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Abstract

Input characterization to describe the flow of incoming
traffic in network systems, such as the GRID and the WWW,
is often performed by using Markov Modulated Poisson
Processes (MMPP). Therefore, to enact capacity planning
and Quality-of-Service (QoS) oriented design, the model of
the hosts that receive the incoming traffic is often described
as a MMPP/M/1 queue. The drawback of this model
is that no closed form for its solution has been derived.
This means that evaluating even the simplest output statis-
tics of the model, such as the average response times of the
queue, is a computationally intensive task and its usage in
the above contexts is often unadvisable.

In this paper we discuss the possibility to approximate
the behavior of a MMPP/M/1 queue with a computa-
tional effective analytical approximation, thus saving the
large amount of calculations required to evaluate the same
data by other means. The employed method consists in ap-
proximating the MMPP/M/1 queue as a weighted super-
position of different M/M/1 queues. The analysis is vali-
dated by comparing the results of a discrete event simulator
with those obtained from the proposed approximations, in
the context of a real case study involving a GRID networked
server.

1 Introduction

In the context of queuing theory, one well known model
for system evaluation is the M/M/1 queue, which is often
appreciated for its fast computability. However, workload
characterization studies of networked systems, such as the
GRID and the WWW, show that the incoming traffic behav-
ior in such systems must rely on more complex models than

a simple Poisson process [2, 3, 6, 9, 12, 16].

In order to capture the typical characteristics of the in-
coming traffic (such as self-similar behavior, burstiness
behavior, and long range dependency) one of the most
used models is the Markov Modulated Poisson Process
(MMPP ) [14, 15, 11, 17, 13], which is simply a Poisson
process whose mean value changes according to the evo-
lution of a Markov Chain [5]. However evaluating even
the average response times of the MMPP/M/1 queue is
a computationally intensive task, thus making it unfit for,
e.g., capacity planning of a large scale system.

In this paper we discuss the possibility to approximate
the behavior of a MMPP/M/1 queue analytically, thus
saving the large amount of calculations required to evaluate
the same data by other means. The method employed con-
sists in approximating that queue as a weighted superposi-
tion of different M/M/1 queues. Specifically, we derive
an approximation that overestimates the MMPP/M/1 re-
sponse time, which could be employed in the context of ca-
pacity planning for Quality-of-Service (QoS) oriented sys-
tem design. Tightness of the overestimation vs the real re-
sponse time is supported in our study via a comparison be-
tween the output provided by our analytical solutions and
simulation results based on real traces describing the traffic
incoming to a networked GRID server [10].

The rest of the paper is structured as follows. Section 2
shows how to derive a reasonable approximation that con-
sistently overestimates the response time/queue length of a
MMPP/M/1 queue. In Section 3, simulation results for
a validation of the analysis are presented. Finally, conclu-
sions and future work are discussed in Section 4.
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2 The Analysis

2.1 Rationale

The object of this paper is to derive a stochastic pro-
cess which approximates the behavior of a MMPP/M/1

queue by exploiting results in the context of the evaluation
of M/M/1 queues. We will show that such an approxima-
tion consistently overestimates the MMPP/M/1 queue
length and response time, and that such an overestimation
is tight for realistic settings for the MMPP/M/1 parame-
ters (i.e., when considering traces from a real world GRID
server). Note that when the value of a variable is consis-
tently overestimated, its cumulative distribution function is
consistently underestimated. Hence, the following relation
holds on the response time/queue length cumulative dis-
tribution functions of the proposed approximation and on
those of the original MMPP/M/1: FMMPP/M/1(r) >

Fapproximation(r). In other words, the approximating pro-
cess provides a lower bound on the cumulative distribu-
tion function of the response time and queue length of a
MMPP/M/1 queue, thus from now on we will refer to
this approximation as to a “lower bound”.

The relevance of identifying a (tight) lower bound ap-
proximation for a MMPP/M/1 queue is that any com-
putation that makes sure that Fapproximation(r) > A also
implies that FMMPP/M/1(r) > A. Hence, this approxi-
mation can be used for capacity planning purposes in the
context of, e.g., QoS oriented design of networked servers,
without incurring the risk of underestimating the computa-
tional demand of the system with consequent violations of
any establised Service Level Agreement [4].

2.2 Approximation Construction

Consider a MMPP/M/1 queue, and let the MMPP that
models the incoming traffic be composed by H states (S1 ...
SH ). We use the notation Mi/M/1 to refer to a M/M/1

queue whose average arrival rate is the λi observed in the
generic Si and the service rate µ is a constant among all the
Si. The analytical approximations studied in this paper are
based on the following observation: if the MMPP stays in
state Si long enough without transitioning to another state,
the mean response time and mean queue length at time t

reach the same steady state observed for the correspond-
ing Mi/M/1 queue. Those values are pinned on the same
steady state value of Mi/M/1 as long as the MMPP does
not change its state from Si.
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Figure 1. a) MMPP/M/1 behavior; b) Un-
biased Approximation Behavior; c) Lower
Bound Process Behavior.

As an example, let us consider a MMPP composed by
two states. The mean number of resident requests at time
t in a MMPP/M/1 queue is shown in Figure 1.a. Each
instant Tk, Tk+1 and Tk+2 represents a transition between
the two states of the MMPP. Therefore the evolution of
the mean queue length value of the MMPP/M/1 can be
described as follows: each time a state transition occurs
there is a transient phase (t12 for a transition from S1 to
S2 and t21 for a transition from S2 to S1) after which the
mean queue length of the MMPP reaches the steady state
of the correspondent Mi/M/1 (the behavior of the mean
queue length during the transition is evaluated according
the methodology shown in Appendix A). As soon as an-
other state transition occurs, a new transient phase starts, a
new steady state is reached and so on (1).

In this paper we consider two approximations of the be-
havior of a MMPP/M/1 based on weighted superposi-
tions of the H steady state Mi/M/1 queues. For each ap-

1It is interesting to note that analytically a M/M/1 queue never
reaches steady state, but merely approaches it asymptotically. Since we
are studying an approximation, from now on we consider that a M/M/1

”reached steady state” when the difference between the mean queue length
at time t and its theoretical value at steady state differ no more than an
arbitrary value ε.
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proximation we study the behavior of the average of queue
length and response time, as well as their cumulative distri-
bution functions.

2.3 Unbiased Approximation

The most obvious approximation can be derived by
adopting the asymptotic probabilities for the MMPP to
stay in each state Si as the weights of the approximation.
Specifically, by denoting (i) with Qi the steady state queue
length of Mi/M/1 and (ii) with pi the asymptotic proba-
bility for the MMPP to stay in state Si, the mean queue
length of the MMPP/M/1 queue can be approximated as
Q =

∑H
i=1

piQi, which would generate a queue process
as the one shown in Figure 1.b. An analogous technique
could be applied to derive the mean response time of the
MMPP/M/1 queue, but there is an important difference.
Specifically, the mean queue length is an integral average
evaluated over time. Contrariwise, the mean response time
is an average evaluated over the number of incoming re-
quests, which are not distributed equally over time (during
the state Si the rate of requests is λi, while during the state
Sj the rate of requests is a different amount λj , as in Figure
2). Therefore the mean response time of the MMPP/M/1

can still be a weighted sum of the mean response times of
the Mi/M/1 queues, expressed as R =

∑H
i=1

wiRi, but the
weights (wi) are not simply composed by the asymptotic
probabilities of the MMPP (as in the case of the average
queue length) but must be scaled to keep into account the
different arrival rate per each state. Hence wi = piλi∑

H

j=1
pjλj

.

Finally, as far as the cumulative distribution and probability
density functions of those parameters are concerned, they
can also be derived as a weighted superposition of the cor-
respondent functions of the separate Mi/M/1, the weights
being those described above, respectively.

However this simple approximation is not immediately
usable for the purposes described in Section 2.1. In fact, as
shown in Figure 3, the error committed vs the real behavior
of the MMPP/M/1 queue is given by the grayed out ar-
eas in the figure, which are the areas comprised between the
transition from state Si to Sj (for the real MMPP/M/1

queue) and the immediate transition to the steady state of
Sj (as assumed in the analytical approximation) and vice
versa. However, the two areas would tend to cancel each
other since the error introduced when passing to a state with
a higher utilization factor is positive (i.e. the approxima-
tion is already overestimating the average queue length on
its own), while the error introduced by transitions to states

Figure 2. Behavior of the Average Response
Time in a MMPP.

Figure 3. Difference Between Unbiased Ap-
proximation and Exact MMPP/M/1 Behav-
ior.

with lower utilization factors are negative (the approxima-
tion is underestimating the average queue length). This
means that it is not possible to obtain guarantees of over-
estimation from this approximation. In the following we
will describe a variant of this approximation allowing the
achievement of the above mentioned guarantee.

2.4 Lower Bound Approximation

As shown in Figure 3, the error committed by the an-
alytical approximation is given by the grayed out areas in
the figure, which is the area comprised between the transi-
tion from state Si to Sj (for the real MMPP/M/1 queue)
and the immediate transition to the steady state of Sj (as
assumed in the analytical approximation). Even with this
intuitive understanding, exact evaluation of the error is not
straightforward. This is due to the fact that the mean queue
length during the transition from steady state of Si to steady
state of Sj can be analytically derived from the works in
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[1, 8] (see Appendix A for the derivation), but the expres-
sion is not easily integrable.

However, a lower bound process on the queue length can
be constructed by matching the MMPP/M/1 behavior
during the steady state period, while systematically overes-
timating the queue length during transient periods, as shown
in Figure 1.c. The generation of such a process employs the
same technique described in Section 2.3 except that it re-
quires to modify the probabilities pi to reflect the different
proportion among the average times spent in each of the
MMPP states.

By the same considerations, the lower bound process on
the response time can be also derived using the analogous
approximation in Section 2.3, except that the weights wi are
changed according to the modified pi.

Now we show a procedure to be used in generating the
lower bound process. We assume that the following param-
eters are known:

• αjk. The transition rates between every Sj and Sk of
the MMPP.

• λi. The interarrival time for the incoming requests to
the queue, when the MMPP is in state Si.

• µ. The average service time required by the queue
to serve each request (does not include the time spent
waiting in the queue).

From the above parameters, to generate the straightfor-
ward approximation described in Section 2.3 we would just
need to evaluate the weights wi and apply them accordingly.
However, since we want to generate the lower bound pro-
cess described in Section 2.1, we need to modify the pi em-
ployed by those weights so that they are augmented (or re-
duced) to reflect that each time there is a transition between
two different Mi/M/1 queues, always the highest response
time among the two transitions must be considered. Thus,
considering that pi also represents the amount of time spent
by the MMPP in state Si during one time unit, the modified
probability is derived by: (i) adding to pi a factor propor-
tional to the time spent during each transition to lower uti-
lization factors, and (ii) subtracting from pi a factor propor-
tional to the time spent during each transition from higher
utilization factors (because that time is added to the proba-
bility pj of the state with a higher utilization factor).

Hence, the following step-by-step procedure describes
how to modify the pi to obtain the lower bound process:

1. Evaluate the steady state probabilities for each state Si

of the MMPP. This can be done by using standard re-

sults in queuing theory ([7]). Denote such probabilities
with pi.

2. Evaluate the transition period for each transition listed
above. According to standard queuing theory, the
mean queue length Ni(t) of a Mi/M/1 queue dur-
ing a transition period can be evaluated according to
the formula presented in Appendix A. We know that
limt→∞ Ni(t) = Ni and although Ni(t) cannot be
easily integrated we can still evaluate its value for spe-
cific values of t. Thus to evaluate the duration of a
transition period we compute Ni(t) for different val-
ues of t until we obtain a value for which the difference
between Ni(t) and Ni differ less than an arbitrary ε.
Denote the transition period from Si to Sj with tij (2).

3. Evaluate the modified probabilities p′i by using the for-
mula: p′i = pi +

∑λi>λj

j piαijtij −
∑λi<λj

j pjαjitji.
In other words, the modified probability p′i is gener-
ated by adding to each probability pi the probability
to be in a transition period from state Si to a state Sj

having lower request arrival rate, and subtracting from
it the probability to be transitioning to state Si from
a state Sj having higher request arrival rate. It can
be easily verified that p′i are still probabilities since
∑H

i=1
p′i = 1.

4. Generate the lower bound processes by performing a
weighted superposition of the output processes of the
different Si with the newly derived p′i. All the rele-
vant statistics (mean value, density function, cumula-
tive function) may be derived likewise.

3 Validation

In this section we aim at evaluating the tightness of our
approximation techniques in realistic settings for what con-
cerns the parameters space of the MMPP/M/1 queue. At
this end, we compare the results provided by our approx-
imations with those obtained via explicit simulation of a
MMPP/M/1 queue. We set the MMPP characteriz-
ing parameters on the basis of the results reported in [10],
which has shown, via real traces analysis, the feasibility
to model incoming traffic to a GRID server by means of
a MMPP/M/1 model. According to the data reported in
this work, the incoming traffic of the analyzed GRID server

2Note that in general t12 is not equal to t21. Transitioning from an
higher utilization factor to a lower one is typically a faster operation than
the opposite one.
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λ1 22.1
λ2 7.16
α12 0.17
α21 0.08

Figure 4. MMPP Model Employed for the Vali-
dation Study (Parameters Values from [10]).

can be modeled by a 2-state MMPP model, whose param-
eters are reported in Figure 4. Namely, transition rate α12,
from state S1 to state S2, is 0.17, while the reciprocal transi-
tion rate α21, from state S2 to state S1, is 0.08. The request
arrival rates λ1 and λ2, associated to state S1 and S2, are
equal, respectively, to 22.1 and 7.16.

In [10] the service rate µ of the analyzed GRID server is
not reported. Hence, we decide to treat µ as the independent
parameter of a sensibility analysis aimed at evaluating the
accuracy of both the unbiased and the lower bound approx-
imations, respectively defined in Sections 2.3 and 2.4. At
this purpose, we consider three different scenarios, repre-
sentative of low, medium and high load situations. Specif-
ically, we consider three different µ values corresponding
to 10, 2, 1.25 times the maximum arrival rate λ1: this de-
termines server utilization factors for the M1/M/1 queue
respectively equal to 10%, 50% and 80%.

In Table 1 we report, for the three considered load sce-
narios, the sum of the duration of the transient periods (from
state S1 to S2 and viceversa) normalized to the sum of
the average permanence period in the two MMPP states.
Transient periods are evaluated using the methodology re-
ported in Appendix A, and considering the transient period
from Si to Sj concluded when the mean queue length de-
viates no more than 5% from the mean queue length of the
steady state Sj . The data in Table 1 shows that, in light and
medium load scenarios, the duration of transient periods is
negligible with respect to the permanence time in the steady
states. Conversely, in the case of transitions from/to states
with higher utilization factors, the relative weights of tran-
sient periods grow up to around 20% of the average perma-
nence in states S1 and S2. This experimental data confirms
the validity of the basic intuition underlying our approxima-
tion approach, namely that, when considering realistic para-
metric settings for a MMPP/M/1 queue, the permanence

Load Level Transients Duration
Steady States Duration

Low 0.12%
Medium 1.48%

High 21.66%

Table 1. Normalized Duration of Transient Pe-
riods While Varying System Load.

time in each state Si of the MMPP is long enough to al-
low reaching the steady state of the corresponding Mi/M/1

queue. Additionaly, the data in Table 1 highlights that, in
high load scenarios, the relative increase of the transient pe-
riods duration may actually expose our analytical approxi-
mation techniques to higher errors.

The above inferences are confirmed by the data in Table
2. These data show that the deviation introduced by both
the unbiased and the lower bound approximations is almost
null in low and medium load scenarios. It is also interest-
ing to note that while, as expected, the approximation er-
rors show an increasing trend as the server load increases,
the deviation still remains very limited. In fact, according
to the data in Table 2, the percentual error for the average
response time and queue length computed through the un-
biased approximation never grows larger than 3%, whereas
the deviation of the lower bound approximation peaks at
5.4% for the average response time and at 10.7% for the
average queue length. Note that the unbiased approxima-
tion determines a minor deviation with respect to the lower
bound one. This is due to that, as already hinted in Sec-
tion 2.3, in the unbiased approximation the positive errors
committed during transitions to state S1, having higher uti-
lization factor, tend to cancel with the negative errors due to
transitions to state S2, having lower utilization factor (see
Figure 3). We recall, however, that the unbiased approxi-
mation does not provide any guarantee to overstimate the
MMPP/M/1 output variables.

In this validation not only we aim at comparing the mean
values of the aforementioned random variables, but rather
at evaluating the whole statistical behavior of the proposed
analytical approximations. Therefore, we next proceed
through the plots in Figures 5, 6 and 7 to compare the cumu-
lative distribution functions (C.D.F.) obtained from the ap-
proximations described in Section 2.4 with those produced
via simulation of the MMPP/M/1. We omit plotting the
C.D.F.s related to the low load scenario since, just like in
the medium load case (see Figure 6), the curves obtained
via simulation and via analytical approximations are indis-
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Load Mean Resp. Time Error Mean Queue Length Error Max Resp. Time Error (CDF) Max Queue Length Error (CDF)
Level Lower Bound Unbiased Lower Bound Unbiased Lower Bound Unbiased Lower Bound Unbiased
Low <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%

Medium 1.7% 0.1% 0.5% 0.2% 0.2% 0.1% 0.4% <0.1%
High 5.4% 2.53% 10.7% 2.98% 1.98% 1.3% 2.57% 0.7%

Table 2. Deviation of Lower Bound and Unbiased Approximations from MMPP Simulation Output.
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tinguishable. However, in Figure 7 we report a (very strong)
zoom of the C.D.F.s plots obtained in the medium load sce-
nario, so to be able to visually quantify the relative distance
among the C.D.F.s. The plot in Figure 5 shows indeed that
even in the less favourable high load scenario, the C.D.F.
curves produced by the lower bound and unbiased approx-
imations lie very close to the one obtained via simulation.
This is confirmed by the data reported in the four rightmost
columns of Table 2, which show that the maximum puntual
error of the queue length and response time lower bound
C.D.F.s equal to 2.57% and 1.98%. Let us further analyze
the worst case scenario of high load, and consider the 90-th
or the 95-th percentiles of the response time, i.e., classical
probability thresholds for Service Level Agreements estab-
lished for QoS purposes. By the plot in Figure 5, we observe
that the distance between the simulated MMPP/M/1 and
the lower bound approximation does not exceed 5%, con-
firming the tightness of our approximation techniques even
in this less favorable scenario.

Finally, yet importantly, we observe that the C.D.F. plots
of the lower bound analytical approximation consistently
underestimate the distribution of the output variables of the
real MMPP/M/1 over all its length, thus validating the
objective described in Section 2.1.

4 Future Work

In this paper we examined the feasibility of approxi-
mating a MMPP/M/1 queue with a weighted superpo-
sition of M/M/1 queues. By choosing appropriate weights

we derived an approximation that guarantees an overes-
timation of the MMPP/M/1 output, hence providing
lowerbounds on the cumulative distribution functions of the
MMPP/M/1 output.

However during all the conducted experiments we have
noticed that also the approximation employing the “unbi-
ased” weights (as described in Section 2.3) slightly overes-
timates the real MMPP/M/1 output, while actually ex-
hibiting better precision. The reason why the distributions
of the “unbiased” approximation is likely to underestimate
the distributions of the real MMPP/M/1 (instead of over-
estimating them) is that the transient time after T2, shown in
Figure 3, is usually much shorter than the transient time af-
ter T1, thus the overestimation error normally oversteps the
underestimation error. However, we cannot exclude the pos-
sibility of pathological cases in which this may not happen,
thus we cannot propose such an approximation as a consis-
tent, more precise lower bound. Theoretically establishing
whether the “unbiased” approximation is a consistent, more
accurate lower bound on the MMPP/M/1 behavior is part
of our future work.
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Appendix A

This appendix describes the calculations employed to de-
rive the the transient behavior of the M/M/1 queue length.
According to classical queuing theory[7], in the generic
case the mean queue length N(t) is given by N(t) =
∑

∞

k=0
Pk(t)k where Pk(t) is the probability for the queue

to have k requests active at time t. Therefore to estimate
N(t) during the transition we need to evaluate the corre-
spondent Pk(t).

When the MMPP/M/1 settles on the steady state of
Si, the Pk(t) is time independent with a well-known an-
alytical solution[7]. However when a transition between
the states Si and Sj occurs, we have a situation in which
Pk(t) is again time-dependent until the steady state for Sj

is reached. The value of Pk(t) is evaluated as follows. Im-
mediately before the transition occurs, the queue contains
h requests with probability Ph (time-independent). More-
over, the works in [1, 8] derive analytical expressions for
the probability Ph,k(t), i.e. the probability for the queue
to contain k request at time t conditioned to the fact that
the queue contained h requests at time 0. Hence Pk(t) =
∑

∞

h=0
Ph,k(t)Ph and N(t) =

∑
∞

k=0

∑
∞

h=0
Ph,k(t)Phk.

Note that these calculations for N(t) involve infinite
sums. Our decision on when the sums must be stopped is a
logical AND among the two following conditions:

1. The sum of the Ph (or Pk(t) (depending on whether
we are summing over h or k) is larger than 0.9999.
This means that our sum has already covered almost
the whole probability space.

2. The summed value is smaller than 10−10 (the involved
amounts of N(t) are at least on the order of 10−1).

By using this technique we have observed that the steady
state values observed by the numerical calculation of the
expression derived above, differ from the theoretical ones
only at the fifth significative digit.
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