventually, the ♦P failure detector at some correct

process q will mark p as failed (l.8). As a result, an “eject”

message is RB-broadcast. Therefore, eventually all correct

processes will have the “eject” message in the proposal

list (l.11), and will propose an “Eject req” to the same

consensus instance, ejecting p when consensus decides (l.43-

50).

Finally, note that due to the asynchrony of the system,

process p may be erroneously suspected while issuing

an operation, or while exiting the CS. In this case, the

corresponding “issue”/“exit” and “eject” messages may be

received by different processes in different orders. Hence,

some processes may propose to eject p while other may

propose to commit the issued operation/allow p to exit the

CS. Again, consensus ensures that all processes consistently

decide. Once a process is ejected (due to a failure or a

false suspicion), all subsequent operations issued in the

CS instance are simply discarded (l. 43-50), including any

pending exit request. In order to ensure that after a user

ui generates an exiti event, its stub si does not deliver an

ejecti event (which would violate well-formedness of the

interaction between si and ui), the boolean exiting variable

is flagged upon the reception of an exiti even, and its value

is then checked upon the delivery of an eject decision from

consensus (l.46-47). If the ejected process was resigning,

rather than outputting an ejecti event, si generates a remi

event and sets back the exiting variable to false.

The proof of the algorithms correctness with respect to

the specification of the Weak Mutual Exclusion problem is

omitted due to space constraints but can be found in the

extended technical report [30].

7. On the weakest failure detector for WME

We have just shown that the WME problem is solvable in

an asynchronous system using the ♦P failure detector with



Set decisions; // already decided values
Queue props; // proposals queue
int rn=0; // current consensus round
int currCS ID=⊥; // ID of current CS instance
PID CSOwner=⊥; // process in current CS instance
bool wait=false; // signals an ongoing consensus round
bool exiting=false; // true after an exiti and before a remi

1. upon tryi do
2. int id = getUniqueID();
3. RB-Send (“CS req”, i, id);

4. upon exiti[CS ID] do
5. RB-Send (“CS release”, CS ID);

6. upon issuei[CS ID, op] do
7. RB-Send (“issue”, op,CS ID);

8. upon CSOwner ∈ ♦Pi do
9. RB-Send (“eject”, currCS ID);

10. upon RB-Deliver(msg) from p ∈ Π do
11. if (msg /∈ decisions) props.enqueue (msg);

12. upon ¬wait ∧ ∃ [“CS release”,id]∈props s.t. id=currCS ID do
13. propose(rn++, [“Exit req”, currCS ID]);
14. wait=true; exiting=true;

15. upon ¬wait ∧ ∃[“eject”,id]∈props s.t. id=currCS ID do
16. propose(rn++, [“Eject req”, currCS ID]);
17. wait=true;

18. upon ¬wait ∧ CSOwner=⊥ ∧ ∃[“CS req”, p, id]∈props do
19. propose(rn++, [“CS req”, first [“CS req”, p, id]∈props]);
20. wait=true;

21. upon ¬wait ∧ currCS id6= ⊥ ∧
∃[“issue”,op,id]∈props s.t. id =currCS id do

22. propose(rn++,
first [“issue”, op,id]∈props s.t. id =currCS id]);

23. wait=true;

24. upon decide(rn,[“CS req”, p, id]) do
25. decisions = decisions ∪ {[“CS req”,p,id]};
26. props.remove([“CS req”,p, id]);
27. CSOwner=p; currCS ID=id;
28. if (CSOwner=i) criti[currCS ID];
29. wait=false;

30. upon decide(rn,[“issue”, op, id]) do
31. decisions = decisions ∪ {[“issue”,op,id]};
32. props.remove([“issue”,op, id]);
33. invokei[op];
34. wait resulti[op, res];
35. if (CSOwner=i) outcomei[currCS ID, op, res];
36. wait=false;

37. upon decide(rn,[“Exit req”,id]) do
38. decisions = decisions ∪ {[“exit”,id]};
39. props.remove([“exit”, id]);
40. if (CSOwner=i) remi[id];
41. CSOwner=⊥; currCS ID=⊥;
42. wait=false; exiting=false;

43. upon decide(rn,[“Eject req”, id]) do
44. decisions = decisions ∪ {[“Eject req”, id]};
45. ∀x = [·, CS ID] ∈props s.t. CS ID=id do

props.remove(x);
46. if (CSOwner=i ∧ ¬exiting) ejecti[id];
47. else if (CSOwner=i ∧ exiting)
48. remi[id]; exiting=false;
49. CSOwner=⊥; currCS ID=⊥;
50. wait=false;

Figure 1. Solving WME using the ♦P failure detector with a majority of correct process (proc. i).

a majority of correct processes. Here we complement this

result by showing that the eventually perfect failure detector

♦P is necessary to solve WME in an asynchronous system

independently from the number of correct processes. Hence,

♦P is the weakest failure detector for solving the WME

problem. This result is achieved by showing that, given an

algorithm A that solves WME using a failure detector D,

it is possible to construct a reduction algorithm RD→♦P

that uses A to emulate ♦P . In other words, we show that

if a failure detector D solves WME, then D is not strictly

weaker than ♦P [5].

We show such a reduction algorithmRD→♦P in Figure 2.

The processes run n instances of the algorithmA, denoted as

f1, . . . , fn. The events defining the interactions of process

i within instance f j are tagged with an additional j super-

script, e.g. tryj
i , critji , issuej

i and so on. Each instance f i

is associated with an independent replicated shared resource

ri, i.e. an independent integer counter initially set to 0

and which exports a single operation incrementi, returning
currV aluei, i.e. the current value of the counter.

Every process initially attempts to enter the CS associated

with all the n different algorithm instances. However, once

a process i enters the CS associated with the algorithm

instance f j , with j ∈ [1, n], it behaves differently depending
on the relative values of i and j.

Specifically, every time that i enters the CS associated

with f i, it cyclically 1) sends Alive heartbeat messages to all

the other processes, and 2) issues an incrementi operation,
without ever exiting from the CS. If, in the meanwhile, i is
ejected from the CS, it attempts to enter it again, repeating

unmodified its behavior upon any subsequent entry in this

CS.

Instead, if process i enters the CS associated with f j ,

where i 6= j, it issues a single incrementj operation

and, if this successfully executes, it adds j to its local

ouput variable, i.e. to the set containing the identities of



Set outputi=∅; // Set of processes suspected to have crashed

∀j ∈ Π do tryj
i ;

upon critii[CS id]
boolean ejected=false;
while (¬ejected) do

send [Alive] to any process k ∈ Π;

issuei
i[CS id, incrementi];

wait (outcomei
i[CS id, incrementi, currV aluei] ∨ ejectedi

i[CS id])
if ejectedi

i[CS id]) ejected=true;
tryi

i ;

upon critji [CS id]

issuej
i [CS id, incrementj];

wait (outcomej
i [CS id, incrementj, currV aluej] ∨ ejectedj

i [CS id])

if (outcomej
i [CS id, incrementj, currV aluej]) outputi=outputi ∪ {j};

exitji [CS id];

wait remj
i [CS id];

tryj
i ;

upon receive[Alive] from process k ∈ Π
outputi=outputi − {k};

Figure 2. Reduction algorithm RD→♦P (proc. i).

the suspected processes which is used to emulate the ♦P
failure detector. Independently of the success of the issued

operation, i then resigns from the CS, and immediately

volunteers again.

Finally, a process i removes a process j from his output
set of suspected processes only upon reception of a heartbeat

message from j.

Lemma 1. The output of the reduction algorithm of Figure

2 satisfies the properties of the eventually perfect failure

detector ♦P .

Proof: An eventually perfect failure detector must ensure

the Eventual Strong Accuracy and the Strong Completeness

properties.

Assume by contradiction that the Eventual Strong Accu-

racy property of ♦P is violated:

∃{i, j} ∈ Correct(Π), ∄t ∈ N : ∀t′ > t i /∈ outputj(t
′)

However, since i is the only process that, once entered

the CS associated with f i never resigns, by the Starvation-

Freedom property, whenever i requests the CS for f i, there

is a time at which it enters the corresponding CS, and

sends an Alive message to all processes. Also, for the

Operation Progress property to hold, there exists a time

tlastCS after which i has already successfully executed at

least one operation in its CS, and also successfully executes

all the subsequent operations it issues without ever being

ejected from the CS.

Now, assume by contradiction that at time t > tlastCS

some other process j enters the CS instance associated with

f i by generating a critij [id
′] event and successfully executes

an incrementi operation which returns the value k′. Let k
be the currV aluei returned as result of the last incrementi

operation successfully executed by i at time tlastCS . We can

distinguish three cases:

1) k′ = k: which is impossible, by the 1CS property,

as in this case we would incur in a violation of the

sequential behavior of the counter.

2) k′ > k: which corresponds to serializing HCS
id′ after

HCS
id . This is impossible since within HCS

id , by the

Operation Progress property, i can successfully exe-

cute an arbitrary number of incrementi operations

which, by WME3 and WME1, must return all the

successors of k (with no gaps), k′ included. But, then

the same value k′ would be output by replica ri and

rj as a result of two independent invocations, leading



to a violation of the 1CS property.

3) k′ < k: which corresponds to serializing

HCS
id after HCS

id′ . But, by assumption, in H
invokei

i[incrementi] <T invokei
j[incrementi].

Whereas, by serializing HCS
id after HCS

id′ , we get

issuei
j[id

′, incrementi] <T issuei
i[id, incrementi],

violating property WME3.

Thus after time tlastCS no process j 6= i adds i to the set

of suspected processes. Also, i keeps periodically sending

Alive of messages to all other processes. By the reliability

of channels these messages are eventually delivered by

all correct processes which will remove i from the set of

suspected processes. Denote with t∗ the maximum time

in which a correct process receives the first of the Alive
messages sent by process i after time tlastCS . After time

t∗ no correct processes ever suspects i, hence we get a

contradiction.

Now we prove that the algorithm in Figure 2 ensures the

Strong Completeness property of ♦P , i.e. if a process i
crashes, then every correct process eventually suspects i.
If process i crashes there must be a time t after which no

process delivers any Alive message that i has ever sent out
before Crash(i). On the other hand, after Crash(i), any
correct process j 6= i that enters the CS associated with f i

eventually resigns, and immediately retries to enter the CS.

Hence, by the Starvation-Freedom property, every correct

processes enters the CS associated with f i and issues an

increment operation on ri an infinite number of times. By

Operation Progress property, we get that eventually all of

these issued operations will succeed, each time causing j to

add i to its set of suspected processes. Hence, there exists a

time t′ > t after which all correct processes i) have already

added at least once i to their set of suspected processes, and

ii) never remove i from the set of suspected processes. Thus,

the claim follows.
e

As a corollary of this last lemma we get:

Theorem 1. If a failure detector D solves WME, then D is

not strictly weaker than ♦P .
e

8. Concluding Remarks

In this paper we introduced the Weak Mutual Exclusion

problem, a variant of the classical Distributed Mutual Ex-

clusion problem in which users access a shared resource

which logically appears as single and indivisible, but that is

physically replicated at each participating process for both

fault-tolerance and performance reasons.

We have shown that, unlike the Distributed Mutual Exclu-

sion problem, that is only solvable in a synchronous system,

the Weak Mutual Exclusion abstraction is implementable

even in presence of partial synchrony. More in detail, we

have shown that the Eventually Perfect failure detector, ♦P ,

is the weakest failure detector for solving the Weak Mutual

Exclusion problem, and a presented solution that uses ♦P
and tolerates the crash of a minority of processes.

Relying on the WME abstraction to regulate the access to

replicated resources has the following practical benefits:

Robustness: pessimistic concurrency control is widely used

in commercial off the shelf systems, e.g. DBMSs and oper-

ating systems, because of its robustness and predictability

in presence of conflict intensive workloads. The WME

abstraction lays a bridge between these proven contention

management techniques and replica control schemes. Analo-

gously to centralized lock based concurrency control, WME

reveals particularly useful in the context of conflict-sensitive

applications, such as transactional or interactive systems,

where it may be preferable to bridle concurrency rather than

incurring the costs of application level conflicts, such as

transactions abort or re-submission of user inputs.

Performance: the ability of the WME abstraction to serial-

ize the sequences of operations issued by each user within

the CS can also provide benefits for what concerns the

performances of typical building blocks used by replication

schemes. For instance, it is known that the performance of

consensus can be significantly enhanced (i.e. its decision

latency can be reduced to a single communication step [4],

[22]) if there are no two processes simultaneously proposing

different values. This is exactly what happens in nice runs of

the WME algorithm presented in this paper: once a process

p establishes a CS instance, and as long as it does not

resign, any other process proposes as input value to the

consensus the same sequence of operations, namely those

issued by p within its CS. Quantitatively evaluating the

performance benefits from the employment of WME in a

realistic distributed system is part of our future work.

Simplicity: finally, the WME abstraction exposes a simple

lock-like interface that is familiar even to developers with

no experience with distributed programming.
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