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Abstract
Reverse proxy caches are used to provide scalability and

improved latency to popular sites on the Web. In this paper
we provide analytical performance models for distributed
reverse proxy cache architectures, and study the trade-offs
between various design alternatives. Specifically, we con-
sider static and dynamic assignment of proxy cache nodes
to Web sites, with different levels of sharing of proxy caches
among Web sites. Innovative modeling contributions have
been introduced to handle real design constraints, such as
bounded cache size and bounded processing power, and
different characteristics related to the hosted objects, in-
cluding reference rates, popularity distributions and update
rates. In the analysis we have modeled both system steady
state as well as transient interaction between Proxy sites
and Web sites. We have found different trade-offs between
various design alternatives depending on characteristicsof
the Web site workloads.

1 Introduction
With the growth of traffic to popular sites on the World

Wide Web (Web), various Web caching techniques have
been developed to improve the client response time, and
to offload traffic from the heavily loaded Web sites. In
one technique, so-called “reverse proxy (Web) caches” re-
tain the hot pages from specific Web sites. These re-
verse proxy caches may be co-located with the Web site
itself, be distributed but owned and hosted by the Web site
owner/provider, or may be provided by third party reverse
proxy caching services [12, 17, 20, 21, 22, 24, 29]. Various
architectures have been used for distributed reverse proxy
caches, in terms of the number and location of proxy cache
sites, how the cache nodes are allocated or related to the
Web sites supported, how cache misses are handled, among
other design alternatives. In this paper we provide an ana-
lytical model for estimating the performance of distributed
reverse proxy cache architectures, and study the trade-offs
between various design alternatives.

Reverse proxy caches differ from forward proxy caches
(typically referred to as proxy caches without qualification)
in that the former cache Web objects from specific Web sites
only, while the latter cache objects from all Web sites. Typ-
ically, reverse proxy caches are associated with, and payed
for, by the end Web sites. On the other hand forward Web
proxy caches are typically owned by enterprises for caching
Web requests from browsers within the enterprise, or by
Internet Service Providers (ISPs) to cache requests from

their client Web browsers. In this paper we focus on re-
verse proxy caches exclusively. Initially, reverse proxy Web
caches were co-located at the Web sites, in order to reduce
the load on the Web servers, and to improve the through-
put [5, 6]. In order to provide better scaling, high avail-
ability and lower latency to clients, the Web caches were
distributed and often co-located at network access points
(NAPs), such as for Sports and Events Web sites [4, 14]. Fi-
nally shared reverse proxy caching services were provided
to cache objects from multiple Web sites [1, 8]. The ba-
sic organization of the reverse proxy caches is one in which
there are a number of geographically distributed locationsat
which a cluster of Web cache nodes are located. The loca-
tions are typically either co-located with ISPs (e.g. [1]),or
located at NAPs (e.g. [8]), in order to reduce the latency to
clients. The number of locations varies from the tens, typi-
cally for the case with the caches at the NAPs, to hundreds,
typically for the case with caches co-located at ISPs. Per-
formance measures of reverse proxy caching services using
each of these architectures can be found in [13]. In this pa-
per, we focus on the former case, where there are on the
order of tens of sites.

There are various alternatives for distributed reverse
proxy cache architectures; this is discussed in further detail
in Section 3, and summarized here. In the simplest case,
each of the geographically distributed site independently
caches objects from all of the Web sites, and specific nodes
at each site are statically assigned to cache objects from spe-
cific Web sites. The static assignment could be random, or
based on measured load for each Web site. Multiple nodes
could cache objects from the same Web site for scaling, and
the assignment could be static or dynamic. There are trade-
offs between each of these alternatives, which are examined
in detail in this paper. For example, static assignment of a
small number Web sites per node can lead to higher hit ra-
tios in RAM because fewer sites share the same cache, but
can lead to significantly worse performance during traffic
surges. These and other trade-offs are the subject of this pa-
per. We analyze the behavior of the different architectures
with variation of the popularity of the objects accessed, ob-
ject request rates, object update probability, available RAM
size in each cache node, available processing capability in
each cache node, among other parameters.

The organization of the paper is as follows. Section 2
provides a brief overview of work dealing with the evalu-
ation of Web caching systems. Section 3 describes the re-
verse proxy cache architectures considered and provides a
qualitative comparison. Section 4 describes the analytical



model for the various architectures and design alternatives.
Quantitative comparisons from the model appear in Section
5.

2 Related Work
In literature several works have addressed the evalua-

tion of distributed/hierarchical Web caching systems. The
works in [15, 30] evaluate these systems mostly through de-
tailed simulation models based on both trace analysis and
synthetic modeling of Web workloads. Effects of bounded
cache size is also considered. These works differ from our
approach in that we employ analytical modeling, instead of
simulation, to assess system performance.

An analytical model for the evaluation of multi-level hi-
erarchical Web caching systems is presented in [11]. This
model focuses on the evaluation of cache hit rate at the dif-
ferent levels in the hierarchy. Such a work differs from our
one in that we derive complete expressions for the latency
perceived by the clients, instead of focusing exclusively on
hit rates. This requires explicit modeling of any factor con-
tributing to the latency, e.g. CPU time, disk access time,
effects of data buffering into RAM memory etc. The work
in [9] analyses the variation in the access pattern at a given
level in the hierarchy, called trickle-down effect, when con-
sidering cache hits in lower levels. However, as for the
model in [11], a complete expression for the latency per-
ceived by the clients is not provided. Anyway, the trickle-
down effect is taken into consideration in our analysis.

To our knowledge, the works in [23, 26] present the clos-
est analytical models to our one, however there are the fol-
lowing major differences. Both these works model a single
cache node as an M/D/1 (or an M/G/1) queue, with no ex-
plicit modeling of different resources within the node (i.e.
CPU, RAM, disk). Instead, we explicitly model the con-
tention on these resources and its effect on the latency per-
ceived by the clients. Also, those works assume unbounded
cache size within each cache node, while we explicitly
model the effects of bounded cache size (e.g. bounded
RAM size) on performance. These peculiarities provide our
model with the ability to evaluate more accurately the real
performance bottlenecks for a given system configuration.
Examples of exploitation of such an ability are provided in
Section 5, where we compare different organizations of the
reverse proxy caching system, clearly pointing out the re-
source (e.g. CPU or disk) that primarily limits the system
performance.

3 Reverse Proxy Cache Architectures
As shown in Figure 1 the target system consists of Web

sites and Proxy sites, connected through the Internet or a
(virtual) private network. Each Proxy site, in turn, has a
set of cache nodes and a load balancer that directs object
requests to cache nodes according to the IP address of the
associated Web site. Each cache node has a two-level stor-
age system (RAM/disk), and is directly connected both to
the Internet, and, if necessary, to the virtual private net-
work connecting the cache nodes to the Web server nodes.
A cache node can be either assigned to a unique Web site
(exclusive assignment) or be shared among multiple (as an
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Figure 1. Target System.

extreme all) Web sites (shared assignment). With exclu-
sive assignment, the cache node maintains copies of objects
from a single Web site. Instead, with shared assignment, it
maintains copies of objects from multiple Web Sites. The
assignment of a cache node to a Web site can be either static
or dynamic, depending on workload conditions. Similarly,
in case of shared assignment, the portion of the cache node
RAM destined for objects of a specific Web site is estab-
lished either statically or dynamically. In this section, we
qualitatively discuss the benefits and drawbacks of the dif-
ferent options.
Exclusive vs Shared Cache Node Assignment.Sharing
of cache nodes among multiple Web sites allows balancing
the load of object requests, so that surges in traffic for re-
quests to one or a few of the Web sites can be supported.
Further, having multiple cache nodes handle requests for a
same object can be expected to reduce the response time for
the “hottest” objects. On the other hand, sharing of cache
nodes implies assigning only a portion of the cache node
RAM to each Web site, with an increase in the likelihood
that the assigned portion can not maintain copies of all the
cacheable objects of that Web site. In this case, disk ac-
cess might be required, with consequent increase in the re-
sponse time, and reduction in the throughput relative to hits
in RAM.
Static vs Dynamic RAM Partitioning. Cache node shar-
ing among multiple Web sites requires partitioning of the
cache node RAM to assign a specific portion to each Web
site. Static RAM partitioning allows controlling the RAM
hit ratio for each Web site on the basis of the object rela-
tive popularities and of the amount of objects that can be
maintained in the specific RAM portion. On the other hand,
dynamic RAM partitioning (i.e. with a variable RAM por-
tion assigned to each Web site depending on the object ac-
cess pattern), allows maximizing the global RAM hit ratio
in case classical LFU (or LRU) is adopted as the object re-
placement policy.
Static vs Dynamic Cache Node Assignment.Static as-
signment of a cache node to a Web site is easy to handle but
does not allow support of time-varying workloads or surges
in traffic across the Web sites, since the statically assigned
nodes may become overloaded. Dynamic assignment of



cache nodes to Web sites can handle a surge in traffic to
one or a few Web sites. However, it gives rise to cache node
“warm-up” periods, leading to high loads at the Web sites
during the warm-up period itself. Specifically, upon a cache
node assignment to a Web site, the miss ratio for requests
related to objects of that Web site might be extremely high
since the assigned cache node initially maintains no cached
object related to that Web site.

We assume that cache nodes within the same Proxy site do
not cooperate to serve each other in case of cache misses.
Similarly, we assume no sharing of cacheable objects across
geographically distributed Proxy sites. Although, in prin-
ciple, a cooperative approach would favor performance, we
make such an assumption since, for simplicity of design and
implementation, cache nodes for reverse proxy caching ar-
chitectures (e.g. [29]) typically do not employ neither sys-
tem level nor application level cooperation functionalities.
Actually, these functionalities are more common in case of
forward proxy caching systems.

4 Analytical Model
To ease the presentation we assume that the traffic of

HTTP requests related to the k-th Web site, namelyWSk,
is equally distributed among all Proxy sites. Generalizing
the analysis to the case of non-uniform traffic distribution
is straightforward. Specifically, it only requires solvingthe
model we propose using a set of distinct values, one for each
Proxy site, for the request traffic related toWSk.

We denote asλk the arrival rate of HTTP requests re-
lated toWSk, and we suppose requests arrive according
to a Poisson process. Although a log-normal distribution
is typically considered as a more accurate model for the
arrival rate [3], the exponential assumption is reasonable
since it well matches real workloads during the busiest pe-
riods [10, 23], and well captures the inter-arrival time be-
tween sessions of requests for Web objects [18]. In addi-
tion, [25, 26] have shown that the request distribution can
be approximated as a Markovian arrival rate or as a Marko-
vian Modulated-Poisson process. Therefore, given that each
state of this stochastic process is actually characterizedby
request arrival distributed according to a Poisson process,
the exponential assumption closely matches situations in
which transient behaviors due to variations in the request
arrival process have duration with length negligible as com-
pared to steady state periods.

We assume that object replacement within the RAM of
any cache-node/Web-site is made according to the LFU pol-
icy. Also, we assume that the cache node disk has un-
bounded capacity, but limited throughput.

4.1 Evaluation of the Cache Node Hit/Miss Ratio
In this section we evaluate the cache node hit ratio at

the level of both the cache node RAM and the cache node
disk. As discussed in Section 2, an innovative contribu-
tion in our analysis consists of extending analytical results
in the context of the evaluation of steady-state properties
of Web caching systems with unbounded cache size (e.g.
[30]), in order to include the effects of capacity misses. Ac-
tually there already exists a result that takes into account
capacity misses [3], however it applies only to the case of

non-updateable objects. Instead, we will consider update-
able objects in the analysis. To ease the presentation we as-
sume that all cacheable objects ofWSk have the same size,
we note however that extending the analysis to the case of
different sizes is relatively straightforward. We denote as
nk the total number of cacheable objects associated with
WSk, and with Ck the cache node RAM capacity asso-
ciated with cacheable objects of that same Web site. The
relative popularity of cacheable objects ofWSk follows a
Zipf-like distribution with parameterαk [3]. We denote as
pk,j the relative popularity associated with the j-th object of
WSk. According to the Zipf-like distribution, the value of
pk,j decreases vsj. Also, the j-th cacheable object ofWSk

has update rate equal toµk,j , with exponential distribution
of the length of the time interval between updates. Finally,
λCN

k denotes the request arrival rate, associated withWSk,
seen by any single cache node of the Proxy site assigned to
WSk.

Each request in the flowλCN
k is either served through

an object cached within the cache node RAM/disk, or is
forwarded toWSk. Given that the cache node disk ca-
pacity is assumed as unbounded, at steady state all thenk

(cacheable) objects associated withWSk are actually main-
tained into the cache node disk (some of them are also main-
tained into the cache node RAM). Therefore, (cacheable)
object misses within the cache node RAM/disk can occur
only in case of object staleness. As a consequence, the miss
ratio MRk within the cache node RAM/disk for requests
associated withWSk can be computed as [30]

MRk =

nk∑

i=1

pk,i

µk,i

λCN
k

pk,i + µk,i

(1)

(1 − MRk) is the fraction of the requests that are served
through non-stale objects maintained within the RAM/disk
of each cache node. These requests are split, in turn,
depending on whether the corresponding object is found
within the RAM or not. Given the LFU replacement policy,
the cache node RAM maintains the most requested objects
of WSk (i.e. the most popular), therefore the cache node
RAM hit ratio RHRk related to requests associated with
objects ofWSk can be expressed as

RHRk = (1 − MRk)

min(Ck,nk)∑

i=1

pk,i (2)

Themin operator for the upper limit in the previous sum
captures the fact that, in caseCk > nk, all the cacheable
objects ofWSk are actually maintained into the cache node
RAM. Trivially, the cache node disk hit ratioDHRk re-
lated to requests associated with objects ofWSk can be ex-
pressed as

DHRk = (1 − MRk)

nk∑

i=min(Ck,nk)+1

pk,i (3)

In some sense the modeled scenario can be see as a two-
level hierarchical caching system in which the second level,
i.e. the disk, has unbounded capacity, while the first level,
i.e. the RAM, has limited capacity. The disk maintains
replicas of objects maintained in the RAM, and object stal-
eness into the RAM implies object staleness into the disk.



Therefore only those requests associated with non-stale ob-
jects and with RAM capacity misses go to the disk.

As already pointed out, our analysis differs from those
proposed for two-level caching systems [11, 26]. More pre-
cisely, those analyses are based on the assumption of un-
bounded cache size at both the first and the second level,
therefore, miss at the first level can be due only to object
staleness. Also, the caching systems considered are dif-
ferent. Specifically, a second level cache manages object
misses from multiple first level caches, instead, in the sys-
tem we consider, a second level cache, namely the cache
node disk, serves capacity misses of a single first level
cache, namely the cache node RAM.

As a last point, the value of bothCk andλCN
k depend

on the selected reverse proxy cache organization among
those discussed in Section 3 (for example they depend on
the amount of Web sites assigned to a specific cache node
and on how the cache node RAM is partitioned among these
Web sites). We shall report a complete analysis of each or-
ganization in the following sections.

4.2 Exclusive Cache Node Assignment
In the exclusive cache node assignment organization,

each cache node serves requests for a single Web site. De-
noting withNP the total number of Proxies, withNCNk

the number of cache nodes within a Proxy site that are as-
signed toWSk and withCtot the total cache node RAM
capacity, in terms of number of objects, we get

Ck = Ctot (4)

and
λCN

k =
1

NCNk

λk

NP
(5)

Expression (5) simply states that, to get the request traffic
λCN

k , we have to divideλk for the total number of Proxy
sitesNP (this is due to the homogeneity assumption of load
distribution among the Proxy sites), and then we have to
split the obtained traffic value among the number of cache
nodesNCNk assigned toWSk. Denoting with:

E[ram hit] the expected CPU time for serving a request
(supposing the object is already in the cache node
RAM);

E[disk req] the expected CPU time for a disk/RAM object
transfer request at the cache node;

E[http] the cache node CPU time for an HTTP session to
download an object from the Web site;

E[disk] the expected time for handling an object transfer
from/to the cache node disk;

we get the following expressions for the utilization factors
of the cache node CPU and the cache node disk

ρ
CPU

= λCN
k (E[ram hit] + DHRkE[disk req] + MRkE[http])

(6)

ρdisk = λCN
k (DHRk + MRk)E[disk] (7)

Note that in expression (7) the multiplier factor forE[disk]
contains bothDHRk andMRk since cache node disk ac-
cess occurs in case of RAM capacity miss and also in case
of staleness miss, with consequent download of the object
from WSk.

To model the utilization factors of the CPU and the disk
of WSk, we need to consider the effect of caching on the ac-
cess pattern seen by the Web site, namely the trickle-down
effect already mentioned in Section 2, since that pattern can
be different from the one originally generated by the clients.
Specifically, the Web site might not receive the highest vol-
ume of requests to the most popular objects requested by
clients because most of these requests are satisfied by the
Proxy sites [9]. Therefore, even with the LFU policy, the
Web site may not cache in its RAM the most popular ob-
jects requested by clients. The actual objects in the RAM
at the Web site are those for which we get higher miss ra-
tios at the Proxy sites (recall miss ratios depend on object
update rates). Therefore, to identify the objects in the Web
site RAM we need to order them on the basis of the access
rate seen by that Web site.

The access rate to the i-th object seen byWSk

can be computed on the basis of expression (1) as
λkpk,i

µk,i

λCN
k

pk,i+µk,i
. Then objects can be ordered according

the computed values, so that an indexIk,i can be assigned
to the i-th object to represent its position in the ordering.
Denoting with:
Ck

WS the RAM capacity (in terms of objects) ofWSk;
E[WS http] the CPU time atWSk for an HTTP session

to upload an object to a Proxy site;
E[WS disk req] the expected CPU time for a disk/RAM

object transfer request atWSk;
E[WS disk] the expected time for handling a disk/RAM

object transfer atWSk;

we get the following expressions for the utilization factors
of the CPU and the disk ofWSk

ρ
W S CP U

= λkMRk(E[WS http] +
∑

∀i: Ik,i>Ck
WS

pk,iE[WS disk req]) (8)

ρ
WS disk

= λkMRk

∑

∀i: Ik,i>Ck
WS

pk,iE[disk] (9)

where the term
∑

∀i: Ik,i>Ck
WS

pk,i in both previous expres-

sions indicates, on the basis of the previous consideration,
the probability that a requested object is not in the RAM of
WSk due to a capacity miss. (Note that in caseCk

WS > nk,
then all the cacheable objects ofWSk are maintained into
the Web site RAM so that disk access is avoided. This is re-
flected by the fact that for no object the relationIk,i > Ck

WS
is satisfied.)

As shown in the literature [10, 19], we can model the
cache-node/Web-Site CPU with an M/G/1/PS queue (this
matches our assumption of exponential distribution for the
HTTP request arrival process), and the cache node disk with
an M/M/1 queue. Denoting with∆ the delay for object
transfer between the Web site and a Proxy site, including
the latency for the object request sent by the Proxy to the
Web site (1), we can express the expected latency timeT of

1As pointed out in Section 3, the presence of a (virtual) private network
between Web sites and Proxies allows approximating the object upload
latency to a Proxy site with a constant value.



a request, evaluated at the cache node level, as (2)

T =
E[ram hit]

1 − ρ
CP U

+ DHRk(
E[disk req]

1 − ρ
CP U

+
E[disk]

1 − ρdisk

) +

MRk(
E[http]

1 − ρ
CPU

+
E[WS http]

1 − ρ
W S CP U

+

∑

∀i: Ik,i>Ck
WS

pk,i(
E[WS disk req]

1 − ρ
WS CPU

+
E[WS disk]

1 − ρ
W S disk

) + ∆) (10)

Expression (10) can be evaluated by computingMRk,
RHRk andDHRk (as expressed by (1), (2) and (3)) on the
basis of the constraints in expressions (4) and (5), and then
computing the utilization factors as expressed in (6)-(9).

4.3 Shared Cache Node Assignment with Static
RAM Partitioning

In the shared cache node assignment organization with
cache node RAM statically partitioned, each cache node
serves requests for multiple Web sites. Also, the cache node
RAM is split into equal portions, each one assigned to ob-
jects of a specific Web site. Exploiting notation already in-
troduced in Section 4.2, and denoting withN the total num-
ber of Web sites hosted by the cache node and, again, with
NCNk the total number of cache nodes within a Proxy site
assigned toWSk, we get

Ck =
Ctot

N
(11)

and
λCN

k =
1

NCNk

λk

NP
(12)

Similarly to expression (5), which is related to the case
of exclusive cache node assignment,λCN

k is computed by
dividing λk for the total number of cache nodes assigned to
WSk among all the Proxies. This is due to homogeneous
split of the workload among the proxies and also among all
the cache nodes assigned toWSk within each Proxy site.

Using the same notation as in Section 4.2 for expected
CPU times and disk access cost at the cache node, we get
the following expressions for the cache node CPU and the
cache node disk utilization factors

ρ
CPU

=

N∑

k=1

λCN
k (E[ram hit]+DHRkE[disk req]+MRkE[http])

(13)

ρdisk =

N∑

k=1

λCN
k (DHRk + MRk)E[disk] (14)

The previous expressions point out that, in case of shared
node assignment, the cache node CPU and disk utilization
factors are computed by considering request traffic for mul-
tiple Web sites, weighted by the RAM/disk hit/miss ratios.

The expressions for the utilization factors of the CPU
and the disk ofWSk remain identical to those in (8)-(9).
The same is true for the latency time as in expression (10).

2Considering for the CPU model an M/G/1/PS queue with non-minimal
amount of concurrency in the PS discipline, i.e. a relatively large max-
imum amount of requests that can be handled concurrently, the CPU re-
sponse time can be approximated with the formula related to the M/M/1
queue [16].

Therefore, solving this model requires the same steps as
those listed at the end of Section 4.2, with the difference
that the constraints to be used in order to computeMRk,
RHRk andDHRk are those in expressions (11) and (12).

4.4 Shared Cache Node Assignment with Dy-
namic RAM Partitioning

In the shared cache node assignment organization with
cache node RAM dynamically partitioned, each cache node
serves requests for multiple Web sites, however the cache
node RAM capacity is not split into equal portions among
the Web sites. Specifically, the objects maintained in the
cache node RAM (and therefore the amount of RAM capac-
ity assigned to each Web site) are determined dynamically
on the basis of the LFU policy considering the spectrum
of access frequencies, related to the whole set of cacheable
objects of the Web sites, seen by any single cache node.

In other words, we can construct an ordering among
those objects based on their access frequencies seen by the
cache node (we recall that in this configuration the access
frequency at each cache node for the j-th object ofWSk is
computed as λk

NCNk NP
pk,j) and we can associate with the

j-th object ofWSk an index , namelyIk,j , indicating the po-
sition of that object in the ordering. The j-th object ofWSk

is maintained into the cache node RAM ifIk,j ≤ Ctot,
therefore the amount of cache node RAM capacityCk as-
signed toWSk can be computed as

Ck =
∑

∀j: Ik,j≤Ctot

1 (15)

For estimating the value ofλCN
k , the utilization factors and

the latency time, we get the same expressions as the ones re-
lated to the case of static RAM partitioning in Section 4.3.
Therefore solving the model for dynamic RAM partitioning
requires the same steps as those for static RAM partition-
ing, with the only exception that the constraint in expres-
sion (11) must be replaced with the constraint in expression
(15).

4.5 Transient Behavior
As already discussed in Section 3, independently of the

partitioning policy adopted for the cache node RAM, the
two organizations based on shared cache node assignment
are characterized by better load balance among the cache
nodes within each Proxy site, with consequent better bal-
anced utilization of the CPUs and disks among all the cache
nodes. This is not the case for the exclusive cache node as-
signment organization, where strongly unbalanced utiliza-
tion of distinct cache nodes might arise in case distinct Web
sites are associated with very different request rates.

As pointed out, to improve the caching system perfor-
mance, especially in case of exclusive cache node assign-
ment, a cache node might be dynamically switched between
Web sites. Specifically, it might be de-assigned from a
lightly loaded Web site and re-assigned to a Web site whose
load tends to become heavy. However, upon the assignment
of a cache node toWSk, the cache node itself maintains no
cached object related toWSk. As a consequence, requests
directed to that cache node must be forwarded toWSk in
order to download (for caching) the corresponding objects.



In other words, we might get a traffic peak onWSk in the
interval between the instant of the cache node assignment
and the instant in which the cache node reaches a steady
state for what concerns cached objects ofWSk.

We now evaluate the peak traffic onWSk due to re-
quests occurring during the cache node warm-up period.
We denote asXk,j(M) the conditional probability that no
request for the j-th object ofWSk occurs at the newly as-
signed cache node, given thatM requests related to objects
of WSk have been issued to that cache node since its as-
signment toWSk. This quantity can be evaluated as

Xk,j(M) = (1 − pk,j)
M (16)

Therefore, the cache node miss ratio (related toWSk)
due to warm-up at the (M + 1)-th request arrival, namely
MRWUk(M + 1), can be evaluated as

MRWUk =

nk∑

i=1

pk,iXk,i(M) =

nk∑

i=1

pk,i(1 − pk,i)
M (17)

Actually, to derive expression (17) we have implicitly as-
sumed that cache node misses due to object staleness have
a negligible impact during the cache node warm-up period.
This assumption is likely to hold in practice since dynamic
assignment of a cache node toWSk takes place in case of
high request arrival rate, which is likely to produce a very
short warm-up period, during which few objects are likely
to be updated at the Web site. The frequency of requests
associated withWSk and directed to the newly assigned
cache node isλCN

k as expressed by (5), with the parameter
NCNk taking into account the newly assigned cache node.
Therefore,M can be expressed as a function of the time
intervalδt since the cache node assignment as

M = λCN
k δt (18)

We can now evaluate the request traffic toWSk (due to
misses at the newly assigned cache node) at any instant of
the warm-up period, which we denote asλWU

k

λWU
k = λCN

k MRWUk = λCN
k

nk∑

i=1

pk,i(1 − pk,i)
λCN

k
δt (19)

5 Quantitative Comparison
By the previous analysis we argue that the performance

of the different architectural alternatives depends mainly
on the cache node RAM miss ratio and on the workload
assigned to each cache node. Therefore, given a number
of Web sites to serve, performance optimizations can be
achieved by keeping the RAM miss ratio low, while simul-
taneously avoiding load bottlenecks. Note that the RAM
miss ratio depends on the RAM capacity and on object rel-
ative request rates, which, in turn, depend on the request
arrival rate for each Web site and on the distribution of the
object popularity; meanwhile, the workload on each cache
node depends on the number of Web sites assigned to that
cache node and on their request arrival rate. In this section,
we shall compare the performance behavior of design alter-
natives that attempt to keep the RAM miss ratio low and/or
the cache node utilization within bounds.

Table 1. System Parameters.
E[ram hit] 0.5 msec. E[WS http] 1 msec.
E[disk req] 0.05 msec. E[WS disk req] 0.05 msec.

E[http] 1 msec. E[WS disk] 10 msec.
E[disk] 10 msec. ∆ 100 msec.

To keep low the RAM miss ratio, we should try to have
most of the (very) popular objects of each Web site into
the RAM. This could be achieved by assigning few Web
sites to each cache node in order to allow a reasonable size
RAM partition to be assigned to each Web site. On the
other hand, avoidance of load bottlenecks can be obtained
by allowing all the Web sites to share all the cache nodes.
However, this type of sharing does not favor RAM hit given
that a reduced percentage of cacheable objects of each Web
site can be maintained in the cache node RAM. In other
words, there is a clear tradeoff between advantages due to
RAM hit and those due to balanced request load distribu-
tion. Such a tradeoff can be optimized through intermedi-
ate architectural configurations where a group of Web sites
share a group of cache nodes. These configurations, as well
as extreme configurations, will be the object of this quanti-
tative study.

We consider a reverse proxy cache architecture consist-
ing of 10 Proxy sites and 10 cache nodes per Proxy site.
The cache node RAM has capacity of 1 GB that, assuming
8 KB as the average size of a cacheable object [6], allows
maintaining about 130000 cacheable objects. Other system
parameters have been chosen on the basis of real measure-
ments and estimates reported in [27]. Their values are listed
in Table 1. We consider the case of 50 Web sites hosted by
the reverse proxy cache architecture. Each Web site main-
tains 15000 cacheable objects and has a RAM able to store
all the 15000 cacheable objects. Additional system param-
eters related to the Web site, always selected on the basis of
results reported in [27], are listed in Table 1.

For the parameterα characterizing the Zipf-like distri-
bution for the object popularity, several values have been
identified in the literature. For example, we have an esti-
matedα of 1.37 for the 1998 World Cup Web site [2], 0.77
from DEC traces, 0.78 from University of Pisa traces, 0.83
from FuNet traces, 0.69 from UCB traces, 0.73 from Quest-
net traces and 0.64 from NLAR traces [3]. In our study
we will assume different values ofα ranging between 0.6
and 1.4 so as to cover an interval containing all the val-
ues identified above. Cacheable objects of each Web site
are considered to have update rates ranging between 1/15
min. and zero (passing through 1/30 min., 1/1 hour, 1/12
hours and 1/24 hours), with update rate decreasing with de-
crease in the object popularity. Finally, according to [7],we
assume that the 20% of the requests directed to a specific
Web site are related to non-cacheable objects, that need to
be obtained from the Web site. These requests produce on
the CPU the same overhead as a request that downloads a
cacheable object. Instead they do not produce disk overhead
since non-cacheable objects are not retained by the cache
node memory system.

We consider three different configurations. In each con-
figuration, two cache nodes of each Proxy site host 10 Web
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Figure 2. Configuration 1.
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Figure 3. Configuration 2.

Table 2. Load Distribution on the 10 Sites.
WS0 WS1 WS2 WS3 WS4

1/24 1/24 1/24 2/24 2/24

WS5 WS6 WS7 WS8 WS9
1/24 1/24 1/24 2/24 12/24

sites, namelyWS0, . . . , WS9, each with different request
arrival rates. The total request arrival rate, that we denote
as10 × λ̄, is distributed among those 10 Web sites accord-
ing to the distribution in Table 2. Specifically, there are
six Web sites with light relative load, three Web sites with
slightly higher relative load and one Web site with signifi-
cantly higher relative load. The three configurations are as
follows:

Configuration 1. WS0 − WS4 are assigned to the first
node of the couple of cache nodes, whileWS5 − WS9 are
assigned to the second one. In other words, each cache node
hosts the same number of Web sites. Given that the entire
set of cacheable objects of each Web site requires 120 MB,
this configuration allows all the objects of the 5 Web sites
hosted by each node to be maintained into the cache node
RAM, thus favoring RAM hit (i.e. RAM misses can be due
to object staleness only). On the other hand, the request
load is unbalanced among the cache nodes.

Configuration 2. WS0 − WS8 are assigned to the first
node of the couple of cache nodes, whileWS9 is assigned
to the second one (exclusive cache node assignment). In this
case we get balanced load (each node handles 12/24 of the
whole request traffic), but a reduced amount of cacheable
objects per Web site is retained into the RAM of the first
cache node, thus not favoring RAM hit on this cache node.
On the other hand, we favor RAM hit on the second cache
node for the heavily loaded Web site, namelyWS9.

Configuration 3. All the ten Web sitesWS0 − WS9 are
assigned to both the cache nodes. In this case we get again
balanced load, at the expense of RAM hit ratio on both the
cache nodes due to the larger number of Web sites hosted
by each cache node.

For all the three configurations we consider the case of
both dynamic and static RAM partitioning among the Web
sites hosted by the same cache node. In the case of static
partitioning, equal portions of the RAM capacity are as-
signed to the Web sites hosted by a cache node. The results
are reported in Figures 2-4 (the “average request arrival rate
per WS” on thex axis represents̄λ). Each reported value is
the worst case among the pair of cache nodes.

From the plots, the CPU is the bottleneck for Configu-
ration 1, while the disk is often the bottleneck for the other
two configurations, especially for small values ofα. For
Configuration 1, the CPU is the bottleneck because of load
imbalance between the pair of nodes, while in the other con-
figurations, better load balance is achieved. The throughput
at which the disk saturation point occurs in Configurations
2 and 3 increases with increasing values ofα . This is be-
cause increasingα means higher skew of the object access
pattern towards the most popular objects, leading to higher
hits in the RAM. The latency at the Proxy site is always
under 10 milliseconds, except when system (CPU/disk) sat-
uration occurs. Also, the latency curves exhibit a mini-
mum for intermediate values of the average request arrival
rate. This phenomenon is due to the effect of object up-
dates. Specifically, for low throughput, there is a higher
likelihood of requests for stale objects than that for inter-
mediate workloads. With respect to Configuration 1 (see
Figure 2), we recall that cache node disk load is due ex-
clusively to downloads of updated objects upon a staleness
miss; this is because the cacheable objects of the Web sites
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Figure 4. Configuration 3.

assigned to the cache nodes can all be maintained in the
cache node RAM. From the plots we get that the disk uti-
lization factor increases quickly and then tends to be stable.
This is because, at low throughput, requests are often for
updated documents, which also need to be written to disk;
at higher rates, most requests of cacheable objects are hits
in the RAM, and the disk access rate stabilizes. Overall,
as expected, Configuration 1, keeps low the RAM miss ra-
tio, thus suffering from no overload on the cache node disk,
at the expense of earlier CPU saturation due to unbalanced
load among the cache nodes. Configuration 2, characterized
by better load balance among the cache nodes, suffers from
disk overload especially for low values of the the Zpif-like
distribution parameterα (i.e. in case of limited skew in the
access pattern to the cacheable objects of a Web site). Such
a phenomenon is less evident for Configuration 3, due to the
balanced split of the requests for objects of the same Web
site among the two cache nodes.

As a last point, one drawback of Configuration 2 is
the need for cache node re-assignment when significant
changes in the request arrival rate for one or more Web sites
occur. To provide insight into this issue, we report in Fig-
ure 5 plots related to the workload experienced by a Web
site during the cache node warm-up period for three differ-
ent values of the Zipf-like distribution parameterα. These
plots have been obtained for the case of access rate to the
Web site of 10000 requests per second considering that one
of the two cache nodes in the pair is dynamically reassigned
to that Web site. These plots indicate that surges in traffic
to the home Web site occur during the warm-up period of
the newly introduced cache, and these surges persist for a
significant period. Often, the home Web site is not config-
ured to handle such a surge, and the length of the warm-
up period would be longer, with disruption in the service.
Possible solutions include pushing the cache content on the
warm cache node, or adding a hierarchy of caches.

6 Summary
In this paper we analyzed trade-offs between differ-

ent design options for reverse proxy caches, and provided
an analytical model for quantitatively comparing these de-
signs. Specifically, we examined designs where reverse
proxy caches are shared to support several Web sites. The
alternatives include partitioning the Web sites among the
proxy nodes or sharing a subset of the proxy nodes among
multiple Web sites. We also examined static or dynamic
partitioning of the RAM in each proxy node among the Web
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sites. Finally, we examined the impact of transient behavior
when a new node is introduced to handle a surge in traffic
to a Web site.
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