
Ensuring e-Transaction Through a Lightweight

Protocol for Centralized Back-end Database

Paolo Romano, Francesco Quaglia and Bruno Ciciani

DIS, Università “La Sapienza”, Roma, Italy

Abstract. A reasonable end-to-end reliability guarantee for three-tier
systems, called e-Transaction (exactly-once Transaction), has been re-
cently proposed. This work presents a lightweight e-Transaction protocol
for centralized back-end database. Our protocol does not require coordi-
nation among the replicas of the application server and does not rely on
any assumption for what concerns the processing order of messages ex-
changed among processes, as instead required by some existing solution.

1 Introduction

The concept of “e-Transaction” (exactly-once Transaction) has been recently
introduced in [5] as a desirable, yet realistic, form of end-to-end reliability guar-
antee for three-tier systems. In this paper we present an e-Transaction protocol
for three-tier systems in which the application servers interact, as in the case
of most e-Commerce applications, with a centralized back-end database. Our e-
Transaction protocol handles failures (or suspect of failures due to reduced sys-
tem responsiveness possibly caused by host/network overload) by simply letting
the client perform a timeout based retransmission logic of its request to differ-
ent replicas of the application server. On the other hand, we use some recovery
information, locally manipulated at the database side, to guarantee that the
corresponding transaction is committed exactly one time. Manipulation of the
recovery information does not require coordination among the application server
replicas, which do not even need to know each other existence. Our proposal is
therefore inherently scalable, and well suited for both local and geographic dis-
tribution of the replicas themselves.

Beyond providing the description of the protocol, together with its correct-
ness proof and experimental measures demonstrating its minimal overhead, we
present an extended comparative discussion with existing proposals in support
of reliability, pointing out the advantages from our solution. The discussion will
also outline that the proposal closest to our protocol (both in terms of structure
and overhead compared to a baseline approach that does not provide reliability
guarantee), namely the one in [4], relies on specific assumptions for what con-
cerns the order of message processing to avoid duplication of transactions at the
back-end database. Our solution does not require any of those assumptions, thus
being suitable for a wider range of system settings.



2 System Model

The target three-tier system we consider, consists of a set of processes, which
communicate through message exchange. Processes can fail according to the
crash-failure model. If a process does not fail, we say that the process is correct,
and we assume there is at least a correct application server process at any time.
Communication channels between processes are assumed to be reliable, therefore
each message is eventually delivered unless either the sender or the receiver
crashes during the transmission. In what follows we present features of each
class of processes in the system, i.e. client, application server and database server,
together with basics about the recovery information maintained at the back-end
database.

Client. A client process does not communicate with the database server, it only
interacts with the application servers in the middle-tier. It sends a request to
an application server in order to invoke the transactional logic on this server
(i.e. the application server is requested to perform some updates on the back-
end database) and then waits for the outcome. The client sends the request by
invoking the function issue, which takes the request content as a parameter.
issue returns only upon the receipt of a positive outcome (commit) for the
transaction (1).

Application Server. Application server processes have no affinity for clients.
Moreover, they are stateless, in the sense that they do not maintain states across
requests from clients. A request from a client can only determine changes in the
state of the back-end database. Application servers have a primitive compute,
which embeds the transactional logic for the interaction with the database. This
primitive is used to model the application business logic while abstracting the
implementation details, such as SQL statements, needed to perform the data
manipulations requested by the client. compute executes the updates on the
database inside a transaction that is left uncommitted, therefore the changes
applied to data are not made permanent as long as the database does not decide
positively on the outcome of the transaction. The result value returned by the
primitive compute captures the output of the execution of the transactional
logic at the database, which must be communicated to the client. We assume
the primitive compute returns, together with the output of the execution of
the transactional logic, the identifier assigned by the database server to the
corresponding transaction. compute is assumed to be non-blocking, which means
it eventually returns unless the application server crashes.

1 For simplicity of presentation, we model with positive outcome also transactions
for which the application logic cannot admit update on the database, e.g. like in
a bank transfer operation with not enough money on the corresponding account,
but that are correctly handled by the database, e.g. with no rollback caused by the
concurrency control mechanism.



Database Server. The system back-end consists of a database server which is
assumed to eventually recover after a crash. Also, there is a time after which
the database stops crashing and remains up, allowing any legal transaction to
be eventually committed (2). In practice, this means assuming the database can
experience a period of instability during which it can crash and recover, and
then experiences a period during which it does not crash, which is long enough
to allow a legal transaction to be eventually committed.

The database server has a primitive decide which can be used to invoke the
commitment of a pending transaction. This primitive is called by the database
server (with a transaction identifier as the unique parameter) upon the receipt
of a message from the application server that asks for a final decision (com-
mit/rollback) for a pending transaction. decide returns commit/rollback de-
pending on the final decision the database takes for the transaction, together
with any exception possibly raised during the decision phase. We assume that the
decide primitive is non-blocking, i.e. it eventually returns unless the database
server crashes after the invocation. Also, as in conventional database technology,
if the database server crashes while processing a transaction, then, upon recov-
ery, it does not recognize that transaction as an active one. Therefore, if the
decide primitive is invoked with an identifier associated with an unrecognized
transaction, then the return value of this primitive is rollback.

Recovery Information. The database offers an abstraction called “testable trans-
action” originally presented in [4]. With this abstraction, the database stores
recovery information that can be used to determine whether a given transaction
has already been committed. Specifically, each transaction is associated with a
unique client request identifier, which is stored within the database as a part of
the transaction execution itself, together with the result of the transaction. If the
identifier is stored within the database, then this means that the corresponding
client request originated a transaction that has already been committed. Note
that the testable transaction abstraction can be implemented in a transparent
way to the client by simply modifying the application server transactional logic.
Specifically, as in [4], we assume application servers have an additional primitive
insert allowing them to ask the database server to write the identifier of a client
request within the database together with the result obtained by the execution
of the compute primitive. Additionally, just like compute, the primitive insert

is non-blocking, i.e. it eventually returns unless the application server crashes.

3 The Protocol

The protocol we present ensures the following two properties synthesizing the
e-Transaction problem as introduced in [4, 5]:

2 We use the term “legal” to refer to a transaction that does not violate any integrity
constraint on the database. As an example, the attempt to duplicate a primary key
makes a transaction illegal.



Safety. The back-end database does not commit more than one transaction for
each client request.

Liveness. If a client issues a request, then unless it crashes, it eventually receives
a commit outcome for the corresponding transaction, together with the result
of the transaction.

It is important to note that, according to the specification of liveness guar-
antees as proposed in [4, 5], an e-Transaction protocol is not required to ensure
liveness in the presence of client crash. This is because the e-Transaction frame-
work deals with thin clients having no ability to maintain recovery information.
This reflects a representative aspect of current Web-based systems where access
to persistent storage at the client side can be (and usually is) precluded for a
variety of reasons. These range from privacy and security issues (e.g. to contrast
malicious and/or intrusive Web sites invasively delivering cookies) to constraints
on the available hardware (e.g. in case of applications accessible through cell
phones).

We present the protocol describing its behavior separately for every class of
processes in the system, i.e. client, application server and database server.

Client Behavior. The pseudo-code defining the behavior of the function issue

used by the client is shown in Figure 1. The client generates an identifier as-
sociated with the request, selects one application server and sends a Request

message to this server, together with the request identifier. It then waits for the
reply. In case it receives commit as the outcome for the corresponding transac-
tion, issue simply returns. In any other case, it means that something wrong
might have occurred. Specifically: (i) Timeout expiration means the application
server and/or the database server might have crashed. (ii) Rollback outcome
means instead that the database could not commit the transaction, for example
because of decisions of the concurrency control mechanism. In both cases, issue
reselects an application server (possibly different from the last selected one) and
retransmits the Request message to that application server, with the already se-
lected request identifier. Upon successive timeout expirations, the client keeps on
retransmitting the Request message (with that same identifier) until it receives
the commit outcome.

Application and Database Server Behaviors. The application server behavior
is shown in Figure 2. Upon the receipt of a Request message, this server in-
vokes the primitive compute to start a transaction on the back-end database.
The transaction identifier assigned by the database server is returned to the
application server and maintained by tid. The application server then invokes
TestableTransaction. Within this function, the application server first exe-
cutes insert, in order to store the client request identifier within the database,
together with the result of the transaction. It then sends a Decide message with
that tid to the database server and waits for the outcome. This same message is
periodically retransmitted in case of subsequent timeout expirations.

We assume the client request identifier to be a primary key for the database,
which is the mechanism we adopt to guarantee the safety property. Therefore,



result issue(request content req){
1. generate a new id;
2. select an application server AS;
3. set outcome=ROLLBACK;
4. send Request[req,id] to AS;
5. while (outcome is not COMMIT){
6. await receive Outcome[outcome,res,id] or TIMEOUT;
7. if (TIMEOUT or outcome is not COMMIT){
8. select an application server AS;
9. send Request[req,id] to AS;
10. } /* end if */
11. } /* end while */
12. return res;
13. }

Fig. 1. Client Behavior.

Application Server:
1. result res;
2. transaction identifier tid;
3. while(true){
4. await receive Request[req,id] from client;
5. [res,tid]=compute(req);
6. outcome=TestableTransaction(res,id);
7. send Outcome[outcome,res,id] to client;
8. } /* end while */

outcome TestableTransaction(result res, request identifier id){
9. insert(res,id); /* where id is a primary key */
10. repeat{
11. send Decide[tid] to the database server;
12. await receive Outcome[outcome,exception,tid] or TIMEOUT;
13. }until(received Outcome[outcome,exception,tid]);
14. if(exception.type = duplicated primary key exception){
15. set res=exception.result;
16. return COMMIT;
17. } /* end if */
18. return outcome;
19. }

Fig. 2. Application Server Behavior.

any attempt to commit multiple transactions associated with the same client
request identifier is rejected by the database itself, which is able to notify the
rejection event by rising an exception. This makes the client request for updat-
ing data within the database an idempotent operation, i.e. the request can be
safely retransmitted multiple times to different application servers. We note that
assuming the client request identifier to be a primary key is a viable solution
in practice. In case we can modify the database schema, this primary key can
be easily added. In case the schema is predetermined and not modifiable (e.g.
legacy databases), as suggested in [4] while describing supports for the testable
transaction abstraction, an external table can be used.

Upon the receipt of the Outcome message in reply from the database server,
the flag exception is checked to determine whether the same request identifier
was already in the database. In the positive instance, a transaction associated
with that same client request has already been committed. As a result, the
exception allows the application sever to return an Outcome message with the
commit indication to the client together with the already established result.



Database Server:
1. while(true){
2. await receive Decide[tid] from an application server;
3. [outcome,exception]=decide(tid);
4. send Outcome[outcome,exception,tid] to the application server;
5. }

Fig. 3. Database Server Behavior.

In any other case (i.e. exception is not raised), the outcome received by the
database server is sent back to the client. The outcome might be rollback, e.g.,
due to decisions of the concurrency control mechanism.

The behavior of the database server is shown in Figure 3. For simplicity
we only show the relevant operations related to transaction commitment, while
skipping the data manipulation associated with the business logic. This server
waits for a Decide message from an application server which asks to take a
final decision for a transaction associated with a given tid, and then attempts to
make the transaction updates permanent through the decide primitive. The final
result (commit/rollback) is then sent back to the application server, together
with the exception, possibly indicating the attempt to duplicate a primary key
(i.e. the identifier of the client request) within the database.

3.1 Proof of Correctness

Theorem 1. - Safety

The back-end database does not commit more than one transaction for each client

request.

Proof. (By Contradiction). Given the structure of the protocol, it is possible that
multiple transactions associated with the same client request are activated by the ap-
plication servers. Assume, by contradiction, that a generic number N > 1 of them are
eventually committed. In this case, the database server must have received multiple
Decide messages from the application servers for transactions associated with the same
client request. By the application server pseudo-code, this server sends the Decide mes-
sage to the database server (see line 11 in Figure 2) only after it has executed a whole
transaction that encompasses both the data manipulation proper of the application
business logic through the compute primitive (see line 5 in Figure 2), and the stor-
ing of the request unique identifier together with the result of the data manipulation
through the insert primitive (see line 9 in Figure 2). As a consequence, the N > 1
transactions associated with the same client request, which are eventually committed,
must perform a successful insertion of the unique request identifier within the database.
However, this is impossible since the database maintains a primary key constraint on
the request identifier, hence no more than one of those N transactions can perform that
insertion successfully. Therefore the assumption is contradicted and the claim follows.

Lemma 1.

If a correct application server sends a Decide message to the database server



asking for a decision on a transaction, the application server eventually receives

an Outcome message for that transaction from the database server.

Proof. (By Contradiction). Assume by contradiction that a correct application
server sends a Decide message to the database server and that no Outcome message
from the database server is ever received for the corresponding transaction. In this
case, the correct application server keeps on retransmitting the Decide message to the
database server indefinitely (see lines 10-13 in Figure 2). Hence, a Decide message will
be sent by the application server to the database server at time t′ > t, where t be the
time after which the database server stops crashing and remains up. Given that after
time t both the correct application server and the database server are always up, for
the assumption on the reliability of the communication channels we can claim that the
database server will eventually receive the Decide message. Also, the database server
will eventually take a decision through the decide primitive (since it does not crash
anymore) and will send an Outcome message to the application server. Again, since
communication channels are assumed to be reliable, the correct application server will
eventually receive that Outcome message. Therefore the assumption is contradicted
and the claim follows.

Theorem 2. - Liveness

If a client issues a request, then unless it crashes, it eventually receives a com-

mit outcome for the corresponding transaction, together with the result of the

transaction.

Proof. (By Contradiction). Assume by contradiction that the client issues a request,
does not crash and does not eventually receive a commit outcome. In this case, the client
keeps on retransmitting the Request message to the application servers indefinitely (see
lines 5-11 in Figure 1). As we have assumed that channels are reliable and that at
least an application server is correct (i.e. it does not crash), an unbounded amount of
Request messages will eventually be delivered to a correct application server. Moreover,
if an Outcome message is sent back by a correct application server to the client, this
message will eventually be received, since the client does not crash. Then, to show that
the previous assumption is wrong, we only need to show that a correct application
server receiving an unbounded amount of Request messages will eventually send to the
client an Outcome message with a commit indication.

When a correct application server receives a Request message from the client, it calls
the primitives compute and insert (see lines 5 and 9 in Figure 2). These primitives,
being non-blocking, eventually return, therefore the application server eventually sends
to the database server the Decide message (see line 11 in Figure 2). By Lemma 1, an
Outcome message for the transaction is eventually sent back by the database server
and is eventually received by the correct application server (recall this message also
carries the value of the exception flag). There are two possible cases:

A.1 If the Outcome message received from the database server carries a commit indi-
cation or the exception flag notifies the attempt to duplicate a primary key, then
an Outcome message with commit is sent back to the client together with the
transaction result. Therefore, the assumption is contradicted.

A.2 If the Outcome message received from the database server carries a rollback indica-
tion, with the exception flag notifying no attempt to duplicate a primary key, then
the transaction was legal but such a reply from the database server implies that



the database was unable to commit the required operations (e.g. due to decisions
of the concurrency control mechanism). In this case, an Outcome message with a
rollback indication is sent to the client.

We note anyway that case A.2 (i.e. the only one that does not contradict the
assumption) can’t occur indefinitely as we have assumed that there is a time after
which the database server remains up and is able to commit any legal transaction.
We can therefore assert that we eventually fall in case A.1, which contradicts the
assumption. Hence, the claim follows.

3.2 Protocol Overhead

Our protocol is essentially based on logging recovery information (i.e. the client
request identifier and the result of the transaction) at the back-end database
while processing the transaction associated with the client request. The cost
of logging this recovery information is actually the unique overhead we pay as
compared to a baseline protocol for the three-tier organization, which is not able
to provide any end-to-end reliability guarantee. We argue that this overhead is
negligible in practice since it only consists of the cost for a single SQL INSERT
statement. To support this claim, we have performed some measurements re-
lated to the New-Order and the Payment Transactions specified by the TPC
BENCHMARKTM C [10], both reflecting on-line database activity, as typically
found in production environments, but exhibiting different profiles for what con-
cerns read/write operations. The measurements have been taken by running the
Solid FlowEngine 4.0 DBMS on top of a multi-processor system, equipped with
4 Xeon 2.2 GHz, 4 GB of RAM and 2 SCSI disks in RAID-0 configuration, run-
ning Windows 2003 Server. The application logic was implemented in JAVA2
with stored procedure technology. The below table reports the cost of database
activities for both the baseline protocol and our proposal. Each reported value,
expressed in msec, is the average over a number of samples that ensures con-
fidence interval of 10% around the mean at the 95% confidence level. These
experimental data clearly show that the overhead exhibited by our protocol for
logging the recovery information is minimal, never exceeding 2%, even for the
lighter transaction profile, namely the Payment Transaction.

Baseline Our protocol Overhead

New-Order Transaction 72.2 73.1 +1.21%
Payment Transaction 46.4 47.3 +2.06%

4 Related Work and Discussion

A typical solution for providing reliability consists of encapsulating the process-
ing of the client request within an atomic transaction to be performed by the
middle-tier (application) server [6]. This is the approach taken, for example,
by Transaction Monitors or Object Transaction Services such as OTS or MTS.
However, this solution does not deal with the problem of loss of the outcome



due, for example, to middle-tier server crash. The work in [7] tackles the lat-
ter issue by encapsulating within the same transaction both processing and the
storage of the outcome at the client. This solution imposes the use of a dis-
tributed commit protocol, such as two-phase commit (2PC), since the client is
required to be part of the transactional system. Therefore, it exhibits higher
communication/processing overhead as compared to our protocol.

Several solutions based on the use of persistent queues have also been pro-
posed in literature [1, 2], which are commonly deployed in industrial mission crit-
ical applications and supported by standard middleware technology (e.g. JMS
in the J2EE architecture, Microsoft MQ and IBM MQ series). However, per-
sistent queues are transactional resources, whose updates must be performed
within the same transactional context where the application data are accessed
(i.e. the request message must be dequeued within the same distributed transac-
tion that manipulates application data and enqueues the response to the client).
This needs coordination among several transactional resources just through a
distributed commit protocol (e.g. 2PC). Therefore, compared to our protocol,
also in this case the communication/processing overhead is higher. Addition-
ally, as discussed in [3, 5], the use of persistent queues, in combination with
classical 2PC as the distributed commit protocol, imposes explicit coordination
among the application servers to support fail-over of an application server (i.e.
the coordinator of the distributed transaction) suspected to have crashed. This
originates additional overhead and reduces scalability. Since our protocol does
not use any coordination scheme among the application server replicas, it pro-
vides better system performance and scalability, thus being attractive especially
in the case of high degree of replication of the application access point, with the
replicas possibly distributed on a geographic scale, e.g. like in Application De-
livery Networks (ADNs) such as those provided by Sandpiper, Akamai or Edgix
(3).

Message logging has also been used as a mean to recover from failures in
multi-tier systems [8]. A client logs any request sent to the server, which also
logs any request received. This allows the server to reply to multiple instances
of the same request from a client without producing side effects on the back-
end database multiple times. The server also logs read/write operations on the
database, in order to deal with recovery of incomplete transaction process-
ing. Differently from our proposal, this solution primarily copes with stateful
client/middle-tier applications, e.g. like CAD or work-flow systems.

Frolund and Guerraoui have presented three different e-Transaction protocols
[3–5]. The solutions in [3, 5] are based on an explicit coordination scheme among
the replicas of the application server, so they have to pay an additional overhead
due to coordination. As a consequence, they are mainly tailored for the case of
replicas of the application server hosted by, e.g., a cluster environment, where the

3 These infrastructures result as a natural evolution of classical Content Delivery Net-
works (CDNs), where the edge server has not only the functionality to enhance the
proximity of contents to clients, but also to enhance the proximity between clients
and the application (business) logic, and to increase the application availability.



cost of coordination can be kept low thanks to low delivery latency of messages
among the replicas. Since coordination among the replicas is not required in our
protocol, we can avoid that overhead at all, with performance benefits especially
in case of high degree of replication of the application server and distribution of
the replicas on a geographical scale (e.g. like in ADNs).

Like our solution, the third protocol by Frolund and Guerraoui [4] relies on
the testable transaction abstraction (4), and has the advantages of not requiring
explicit coordination across the middle-tier and of not using any distributed com-
mit scheme. However, differently from our proposal, it handles failure suspicions
through a “termination” phase executed upon timeout expiration at the client
side. During this phase, the client sends, on a timeout basis, terminate messages
to the application servers in the attempt to discover whether the transaction
associated with the last issued request was actually committed. An application
server that receives a terminate message from the client tries to rollback the
corresponding transaction, in case it were still uncommitted (possibly due to
crash of the application server originally taking care of it). At this point the ap-
plication server determines whether the transaction was already committed by
exploiting the testable transaction abstraction. In the positive case, the applica-
tion server retrieves the transaction result to be sent to the client. Otherwise, a
rollback indication is returned to the client in order to allow it to safely send a
new request message (with a different identifier) to whichever application server.

Our protocol avoids the termination phase since it makes retransmissions
of a same request idempotent operations thanks to the use of a primary key
constraint imposed on the recovery information. From the point of view of per-
formance, the avoidance of the termination phase reduces the fail-over latency
as compared to [4]. More importantly, avoiding the termination phase makes our
protocol a more general solution. In fact, by admission of the same authors, the
employment of such a phase limits the usability of their protocol to environments
where it can be ensured that a request message is always processed before the
corresponding terminate messages. This is due to the fact that, according to the
specifications of the standard interface for transaction demarcation, namely XA,
when a rollback operation is performed for a transaction with a given identi-
fier, the database system can reuse that identifier for a successive transaction
activation (see [9] - state table on page 109). Hence, if a terminate message
was processed before the corresponding request message in the protocol in [4],
the latter message could possibly give rise to a transaction that gets eventu-
ally committed. On the other hand, upon the receipt of a reply to a terminate
message, the client might activate a new transaction, with a different identifier,
which could eventually get committed, thus leading to multiple updates at the
database and violating safety. In order to achieve the required processing order
constraint for request and terminate messages, the authors suggest to delay the
processing of the terminate messages at the application servers. This expedient
might reveal adequate in case the application is deployed over an infrastruc-

4 Also this protocol logs some recovery information at the database while processing
the transaction through a similar insert primitive.



ture with controlled message delivery latency and relative process speed, e.g.
a (virtual) private network or an Intranet. However, if the system can experi-
ence periods during which the message delivery latency gets unpredictably long
and/or the process speeds diverge, e.g. like in an asynchronous system, sim-
ply delaying the processing of a terminate message would not suffice to ensure
such an ordering constraint. The latter constraint could be enforced through
additional mechanisms (e.g. explicit coordination among the servers), but these
would negatively affect both performance and scalability of this protocol. By
all means, delaying the processing of terminate messages, even if adequate for
specific environments, would further penalize the user perceived system respon-
siveness during the fail-over phase as compared to our solution. Conversely, our
protocol does not rely on any constraint on the processing order of messages
exchanged among processes, thus it requires no additional mechanism to enforce
such an order and can be straightforwardly adopted in an asynchronous system,
e.g. an infrastructure layered on top of public networks over the Internet.

References

1. P. Bernstein, M. Hsu and B. Mann, “Implementing Recoverable Requests Using
Queues”, Proc. 19th ACM Conference on the Management of Data, pp.112-122,
1990.

2. E.A. Brewer, F.T. Chong, L.T. Liu, S.D. Sharma and J.D. Kubiatowicz, “Remote
Queues: Exposing Message Queues for Optimization and Atomicity.” Proc. 7th

ACM Symposium on Parallel Algorithms and Architectures, Santa Barbara, CA,
pp.42-53, 1995.

3. S. Frolund and R. Guerraoui, “Implementing e-Transactions with Asynchronous
Replication”, IEEE Transactions on Parallel and Distributed Systems, vol.12,
no.133-146, pp.2001.

4. S. Frolund and R. Guerraoui, “A Pragmatic Implementation of e-Transactions”,
Proc. 19th IEEE Symposium on Reliable Distributed Systems, pp.186-195. 2000.

5. S. Frolund and R Guerraoui, “e-Transactions: End-to-End Reliability for Three-
Tier Architectures”, IEEE Transactions on Software Engineering, vol.28, no.4, pp.
378-398, 2002.

6. J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”, Mor-
gan Kaufmann, 1993.

7. M.C. Little and S.K. Shrivastava, “Integrating the Object Transaction Service with
the Web”, Proc. 2nd IEEE Workshop on Enterprice Distributed Object Computing,
pp.194-205, 1998.

8. D. Lomet and G. Weikum, “Efficient Transparent Application Recovery in Client-
Server Information Systems”, Proc. 27th ACM Conference on the Management of

Data, pp.460-471, 1998.
9. The Open Group, “Distributed Transaction Processing: The XA+ Specification

Version 2”, 1994.
10. Transaction Processing Performance Council (TPC), “TPC BenchmarkTM C,

Standard Specification, Revision 5.1”, 2002.


