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The Markov Modulated Poisson Process (MMPP) has been shown to well describe the
flow of incoming traffic in networked systems, such as the Grid and the WWW. This makes
the MMPP/M/1 queue a valuable instrument to evaluate and predict the service level of
networked servers. In a recent work we have provided an approximate solution for the response
time distribution of the MMPP/M/1 queue, which is based on a weighted superposition
of M/M/1 queues (i.e. a hyper-exponential process). In this article we address the tradeoff
between the accuracy of this approximation and its computational cost. By jointly considering
both accuracy and cost, we identify the scenarios where such approximate solution could
be effectively used in support of network servers (dynamic) configuration and evaluation
strategies aimed at ensuring agreed dependability levels in case of, e.g., request redirection due
to faults. Finally the effectiveness of the proposed approximate solution method is evaluated
for a real-world case study relying on a trace based traffic characterization of a Grid server.
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1. Introduction

Workload characterization studies of networked systems, such as the Grid and the
WWW, have shown that the incoming traffic behavior should rely on models more
complex than the traditional Poisson process [3, 8, 15, 19, 26, 30]. Specifically,
relevant features of incoming traffic, such as self-similarity and burstiness (e.g. due
to request derouting in case of failures) can be effectively captured by the Markov
Modulated Poisson Process (MMPP) [25, 27–29, 32], which is a Poisson process
whose arrival rate changes according to the evolution of a Markov Chain [10].
On the other hand, in scenarios where relationships between service providers and
customers are based on a Service-Level-Agreement (SLA), it would be important to
determine the output statistics of MMPP/M/1 queues (possibly used as the base
for modeling networked servers), via computationally efficient techniques. This
might be due to the need for on-line evaluating the effects of (dynamic) system
reconfiguration strategies on the achievable level of service [9], in order to still
provide agreed dependability levels (e.g. in terms of availability and performance)
in the presence of adverse events, such as faults.

In a recent work [5] we have presented a technique allowing analytical approxi-
mations of the output distributions (i.e. response time and queue length distribu-
tions) of the MMPP/M/1 queue. The proposed approximate solution method is
based on a weighted superposition of the output distributions of different M/M/1
queues. It follows that the approximate response time distributions are expressed as
hyper-exponentials obtained by an ad-hoc (linear) combination of the exponential
distributions characterizing the response time of M/M/1 queues.

Compared to several other works addressing exact solution techniques for the
MMPP/M/1 queue (based either on matrix geometric methods [2, 24], or on
generating functions [12], or on spectral expansion [6, 13], or even on a combi-
nation of these approaches [14, 34]), some of the approximations in [5] do not
require iterative or numerical methods, e.g., for the determination of matrix eigen-
values/eigenvectors. Hence they can provide benefits for the latency of the analysis.
As sketched above, such a computational efficiency might be useful in the context
of, e.g., real-time decision making processes aimed at reconfiguring server platforms
(for example via request redirection towards a different server instance) in order
to ensure adequate service levels [4, 20].

In this paper we aim at studying the accuracy and the actual efficiency (in
terms of performance) of those approximation techniques in a wide range of set-
tings. These issues were not addressed (or only partially) in [5] (1). To this end,
we first draw analytical considerations on the role played by the MMPP/M/1
queue parameters in determining the approximation error. On the basis of these
considerations and of an experimental sensitivity analysis, we identify the regions
within the parameters space where the considered approximations introduce lim-
ited or even negligible error. Next, via an experimental study based on diversified
implementations of both approximate and exact solution methods, we locate the
bottlenecks of exact solution methods and quantitatively demonstrate the superior
scalability of the hyper-exponential approximations. Overall, combining accuracy
and performance efficiency results, we allow the identification of scenarios where
such approximate models could be effectively used in support of network servers
evaluation and (dynamic) configuration activities. Finally, we jointly evaluate the
accuracy and efficiency of the proposed approximate solution method in a real

1Concerning the accuracy, the work in [5] only evaluates the approximation errors for a single trace-based
case study. On the other hand, performance efficiency was not explicitly evaluated.
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world case study in which we analyze the performance of a Grid system. This
study is based on the exploitation of traces of incoming traffic to Grid servers,
which have been shown to match the MMPP model [22].

The remainder of this paper is structured as follows. In Section 2, we shortly recall
the hyper-exponential approximation technique. In Section 3, we provide analytic
insights on the factors affecting the approximation accuracy. The results of an
experimental sensitivity analysis aimed at quantifying the impact of the different
queue parameters on the approximation error are presented in Section 4. Section 5
is devoted to comparing the performances of the exact and approximate solution
methods as a function of the number of states in the MMPP, when considering a
wide range of synthetic scenarios. In Section 6 we evaluate the effectiveness of the
proposed solution method in a case study based on the traffic characterization of
a real Grid server. Section 7 concludes the paper.

2. Recall on the Approximation Technique

The work in [5] derives stochastic processes which approximate the behavior of the
MMPP/M/1 queue by exploiting well known results in the context of M/M/1
queues. Actually, two types of approximations are provided, namely lower/upper
bound and unbiased approximations, the latter being the simplest type (not requir-
ing complex solution methods) on which we focus the present accuracy/efficiency
study.

As in [5], we denote with (S1 ... SH) the H states composing the MMPP, and
we use the notation Mi/M/1 to refer to a M/M/1 queue whose arrival rate is the
λi associated with the generic state Si of the MMPP. Also, let the service rate µ
be a constant value among all the states Si. The unbiased approximation is based
on pinning the response time and queue length of the MMPP/M/1 queue to the
corresponding steady state values of the Mi/M/1 queue as long as the MMPP stays
in state Si. In other words, the approximation is based on a weighted superposition
of classical M/M/1 queues.

As an example, let us consider a MMPP composed by two states. The mean
number of resident requests at time t in the MMPP/M/1 queue is shown in Figure
1.a. The instants Tk, Tk+1 and Tk+2 correspond to state transitions in the MMPP.
Therefore the evolution of the mean queue length value can be described as follows:
each time a state transition occurs there is a transient phase (t12 for a transition
from S1 to S2 and t21 for a transition from S2 to S1) after which the mean queue
length may reach the steady state, if any, of the corresponding Mi/M/1 queue. As
soon as another state transition occurs, a new transient phase starts.

Actually, the M/M/1 queue never reaches steady state, but merely approaches
it asymptotically, hence in [5] the queue is considered to have reached steady state
when the difference between the mean queue length at time t and its theoretical
value at steady state differ by no more than an arbitrarily small value ǫ. Also, given
that the approximation technique is constructed on the basis of the steady state
statistics of M/M/1 queues in different time phases (each one representative of the
permanence in a different Si state of the MMPP arrival process), it is necessary to
assume that the values of the involved parameters in each state Si match steady
state analysis assumptions for the corresponding M/M/1 queue. This means that
the server utilization factor must be less than one in every Si state. Although this
assumption might not be suited for MMPP/M/1 queues when framed in generic
modeling contexts, its feasibility for the evaluation of, e.g., Quality-of-Service (QoS)
oriented networked systems has been justified in [5] by the fact that the related
capacity planning methods typically entail admission control strategies [7] aimed
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Figure 1. a) Real MMPP/M/1 behavior; b) Behavior as modeled by the hyper-exponential approxima-
tion.

Figure 2. Mean queue length difference between the approximation and the original MMPP/M/1 process.

precisely at preventing the utilization factor from exceeding specific bounds.
Given the previous considerations, the unbiased approximation has been derived

by adopting the probabilities for the MMPP to stay in each state Si as the weights
of the superposition. Specifically, denoting with Qi the steady state queue length
of Mi/M/1 and with pi the probability for the MMPP to stay in state Si, the mean

queue length of the MMPP/M/1 queue can be approximated as Q =
∑H

i=1 piQi,
which would correspond to the case shown in Figure 1.b. A similar technique has
been applied in [5] to derive the mean response time of the MMPP/M/1 queue,
but with a variation. Specifically, the mean response time of the MMPP/M/1
queue can still be a weighted sum of the mean response times of Mi/M/1 queues,

expressed as R =
∑H

i=1 wiRi. However, the weights wi do not simply correspond to
the state probabilities of the MMPP (as in the case of the average queue length).
They must be scaled to take into account the different arrival rate per each state,
which reflects the fact that we are evaluating the response time over samples at
discrete time points. Hence wi = piλi

P

H

j=1 pjλj

.

Finally, as far as the cumulative distribution and probability density functions
of queue length and response time are concerned, they can also be derived as
weighted superpositions of the corresponding functions of the different Mi/M/1
queues, the weights being those described above, respectively. Given that by well
known queuing theory results the response time of a M/M/1 queue is exponentially
distributed, this approach gives rise to a hyper-exponential approximation of the
distribution function of the response time of the MMPP/M/1 queue.
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3. Factors Affecting the Approximation Error

The error due to the aforementioned approximation essentially depends on the
relative duration of transients periods, caused by a switch from some state Si to
some state Sj of the MMPP arrival process, compared to the permanence time in
state Sj. This is because, during those transient periods, the MMPP/M/1 queue is
characterized by a corresponding steady state representation based on a traditional
M/M/1 queue.

Going back to the example shown in Figure 1, which depicts the evolution of
the mean queue length of the MMPP/M/1 queue over time, the error can be
represented via the grayed out areas associated with both ramp-up and ramp-down
periods caused by state transitions of the MMPP arrival process (see Figure 2).
We note that the shown case refers to a typical scenario where the variation of the
mean queue length suffers from no “elongation” phenomenon [16], which would lead
to non-monotonic ramp-up/ramp-down of the average number of queued requests
when an increase/decrease of the arrival rate occurs. However, even in case such
an unlikely phenomenon occurs, a similar reasoning could be applied, which would
express the fact that the error during the transient ramp-up (resp. ramp-down)
phase could switch from positive to negative (resp. from negative to positive) value.

We use the notation TSj
to denote the permanence time in state Sj, and Ttri,j

to identify the “hypothetical” duration of the transient period when switching
from state Si to state Sj, namely the time frame starting upon the occurrence of
a transition from state Si to state Sj, which ends as soon as the queue output
statistics become time-independent (i.e. they converge towards the statistics of the
corresponding Mj/M/1 queue). This duration is hypothetical since we might have
a new transition in the MMPP arrival process before time independent behavior
is reached. However, the length of the hypothetical transient period, as defined
above, is representative of the error in the approximation since slow convergence
(reflected by a longer hypothetical transient period) means higher impact of, e.g.,
the grayed out areas representing the error in the evaluation of the mean queue
length.

Given that the behavior of the MMPP/M/1 queue is approximated with the
steady state behavior of the Mj/M/1 queue while the MMPP arrival process is in
state Sj, the function f defining the error value can be expressed as:

Error ≃ f(
Ttr1,2

TS2

,
Ttr2,1

TS1

, . . . ,
TtrH,H−1

TSH−1

,
TtrH−1,H

TSH

) (1)

The average permanence time TSj
in state Sj can be straightforwardly computed

once the transition rate from state Sj to whichever state Sk, denoted as αj,k, is
known [17]. Specifically, it can be expressed as:

TSj
=

1
∑H

k 6=j αj,k

(2)

In order to determine Ttri,j
we can compare the mean queue length N(t) at time

t (where t = 0 is used to represent the occurrence time of the transition towards
Sj) with the steady state mean queue length of the Mj/M/1 queue associated
with state Sj, which we denote as NSj

. Since N(t) converges to NSj
only after

infinite time (assuming that no transition in the arrival process takes place in
the meanwhile), we consider the output statistics of MMPP/M/1 queue to have
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become time-independent at time Ttri,j
, where:

Ttri,j
= min{t ∈ R+ : |N(t) − NSj

| < ǫ} (3)

with ǫ arbitrarily small.
By basic queuing theory results [17], NSj

= ρj

1−ρj
, where ρj = λj/µ. Also, the

average queue length N(t) during the transient period can be computed as N(t) =
∑∞

k=0 Pk(t)k, where Pk(t) is the probability to have k requests in the queue at
time t. To compute Pk(t), we exploit the results in [1, 18], which derive analytical
expressions for the probability Ph,k(t), namely the probability for the queue to
contain k requests at time t given that the queue contained h requests at time
t = 0. Below we report the expression of Ph,k(t), as obtained from [18], with just a
few minor differences in notation:

Ph,k(t) = ρ
j

(k−h)

2 e−(ρj+1)µt(I
h−k

− I
h+k

) + ρj
−h−1P0,h+k+1(t) (4)

where In is the modified Bessel function of first kind whose argument is 2µt
√

ρj .
By equation (4), we can express Pk(t) as:

Pk(t) =
∞

∑

h=0

Ph(0)Ph,k(t) (5)

where Ph(0) represents the probability of h queued requests at the time the transi-
tion from state Si to state Sj occurs (in fact t = 0 has been taken as the reference
time for that transition). We note that expression (5) could be solved iteratively by
computing the values of Ph(0) on the basis of a previously occurred transition to-
wards state Si, and on the elapsed time since the transition occurrence. Anyway, in
case the transition from state Si to state Sj occurs when the MMPP/M/1 queue
already reached the steady state behavior of the corresponding Mi/M/1 queue,
then, at the time of the switch to state Sj , the queue contains h requests with time
independent probability Ph = ρi

h(1− ρi). In this case, Pk(t) can be evaluated with
no need for iterating on the evaluation of Ph(0) values via the following expression:

Pk(t) =
∞
∑

h=0

ρi
h(1 − ρi)Ph,k(t) (6)

Consequently we get the following expression:

|N(t) − NSj
| =

∣

∣

∣

∣

∣

[

∞
∑

k=0

k

∞
∑

h=0

ρi
h(1 − ρi)Ph,k(t)

]

− ρj

1 − ρj

∣

∣

∣

∣

∣

(7)

Analytically determining the transient duration, Ttri,j
would require identifying a

closed form for expression (7), which, at the best of our knowledge, is currently not
known. However, since expression (7) depends exclusively on ρi, ρj and µ, we have
conducted a sensitivity analysis, based on a numerical solution approach, which
allowed us to highlight the impact of the above parameters on transient duration.
In Figure 3 we plot the value of Ttri,j

as a function of µ, and consider a set of
∆ρ = |ρi − ρj| values which allow us to widely span in the interval [0,1). Note that
the plots (which were obtained by setting ǫ = 0.1 × |NSi

− NSj
|) report, for each

∆ρ value, the time needed to reach the steady state behavior after the MMPP
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Figure 3. Steady state behavior convergence delay when the MMPP arrival process switches from Si to
Sj .

arrival process has switched to Sj for both ramp-up and ramp-down transitions.
From these plots we can deduce the following three considerations:

• Once the values of ρi and ρj are fixed, the duration of transient periods (in
absence of further transitions in the arrival process) rapidly decreases as µ in-
creases. More precisely, we found that Ttri,j

can be very closely fitted by means

of a hyperbola of equation k
µ , whose k parameter depends exclusively on ρi and

ρj. (1). Such a fitting is shown in Figure 4. This leads to the following expression:

Ttri,j
≈ k

µ
∝ 1

µ
(8)

which, together with expression (2), allows us to re-write expression (1) as fol-

1Fitting, i.e. determining the value of the hyperbola’s k parameter, was obtained via the nonlinear least-
squares (NLLS) Marquardt-Levenberg algorithm, which converged after very few iterations and showed
negligible residual error.
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µ
.

lows:

Error ≃ f(

∑H
k 6=1 α1,k

µ
, . . . ,

∑H
k 6=H αH,k

µ
) (9)

Therefore, without loss of generality, in the quantitative study we will evaluate

the approximation error as a function of the ratio
P

H

k 6=j
αj,k

µ .
• Concerning the effects of the values of two generic utilization factors ρi and ρj

when a switch from Si to Sj occurs in the MMPP arrival process, their dif-
ference directly influences the distance among the expected queue lengths in
states Si and Sj. As a consequence, it also has an impact on the duration of the
corresponding transient periods. Therefore, utilization factors will be treated as
independent parameters in the quantitative study, so to evaluate the approxi-
mation error in different settings for what concerns the load associated with the
different states of the MMPP arrival process.

• Convergence towards steady state in ramp-up transitions is slower than in the
opposite ramp-down transitions. This is true independently of the considered
∆ρ and µ values. At the light of such an observation, since the error due to
the approximation leads to an overestimation of queue length and response time
during ramp-up transitions, while it leads to an underestimation during ramp-
down transitions, the overall approximation error tends towards overestimation.

4. Evaluation of the Approximation Accuracy

This section aims at identifying the regions within the MMPP/M/1 parameters
space where the approximate solution recalled in Section 2 actually provides neg-
ligible error. On the basis of the discussions and deductions in Section 3, we have
conducted the analysis while varying the parameters µ, ρi and αi,j, as well as the
number of states composing the MMPP arrival process. Also, the approximation
error is evaluated by comparing the output statistics of the approximate model
with those obtained by the implementation of the exact solution technique in [14].
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Figure 5. Approximation error on response time and 90-th percentile.

4.1 Two-state MMPP

We start our analysis by focusing on a simple MMPP having two states. Actually,
a two-state MMPP can be viewed as the fundamental building block for more
complex configurations. Hence, understanding the variation of the approximation
error in such a basic configuration is functional to the extension of our analysis to
more complex MMPPs.

In Figure 5 we report the normalized error value due to the approximation for
both the average response time and the 90-th percentile of the response time distri-
bution of the MMPP/M/1 queue while varying both the ratio α/µ and the value
of ∆ρ. We set α = α1,2 = α2,1 in order not to favor stability of the MMPP arrival
process in one of the two possible states. Indeed, once fixed the transient duration,
such a choice represents a worst case scenario for the hyper-exponential approxi-
mation. Specifically, configurations such as, e.g., α1,2 > α2,1 would have increased
the average permanence time in state S2, thus reducing the error associated with
transitions to such a state.

In the plots, the percentage error is identical when considering, for a given con-
figuration, average response time and 90-th percentile of the response time distri-
bution. Also, if the ratio between the value of α and the value of µ is on the order of
10−3 or less, then the approximate model ensures a percentage error on the order
of 10% or less, independently of the range of variation ∆ρ of the utilization factor.
Anyway, for variations bounded by 0.75 or less, the error rapidly decreases. This
occurs also for lower values of the ratio between α and µ. We note that the case of
α/µ = 0.01 is representative of a scenario where, assuming expected service time
of 1 second, then the arrival process remains stable for a time interval of at least
100 seconds, which, in the context of networked systems, might be usual even in
rapidly changing load situations. As an example, the trace based analysis in [22]
has shown how, in the context of a Grid system, the arrival process can be modeled
via a two-state MMPP, and the frequency of change in the request arrival pattern
is at least two orders of magnitudes lower than the frequency of job completion.
In such a scenario, the error would be bounded by 10% as soon as the utilization
factor variation is bounded by 0.75. We omit reporting data concerning the error
due to the approximate solution on the average queue length and on the queue
length distribution, since they are very similar to the ones shown in Figure 5 for
the response time.
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Table 1. Utilization factors associated with each state of the MMPP.

States ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

3 0 0.45 0.90 - - - - -
4 0 0.30 0.60 0.90 - - - -
8 0 0.13 0.26 0.39 0.52 0.65 0.78 0.9

For the reader’s convenience we provide in Figure 6 a different data represen-
tation. Specifically, we plot iso-error curves associated with specific error values
ranging from 1% to 10%. In these curves, we see again that, when α/µ = 0.01, the
error value is on the order of 10% for excursion of the utilization factor values up
to 0.75. However, in case of a decrease of the ratio α/µ by an additional order of
magnitude, the error rapidly decreases towards 1% even for such a large excursion
of the utilization factor.

4.2 MMPPs with More than Two States

In this section we extend our study to cover the common scenarios of arrival pro-
cesses modeled by means of MMPPs with more than two states. For this purpose
we consider three different MMPPs with 3, 4 and 8 states, respectively. The cor-
responding utilization factors, reported in Table 1, are equally distributed in the
interval [0,0.9], so to widely span the range of plausible values.

We consider the case of fully connected MMPPs where, from any state, it is pos-
sible to switch to any other state. Such a choice allows us to evaluate the tightness
of the approximation in the presence of “critical transitions” involving states with
largely different utilization factors (as highlighted in the previous sections, the ap-
proximation error increases vs larger ∆ρ values). As in the previous case study, the
transition rates αi,j are set to the same value for each state.

In Figure 7 we plot the approximation error on the average response time as a
function of α/µ for MMPPs with 3, 4 and 8 states, as well as for the aforementioned
two-state case. We omit plotting the error on response time percentiles, since it
exhibits very similar behavior. The plots show that, as the number of states in the
MMPP increases, the approximation accuracy increases. This can be confirmed
also by noting that the curve associated with the two-state MMPP with ∆ρ = 0.9
represents an upper bound on the approximation error for the case of MMPPs with
a larger number of states. This can be explained by considering that, as the number
of states of the MMPP increases, the average ∆ρ between the states decreases.
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Figure 7. Approximation error on the average response time for MMPPs with more than two states.

Correspondingly, we have a reduced impact of the transition characterized by the
maximum excursion of the utilization factor (i.e. ∆ρ = 0.9), which is the one
causing the largest part of the approximation error.

Finally, in Figure 8 we show the cumulative distribution function (CDF) of the
response time obtained via the analytical approximation and via the exact solution
for (i) the 2-state MMPP with ∆ρ = 0.9, (ii) the 4-state MMPP, and (iii) the 8-
state MMPP. The curves were obtained considering the value α/µ = 10−3, which,
as discussed in Section 4.1, is expected to ensure error less than 10% even for very
large values of ∆ρ. The distance between each pair of curves, corresponding to
the approximation error, decreases as the number of states in the MMPP grows,
thus confirming the deductions derived from the analysis of Figure 7. Further,
it is worthy underlining that in every analyzed scenario the CDF obtained via
the hyper-exponential approximation represents a consistent underestimation for
the actual CDF, thus confirming our intuition in Section 3 concerning the trend
of this approximation technique towards the overestimation of the response time
(analogous considerations hold for the queue length, even though we omit plotting
the corresponding CDFs due to space constraints).

5. Efficiency of the Approximation

In this section we present a performance study aimed at assessing the actual perfor-
mance gains achievable through the hyper-exponential approximation with respect
to the most efficient (at the best of our knowledge) existing exact solution tech-
nique, namely the one in [14], which has been already mentioned in the previous
section. To this end, we first recall the main algorithmic steps required by the two
compared methods. Our focus here, rather than on a detailed description of the
two techniques, is on the identification of their main sources of computational cost,
which is functional to the subsequent analysis of experimental data concerning the
execution times of the two approaches.

Denoting again with H the number of states of the MMPP, the main computa-
tional steps required by the exact solution in [14] are the following:

(1) Determine the MMPP equilibrium probabilities by numerically solving a
system of H + 1 linear equations.
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Figure 8. Cumulative distribution function of the response time obtained via the analytical approximation
and via exact solution.
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Figure 9. Execution time for the approximate and the exact solution methods vs number of states of the
MMPP.

(2) Use the spectral expansion method [21] to derive the steady-state proba-
bility distribution of the queue length. This implies (1) numerically com-
puting the eigenvalues/eigenvectors of a sparse square matrix having size
2H × 2H, and (2) numerically solving a linear equations system of size
(2H + 1) × (2H + 1)

(3) Compute the Laplace transform of the response time distribution. This
requires (1) O(H) symbolic operations (i.e. additions and multiplications),
as well as two symbolic inversions, involving H × H polynomial matrices,
and (2) symbolically reducing the Laplace transform of the response time
distribution into partial fractions.

(4) Pattern match each term resulting from partial fraction decomposition in
order to constructively compute the Laplace anti-transform and obtain the
response time distribution in the time domain. This can be done via a
single iteration over the O(H2) terms deriving from the partial fraction
decomposition.

On the other hand, the main computational steps required by the hyper-
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Figure 10. Profiling of the execution costs for the exact solution method (Mathematica-based implemen-
tation).

exponential approximation method, as recalled in Section 2, are the following:

(1) Determine the MMPP equilibrium probabilities by numerically solving a
system of H + 1 linear equations.

(2) Compute the utilization factors ρi in each MMPP state as well as the
weights wi for the superposition of the response time distributions of
M/M/1 queues. This requires a very low number of plain numerical multi-
plications involving scalars as well as diagonal matrices and vectors of size
at most H.

In the light of the above descriptions, the approximate solution method only re-
quires numeric matrix manipulations, whereas the exact solution technique implies
potentially onerous steps involving both symbolic and numeric domains. Unfortu-
nately, commercially available mathematical software typically excels only in one of
these two domains. Hence, in order to fairly quantify the performance of the exact
solution method we developed two implementations relying on diverse mathemat-
ical engines, Mathematica 6 [33] and MATLAB 7 [31] specialized in the symbolic
and the numeric domain, respectively. The experiments were all carried out on top
of a multi-processor equipped with 4 Xeon 2.0 GHz CPUs, 4GB of RAM, running
Windows 2003 Server.

In Figure 9 we plot the average execution times for the exact and approximate
solution methods while varying the number of states of the MMPP. The curves were
obtained by considering a number of randomly generated MMPP/M/1 queues,
large enough to ensure a confidence interval of 10% around the mean at the 95%
confidence level. These curves allow us to draw several considerations. First, they
highlight the limited scalability of the exact solution technique in comparison to
the hyper-exponential approximation approach. In fact, the execution times of
the most efficient exact solution implementation, i.e. the Mathematica-based one,
rapidly grow over 100 seconds as the number of states of the MMPP approaches
10. Conversely, the most efficient approximate solution implementation, i.e. the
MATLAB-based one, exhibits execution times on the order of a hundred mil-
liseconds even for MMPPs having hundreds of states. These experimental data
clearly demonstrate how the approximate approach represents the only viable tech-
nique for supporting real-time “what-if” analysis or on-line evaluations of complex
MMPP/M/1 queuing systems. Note also that, concerning the approximate so-
lution method, its MATLAB-based implementation is favored by the underlying
optimized numerical engine, which allows the achievement of execution times one
order of magnitude lower in the presence of very large MMPPs. The situation is
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MMPP
Parameters
λ1 22.1
λ2 7.16
α12 0.17
α21 0.08

Figure 11. MMPP model for each job source (parameter values from [22]).

opposite when comparing exact solution implementations. In this case, the effi-
cient Mathematica symbolic engine allows achieving relatively better performance
compared to the MATLAB-based implementation. The latter, in fact, exhibits exe-
cution times exceeding 100 seconds much earlier than the Mathematica-based one,
i.e. as soon as the MMPP has more than 5 states. In figure 10 we further analyze
the sources of latency of the most efficient exact technique implementation, i.e.
the Mathematica-based one, identifying the costs imputable to numeric operations
(namely steps 1, 2 and 4 of the above description) rather than to symbolic ones
(namely step 3 of the above description). At this end we instrumented our
Mathematica-based implementation of the exact solution technique in
order to extract detailed profiling information regarding the execution
latencies of each of the aforementioned computational steps prescribed
by the exact solution approach. This allowed us to determine that the domi-
nating cost for the exact solution method, while the number of states of the MMPP
grows, is associated with the polynomial matrix symbolic manipulations required
to derive the Laplace transform of the response time distribution.

6. A Case Study Based on the Traces of a Grid Server

In this section we aim at jointly evaluating the accuracy and the performance ben-
efits of the proposed model solving approach in realistic settings for what concerns
the parameters space of a MMPP/M/1 queue.

To this end, we consider three different MMPP arrival processes based on the
results reported in [22]. This work has shown, via real traces analysis, the feasibility
to model incoming traffic to a Grid server just by means of the MMPP model.
Specifically, according to the data reported in [22], the incoming traffic of the
analyzed Grid server can be modeled via a two-state MMPP, whose parameters
are reported in Figure 11.

On the basis of these parameters we build a test scenario where the response
time of the Grid server is evaluated when considering (i) a single source of jobs,
(ii) two uncorrelated job sources, and (iii) three uncorrelated job sources. In all the
cases, each job source is described on the basis of the previously mentioned trace
based study. Also, in terms of MMPP arrival process, the aforementioned cases
correspond to situations where the number of MMPP states is equal to 2, 4 and
8, respectively. Note that, while case (i) represents a basic performance analysis
scenario, case (ii) and case (iii) may be representative of more critical scenarios
where different job sources need to be de-routed to a single Grid site due to critical
events (e.g., failures) in the Grid infrastructure. Finally, the Grid server request
processing rate has been set to achieve a scenario where the server capacity is
saturated at the 75% when the three job sources simultaneously exhibit their peak
rate (i.e. µ = 88.4).

The plots in Figure 12 contrast the response time CDF for the three consid-
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Figure 12. Evaluating the accuracy of the approximate solution method.
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ered MMPP arrival processes when computed via the approximate, rather than
the exact, solution method. For each scenario, we also plot, as an inner figure, a
zoom of the response time CDF centered around the 90-th percentile, as this met-
ric is commonly employed, in practice, to establish SLAs. The plots highlight that
the approximation error remains always negligible, even in correspondence of the
peak arrival rate scenario, where three job sources are simultaneously routed to
the Grid server. This confirms the accuracy of the proposed approximation solu-
tion technique when employed to assess the performability of realistic computing
infrastructures, as well as the validity of the results on the approximation’s accu-
racy derived in the previous section. In fact, in the considered case study, the ratio
between the maximum αij and the server’s µ is around 0.002. Also, the maximum
utilization factor, which is obtained in the case of three simultaneous job sources
producing arrivals at rate λ1, is equal to 0.75. Then, according to the iso-error
curves plotted in Figure 6, we can expect the approximation error not to exceed
the 2%. Such an expectation is indeed widely confirmed as in this case study the
approximation error on both the 90-th percentile and the expected value of the
response time is less than 1% in all the considered scenarios.

In Figure 13, on the other hand, we report the execution times re-
quired to determine the response time’s CDFs via the approximate
and the exact solution methods, as well as, for completeness, via a
simulation-based approach. To this end, we have developed an opti-
mized discrete event simulation program for the MMPP/M/1 queue,
exclusively relying on C technology, whose execution latency was de-
termined by stopping the run as soon as the incrementally computed
statistics on the simulated response time CDF vary by no more than
1%. Concerning the exact and the approximate solution methods, the
plots were obtained by considering the Mathematica based implementa-
tion, namely the implementation that revealed to be more efficient for
the exact solution technique (see Section 5). Note that since the MAT-
LAB based implementation of the approximate method is slightly more
efficient than the Mathematica based one, this corresponds to slightly
favoring the exact solution technique.

Also for this realistic case study, as in the previous performance study
in Section 5, the performance benefits achievable through the employ-
ment of the approximate solution method are strongly evident, with
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execution latencies about three orders of magnitude smaller than for
the exact solution technique or the simulation approach. It is worthy
highlighting that the solution time of the the exact method (resp. sim-
ulation approach) for the 8 states MMPP is about 23 seconds (resp.
about 13 seconds), whereas it takes just less than 20 milliseconds for
the approximate solution to be computed. These experimental results
underline the unfeasibility of employing exact solutions techniques in
the context of real-time performability assessment of complex systems,
which are, conversely, timely supported by the proposed approximate
solution technique.

7. Conclusions

MMPP/M/1 queues represent a valuable modeling tool for performance and de-
pendability due to their ability to realistically capture typical features of network
traffic, such as self-similarity, burstiness, and long range dependency. The focus of
this paper is on investigating the accuracy and computational efficiency of a re-
cently proposed approach [5], which allows to derive a hyper-exponential approx-
imation of the response time distribution of MMPP/M/1 queues. The paper’s
contributions can be summarized as follows.

First, we provided analytical insights on the causes of errors introduced by such
an approximate solution technique, which allowed us to identify a few relevant
parameters, namely the MMPP state transition rates and the queue service rate,
having a major effect on the approximation accuracy.

Next, on the basis of the results of a sensitivity analysis, we isolated the regions
within the MMPP/M/1 parameters space where the hyper-exponential approxi-
mate solution generates minor, or even negligible, deviations with respect to exact
solutions.

Then, through the quantitative analysis of the execution times of a number
of diverse implementations of both exact and approximate solution methods, we
experimentally demonstrated the superior scalability of the proposed approximate
approach.

Finally, we demonstrated the effectiveness of the proposed solution method in a
realistic case study based on the traffic characterization of a real GRID server.
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