
AGGRO: Boosting STM Replication via

Aggressively Optimistic Transaction Processing

Roberto Palmieri and Francesco Quaglia

DIS, Sapienza University, Rome, Italy

Paolo Romano

INESC-ID, Lisbon, Portugal

Abstract

Software Transactional Memories (STMs) are emerging

as a potentially disruptive programming model. In this pa-

per we are address the issue of how to enhance dependabil-

ity of STM systems via replication. In particular we present

AGGRO, an innovative Optimistic Atomic Broadcast-based

(OAB) active replication protocol that aims at maximiz-

ing the overlap between communication and processing

through a novel AGGRessively Optimistic concurrency con-

trol scheme. The key idea underlying AGGRO is to prop-

agate dependencies across uncommitted transactions in a

controlled manner, namely according to a serialization or-

der compliant with the optimistic message delivery order

provided by the OAB service. Another relevant distinguish-

ing feature of AGGRO is of not requiring a-priori knowl-

edge about read/write sets of transactions, but rather to de-

tect and handle conflicts dynamically, i.e. as soon (and only

if) they materialize. Based on a detailed simulation study we

show the striking performance gains achievable by AGGRO

(up to 6x increase of the maximum sustainable throughput,

and 75% response time reduction) compared to literature

approaches for active replication of transactional systems.

1 Introduction

Software Transactional Memories (STMs) are emerg-

ing as a highly attractive and potentially disruptive pro-

gramming paradigm. Leveraging on the proven concept

of atomic and isolated transaction, STMs spare program-

mers from the pitfalls of conventional manual lock-based

synchronization, significantly simplifying the development

of parallel and concurrent applications. However, as STMs

start making their way out of research labs and being used

in real-life systems (see, e.g., the FenixEDU system [5]),

they are faced with dependability challenges which cannot

be efficiently tackled by existing replication-based schemes.

State of the art solutions for the replication of transac-

tional systems [1, 14, 21] have in fact been targeted to tra-

ditional database systems. The fulcrum of these solutions is

the synergic integration of an Atomic Broadcast (AB) ser-

vice [11], ensuring replicas’ agreement on the global serial-

ization order (GSO) of transactions, and a local, determin-

istic, concurrency control scheme, guaranteeing that trans-

action scheduling at each replica matches the GSO output

by the AB service.

However, as highlighted in [24], transaction execution

times in (non-replicated) STM systems are typically several

orders of magnitude smaller than in conventional database

environments, leading to an amplification of the relative

cost of distributed replica coordination schemes. Not only

this has a significant negative effect on the transaction com-

pletion time. In STMs, in fact, being communication costs

relatively higher than in database environments, they also

induce relatively longer periods of stall for the local pro-

cessing activities. This can cause severe under-utilization

of the available computing resources, especially in modern

massively parallel architectures.

This suggests the idea of optimistically processing trans-

actions without waiting for the completion of the (AB-

based) replica coordination scheme, improving efficiency

by overlapping transaction processing and communication.

Such an idea has been already exploited, to some extent, in

the context of actively replicated database systems [14, 20]

by leveraging on, so called, Optimistic Atomic Broad-

cast (OAB) services [22]. An OAB service provides early

knowledge about message existence (via a so called opti-

mistic delivery phase) and early indications of the corre-

sponding final delivery order. As shown in [14], in fact, in

typical LANs, the network normally ensures the, so called,

spontaneous order property, i.e. high probability of match-

ing between optimistic and final delivery orders.

In the aforementioned database replication schemes, op-

timistic delivery order indications are used to guess the final

GSO and to optimistically activate transaction processing in

a compliant serialization order. The mechanisms employed

to ensure deterministic transaction scheduling are based on

the atomic pre-acquisition of locks on the data items to be

accessed by the transactions. This ensures that conflicting

transactions are sequentially executed in an order compli-

ant with the optimistically guessed GSO, but demands the

a-priori knowledge of the data items to be accessed by a

transaction (or, equivalently, of transaction conflict classes).

If the optimistic delivery order of an activated transaction T



does not contradict the final GSO, any work carried out by

T before the notification of the final GSO has been usefully

anticipated, yielding an effective overlap between coordina-

tion and processing phases.

Unfortunately, when employed in the context of STM-

based systems, these mechanisms suffer from two main

drawbacks: (1) Due to the difficulty to exactly identify the

data items to be accessed by transactions before these are

actually executed, it is typically necessary to adopt con-

servative conflict assumptions based on coarse data granu-

larity, e.g. whole, or large slices of, database tables [20].

However, unlike relational database systems, STM-based

applications are characterized by arbitrary memory layouts

and access patterns which may make significantly harder,

or even impossible, to a-priori identify, with a reasonable

accuracy, the boundaries of the memory regions that will be

accessed by transactions prior to their actual execution. On

the other hand, gross over-estimations of the actual transac-

tion conflicts can strongly hamper concurrency, leading to

significant resources’ under-utilization, especially in (mas-

sively) parallel systems. (2) These approaches exhibit a lim-

ited degree of optimism since they process serially every op-

timistically delivered transaction that is known to conflict

with another already activated transaction. While such a

choice prevents cascading abort, it also strongly limits con-

currency, which may significantly hamper performance. As

we have also shown in [19], this is particularly true in STM

scenarios where, being the transaction execution time typi-

cally much lower than the OAB finalization latency, the per-

formance benefits achievable by optimistically executing at

most one among a set of conflicting transactions are signifi-

cantly slimmer than in conventional database settings.

To overcome the above limitations, in this paper we

present AGGRO, an AGGRessively Optimistic replication

protocol specifically tailored to STM systems. The key

idea behind AGGRO is to seek maximum overlap between

replica coordination and transaction execution phases by

propagating the (uncommitted) post-images of complete,

but not yet finally delivered, transactions across chains of

conflicting transactions speculatively executed in a serial-

ization order compliant with the optimistic delivery order.

To ensure that the actual transaction schedule matches the

serialization order determined by the sequence of optimistic

deliveries, AGGRO relies on an innovative concurrency

control mechanism that, unlike existing OAB-based replica-

tion approaches, does not require information on the trans-

actions’ data access patterns prior to their actual execution.

Conversely, it detects any possible discrepancy between the

transaction schedule and the optimistic delivery order a pos-

teriori, namely as soon as (and if) conflicts materialize.

As we will show by means of a detailed simulation study,

AGGRO allows achieving up to 75% reduction of the trans-

action execution latency and 6x throughput increase with

respect to state of the art OAB-based replication schemes

when used to handle STM applications deployed on repli-

cas equipped with an eight-core CPU (which today rep-

resents a typical configuration for commodity server sys-

tems). Such performance gains are obtained without sacri-

ficing consistency. In fact, beyond ensuring 1-copy serializ-

ability, AGGRO also enforces opacity [10] by guaranteeing

that the snapshot observed by any (eventually committed or

aborted) transaction is always equivalent to one generated

by a serial schedule, albeit possibly not matching the one

associated with neither the optimistic nor the final delivery

order.

The remainder of this paper is structured as follows. In

Section 2 we discuss related work. The target system model

for AGGRO is defined in Section 3. The AGGRO protocol

is presented in Section 4. The results of the simulation study

are provided in Section 5.

2 Related Work

The use of Atomic Broadcast (AB) primitives to sup-

port replication of transactional systems has been widely

explored in literature, especially for what concerns database

systems (see, e.g., [1, 14, 21]). The key idea underlying

these approaches is to exploit AB to determine, in a non-

blocking fashion, a global transaction serialization order

(across all replicas), so to circumvent scalability problems

that are known to affect classical eager replication mecha-

nisms based on distributed locking and atomic commit pro-

tocols [9]. AGGRO builds on Optimistic Atomic Broad-

cast (OAB) primitives [14, 22] and, compared to previous

works, relies on a much more aggressively optimistic local

concurrency control mechanism. Additionally, unlike tra-

ditional OAB-based protocols [14, 20], AGGRO does not

require a-priori knowledge of the data items to be accessed

by transactions.

Our work is also related to the approaches in [3] and [23],

which explored the idea of speculatively executing trans-

actions to enhance performance of database systems. The

work in [3] targets non-replicated real-time databases and

shows the benefits, in terms of transaction timeliness, by

speculatively forking, upon detection of a conflict, a copy

of the current transaction that remains idle and serves as

a save-point to reduce the cost of aborts. The solution

in [23] targets distributed databases relying on distributed

locking and on a final atomic commit phase for validating

transactions. The substantial difference between our work

and the aforementioned solutions is that AGGRO provides

supports for replication of (software) transactional memory

systems, ensuring strong consistency despite the crash of (a

subset) of the replicas. Further, AGGRO executes transac-

tions speculatively in a serialization order compliant with

the optimistic delivery order defined by the OAB service.

Conversely, the solutions in [24, 25] speculate across differ-



ent serialization orders, thus coping with the complemen-

tary case where spontaneous ordering does not hold.

AGGRO is similar in spirit also to the PROMPT proto-

col [12]. The latter protocol targets distributed databases in

which the atomicity of update transactions is supported by

means of an atomic commit protocol [2] (e.g. 2PC). The key

idea underlying PROMPT is to make the post-images gen-

erated by pre-committed transactions immediately available

to at-most one conflicting transaction. This technique al-

lows reducing the stalls incurred in by transactions con-

flicting with pre-committed transactions. Analogously, AG-

GRO exposes the post-images of uncommitted transactions

with the purpose of overlapping processing with communi-

cation. On the other hand, being layered on top of an OAB

service, AGGRO is structurally significantly different from

PROMPT. Also, AGGRO adopts a much more aggressively

optimistic concurrency control strategy that does not bound

the length of the chain of uncommitted conflicting trans-

actions from which an optimistically activated transaction

may depend. While such a design choice allows for cascad-

ing aborts, as it will be also shown in Section 5, its advan-

tages from the aggressive overlap of processing and com-

munication in case of typical STM workloads largely out-

weight any performance penalty associated with cascading

aborts.

Finally, our work is clearly related to the recent litera-

ture on distributed STMs [4, 6, 15, 16]. However, except

[6], none of these solutions leverages on replication in order

to enhance system dependability. In AGGRO, on the other

hand, dependability represents a first class design goal, and

the STM performance is optimized by seeking maximum

overlap between the non-blocking OAB-based replica coor-

dination phase and local transaction processing activities.

Like AGGRO, D2STM [6] is a fault-tolerant replication

scheme targeting STM systems and relying on AB for repli-

cas’ synchronization. Differently from AGGRO, however,

D2STM does not overlap communication and processing

phases by exploiting the early, albeit potentially erroneous,

indications provided by an OAB service.

3 System Model

We consider a classical asynchronous distributed sys-

tem model [11] consisting of a set of STM processes Π =
{p1, . . . , pn} that communicate via message passing and

can fail according to the fail-stop (crash) model. If a process

does not fail we say it is correct. We assume the availability

of an OAB service offering the following classical API: TO-

broadcast(m), which allows broadcasting message m to all

the replicated processes in Π; Opt-deliver(m), which deliv-

ers message m to a process in Π in a tentative, also called

optimistic, order; TO-deliver(m), which delivers message

m to a process in Π in a so called final order that is the

same for all processes in Π.

TRANSACTION MANAGER (XM) OAB 

TO-broadcast 

Opt-deliver 

TO-deliver 

APPLICATION LAYER 

Transactional Request Result 

TRANSACTIONAL STORE (TS) 

Figure 1. Architecture of a Replicated Soft

ware Transactional Memory Process.

For the readers’ convenience, we also list the proper-

ties characterizing the OAB group communication primitive

[22]:

Termination - If a correct process TO-broadcasts m, then

it eventually Opt-delivers m;

Global Agreement - If a process Opt-delivers m, then ev-

ery correct process eventually Opt-delivers m;

Local Agreement - If a correct process Opt-delivers m,

then it eventually TO-delivers m;

Global Order - If two processes pi and pj TO-deliver mes-

sages m and m′, they do so in the same order;

Local Order - If a process TO-delivers m, it does this only

after having Opt-delivered m.

The diagram in Figure 1 shows the software architecture

of each STM process pi ∈ Π. Applications generate trans-

actions by calling the invokemethod of the local Transac-

tion Manager (XM), specifying the business logic to be ex-

ecuted (e.g. the name of a method within the transactional

memory system) and the corresponding input parameters (if

any). The XM is responsible of (i) propagating (through

the OAB service) the transactional request across the set of

replicated STM processes, (ii) executing the transactional

logic on the underlying Transactional Store (TS), and (iii)

returning the corresponding result to the user-level applica-

tion. With no loss of generality, we assume the existence

of a function Complete(), used to explicitly notify the XM

about the completion of the execution of a transaction.

We assume that each data item X maintained by TS is as-

sociated with a set of versions {X1, . . . , Xn}. A single ver-

sion of X is committed at any time. On the other hand, an

uncommitted version can be in one of the following states:

i) Work-in-progress (Wip) - the creator transaction has not

reached the complete stage yet; ii) Complete (Comp) - the

creator transaction has reached the complete stage, but is

not finalized as committed or aborted yet.

Complete data versions are generated by fully executed

transactions, and are used to aggressively propagate updates

to conflicting transactions. On the other hand, declaration of

the existence of Wip versions is used by AGGRO as a means

to early express that a given data item is being currently



manipulated by some transaction.

We assume that neither the sequence of operations to be

executed within a transaction, nor the data items to be ac-

cessed by each operation are a-priori known. Conversely,

we assume that the transaction data access pattern can vary

depending on the current state of the underlying transac-

tional store. More precisely, we assume that the transac-

tional business logic is snapshot deterministic [25], in the

sense that the sequence of read/write operations it executes

is deterministic once fixed the return value of any of its read

operations. In other words, whenever an instance of a trans-

action T is re-executed and observes a given snapshot S,

defined as the set of values returned by all its read opera-

tions, then it behaves deterministically by always executing

the same set of read/write operations.

The manipulation of the data items occurs via

the following primitives offered by the TS layer:

MarkAsWip(T,XT), which is used for declaring the ex-

istence of a Wip version of data item X created by trans-

action T ; UnmarkAsWip(T,XT), which is used for un-

declaring the existence of a previously declared Wip version

of data item X by transaction T ; MarkedAsWip(T,X)

which is used to query the existence of a Wip declaration on

X by transaction T ; setCompleteVersion(XT,T),

which is used for updating the state of a Wip data item XT

created by T (hence belonging to the write-set of transac-

tion T ) to Comp; unsetCompleteVersion(XT,T),

which is used for removing a complete data item version

XT originally created by T .

4 The AGGRO Protocol

In our architecture, the transaction manager XM exploits

the aforementioned data item versioning mechanism to lo-

cally drive the execution of transactions. Data item versions

in the Comp state are aggressively made visible to other

transactions independently of whether the creating transac-

tions will be eventually committed. On the other hand, the

XM selects the complete/committed data item versions to

be returned by read operations in order to match a serial-

ization order compliant with the order in which transactions

are optimistically/finally delivered within the OAB scheme.

As pointed out in the Introduction, for environments where

the spontaneous network ordering property holds, the op-

timistic delivery order highly likely reflects the final total

order. Hence, transactions reading Comp versions on the

basis of the order according to which they have been opti-

mistically delivered are expected not to be eventually (cas-

cading) aborted. In other words, aggressiveness in transac-

tion processing via access to uncommitted (but complete)

data items is expected to pay-off (i) by avoiding to stall pro-

cessing waiting for the finalization of the delivery order and

(ii) by not requiring transaction abort and restart.

On the basis of the above considerations, the role of Wip

data items becomes central. They represent an early decla-

ration about the fact that a new data item version is likely

to reach the Comp state in the (immediate) future. Hence,

the XM can exploit the presence of Wip versions to regu-

late concurrency in a way to temporarily suspend the execu-

tion of a transaction T that requires read-access to that data

item, and that follows the creating transaction T ′ in the op-

timistic/final delivery order. On the other hand, an adverse

schedule may lead T to execute the read operation before

T ′ has been able to issue its write on that data item, thus not

being able to declare the existence of its Wip version before

T issues the read operation. To cope with such a case, we

have introduced in the XM an early abort mechanism en-

suring that T gets aborted as soon as the Wip version by T ′

gets produced.

As for the above point, for STM systems hosted by mas-

sively (or even conventional) multi-core architectures, we

expect minimal likelihood for the optimistically/finally de-

livered transaction T ′ not to have reached the complete

phase (or to have declared the existence of Wip versions)

before the subsequent optimistically/finally delivered trans-

action T gets activated (thus accessing the post image of

data wrt T ′). This is because: (A) transactions typically

exhibit very fine granularity, (B) as we have also shown in

[19], in typical settings, there are normally available com-

putational resources to start processing transactions imme-

diately upon their delivery. On the other hand, in environ-

ments with stricter hardware resources (CPU-cores) limi-

tations, the AGGRO concurrency control scheme can be

easily integrated with a CPU scheduling scheme (supported

at the level of XM-handled threads) based on dynamic pri-

orities, which can favor older transactions within the opti-

mistic/final delivery order. This would create a time-sharing

execution that is likely to allow the older transaction T ′ to

declare the existence of Wip versions, or to even run to com-

pletion, before T gets actually executed. We omit such a

CPU schedule integration mechanism in the presentation of

the AGGRO pseudo-code exclusively for simplicity.

The behavior of the XM within the AGGRO protocol

relies on a precedence relation between transactions, de-

fined on the basis of the order according to which they are

optimistically and/or finally delivered. The relation is ex-

pressed as a function of the state of two lists maintained by

the XM, named OptDelivered and TODelivered. These

lists keep, respectively, transactions that have been either

optimistically or finally delivered, and are sorted accord-

ing to the corresponding delivery order. When a transaction

T is optimistically delivered, it gets recorded at the tail of

the OptDelivered list. Upon the corresponding final de-

livery, the transaction is moved from the OptDelivered list

(whichever is its current position within this list) to the tail

of the TODelivered list. The move operation between the

two lists is handled by the XM as an atomic action. Finally,



the transaction is removed from the TODelivered list upon

commit. In case of no discrepancy between the OAB op-

timistic and final delivery orders, the transaction moved at

the tail of the TODelivered list is always the head-standing

one (namely the oldest one) of the OptDelivered list.

By exploiting the above ordered lists, the precedence re-

lation among transactions is expressed as follows. We say

that transaction Ti precedes transaction Tj according to the

current state of the OAB protocol (as expressed by the lists),

using the notation Ti
OAB
→ Tj , if one of the three below mu-

tually exclusive conditions holds:
1. Ti and Tj are both currently recorded within OptDe-

livered, with Ti ordered before Tj;

2. Ti is currently recorded within TODelivered, while Tj

is currently recorded within OptDelivered;

3. Ti and Tj are both currently recorded within TODeliv-

ered, with Ti ordered before Tj .

We note that the
OAB
→ relation is dynamic, in the sense that,

when considering a couple of transactions Ti and Tj , their

respective
OAB
→ ordering can change over time. This may

occur in case they get sorted within the TODelivered list

in the opposite manner, compared to the sorting they had

within the OptDelivered list (i.e. in the case of discrepancy

between optimistic and final delivery orders for the two

transactions). However, once that both these transactions

are recorded within the TODelivered list, their respective
OAB
→ order becomes stable (it can no longer be inverted),

and depends on which of the two transactions is ordered

(and hence TO-delivered) before the other one in the list

(see point 3 above). This relative order persists until the

preceding transaction gets removed from the TODelivered

list upon its commit.

The pseudo-code for the behavior of the XM in shown

in Figure 2. For shortness, we do not explicitly show the

handler for the receipt of transactional requests by the over-

lying application, as this simply entails a TO-broadcast op-

eration for propagating the request to the replicated sites via

the OAB service. Similarly, we do not explicitly show the

logic for the retrieval of the transaction result upon a com-

mit operation, and the delivery of the result to the overlying

application. In other words, the pseudo-code presentation is

focused on the core mechanisms associated with transaction

processing and concurrency regulation, which are activated

as soon as a TO-broadcast transactional request gets Opt-

delivered to the XM by the OAB layer.

Via the Opt-deliver handler, a transaction is inserted

within the OptDelivered list, and then gets activated via the

ActivateTransaction() function, which we use to encapsu-

late the transaction processing logic triggering an a-priori

unknown sequence of read and write operations. Whenever

a write on a data item X is issued, the XM activates the

Write() function, which first checks whether X already be-

longs to the transaction write-set. In the positive case, the

List<Transaction> TODelivered,OptDelivered;

upon Opt-deliver(Transaction Ti) do

OptDelivered.add(Ti ); // transaction Ti is added at the tail of the OptDelivered list

ActivateTransaction(Ti );

void ActivateTransaction(Transaction Ti) { . . . }

void Write(Transaction Ti , DataItem X, Value v)

if (∄X ∈ WriteSetTi
)

WriteSetTi
.add(X,v);

MarkAsWip(X,Ti);

∀ Transaction Tj s.t. Ti
OAB
→ Tj{

if (X ∈ ReadSetTj
and Tk ∈ ReadFromTj

with Tk
OAB
→ Ti) event Abort(Tj );

else update X within WritSetTi
; // if X already in WriteSet it gets over-ridden

DataItemValue Read(Transaction Ti , DataItem X)

if (X ∈ WriteSetTi
) return WriteSetTi

.get(X).value;

if (X ∈ ReadSetTi
) return ReadSetTi

.get(X).value;

until (MarkedAsWip(X,Tj ) s.t. Tj
OAB
→ Ti) suspend;

select version of X wrote by Tj = max{Tj |Tj
OAB
→ Ti};

ReadFromTi
.add(Tj );

return selected version of X

void Complete(Transaction Ti)

∀X ∈WriteSetTi
atomically do

UnmarkAsWip(X,Ti);

setCompleteVersion(X,Ti);

set Ti complete;

upon Commit(Transaction Ti)

∀X ∈WriteSetTi
atomically do

UnmarkAsWip(X,Ti);

setCommittedVersion(X ,Ti);

TODelivered.remove(Ti );

upon Abort(Transaction Ti) do

∀ Tj s.t. Ti ∈ ReadFromTj
event Abort(Tj );

if (Ti is complete) unsetCompleteVersion(X ,Ti);

else UnmarkAsWip(X ,Ti);

release transactional context of Ti ;

new thread(ActivateTransaction(Ti ));

upon TO-deliver(Transaction Ti ) do

atomically do

OptDelivered.remove(Ti );

TODelivered.add(Ti );

until Ti not complete or ∃Tj s.t. Tj
OAB
→ Ti: suspend;

if (∃X s.t. X ∈ ReadSetTi
, X ∈WriteSetTj

, ¬(Ti
OAB
→ Tj ) event Abort(Ti );

else event Commit(Ti );

Figure 2. Behavior of the XM.

working copy within the write-set gets updated, and then

the Write() function simply returns. On the other hand, if

X does not currently belong to the write-set, it is added to

it along with the to-be-written value. Successively, the XM

declares via the MarkAsWip() primitive the existence of

a Wip version associated with the currently writing transac-

tion, say Ti. Then the XM verifies whether there are active

transactions that follow Ti according to the
OAB
→ relation,

and that read X from a transaction Tk different from Ti

such that Tk
OAB
→ Ti. These transactions are not correctly

serialized according to
OAB
→ since they should have read X

from Ti or a subsequent transaction within the
OAB
→ order-

ing. Hence an abort event for these transactions is issued.



By the above explanation of write operations, the multi-

versioning mechanism supported by TS, and exploited by

the XM, actually provides a means for avoiding stalls upon

write/write conflicts.

In case the requested operation is a read on data item

X , the XM activates the Read() function, which first

checks whether X is already registered within the transac-

tion write-set/read-set. In the positive case, the registered

copy is returned. Otherwise, the XM checks whether the

reading transaction, say Ti, follows, according to the
OAB
→

relation, some transaction for which a working copy of X

is declared to exist. In the positive case, transaction Ti is

temporarily suspended until the above condition is no more

verified. Afterwards, the complete or committed version of

data item X wrote by the latest transaction preceding Ti ac-

cording to
OAB
→ is selected and added to the read-set. Then

the read-from set of Ti is updated in order to include the

read-from dependency associated with the transaction that

wrote the selected version of X . Finally, this version is re-

turned.

In the Complete() function, the XM simply removes the

declaration about the existence of Wip versions associated

with the transaction, and then marks each data item X be-

longing to the write-set as Comp. Afterwards, the transac-

tion enters the complete state.

In the Commit() function, the XM installs the Comp ver-

sions of the data items written by the transaction as com-

mitted versions. Then the transaction is removed from the

TODelivered list.

In the Abort() function, the XM triggers a (cascading)

abort event for all the transactions that read whichever data

belonging to the write-set of the currently aborting trans-

action. These data are then simply discarded, the current

transactional context is released, and a new thread for reac-

tivating the transaction is spawned.

Via the TO-deliver handler, ther XM moves the

transaction from the OptDelivered list to the TODelivered

list. Then the execution of this handler is suspended until

the finally delivered transaction enters the complete state.

The suspend condition also depends on whether there are

other transactions that precede the currently TO-delivered

one according to
OAB
→ . In such a case, the handler waits

until the currently TO-delivered transaction i) is fully ex-

ecuted and ii) becomes the minimum element within the
OAB
→ relation. Note that in AGGRO, waiting until a TO-

delivered transaction Ti becomes the minimum element of

the
OAB
→ relation ensures that every transaction preceding

Ti according to
OAB
→ has already been safely committed. At

this point Ti can be safely validated by checking whether

all the values read by Ti coincide with the ones that are cur-

rently in the committed state. If the validation phase is suc-

cessfully passed, the TO-deliver handler generates the

commit event for the transaction, which causes the installa-

tion of the data items written by the transaction, and the cor-

responding values, as committed, as well as the removal of

the transaction from the TODelivered list. This enables the

redefinition of a new minimum element, which iteratively

allows generation of the commit event for the correspond-

ing transaction, once it reaches the complete stage.

4.1 Protocol Correctness

Due to space constraints we cannot detail a formal proof

of the correctness of AGGRO. Nevertheless, we overview

the set of safety and liveness properties ensured by AGGRO

providing some informal correctness arguments.

As for safety, AGGRO ensures opacity [10] and 1-Copy

Serializability [2]. The opacity property guarantees that

(O.1) committed transactions should appear as if they were

executed sequentially, in an order that agrees with their real-

time ordering, (O.2) no transaction should ever observe the

modifications to shared state done by aborted or live trans-

actions, and (O.3) all transactions, including aborted and

live ones, should always observe a consistent state of the

system. In each replica, AGGRO ensures property (O.1) by

committing transactions only after a validation phase that

would detect any unserializable behavior. It ensures (O.2)

because read operations can only return either a committed

value, or the value generated by a transaction whose exe-

cution has already reached the complete phase (and hence

is neither live nor aborted at the time of the read). It en-

sures (O.3) since the read of a transaction Ti always returns

the value generated by the latest complete transaction that

precedes Ti according to
OAB
→ . Hence, the only possible

anomaly that could affect Ti arises whenever Ti observes

a value for a data item X generated by a transaction Tj

such that Tj
OAB
→ Ti, and then a transaction Tk, where

Tj
OAB
→ Tk

OAB
→ Ti, writes X. In this case, if Ti were to

issue a read on any data item generated by Tk, Ti would

observe an inconsistent state (having already been serial-

ized before Tk when it issued the read on X), thus violating

(O.3). On the other hand, this scenario is avoided by AG-

GRO since, as soon as Tk writes on X , it would detect that

Ti has been scheduled in a way that is inconsistent with
OAB
→ , and would immediately abort Ti.

Concerning 1-Copy Serializability, this is ensured by

AGGRO since transactions are committed at every site only

upon a deterministic validation that is executed by all repli-

cas in the same total order, i.e., the final delivery order of

the OAB service.

As for liveness, AGGRO ensures lock-freedom, which

guarantees that there is always at least a thread to make

progress, thus ruling out deadlock and livelock scenarios.

This is a direct consequence of the fact that the transaction

currently representing the minimum element according to
OAB
→ always experiences an abort free (re)run.



5 Simulation Study

Our performance evaluation study is based on a process-

oriented simulator developed using the JavaSim simulation

package which implements i) the OAB-based replication

protocol in [14], referred to as OPT in the following, and

ii) the proposed AGGRO protocol. In order to accurately

model the execution dynamics of transactions in STM sys-

tems, we rely on a trace-based approach. Traces related to

data accesses and transaction duration have been collected

by running a set of widely used, standard benchmark appli-

cations for STMs. The machine used for the tracing process

is equipped with an Intel Core 2 Duo 2.53 GHz processor

and 4GB of RAM. The operating system running on this

machine is Mac OS X 10.6.2, and the used STM layer is

JVSTM [5]. The simulation model of the replicated STM

system comprises a set of 4 replicated STM processes, each

hosted by a machine equipped with eight cores processing

transactions at the same rate as in the above architecture.

We configured the benchmarks to run in single threaded

mode, so to filter out any potential conflict for both hard-

ware resources and data. Also, we extended JVSTM in

order to transparently assign a unique identifier to every

object within the STM memory and to log every operation

(namely, begin/commit/rollback operations, and read/write

memory-object access operations) along with its timestamp.

This allowed us to gather accurate information on the data

access patterns of the benchmark applications and on the

time required for processing each transaction (in absence of

any form of contention).

The traces were collected running two benchmark ap-

plications, RB-Tree and List, that were originally used for

evaluating DSTM2 [13] and, later on, adopted in a number

of performance evaluation studies of STM systems [5, 6].

These applications perform repeated insertion, removal and

search operations of a randomly chosen integer in a set of

integers implemented either as a sorted single-linked list

or as a red-black tree. We configured the benchmark not

to generate any read-only transaction (i.e. searches). This

choice depends on the fact that, in both protocols considered

in this study, read-only transactions can be executed locally,

without the need for propagation via the atomic broadcast.

By only considering update transactions, we can therefore

precisely assess the impact of the atomic broadcast latency

on the performance of a replicated STM, as well as the per-

formance gains achievable by AGGRO.

The transactions’ arrival process via optimistic and fi-

nal message deliveries from the OAB layer is modeled in

our simulations via a message source that injects messages

having as payload a batch of β transactions with an expo-

nentially distributed inter-arrival rate, having mean λ. We

recall that batching is a technique very commonly employed

to optimize the performance of (Optimistic) Atomic Broad-

cast protocols [7]. By amortizing the costs associated with

the (O)AB execution across a set of messages, batching

schemes have been shown to yield considerable enhance-

ment of the maximum throughput achievable by (O)AB pro-

tocols. The inclusion of batching schemes in our study of

OAB-based replication protocols for transactional systems

allows keeping into account optimized configurations for

this important building-block group communication prim-

itive. As for the delays of optimistic and final message de-

liveries, several studies have shown that OAB implemen-

tations typically tend to exhibit flat message delivery la-

tency up to saturation [8]. On the other hand, our study

is not targeted to explicitly assess the saturation point of

the OAB group communication subsystem. For this rea-

son we decided to run the simulations by assuming that the

OAB layer does not reach its saturation point. Therefore,

independently of the value of the message arrival rate λ,

we use in our simulations an average latency of 500 mi-

croseconds for the Opt-delivery, and of 2 milliseconds for

the TO-delivery. These values have been selected on the

basis of experimental measures obtained running the Ap-

pia [17] GCS Toolkit on a cluster of 4 quad-core machines

(2.40GHz - 8GB RAM) connected via a switched Gigabit

Ethernet.

Analysis of the Results: The plots in Figure 3 report the

mean transaction response time, i.e. the average time since

the TO-broadcast of a transaction till its commitment, for

both AGGRO and OPT as a function of the transactions’ ar-

rival rate and the batching factor β. For space constraints

we focus on the case of absence of mismatches between the

optimistic and final delivery. An analysis of scenarios en-

tailing mismatches between the optimistic and final delivery

orders can be found in our extended technical report [18].

By the plots, we can draw two main considerations.

First, AGGRO allows achieving a striking increase in terms

of maximum sustainable throughput by a factor that, inde-

pendently of the considered settings, fluctuates around the

6x value. The reason underlying this impressive perfor-

mance gain is associated with AGGRO’s ability to make ef-

fective use of the locally available computational resources.

Specifically, the average CPU utilization with OPT ranges

between 5% and 20%, depending on the considered bench-

mark, even when the system has reached the saturation

point. Conversely, as the load increases, AGGRO succeeds

in fully utilizing the whole set of cores (that we recall be-

ing equal to 8 in this study) locally available at each replica.

This depends on the fact that the concurrency control pol-

icy adopted by OPT results way too conservative, induc-

ing very long (relatively speaking) periods of stall in the

processing activities. It is interesting to highlight that AG-

GRO’s performance gains are achieved despite the rate of

aborted transactions grows significantly at high load (get-

ting over 50% close to the saturation point). This is a di-

rect consequence of the aggressively optimistic approach to
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Figure 3. Comparison of the performance of

AGGRO and OPT.

concurrency control undertaken by AGGRO, which opts for

incurring the risk of (user transparent) cascading aborts in

order to achieve maximum overlap between processing and

communication.

It is also interesting to note how, at low load, e.g. around

1000 transactions per second, the performance of OPT

rapidly degrades as the batching factor β increases. This

phenomenon is particularly manifest for the List bench-

mark, where the mean transaction response time when β=8

is around 75% larger than in absence of batching (β=1).

In fact, when a batch of transactions is Opt-delivered, in

scenarios characterized by non-negligible conflict probabil-

ity, they are likely to create convoys. In OPT, only the first

transaction of a convoy is immediately processed, whereas

the remaining ones stall till the final order notification. Con-

versely, in AGGRO, the whole batch of delivered transac-

tions is very likely to have been completely processed in

the interval since the optimistic to the final order notifica-

tions. This makes the transaction response time at low load

almost insensitive to the variation of the batching factor (at

least for the explored values of β).

6 Summary

In this work we have presented an active replication pro-

tocol suited for transactional memory systems. It relies on

a classical Optimistic Atomic Broadcast service to deter-

mine a global transaction serialization order across all repli-

cas, and on an innovative concurrency control scheme that

allows for immediately processing optimistically delivered

transactions (according to the guessed serialization order)

while the broadcast service is being finalized. The perfor-

mance gains achievable by our proposal are quantified via a

detailed simulation study.
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